CN109968215B - Special control system for low-temperature micro-abrasive gas jet machining machine tool - Google Patents
Special control system for low-temperature micro-abrasive gas jet machining machine tool Download PDFInfo
- Publication number
- CN109968215B CN109968215B CN201910303210.0A CN201910303210A CN109968215B CN 109968215 B CN109968215 B CN 109968215B CN 201910303210 A CN201910303210 A CN 201910303210A CN 109968215 B CN109968215 B CN 109968215B
- Authority
- CN
- China
- Prior art keywords
- module
- machine tool
- axis
- liquid nitrogen
- detection module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003754 machining Methods 0.000 title claims abstract description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 102
- 239000007788 liquid Substances 0.000 claims abstract description 63
- 238000001514 detection method Methods 0.000 claims abstract description 52
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 51
- 239000007789 gas Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 4
- 239000013589 supplement Substances 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000009469 supplementation Effects 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C3/00—Abrasive blasting machines or devices; Plants
- B24C3/02—Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C7/00—Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
- B24C7/0046—Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier
- B24C7/0053—Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C9/00—Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Automatic Control Of Machine Tools (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种机床控制技术,尤其是一种磨料气射流加工机床控制系统,具体地说是一种低温微磨料气射流加工机床专用控制系统。The invention relates to a machine tool control technology, in particular to a control system for an abrasive gas jet machining machine tool, in particular to a special control system for a low temperature micro-abrasive gas jet machining machine tool.
背景技术Background technique
磨料气射流加工是在传统喷砂加工工艺基础上发展起来的一种新型微细加工技术。磨料气射流加工特别适合于对高硬度金属材料和高脆性非金属材料的局部加工,如对硅、锗、玻璃、陶瓷和石英等材料上的窄槽等结构形状的局部加工。Abrasive air jet machining is a new type of micromachining technology developed on the basis of traditional sandblasting technology. Abrasive gas jet machining is especially suitable for local machining of high hardness metal materials and highly brittle non-metallic materials, such as local machining of narrow grooves and other structural shapes on materials such as silicon, germanium, glass, ceramics and quartz.
陶瓷材料由于其自身的局限性,在某些场合并不适用。如陶瓷材料缺乏光学透明性,以及其有限的生物相容性因而在生物医学中的应用受限。基于此,人们开始用高分子聚合物材料来替代陶瓷材料。Due to its own limitations, ceramic materials are not suitable for some occasions. For example, the lack of optical transparency of ceramic materials and their limited biocompatibility limit their application in biomedicine. Based on this, people began to replace ceramic materials with high molecular polymer materials.
在常温下使用磨料气射流对高分子聚合物材料进行加工,由于高分子聚合物材料多为弹塑性,会发生磨料嵌入,致使加工效率极低。经研究发现,在低温下对高分子聚合物材料进行磨料气射流加工,磨料嵌入相比于常温下显著降低,加工效率极大地提高。基于此,研发了一种低温微磨料气射流加工机床。而对低温微磨料气射流加工机床的控制是否合理,决定了高分子聚合物材料的加工质量和加工效率。The high-molecular polymer material is processed by abrasive gas jet at room temperature. Since the high-molecular polymer material is mostly elastic and plastic, abrasive embedding will occur, resulting in extremely low processing efficiency. It has been found through research that when the high-molecular polymer material is processed by abrasive gas jet at low temperature, the abrasive embedding is significantly reduced compared with that at normal temperature, and the processing efficiency is greatly improved. Based on this, a low-temperature micro-abrasive gas jet machining machine was developed. Whether the control of the low temperature micro-abrasive air jet machining machine is reasonable or not determines the processing quality and processing efficiency of polymer materials.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对低温微磨料气射流加工机床的控制需要,设计一种低温微磨料气射流加工机床专用控制系统,通过该控制系统对低温微磨料气射流加工机床进行合理的控制,从而提高工件在低温下的加工质量和加工效率。The purpose of the present invention is to design a special control system for the low-temperature micro-abrasive gas jet processing machine tool according to the control requirements of the low-temperature micro-abrasive gas jet processing machine tool, and through the control system to reasonably control the low-temperature micro-abrasive gas jet processing machine tool, thereby improving the The machining quality and machining efficiency of the workpiece at low temperature.
本发明的技术方案是:The technical scheme of the present invention is:
一种低温微磨料气射流加工机床专用控制系统,其特征是它包括由旋转控制单元31、线性移动控制单元33和辅助设备控制单元32组成的机床控制模组30,机床控制模组30连接有输入模组10和输出模组20,所述的输入模组10用于输入数控代码、设定加工腔室湿度值以及设定换热器中液氮液位值,所述的输出模组20用于显示数控代码运行状态、加工腔室实时湿度值以及换热器中实时液氮液位值;旋转控制单元31连接有α轴转动模组40,线性移动控制单元33连接有X轴滑动模组50、Y轴滑动模组60、Z轴滑动模组70;辅助设备控制单元32连接有液氮液位检测模组80、机床状态检测模组90和湿度检测模组100;所述的α轴转动模组40与X轴滑动模组50、Y轴滑动模组60以及Z轴滑动模组70固定,构成四维移动平台;所述的工作台140固定在α轴转动模组40上。A special control system for low-temperature micro-abrasive gas jet machining machine tools, characterized in that it includes a machine
所述的液氮安全阀110、机床状态指示灯120以及干燥空气电磁阀130分别与液氮液位检测模组80、机床状态检测模组90以及湿度检测模组100电性连接。The liquid
所述的旋转控制单元31控制α轴转动模组40绕α轴转动,从而带动固定在其上的工作台140绕α轴转动,转动范围为0°~360°,α轴平行于Z轴;所加工的工件固定在工作台140上,工作台140转动以改变工件相对于射流喷嘴的角度。The
所述的辅助设备控制单元32接收液氮液位检测模组80的反馈信号,若检测到换热器中的实际液氮液位值低于设定值,辅助设备控制单元32则会通过液氮液位检测模组80控制液氮安全阀110进行液氮补充,达到设定液位值后停止液氮补充。The auxiliary
所述的辅助设备控制单元32根据机床状态检测模组90发出的信号控制机床状态指示灯120,来表明机床所处的状态。The auxiliary
所述的辅助设备控制单元32接收湿度检测模组100的反馈信号,若检测到加工腔室内的实际湿度值高于设定值,辅助设备控制单元32则会通过湿度检测模组100控制干燥空气电磁阀130进行干燥空气补充,达到设定湿度值后停止干燥空气补充。The auxiliary
所述的线性移动控制单元33对X轴滑动模组50、Y轴滑动模组60以及Z轴滑动模组70进行线性移动控制,三个轴的调节行程均为±50mm且在加工过程中能跟据加工的实际情况进行实时的位置反馈。The linear
所述的湿度检测模组100在开始进行加工之前,若检测到加工腔室内的初始湿度值高于设定值,机床控制模组30会接收其反馈信号并使机床待机,待补充干燥空气达到设定湿度值后再使机床工作,进行加工。Before the
本发明的有益效果:Beneficial effects of the present invention:
本发明设计一种低温微磨料气射流加工机床专用控制系统,不仅可以控制加工过程中机床加工腔室内的湿度和换热器中的液氮液位,还可以进行工件的实时位置反馈,提高工件在低温下的加工质量和加工效率。The invention designs a special control system for a low-temperature micro-abrasive gas jet machining machine tool, which can not only control the humidity in the machining chamber of the machine tool and the liquid nitrogen level in the heat exchanger during the machining process, but also perform real-time position feedback of the workpiece, so as to improve the performance of the workpiece. Processing quality and processing efficiency at low temperatures.
附图说明Description of drawings
图1是本发明的机床专用控制系统方案框图。FIG. 1 is a block diagram of a special control system for a machine tool of the present invention.
图2是本发明的机床加工腔室内部示意图。FIG. 2 is a schematic diagram of the interior of the machining chamber of the machine tool of the present invention.
图中:10为输入模组;20为输出模组;30为机床控制模组;31为旋转控制单元;32为辅助设备控制单元;33为线性移动控制单元;40为α轴旋转模组;50为X轴滑动模组;60为Y轴滑动模组;70为Z轴滑动模组;80为液氮液位检测模组;90为机床状态检测模组;100为湿度检测模组;110为液氮安全阀;120为机床状态指示灯;130为干燥空气电磁阀;140为工作台;150为高分子聚合物工件;160为射流喷嘴;170为换热器。In the figure: 10 is the input module; 20 is the output module; 30 is the machine tool control module; 31 is the rotation control unit; 32 is the auxiliary equipment control unit; 33 is the linear movement control unit; 40 is the α-axis rotation module; 50 is the X-axis sliding module; 60 is the Y-axis sliding module; 70 is the Z-axis sliding module; 80 is the liquid nitrogen level detection module; 90 is the machine tool status detection module; 100 is the humidity detection module; 110 120 is a machine tool status indicator light; 130 is a dry air solenoid valve; 140 is a workbench; 150 is a polymer workpiece; 160 is a jet nozzle; 170 is a heat exchanger.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
如图1、2所示。As shown in Figures 1 and 2.
一种低温微磨料气射流加工机床专用控制系统,它包括输入模组10、输出模组20、机床控制模组30、α轴转动模组40、X轴滑动模组50、Y轴滑动模组60、Z轴滑动模组70、液氮液位检测模组80、机床状态检测模组90、湿度检测模组100、液氮安全阀110、机床状态指示灯120、干燥空气电磁阀130、工作台140;如图1所示。所述的机床控制模组30分别与输入模组10、输出模组20、α轴转动模组40、X轴滑动模组50、Y轴滑动模组60、Z轴滑动模组70、液氮液位检测模组80、机床状态检测模组90、湿度检测模组100电性连接;所述的α轴转动模组40与X轴滑动模组50、Y轴滑动模组60以及Z轴滑动模组70固定,构成四维移动平台;所述的液氮安全阀110、机床状态指示灯120以及干燥空气电磁阀130分别与液氮液位检测模组80、机床状态检测模组90以及湿度检测模组100电性连接;所述的工作台140固定在α轴转动模组40上。所述的输入模组10用于输入数控代码、设定加工腔室湿度值以及设定换热器中液氮液位值。所述的输出模组20可以显示数控代码运行状态、加工腔室实时湿度值以及换热器中实时液氮液位值。所述的机床控制模组30包括旋转控制单元31、辅助设备控制单元32以及线性移动控制单元33;所述的旋转控制单元31与α轴转动模组40电性连接;所述的辅助设备控制单元32与液氮液位检测模组80、机床状态检测模组90以及湿度检测模组100电性连接;所述的线性移动控制单元33与X轴滑动模组50、Y轴滑动模组60以及Z轴滑动模组70电性连接。所述的旋转控制单元31可以控制α轴转动模组40绕α轴(α轴平行于Z轴)转动,从而带动固定在其上的工作台140绕α轴转动,转动范围为0°~360°;所加工的工件固定在工作台140上,工作台140转动可以改变工件相对于射流喷嘴的角度,从而改变加工角度。所述的辅助设备控制单元32可以接收液氮液位检测模组80的反馈信号,若检测到换热器中的实际液氮液位值低于设定值,辅助设备控制单元32则会通过液氮液位检测模组80控制液氮安全阀110进行液氮补充,达到设定液位值后停止液氮补充,可保证微磨料气射流冷却的充分性。所述的辅助设备控制单元32可以根据机床状态检测模组90发出的信号控制机床状态指示灯120,来表明机床所处的状态。所述的辅助设备控制单元32可以接收湿度检测模组100的反馈信号,若检测到加工腔室内的实际湿度值高于设定值,辅助设备控制单元32则会通过湿度检测模组100控制干燥空气电磁阀130进行干燥空气补充,达到设定湿度值后停止干燥空气补充,可有效防止低温加工时空气中的水汽液化结冰堵塞射流喷嘴。所述的线性移动控制单元33可以对X轴滑动模组50、Y轴滑动模组60以及Z轴滑动模组70进行线性移动控制,三个轴调的节行程均为±50mm且在加工过程中可以跟据加工的实际情况进行实时的位置反馈。所述的X轴滑动模组50、Y轴滑动模组60以及Z轴滑动模组70在移动时会带动固定在其上的α轴转动模组40移动,从而带动工件移动,可改变加工距离和加工部位。所述的低温微磨料气射流加工机床专用控制系统,其特征在于所述的湿度检测模组100在开始进行加工之前,若检测到加工腔室内的初始湿度值高于设定值,机床控制模组30会接收其反馈信号并使机床待机,待补充干燥空气达到设定湿度值后再使机床工作,进行加工。需要说明的是,本发明的关键是各模组的设定和协调工作,至于各模组的具体结构和电路均可采用现有技术自行设计和制造,而此类设计和制造对于本领域技术人员而言是不言而喻的。A special control system for a low-temperature micro-abrasive air jet machining machine tool, which includes an
本发明的工作过程是:The working process of the present invention is:
如图1所示,通过输入模组10输入数控代码、设定加工腔室内在加工时所需的湿度值以及设定换热器170中在加工时所需的液氮液位值;输出模组20会在机床加工前显示所输入的数控代码、加工腔室中湿度的设定值以及换热器170中液氮液位的设定值,在机床加工过程中显示数控代码运行状态、加工腔室实时湿度值以及换热器170中实时液氮液位值,如图2所示。若在加工之前,湿度检测模组100检测到加工腔室内的初始湿度值高于设定值,机床控制模组30会通过设备辅助控制单元32接收其反馈信号并使机床待机,待通过干燥空气电磁阀130向加工腔室内补充干燥空气达到设定湿度值后再使机床工作,进入加工过程。微磨料气射流通过换热器170中的液氮进行冷却,冷却后通过固定在换热器170上射流喷嘴160射出,对高分子聚合物工件150进行加工。辅助设备控制单元32可以接收液氮液位检测模组80的反馈信号,若检测到换热器170中的实际液氮液位值低于设定值,辅助设备控制单元32则会通过液氮液位检测模组80控制液氮安全阀110进行液氮补充,达到设定液位值后停止液氮补充,以确保微磨料气射流冷却的充分性。α轴转动模组40与X轴滑动模组50、Y轴滑动模组60以及Z轴滑动模组70固定,构成四维移动平台;该四维移动平台根据所输入的数控代码,通过旋转控制单元31和线性移动控制单元33使固定在工作台140上的高分子聚合物工件150沿X轴、Y轴、Z轴三个方向移动以及绕α轴方向转动,这样可以改变高分子聚合物工件150与射流喷嘴160之间的相对位置,从而改变加工部位、加工距离以及加工角度。辅助设备控制单元32可以根据机床状态检测模组90发出的信号控制机床状态指示灯120,来表明机床所处的状态。As shown in FIG. 1, input the numerical control code through the
本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。The parts not involved in the present invention are the same as the prior art or can be implemented by using the prior art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910303210.0A CN109968215B (en) | 2019-04-16 | 2019-04-16 | Special control system for low-temperature micro-abrasive gas jet machining machine tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910303210.0A CN109968215B (en) | 2019-04-16 | 2019-04-16 | Special control system for low-temperature micro-abrasive gas jet machining machine tool |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109968215A CN109968215A (en) | 2019-07-05 |
CN109968215B true CN109968215B (en) | 2020-07-31 |
Family
ID=67084700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910303210.0A Active CN109968215B (en) | 2019-04-16 | 2019-04-16 | Special control system for low-temperature micro-abrasive gas jet machining machine tool |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109968215B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112140003B (en) * | 2020-09-29 | 2022-04-08 | 南京航太机电有限公司 | Ultra-low temperature micro-abrasive gas jet processing device for polymer micromachining |
CN112157592B (en) * | 2020-09-29 | 2022-04-12 | 南京航太机电有限公司 | Ultrasonic-assisted ultra-low temperature abrasive gas jet micromachining device for medical polymer PDMS material |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0646451B2 (en) * | 1987-12-11 | 1994-06-15 | 大陽酸素株式会社 | Magnetic disk substrate processing method |
US6099398A (en) * | 1998-08-20 | 2000-08-08 | C.D.S. Inc. | Media assist gaseous nitrogen distribution system for deflashing machine |
FR2944461B1 (en) * | 2009-04-15 | 2011-05-20 | Air Liquide | METHOD AND INSTALLATION FOR SURFACE TREATMENT WITH CRYOGENIC FLUID JETS |
CN106670983B (en) * | 2017-01-11 | 2018-07-13 | 南京航空航天大学 | A kind of low temperature abradant jet processing unit (plant) |
CN106965092B (en) * | 2017-04-17 | 2018-09-07 | 南京航空航天大学 | The intelligent controllable temperature low temperature abradant jet processing unit (plant) of polymer |
CN109500744A (en) * | 2018-10-25 | 2019-03-22 | 苏州市东望医疗设备有限公司 | Large-size stainless steel work piece surface blasting craft |
-
2019
- 2019-04-16 CN CN201910303210.0A patent/CN109968215B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109968215A (en) | 2019-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100462199C (en) | Atmospheric pressure plasma polishing method | |
CN109676538B (en) | Low-temperature micro-abrasive gas jet machining machine tool | |
CN100406197C (en) | Atmospheric pressure plasma polishing device | |
CN101983838B (en) | Milling, grinding and polishing device based on intelligent numerically-controlled platform | |
CN109968215B (en) | Special control system for low-temperature micro-abrasive gas jet machining machine tool | |
CN100400225C (en) | Composite processing and testing machine tools for aspheric optical parts | |
CN106670983B (en) | A kind of low temperature abradant jet processing unit (plant) | |
CN203636513U (en) | Ultra-precision machining system with function of ultrasonic vibration assisted grinding/polishing | |
CN104493662B (en) | Machining device for curvature radius-adjustable aspheric concave lens | |
CN108972302A (en) | A kind of disresonance type vibration auxiliary polishing device and method | |
CN1822919A (en) | Hydrodynamic radial flux tool for polishing and grinding optical and semiconductor surfaces | |
CN108081070B (en) | A kind of CNC small tool polishing assisted atmospheric plasma processing method | |
CN204366662U (en) | Radius of curvature adjustable aspheric surface concavees lens processing unit (plant) | |
CN111360657A (en) | Laser abrasive belt grinding composite processing equipment and processing method | |
CN203650265U (en) | Liquid rotating disc type automatic sand-blasting machine | |
CN108312043B (en) | Roller type vibration auxiliary polishing device and method | |
CN108581794A (en) | Atmospheric plasma sprays the profile-followed burnishing device of assist gas pressure grinding wheel and method | |
JP2021133497A (en) | Method and device for repairing scratches on surface | |
JP5084848B2 (en) | Processing machine equipment | |
CN111390392A (en) | A laser processing technology for polishing semiconductor materials | |
CN111890235A (en) | A rotary jet polishing device and method | |
CN112936021B (en) | A thin-walled large-diameter aspheric carbon fiber composite high-performance parts grinding equipment | |
CN209036263U (en) | A non-resonant vibration-assisted polishing device | |
CN110052972A (en) | A kind of low temperature abradant jet processing unit (plant) that jet expansion humidity is controllable | |
CN112157597B (en) | A low temperature nitrogen cooling focused abrasive gas jet machining machine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |