CN109964416B - A user equipment, method and apparatus in a base station for multi-antenna transmission - Google Patents
A user equipment, method and apparatus in a base station for multi-antenna transmission Download PDFInfo
- Publication number
- CN109964416B CN109964416B CN201780065831.9A CN201780065831A CN109964416B CN 109964416 B CN109964416 B CN 109964416B CN 201780065831 A CN201780065831 A CN 201780065831A CN 109964416 B CN109964416 B CN 109964416B
- Authority
- CN
- China
- Prior art keywords
- signaling
- domain
- sub
- time window
- antenna ports
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000011664 signaling Effects 0.000 claims abstract description 290
- 239000011159 matrix material Substances 0.000 claims description 243
- 238000012545 processing Methods 0.000 claims description 45
- 238000005259 measurement Methods 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 22
- 239000013598 vector Substances 0.000 description 84
- 238000010586 diagram Methods 0.000 description 18
- 238000013139 quantization Methods 0.000 description 18
- 239000002131 composite material Substances 0.000 description 11
- 238000013507 mapping Methods 0.000 description 11
- 125000004122 cyclic group Chemical group 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000013468 resource allocation Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0027—Scheduling of signalling, e.g. occurrence thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种用于多天线传输的用户设备、基站中的方法和装置。作为一个实施例,UE在第一时间窗中监测第一信令,在第二时间窗中监测第二信令;操作第一无线信号。所述第一时间窗和所述第二时间窗在时域上相互正交,所述第一信令包括第一域,所述第二信令包括第二域。所述第一信令中的所述第一域被用于形成L个天线端口。所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中至少之一被用于形成所述L个天线端口。所述第一无线信号被所述L个天线端口分别发送。所述操作是接收,或者所述操作是发送。本发明能够降低UE盲检测的次数,同时保证传输的质量。
The invention discloses a method and device in a user equipment, a base station for multi-antenna transmission. As an embodiment, the UE monitors the first signaling in the first time window, and monitors the second signaling in the second time window; and operates the first wireless signal. The first time window and the second time window are mutually orthogonal in the time domain, the first signaling includes a first domain, and the second signaling includes a second domain. The first field in the first signaling is used to form L antenna ports. The first signaling includes the second field, at least one of {the second field in the first signaling, the second field in the second signaling} is used to form the L antenna ports. The first wireless signals are respectively transmitted by the L antenna ports. The operation is receiving, or the operation is sending. The present invention can reduce the number of blind detections by the UE, while ensuring the quality of transmission.
Description
技术领域technical field
本申请涉及无线通信系统中的传输方法和装置,尤其是支持多天线传输的无线通信系统中的传输方案和装置。The present application relates to a transmission method and apparatus in a wireless communication system, in particular to a transmission scheme and apparatus in a wireless communication system supporting multi-antenna transmission.
背景技术Background technique
根据3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN1(RadioAccess Network,无线接入网)#86bis会议的结论,上行多天线传输将会支持频率选择性的预编码(frequency selective precoding)方案。According to the conclusion of 3GPP (3rd Generation Partner Project) RAN1 (RadioAccess Network, Radio Access Network) #86bis conference, uplink multi-antenna transmission will support frequency selective precoding (frequency selective precoding) scheme .
在基于码本的上行多天线传输方式下,为了支持频率选择性的预编码,基站需要在调度信令中指示每个子带上使用的发送预编码矩阵,这大大增加了DCI(DownlinkControl Information,下行控制信息)的开销。如何合理的设计调度信令来降低频率选择性预编码的信令开销,这是需要解决的问题。In the codebook-based uplink multi-antenna transmission mode, in order to support frequency-selective precoding, the base station needs to indicate the transmit precoding matrix used on each subband in the scheduling signaling, which greatly increases the DCI (Downlink Control Information, downlink control information) matrix. control information). How to reasonably design scheduling signaling to reduce the signaling overhead of frequency selective precoding is a problem that needs to be solved.
发明内容SUMMARY OF THE INVENTION
发明人通过研究发现,为了降低指示发送预编码矩阵需要的控制信令开销,可以把发送预编码矩阵分解成两个矩阵的乘积,第一个矩阵是非频率选择性(所有子载波上都相同)并且长时慢变的,可以以较长的周期来更新,利用较多的比特来量化;第二个矩阵是频率选择性(不同子带上互不相同)并且快变的,需要以较短的周期来更新,但可以利用较少的比特来量化。这样,以不同的量化比特数来指示两个具有不同的更新周期的矩阵,用于上行预编码矩阵的信令的总体开销会大幅降低,同时能保证上行预编码的性能。The inventor found through research that in order to reduce the control signaling overhead required to indicate the transmission of the precoding matrix, the transmission precoding matrix can be decomposed into the product of two matrices, the first matrix is non-frequency selective (same on all subcarriers) And long-term slow-changing, can be updated in a longer period, using more bits to quantize; the second matrix is frequency selective (different from each other in different subbands) and fast-changing, it needs to be shorter period, but can be quantized with fewer bits. In this way, by using different numbers of quantization bits to indicate two matrices with different update periods, the overall signaling overhead for the uplink precoding matrix can be greatly reduced, and the performance of uplink precoding can be guaranteed at the same time.
由于第一个矩阵的更新速度比较慢,不需要出现在所有DCI中。包括第一个矩阵的DCI的负载尺寸(payload size)会大于不包括第一个矩阵的DCI的负载尺寸,这导致两种不同的DCI负载尺寸。不同的DCI负载尺寸会导致UE(User Equipment,用户设备)在监测DCI时需要更多的盲检测次数,提高盲检测的复杂度,这是系统设计中希望避免的。Since the update rate of the first matrix is relatively slow, it does not need to be present in all DCIs. The payload size of the DCI including the first matrix will be larger than the payload size of the DCI not including the first matrix, resulting in two different DCI payload sizes. Different DCI load sizes will cause the UE (User Equipment, user equipment) to need more times of blind detection when monitoring DCI, which increases the complexity of blind detection, which is to be avoided in system design.
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然本申请最初的动机是针对上行预编码的,本申请也适用于下行预编码。在不冲突的情况下,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。In view of the above problems, the present application discloses a solution. It should be noted that although the original motivation of this application is for uplink precoding, this application is also applicable to downlink precoding. In the case of no conflict, the embodiments in the UE of the present application and the features in the embodiments may be applied in the base station, and vice versa. The embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
本申请公开了一种被用于多天线传输的UE中的方法,其中,包括如下步骤:The present application discloses a method used in a UE for multi-antenna transmission, which includes the following steps:
-步骤A.在第一时间窗中监测第一信令,在第二时间窗中监测第二信令;- Step A. Monitoring the first signaling in the first time window and monitoring the second signaling in the second time window;
-步骤B.操作第一无线信号。- Step B. Operate the first wireless signal.
其中,所述第一时间窗和所述第二时间窗在时域上相互正交,所述第一信令包括第一域,所述第二信令包括第二域。所述第一信令中的所述第一域被用于形成L个天线端口。所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被用于形成所述L个天线端口。所述第一无线信号被所述L个天线端口分别发送。所述L是正整数。所述操作是接收,或者所述操作是发送。Wherein, the first time window and the second time window are orthogonal to each other in the time domain, the first signaling includes a first domain, and the second signaling includes a second domain. The first field in the first signaling is used to form L antenna ports. The first signaling includes the second field, at least one of {the second field in the first signaling, the second field in the second signaling} is used for forming the L antenna ports; or the first signaling includes the former of {the first field, the second field}, and the second field in the second signaling is used to form the the L antenna ports. The first wireless signals are respectively transmitted by the L antenna ports. The L is a positive integer. The operation is receiving, or the operation is sending.
作为一个实施例,所述第一信令的负载尺寸和所述第二信令的负载尺寸不同。As an embodiment, the payload size of the first signaling and the payload size of the second signaling are different.
作为一个实施例,所述负载尺寸是相应的信令中的所有比特的数量。As an embodiment, the payload size is the number of all bits in the corresponding signaling.
作为上述实施例的一个子实施例,所述所有比特包括{信息比特,CRC(CyclicRedundancy Check,循环冗余交验)比特}。As a sub-embodiment of the foregoing embodiment, all the bits include {information bits, CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) bits}.
作为上述实施例的一个子实施例,所述所有比特包括{信息比特,CRC(CyclicRedundancy Check,循环冗余交验)比特,奇偶校验比特}。As a sub-embodiment of the above embodiment, all the bits include {information bits, CRC (Cyclic Redundancy Check, cyclic redundancy check) bits, parity bits}.
作为上述实施例的一个子实施例,所述所有比特包括{信息比特,奇偶校验比特}。As a sub-embodiment of the above-mentioned embodiment, all the bits include {information bits, parity bits}.
作为上述实施例的一个子实施例,所述所有比特包括填充(Padding)比特。As a sub-embodiment of the above-mentioned embodiment, all the bits include padding bits.
作为一个实施例,所述负载尺寸是相应的信令中的所有信息比特的数量。As an embodiment, the payload size is the number of all information bits in the corresponding signaling.
作为一个实施例,上述方法的好处在于,所述第一域和所述第二域可以分别对应所述第一无线信号经历的信道中的非频率选择性、慢变的部分和频率选择性、快变的部分。通过分开指示所述第一域和所述第二域,可以更灵活的适配两部分各自的特性。所述非频率选择性、慢变的部分可以以较长的周期更新,因此所述第一域不需要出现在所述第二信令中,这样降低了所述第二信令的负载尺寸(payload size),从而降低了总体的信令开销。As an embodiment, the advantage of the above method is that the first domain and the second domain can respectively correspond to the non-frequency-selective, slowly changing part, and frequency-selective, The fast changing part. By indicating the first domain and the second domain separately, the respective characteristics of the two parts can be adapted more flexibly. The non-frequency selective, slowly changing part can be updated in a longer period, so the first field does not need to appear in the second signaling, which reduces the load size of the second signaling ( payload size), thereby reducing the overall signaling overhead.
作为一个实施例,所述监测是指:所述UE根据相应信令的负载尺寸对所述相应信令执行BD(Blind Decoding,盲检测)。As an embodiment, the monitoring refers to: the UE performs BD (Blind Decoding, blind detection) on the corresponding signaling according to the load size of the corresponding signaling.
作为一个实施例,上述方法的另一个好处在于,所述第一信令只在所述第一时间窗中出现,所述第二信令只在所述第二时间窗中出现,因此所述UE在任何一个时刻只需要以一种负载尺寸(payload size)来监测所述第一信令或者所述第二信令,降低了所述UE的处理复杂度。As an embodiment, another advantage of the above method is that the first signaling only occurs in the first time window, and the second signaling only occurs in the second time window, so the The UE only needs to monitor the first signaling or the second signaling with one payload size at any moment, which reduces the processing complexity of the UE.
作为一个实施例,所述第一域中的比特的数量大于所述第二域中的比特的数量。As an embodiment, the number of bits in the first field is greater than the number of bits in the second field.
作为一个实施例,所述第一域中的比特的数量小于所述第二域中的比特的数量。As an embodiment, the number of bits in the first field is smaller than the number of bits in the second field.
作为一个实施例,所述第一域中的比特的数量等于所述第二域中的比特的数量。As an embodiment, the number of bits in the first field is equal to the number of bits in the second field.
作为一个实施例,所述第一信令包括所述第一域和所述第二域之外的K个域,所述第二信令包括所述K个域,所述K是正整数。As an embodiment, the first signaling includes K domains other than the first domain and the second domain, the second signaling includes the K domains, and K is a positive integer.
作为一个实施例,所述K个域中的任意一个包括{资源分配域,MCS(Modulationand Coding Scheme,调制编码方案)域,RV(Redundancy Version,冗余版本)域,NDI(NewData Indicator,新数据指示)域,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号域,发送功率控制域}中的一种或者多种。As an embodiment, any one of the K fields includes {resource allocation field, MCS (Modulation and Coding Scheme, modulation and coding scheme) field, RV (Redundancy Version, redundancy version) field, NDI (New Data Indicator, new data) field Indication) field, one or more of HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process ID field, transmission power control field}.
作为一个实施例,所述天线端口是多根物理天线通过天线虚拟化(Virtualization)而形成的,所述多根物理天线到所述天线端口的映射系数组成波束赋型向量。As an embodiment, the antenna port is formed by multiple physical antennas through antenna virtualization (Virtualization), and the mapping coefficients from the multiple physical antennas to the antenna port form a beamforming vector.
作为一个实施例,给定域被用于形成给定天线端口是指:所述给定域被用于生成所述给定天线端口对应的波束赋型向量。所述给定域是所述第一域或者所述第二域。As an embodiment, that a given field is used to form a given antenna port means that the given field is used to generate a beamforming vector corresponding to the given antenna port. The given domain is the first domain or the second domain.
作为上述实施例的一个子实施例,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的,所述给定域被用于生成{所述给定天线端口对应的所述模拟波束赋型矩阵,所述给定天线端口对应的所述数字波束赋型向量}中的至少之一。As a sub-embodiment of the above embodiment, the beamforming vector is generated by the product of an analog beamforming matrix and a digital beamforming vector, and the given field is used to generate {the given field at least one of the analog beamforming matrix corresponding to a given antenna port and the digital beamforming vector} corresponding to the given antenna port.
作为上述实施例的一个子实施例,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的,所述第一域被用于生成所述L个天线端口对应的所述模拟波束赋型矩阵,所述第二域被用于生成所述L个天线端口对应的所述数字波束赋型向量。As a sub-embodiment of the above embodiment, the beamforming vector is generated by the product of an analog beamforming matrix and a digital beamforming vector, and the first domain is used to generate the L the analog beamforming matrix corresponding to the antenna ports, and the second domain is used to generate the digital beamforming vectors corresponding to the L antenna ports.
作为一个实施例,给定域被用于形成给定天线端口是指:所述给定域指示所述给定天线端口对应的波束赋型向量。所述给定域是所述第一域或者所述第二域。As an embodiment, that a given field is used to form a given antenna port means: the given field indicates a beamforming vector corresponding to the given antenna port. The given domain is the first domain or the second domain.
作为上述实施例的一个子实施例,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的,所述给定域指示{所述给定天线端口对应的所述模拟波束赋型矩阵,所述给定天线端口对应的所述数字波束赋型向量}中的至少之一。As a sub-embodiment of the above embodiment, the beamforming vector is generated by the product of an analog beamforming matrix and a digital beamforming vector, and the given field indicates {the given antenna port at least one of the corresponding analog beamforming matrix and the digital beamforming vector} corresponding to the given antenna port.
作为上述实施例的一个子实施例,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的,所述第一域指示所述L个天线端口对应的所述模拟波束赋型矩阵,所述第二域指示所述L个天线端口对应的所述数字波束赋型向量。As a sub-embodiment of the above embodiment, the beamforming vector is generated by the product of an analog beamforming matrix and a digital beamforming vector, and the first field indicates that the L antenna ports correspond to The analog beamforming matrix of , the second field indicates the digital beamforming vector corresponding to the L antenna ports.
作为一个实施例,所述第一信令的负载尺寸(payload size)大于所述第二信令的负载尺寸。As an embodiment, the payload size of the first signaling is larger than the payload size of the second signaling.
作为一个实施例,所述第一信令的负载尺寸(payload size)小于所述第二信令的负载尺寸。As an embodiment, the payload size of the first signaling is smaller than the payload size of the second signaling.
作为一个实施例,所述第一信令的负载尺寸(payload size)等于所述第二信令的负载尺寸。As an embodiment, the payload size of the first signaling is equal to the payload size of the second signaling.
作为一个实施例,所述第一信令和所述第二信令分别是动态信令。As an embodiment, the first signaling and the second signaling are dynamic signaling, respectively.
作为一个实施例,所述第一信令和所述第二信令分别是用于下行授予(DownlinkGrant)的DCI(Downlink Control Information,下行控制信息),所述操作是接收。As an embodiment, the first signaling and the second signaling are respectively DCI (Downlink Control Information, downlink control information) used for a downlink grant (Downlink Grant), and the operation is receiving.
作为一个实施例,所述第一信令和所述第二信令分别是用于上行授予(UplinkGrant)的DCI,所述操作是发送。As an embodiment, the first signaling and the second signaling are respectively DCI for uplink grant (Uplink Grant), and the operation is sending.
作为一个实施例,所述第一信令携带所述第一无线信号的调度信息。As an embodiment, the first signaling carries scheduling information of the first wireless signal.
作为一个实施例,所述第二信令携带所述第一无线信号的调度信息。As an embodiment, the second signaling carries scheduling information of the first wireless signal.
作为上述实施例的一个子实施例,所述调度信息包括{所占用的时域资源,所占用的频域资源,MCS,HARQ进程号,RV,NDI}中的至少之一。As a sub-embodiment of the above embodiment, the scheduling information includes at least one of {occupied time domain resources, occupied frequency domain resources, MCS, HARQ process number, RV, NDI}.
作为一个实施例,所述第一信令和所述第二信令分别在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。As an embodiment, the first signaling and the second signaling are respectively transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(PhysicalDownlink Control Channel,物理下行控制信道)。As a sub-embodiment of the foregoing embodiment, the downlink physical layer control channel is a PDCCH (Physical Downlink Control Channel, physical downlink control channel).
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(shortPDCCH,短PDCCH)。As a sub-embodiment of the foregoing embodiment, the downlink physical layer control channel is sPDCCH (shortPDCCH, short PDCCH).
作为一个实施例,所述第一无线信号在物理层数据信道上传输。As an embodiment, the first wireless signal is transmitted on a physical layer data channel.
作为上述实施例的一个子实施例,所述物理层数据信道是PDSCH(PhysicalDownlink Shared Channel,物理下行共享信道),所述操作是接收。As a sub-embodiment of the foregoing embodiment, the physical layer data channel is PDSCH (Physical Downlink Shared Channel, physical downlink shared channel), and the operation is receiving.
作为上述实施例的一个子实施例,所述物理层数据信道是sPDSCH(short PDSCH,短PDSCH),所述操作是接收。As a sub-embodiment of the above embodiment, the physical layer data channel is sPDSCH (short PDSCH, short PDSCH), and the operation is reception.
作为上述实施例的一个子实施例,所述物理层数据信道是PUSCH(PhysicalUplink Shared Channel,物理上行共享信道),所述操作是发送。As a sub-embodiment of the foregoing embodiment, the physical layer data channel is a PUSCH (Physical Uplink Shared Channel, physical uplink shared channel), and the operation is sending.
作为上述实施例的一个子实施例,所述物理层数据信道是sPUSCH(short PUSCH,短PUSCH),所述操作是发送。As a sub-embodiment of the above embodiment, the physical layer data channel is sPUSCH (short PUSCH, short PUSCH), and the operation is transmission.
作为一个实施例,所述第一域包括第一TPMI(Transmitted Precoding MatrixIndicator,发送预编码矩阵标识)。As an embodiment, the first field includes a first TPMI (Transmitted Precoding Matrix Indicator, transmitted precoding matrix identifier).
作为上述实施例的一个子实施例,所述第一TPMI是宽带的TPMI,所述第一TPMI在所述第一无线信号占用的所有子载波上被用于确定所述第一无线信号的预编码矩阵。As a sub-embodiment of the above-mentioned embodiment, the first TPMI is a wideband TPMI, and the first TPMI is used to determine the prediction of the first wireless signal on all subcarriers occupied by the first wireless signal. encoding matrix.
作为一个实施例,所述第二域包括M个第二TPMI,所述M是正整数。As an embodiment, the second field includes M second TPMIs, where M is a positive integer.
作为上述实施例的一个子实施例,所述第二TPMI是子带(sub-band)的TPMI,所述第一无线信号占用的频率资源被划分成多个频率区域,所述第二TPMI只在部分所述频率区域上被用于确定所述第一无线信号的预编码矩阵。As a sub-embodiment of the foregoing embodiment, the second TPMI is a sub-band TPMI, the frequency resource occupied by the first wireless signal is divided into multiple frequency regions, and the second TPMI only A precoding matrix used to determine the first wireless signal over part of the frequency region.
作为上述实施例的一个子实施例,所述K等于所述M。As a sub-embodiment of the above-mentioned embodiment, the K is equal to the M.
作为上述实施例的一个子实施例,所述K不等于所述M。As a sub-embodiment of the above-mentioned embodiment, the K is not equal to the M.
作为一个实施例,所述第一TPMI包括的比特的数量大于所述第二TPMI包括的比特的数量。As an embodiment, the number of bits included in the first TPMI is greater than the number of bits included in the second TPMI.
作为一个实施例,所述第一TPMI包括的比特的数量等于所述第二TPMI包括的比特的数量。As an embodiment, the number of bits included in the first TPMI is equal to the number of bits included in the second TPMI.
作为一个实施例,所述第一TPMI包括的比特的数量小于所述第二TPMI包括的比特的数量。As an embodiment, the number of bits included in the first TPMI is smaller than the number of bits included in the second TPMI.
作为一个实施例,所述所述第一无线信号被所述L个天线端口分别发是指:所述第一无线信号包括L个子信号,所述L个子信号分别被所述L个天线端口发送。As an embodiment, the fact that the first wireless signal is respectively transmitted by the L antenna ports means: the first wireless signal includes L sub-signals, and the L sub-signals are respectively transmitted by the L antenna ports .
作为一个实施例,所述监测是指基于盲检测的接收,即在给定时间窗中接收信号并执行译码操作,如果根据校验比特确定译码正确则判断接收成功,否则判断接收失败。所述给定时间窗是所述第一时间窗或者所述第二时间窗。As an embodiment, the monitoring refers to reception based on blind detection, that is, receiving a signal in a given time window and performing a decoding operation. If it is determined that the decoding is correct according to the parity bits, the reception is determined to be successful, otherwise, the reception is determined to fail. The given time window is the first time window or the second time window.
作为上述实施例的一个子实施例,所述UE在所述第一时间窗中以所述第一信令的负载尺寸进行盲检测,所述UE在所述第二时间窗中以所述第二信令的负载尺寸进行盲检测。As a sub-embodiment of the above embodiment, the UE performs blind detection with the payload size of the first signaling in the first time window, and the UE performs blind detection with the first signaling in the second time window. Blind detection of the payload size of the second signaling.
作为一个实施例,上述方法的好处在于:在给定时间窗内,所述UE只需要以一种负载尺寸进行盲检测,从而避免了由于所述第一信令和所述第二信令的负载尺寸不同而带来的盲检测复杂度的提高。As an embodiment, the advantage of the above method is that within a given time window, the UE only needs to perform blind detection with one load size, thereby avoiding the need for the first signaling and the second signaling to perform blind detection. The complexity of blind detection is increased due to different payload sizes.
作为一个实施例,所述第一时间窗包括T1个时间单位,所述第二时间窗包括T2个时间单位,所述T1和所述T2分别是正整数。As an embodiment, the first time window includes T1 time units, the second time window includes T2 time units, and T1 and T2 are positive integers respectively.
作为上述实施例的一个子实施例,所述时间单位是子帧。As a sub-embodiment of the above-mentioned embodiment, the time unit is a subframe.
作为上述实施例的一个子实施例,所述时间单位是1ms。As a sub-embodiment of the above-mentioned embodiment, the time unit is 1 ms.
作为上述实施例的一个子实施例,所述T1个时间单位在时域上是不连续的。As a sub-embodiment of the foregoing embodiment, the T1 time units are discontinuous in the time domain.
作为上述实施例的一个子实施例,所述T2个时间单位在时域上是不连续的。As a sub-embodiment of the foregoing embodiment, the T2 time units are discontinuous in the time domain.
作为上述实施例的一个子实施例,所述T1大于所述T2。As a sub-embodiment of the above-mentioned embodiment, the T1 is greater than the T2.
作为上述实施例的一个子实施例,所述T1等于所述T2。As a sub-embodiment of the above-mentioned embodiment, the T1 is equal to the T2.
作为上述实施例的一个子实施例,所述T1小于所述T2。As a sub-embodiment of the above-mentioned embodiment, the T1 is smaller than the T2.
具体的,根据本申请的一个方面,其特征在于,所述操作是发送,所述第一无线信号包括L个参考信号,所述L个参考信号分别被所述L个天线端口发送。Specifically, according to an aspect of the present application, the operation is to transmit, and the first wireless signal includes L reference signals, and the L reference signals are respectively transmitted by the L antenna ports.
作为一个实施例,所述第一信令指示所述L个参考信号的RS端口信息。As an embodiment, the first signaling indicates RS port information of the L reference signals.
作为一个实施例,所述第二信令指示所述L个参考信号的RS端口信息。As an embodiment, the second signaling indicates RS port information of the L reference signals.
作为上述实施例的一个子实施例,所述RS端口信息包括{所占用的时域资源,所占用的频域资源,RS图案(pattern),RS序列,CS(Cyclic Shift,循环位移量),OCC(Orthogonal Cover Code,正交掩码)}中的至少之一。As a sub-embodiment of the above embodiment, the RS port information includes {occupied time domain resources, occupied frequency domain resources, RS pattern (pattern), RS sequence, CS (Cyclic Shift, cyclic shift), At least one of OCC (Orthogonal Cover Code, orthogonal mask)}.
作为一个实施例,所述L个参考信号包括DMRS(DeModulation ReferenceSignals,解调参考信号)。As an embodiment, the L reference signals include DMRS (DeModulation Reference Signals, demodulation reference signals).
作为一个实施例,所述L个参考信号中的任意一个所述参考信号采用DMRS的图案(pattern)。As an embodiment, any one of the L reference signals adopts a DMRS pattern (pattern).
具体的,根据本申请的一个方面,其特征在于,所述步骤B还包括如下步骤:Specifically, according to an aspect of the present application, the step B further includes the following steps:
-步骤B0.接收Q个参考信号。- Step B0. Receive Q reference signals.
其中,所述操作是接收,所述第一信令中的所述第一域被用于形成Q个天线端口,所述Q个参考信号分别被所述Q个天线端口发送。所述Q是正整数。Wherein, the operation is receiving, the first field in the first signaling is used to form Q antenna ports, and the Q reference signals are respectively sent by the Q antenna ports. The Q is a positive integer.
作为一个实施例,所述第一信令指示所述Q个参考信号的RS端口信息。As an embodiment, the first signaling indicates RS port information of the Q reference signals.
作为一个实施例,所述第二信令指示所述Q个参考信号的RS端口信息。As an embodiment, the second signaling indicates RS port information of the Q reference signals.
作为一个实施例,所述Q个参考信号包括DMRS。As an embodiment, the Q reference signals include DMRS.
作为一个实施例,所述Q个参考信号中的任意一个所述参考信号采用DMRS的图案(pattern)。As an embodiment, any one of the Q reference signals adopts a DMRS pattern (pattern).
作为一个实施例,所述Q个参考信号包括CSI-RS(Channel State InformationReference Signals,信道状态信息参考信号)。As an embodiment, the Q reference signals include CSI-RS (Channel State Information Reference Signals, channel state information reference signals).
作为一个实施例,所述Q个参考信号中的任意一个所述参考信号采用CSI-RS的图案。As an embodiment, any one of the Q reference signals adopts a CSI-RS pattern.
作为一个实施例,所述L个天线端口中的任意一个所述天线端口和所述Q个天线端口中的任意一个所述天线端口对应的所述波束赋型向量是不同的。As an embodiment, the beamforming vectors corresponding to any one of the L antenna ports and any one of the Q antenna ports are different.
作为一个实施例,所述第一域被用于生成所述Q个天线端口对应的所述波束赋型向量。As an embodiment, the first domain is used to generate the beamforming vectors corresponding to the Q antenna ports.
作为一个实施例,所述第一域指示所述Q个天线端口对应的所述波束赋型向量。As an embodiment, the first field indicates the beamforming vectors corresponding to the Q antenna ports.
作为一个实施例,基于所述Q个参考信号的测量和所述第二域被用于确定所述L个天线端口对应的信道参数。As an embodiment, the measurement based on the Q reference signals and the second field is used to determine the channel parameters corresponding to the L antenna ports.
作为上述实施例的一个子实施例,所述信道参数是CIR(Channel ImpulseResponse,信道冲激响应)。As a sub-embodiment of the foregoing embodiment, the channel parameter is CIR (Channel ImpulseResponse, channel impulse response).
具体的,根据本申请的一个方面,其特征在于,所述第一域被用于确定第一矩阵,所述第一矩阵被用于确定所述第一无线信号的预编码矩阵。所述第二域被用于确定M个第二矩阵,所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述M是正整数,所述P是大于或者等于所述M的正整数。Specifically, according to an aspect of the present application, the first field is used to determine a first matrix, and the first matrix is used to determine a precoding matrix of the first wireless signal. The second domain is used to determine M second matrices, the frequency resources occupied by the first wireless signal are divided into P frequency regions, the M second matrices and M in the P frequency regions Each of the frequency regions is in one-to-one correspondence. The M is a positive integer, and the P is a positive integer greater than or equal to the M.
作为一个实施例,所述第二矩阵被用于确定所述第一无线信号在对应的所述频率区域上的预编码矩阵。As an embodiment, the second matrix is used to determine a precoding matrix of the first wireless signal in the corresponding frequency region.
作为一个实施例,所述P等于所述M。As an example, the P is equal to the M.
作为一个实施例,所述P大于所述M。As an example, the P is greater than the M.
作为一个实施例,所述第一信令被用于从所述P个频率区域中确定所述M个频率区域。As an embodiment, the first signaling is used to determine the M frequency regions from the P frequency regions.
作为一个实施例,所述第一信令指示所述M个频率区域中的每一个所述频率区域在所述P个频率区域中的索引。As an embodiment, the first signaling indicates an index of each of the M frequency regions in the P frequency regions.
作为一个实施例,所述第二信令被用于从所述P个频率区域中确定所述M个频率区域。As an embodiment, the second signaling is used to determine the M frequency regions from the P frequency regions.
作为一个实施例,所述第二信令指示所述M个频率区域中的每一个所述频率区域在所述P个频率区域中的索引。As an embodiment, the second signaling indicates an index of each of the M frequency regions in the P frequency regions.
作为一个实施例,所述频率区域包括正整数个连续的子载波。As an embodiment, the frequency region includes a positive integer number of consecutive subcarriers.
作为一个实施例,任意两个所述频率区域包括的子载波的数目是相同的。As an embodiment, the number of subcarriers included in any two of the frequency regions is the same.
作为一个实施例,至少存在两个不同的所述频率区域包括的子载波的数目是不同的。As an embodiment, there are at least two different frequency regions including different numbers of subcarriers.
作为一个实施例,所述P个频率区域在频域上是两两相互正交的,即不存在一个子载波同时属于两个不同的所述频率区域。As an embodiment, the P frequency regions are orthogonal to each other in the frequency domain, that is, there is no subcarrier belonging to two different frequency regions at the same time.
作为一个实施例,所述所述第一无线信号的预编码矩阵在同一个所述频率区域的不同子载波上是相同的。As an embodiment, the precoding matrix of the first wireless signal is the same on different subcarriers in the same frequency region.
作为一个实施例,所述所述第一无线信号的预编码矩阵在不同所述频率区域的上是不同的。As an embodiment, the precoding matrix of the first wireless signal is different in different frequency regions.
作为一个实施例,所述第一无线信号在所述M个频率区域中的任意一个所述频率区域上的预编码矩阵是由所述第一矩阵和对应的所述第二矩阵的乘积得到的。As an embodiment, the precoding matrix of the first wireless signal in any one of the M frequency regions is obtained by multiplying the first matrix and the corresponding second matrix .
作为一个实施例,所述L个天线端口被分成P个天线端口组,所述天线端口组包括R个所述天线端口,所述第二矩阵的列的数目等于所述R,所述P乘以所述R等于所述L。所述P个天线端口组和所述P个频率区域一一对应,任意一个所述天线端口组发送的无线信号不占用对应的所述频率区域以外的频率资源。As an embodiment, the L antenna ports are divided into P antenna port groups, the antenna port group includes R the antenna ports, the number of columns of the second matrix is equal to the R, and the P times Let the R equal the L. The P antenna port groups are in one-to-one correspondence with the P frequency regions, and a wireless signal sent by any one of the antenna port groups does not occupy frequency resources outside the corresponding frequency region.
作为上述实施例的一个子实施例,所述第一无线信号在所述频率区域上由对应的所述天线端口组发送。As a sub-embodiment of the foregoing embodiment, the first wireless signal is transmitted by the corresponding antenna port group in the frequency region.
作为上述实施例的一个子实施例,所述P个天线端口组中的M个所述天线端口组和所述M个第二矩阵一一对应,所述第一矩阵和所述第二矩阵相乘得到参考矩阵,所述参考矩阵中的R个列分别是对应的所述天线端口组中包括的R个所述天线端口的所述波束赋型向量。As a sub-embodiment of the foregoing embodiment, the M antenna port groups in the P antenna port groups correspond to the M second matrices in one-to-one correspondence, and the first matrices and the second matrices are in phase with each other. A reference matrix is obtained by multiplying, and the R columns in the reference matrix are respectively the beamforming vectors of the R antenna ports included in the corresponding antenna port group.
作为一个实施例,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的。As an embodiment, the beamforming vector is generated by the product of an analog beamforming matrix and a digital beamforming vector.
作为上述实施例的一个子实施例,所述L个天线端口对应的所述模拟波束赋型矩阵是相同的。As a sub-embodiment of the foregoing embodiment, the analog beamforming matrices corresponding to the L antenna ports are the same.
作为上述实施例的一个子实施例,所述L个天线端口对应的所述模拟波束赋型矩阵分别是所述第一矩阵。As a sub-embodiment of the foregoing embodiment, the analog beamforming matrices corresponding to the L antenna ports are respectively the first matrices.
作为上述实施例的一个子实施例,不同所述天线端口组中的所述天线端口对应不同的所述数字波束赋型向量。As a sub-embodiment of the foregoing embodiment, the antenna ports in different antenna port groups correspond to different digital beamforming vectors.
作为上述实施例的一个子实施例,所述第二矩阵中的列构成了对应的所述天线端口组中的所述天线端口的所述数字波束赋型向量。As a sub-embodiment of the above-mentioned embodiment, the columns in the second matrix constitute the digital beamforming vectors of the antenna ports in the corresponding antenna port group.
作为一个实施例,所述第一矩阵的列的数目等于所述Q,所述第一矩阵的列分别是所述Q个天线端口对应的所述波束赋型向量。As an embodiment, the number of columns of the first matrix is equal to the Q, and the columns of the first matrix are the beamforming vectors corresponding to the Q antenna ports respectively.
作为一个实施例,所述Q大于或者等于所述L除以所述P。As an embodiment, the Q is greater than or equal to the L divided by the P.
作为一个实施例,所述第一矩阵是第一候选矩阵集合中的一个矩阵,所述第一域包括所述第一矩阵在所述第一候选矩阵集合中的索引,所述第一候选矩阵集合包括正整数个矩阵。As an embodiment, the first matrix is a matrix in a first candidate matrix set, the first field includes an index of the first matrix in the first candidate matrix set, and the first candidate matrix The set includes a positive integer number of matrices.
作为上述实施例的一个子实施例,所述所述第一矩阵在所述第一候选矩阵集合中的索引是所述第一TPMI。As a sub-embodiment of the above embodiment, the index of the first matrix in the first candidate matrix set is the first TPMI.
作为一个实施例,所述第二矩阵是第二候选矩阵集合中的一个矩阵,所述第二域包括所述M个第二矩阵中的每一个所述第二矩阵在所述第二候选矩阵集合中的索引,所述第二候选矩阵集合包括正整数个矩阵。As an embodiment, the second matrix is a matrix in a set of second candidate matrices, and the second domain includes the second matrix in the second candidate matrix for each of the M second matrices The index in the set, the second candidate matrix set includes a positive integer number of matrices.
作为上述实施例的一个子实施例,所述所述M个第二矩阵中的每一个所述第二矩阵在所述第二候选矩阵集合中的索引是第二TPMI。As a sub-embodiment of the above embodiment, the index of each of the M second matrices in the second candidate matrix set is a second TPMI.
作为一个实施例,所述第一候选矩阵集合包括的矩阵的数量大于所述第二候选矩阵集合包括的矩阵的数量。As an embodiment, the number of matrices included in the first candidate matrix set is greater than the number of matrices included in the second candidate matrix set.
作为一个实施例,所述第一候选矩阵集合包括的矩阵的数量等于所述第二候选矩阵集合包括的矩阵的数量。As an embodiment, the number of matrices included in the first candidate matrix set is equal to the number of matrices included in the second candidate matrix set.
作为一个实施例,所述第一候选矩阵集合包括的矩阵的数量小于所述第二候选矩阵集合包括的矩阵的数量。As an embodiment, the number of matrices included in the first candidate matrix set is smaller than the number of matrices included in the second candidate matrix set.
作为一个实施例,基于所述Q个参考信号的测量和所述M个第二矩阵被用于确定所述M个天线端口组对应的信道参数。As an embodiment, the measurements based on the Q reference signals and the M second matrices are used to determine channel parameters corresponding to the M antenna port groups.
作为上述实施例的一个子实施例,所述M个天线端口组对应的信道参数构成M个目标信道矩阵,基于所述Q个参考信号的测量被用于确定参考信道矩阵,所述参考信道矩阵分别和所述M个第二矩阵相乘得到所述M个目标信道矩阵。As a sub-embodiment of the above embodiment, the channel parameters corresponding to the M antenna port groups constitute M target channel matrices, and measurements based on the Q reference signals are used to determine a reference channel matrix, and the reference channel matrix The M target channel matrices are obtained by multiplying the M second matrices respectively.
作为一个实施例,所述第二域由所述第一信令指示。As an embodiment, the second domain is indicated by the first signaling.
作为一个实施例,所述第二域由所述第二信令指示。As an embodiment, the second domain is indicated by the second signaling.
具体的,根据本申请的一个方面,其特征在于,所述步骤A还包括如下步骤:Specifically, according to an aspect of the present application, the step A further includes the following steps:
-步骤A0.接收下行信息。- Step A0. Receive downlink information.
其中,所述下行信息被用于确定{所述第一时间窗,所述第二时间窗,所述第一时间窗的时间长度和所述第二时间窗的时间长度的比值}中至少之一。The downlink information is used to determine at least one of {the first time window, the second time window, the ratio of the time length of the first time window to the time length of the second time window} one.
作为一个实施例,所述下行信息是由高层信令承载的。As an embodiment, the downlink information is carried by higher layer signaling.
作为上述实施例的一个子实施例,所述下行信息是由RRC(Radio ResourceControl,无线资源控制)信令承载的。As a sub-embodiment of the foregoing embodiment, the downlink information is carried by RRC (Radio Resource Control, radio resource control) signaling.
作为一个实施例,所述下行信息是半静态配置的。As an embodiment, the downlink information is semi-statically configured.
作为一个实施例,所述下行信息是小区公共的。As an embodiment, the downlink information is common to cells.
作为一个实施例,所述下行信息是UE特定(UE-specific)的。As an embodiment, the downlink information is UE-specific (UE-specific).
具体的,根据本申请的一个方面,其特征在于,还包括如下步骤:Specifically, according to an aspect of the present application, it is characterized in that it further comprises the following steps:
-步骤C.操作第二参考信号。- Step C. Operate the second reference signal.
其中,基于所述第二参考信号的测量被用于确定{所述第一域,所述第二域}中至少之一。Wherein, the measurement based on the second reference signal is used to determine at least one of {the first domain, the second domain}.
作为一个实施例,所述第二参考信号包括SRS(Sounding Reference Signals,探测参考信号),所述操作是发送。As an embodiment, the second reference signal includes SRS (Sounding Reference Signals, sounding reference signal), and the operation is sending.
作为一个实施例,所述第二参考信号包括CSI-RS,所述操作是接收。As an embodiment, the second reference signal includes CSI-RS, and the operation is receiving.
作为一个实施例,所述第二参考信号包括DMRS。所述操作是接收;或者所述操作是发送。As an embodiment, the second reference signal includes a DMRS. The operation is receiving; or the operation is sending.
作为一个实施例,基于所述第二参考信号的测量被用于确定P1个第一信道矩阵,所述P1个第一信道矩阵被用于确定{所述第一域,所述第二域}中至少之一,所述P1是正整数。As an embodiment, measurements based on the second reference signal are used to determine P1 first channel matrices, the P1 first channel matrices are used to determine {the first domain, the second domain} At least one of the P1 is a positive integer.
作为一个实施例,所述第二参考信号占用的频域资源被分成P1个频率区域,所述第二参考信号被正整数个天线端口分别发送,基于所述第二参考信号的测量被用于确定所述正整数个天线端口在所述P1个频率区域上所对应的信道参数,所述所述正整数个天线端口在所述P1个频率区域上所对应的信道参数分别构成所述P1个第一信道矩阵。As an embodiment, the frequency domain resources occupied by the second reference signal are divided into P1 frequency regions, the second reference signal is respectively transmitted by a positive integer number of antenna ports, and the measurement based on the second reference signal is used for Determine the channel parameters corresponding to the positive integer number of antenna ports in the P1 frequency regions, and the channel parameters corresponding to the positive integer number of antenna ports in the P1 frequency regions respectively constitute the P1 frequency regions The first channel matrix.
作为一个实施例,所述P1个第一信道矩阵被用于生成所述第一矩阵,所述第一矩阵是所述第一候选矩阵集合中的一个矩阵,所述第一域包括所述第一矩阵在所述第一候选矩阵集合中的索引。As an embodiment, the P1 first channel matrices are used to generate the first matrix, the first matrix is one matrix in the first set of candidate matrices, and the first domain includes the first matrix The index of a matrix in the first set of candidate matrices.
作为上述实施例的一个子实施例,所述P1个第一信道矩阵的平均值被用于生成所述第一矩阵。As a sub-embodiment of the above-mentioned embodiment, the average value of the P1 first channel matrices is used to generate the first matrix.
作为一个实施例,所述P1个第一信道矩阵中的M1个所述第一信道矩阵分别被用于生成M1个第二矩阵,所述M1个第二矩阵是所述M个第二矩阵的子集,所述M1是小于或者等于M的正整数。所述第二矩阵是所述第二候选矩阵集合中的一个矩阵,所述第二域包括所述M个第二矩阵中的每一个所述第二矩阵在所述第二候选矩阵集合中的索引。As an embodiment, M1 first channel matrices in the P1 first channel matrices are respectively used to generate M1 second matrices, and the M1 second matrices are the result of the M second matrices. A subset, the M1 is a positive integer less than or equal to M. The second matrix is a matrix in the second candidate matrix set, and the second domain includes the second matrix in the second candidate matrix set of each of the M second matrices. index.
作为一个实施例,所述P1大于所述P。As an example, the P1 is greater than the P.
作为一个实施例,所述P1等于所述P。As an example, the P1 is equal to the P.
作为一个实施例,所述P1小于所述P。As an example, the P1 is smaller than the P.
作为一个实施例,所述第一信道矩阵的秩大于或者等于所述L除以所述P。As an embodiment, the rank of the first channel matrix is greater than or equal to the L divided by the P.
作为一个实施例,所述第一信道矩阵的秩大于或者等于所述Q。As an embodiment, the rank of the first channel matrix is greater than or equal to the Q.
具体的,根据本申请的一个方面,其特征在于,还包括如下步骤:Specifically, according to an aspect of the present application, it is characterized in that it further comprises the following steps:
-步骤D.发送上行信息。- Step D. Sending upstream information.
其中,所述上行信息被用于确定{所述第一域,所述第二域}中至少之一,所述操作是接收。Wherein, the uplink information is used to determine at least one of {the first domain, the second domain}, and the operation is receiving.
作为一个实施例,所述上行信息指示{所述第一域,所述第二域}中至少之一。As an embodiment, the uplink information indicates at least one of {the first domain, the second domain}.
作为一个实施例,所述上行信息指示{所述第一矩阵在所述第一候选矩阵集合中的索引,M3个所述第二矩阵中的每一个所述第二矩阵在所述第二候选矩阵集合中的索引}中的至少之一。所述M3个第二矩阵是所述M个第二矩阵的子集,所述M3是小于或者等于所述M的正整数。As an embodiment, the uplink information indicates {the index of the first matrix in the first candidate matrix set, each of the M3 second matrices is in the second candidate matrix at least one of the indices in the set of matrices}. The M3 second matrices are a subset of the M second matrices, and the M3 is a positive integer less than or equal to the M.
作为一个实施例,基于所述第二参考信号的测量被用于确定所述P1个第一信道矩阵,所述P1个第一信道矩阵被用于生成所述上行信息。As an embodiment, the measurement based on the second reference signal is used to determine the P1 first channel matrices, and the P1 first channel matrices are used to generate the uplink information.
作为一个实施例,所述上行信息包括P2个第一信道矩阵的量化信息,所述P2个第一信道矩阵是所述P1个第一信道矩阵的子集,所述P2是小于或者等于所述P1的正整数。As an embodiment, the uplink information includes quantization information of P2 first channel matrices, the P2 first channel matrices are a subset of the P1 first channel matrices, and the P2 is less than or equal to the Positive integer of P1.
作为一个实施例,所述上行信息包括P2个第一量化矩阵中的每一个所述第一量化矩阵在第三候选矩阵集合中的索引,所述P2个第一量化矩阵分别由所述P2个第一信道矩阵量化得到,所述第一量化矩阵是所述第三候选矩阵集合中的一个矩阵,所述第三候选矩阵集合包括正整数个矩阵。As an embodiment, the uplink information includes an index of each of the P2 first quantization matrices in the third candidate matrix set, and the P2 first quantization matrices are respectively composed of the P2 first quantization matrices The first channel matrix is obtained by quantization, and the first quantization matrix is a matrix in the third candidate matrix set, and the third candidate matrix set includes a positive integer number of matrices.
作为一个实施例,所述P2个第一量化矩阵被用于生成{所述第一域,所述第二域}中至少之一。As an embodiment, the P2 first quantization matrices are used to generate at least one of {the first domain, the second domain}.
作为一个实施例,所述P2个第一量化矩阵被用于生成所述第一矩阵,所述第一矩阵是所述第一候选矩阵集合中的一个矩阵,所述第一域包括所述第一矩阵在所述第一候选矩阵集合中的索引。As an embodiment, the P2 first quantization matrices are used to generate the first matrix, the first matrix is one matrix in the first candidate matrix set, and the first domain includes the first matrix The index of a matrix in the first set of candidate matrices.
作为上述实施例的一个子实施例,所述P2个第一量化矩阵的平均值被用于生成所述第一矩阵。As a sub-embodiment of the above-mentioned embodiment, the average value of the P2 first quantization matrices is used to generate the first matrix.
作为一个实施例,所述P2个第一量化矩阵中的M2个所述第一量化矩阵分别被用于生成M2个第二矩阵,所述M2个第二矩阵是所述M个第二矩阵的子集,所述M2是小于或者等于M的正整数。所述第二矩阵是所述第二候选矩阵集合中的一个矩阵,所述第二域包括所述M个第二矩阵中的每一个所述第二矩阵在所述第二候选矩阵集合中的索引。As an embodiment, the M2 first quantization matrices in the P2 first quantization matrices are respectively used to generate M2 second matrices, and the M2 second matrices are the result of the M second matrices. A subset, the M2 is a positive integer less than or equal to M. The second matrix is a matrix in the second candidate matrix set, and the second domain includes the second matrix in the second candidate matrix set of each of the M second matrices. index.
作为一个实施例,所述上行信息包括S个索引组和S个参数组,所述S个索引组被用于确定S个向量组,所述S个向量组和所述S个参数组一一对应,所述S个向量组和所述S个参数组分别被用于生成S个合成向量,所述S个合成向量被用于确定所述P2个第一量化矩阵。所述S是大于或者等于所述P2的正整数。As an embodiment, the uplink information includes S index groups and S parameter groups, the S index groups are used to determine S vector groups, the S vector groups and the S parameter groups are one by one Correspondingly, the S vector groups and the S parameter groups are respectively used to generate S composite vectors, and the S composite vectors are used to determine the P2 first quantization matrices. The S is a positive integer greater than or equal to the P2.
作为上述实施例的一个子实施例,所述S个向量组中的向量属于候选向量集合,所述候选向量集合包括正整数个向量。As a sub-embodiment of the above embodiment, the vectors in the S vector groups belong to a candidate vector set, and the candidate vector set includes a positive integer number of vectors.
作为上述实施例的一个子实施例,给定合成向量是由给定向量组中的向量经给定参数组中的参数加权后相加得到的,其中给定合成向量是所述S个合成向量中的任意一个,所述给定向量组是所述S个向量组中被用于生成所述给定合成向量的所述向量组,所述给定参数组是所述S个参数组中被用于生成所述给定合成向量的所述参数组。As a sub-embodiment of the above embodiment, the given synthetic vector is obtained by adding the vectors in the given vector group after weighting the parameters in the given parameter group, wherein the given synthetic vector is the S synthetic vectors Any one of, the given vector group is the vector group used to generate the given composite vector among the S vector groups, and the given parameter group is the S parameter group the set of parameters used to generate the given composite vector.
作为上述实施例的一个子实施例,所述S个合成向量被分成P2个合成向量组,每个所述合成向量组包括正整数个所述合成向量,所述P2个合成向量组和所述P2个第一量化矩阵一一对应,所述第一量化矩阵由对应的所述合成向量组中的所述合成向量作为列向量构成的。As a sub-embodiment of the above embodiment, the S composite vectors are divided into P2 composite vector groups, each of the composite vector groups includes a positive integer number of the composite vectors, the P2 composite vector groups and the The P2 first quantization matrices are in one-to-one correspondence, and the first quantization matrices are composed of the composite vectors in the corresponding composite vector groups as column vectors.
作为上述实施例的一个子实施例,一个所述向量组中包括S1个向量,对应的系数组中包括S1-1个系数。As a sub-embodiment of the foregoing embodiment, one of the vector groups includes S1 vectors, and the corresponding coefficient group includes S1-1 coefficients.
作为上述实施例的一个子实施例,一个所述向量组中包括S1个向量,对应的系数组中包括S1个系数。As a sub-embodiment of the foregoing embodiment, one of the vector groups includes S1 vectors, and the corresponding coefficient group includes S1 coefficients.
作为一个实施例,所述上行信息包括UCI(Uplink Control Information,上行控制信息)。As an embodiment, the uplink information includes UCI (Uplink Control Information, uplink control information).
作为一个实施例,所述上行信息在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。As an embodiment, the uplink information is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(PhysicalUplink Control Channel,物理上行控制信道)。As a sub-embodiment of the foregoing embodiment, the uplink physical layer control channel is PUCCH (PhysicalUplink Control Channel, physical uplink control channel).
作为一个实施例,所述上行信息在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。As an embodiment, the uplink information is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH(PhysicalUplink Shared Channel,物理上行共享信道)。As a sub-embodiment of the foregoing embodiment, the uplink physical layer data channel is a PUSCH (Physical Uplink Shared Channel, physical uplink shared channel).
本申请公开了一种被用于多天线传输的基站中的方法,其中,包括如下步骤:The present application discloses a method used in a base station for multi-antenna transmission, which includes the following steps:
-步骤A.在第一时间窗中发送第一信令,在第二时间窗中发送第二信令;- Step A. Sending the first signaling in the first time window and sending the second signaling in the second time window;
-步骤B.执行第一无线信号。- Step B. Execute the first wireless signal.
其中,所述第一时间窗和所述第二时间窗在时域上相互正交,所述第一信令包括第一域,所述第二信令包括第二域。所述第一信令中的所述第一域被用于形成L个天线端口。所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被用于形成所述L个天线端口。所述第一无线信号被所述L个天线端口分别发送。所述L是正整数。所述执行是发送,或者所述执行是接收。Wherein, the first time window and the second time window are orthogonal to each other in the time domain, the first signaling includes a first domain, and the second signaling includes a second domain. The first field in the first signaling is used to form L antenna ports. The first signaling includes the second field, at least one of {the second field in the first signaling, the second field in the second signaling} is used for forming the L antenna ports; or the first signaling includes the former of {the first field, the second field}, and the second field in the second signaling is used to form the the L antenna ports. The first wireless signals are respectively transmitted by the L antenna ports. The L is a positive integer. The execution is sending, or the execution is receiving.
作为一个实施例,所述第一信令的负载尺寸(payload size)大于所述第二信令的负载尺寸。As an embodiment, the payload size of the first signaling is larger than the payload size of the second signaling.
作为一个实施例,所述第一信令和所述第二信令分别是动态信令。As an embodiment, the first signaling and the second signaling are dynamic signaling, respectively.
作为一个实施例,所述第一信令和所述第二信令分别是用于下行授予(DownlinkGrant)的DCI,所述执行是发送。As an embodiment, the first signaling and the second signaling are respectively DCI for downlink grant (Downlink Grant), and the execution is sending.
作为一个实施例,所述第一信令和所述第二信令分别是用于上行授予(UplinkGrant)的DCI,所述执行是接收。As an embodiment, the first signaling and the second signaling are respectively DCI for uplink grant (Uplink Grant), and the execution is receiving.
作为一个实施例,所述第一无线信号在物理层数据信道上传输。As an embodiment, the first wireless signal is transmitted on a physical layer data channel.
作为上述实施例的一个子实施例,所述物理层数据信道是PDSCH(PhysicalDownlink Shared Channel,物理下行共享信道),所述执行是发送。As a sub-embodiment of the foregoing embodiment, the physical layer data channel is PDSCH (Physical Downlink Shared Channel, physical downlink shared channel), and the execution is sending.
作为上述实施例的一个子实施例,所述物理层数据信道是sPDSCH(short PDSCH,短PDSCH),所述执行是发送。As a sub-embodiment of the above embodiment, the physical layer data channel is sPDSCH (short PDSCH, short PDSCH), and the execution is transmission.
作为上述实施例的一个子实施例,所述物理层数据信道是PUSCH(PhysicalUplink Shared Channel,物理上行共享信道),所述执行是接收。As a sub-embodiment of the foregoing embodiment, the physical layer data channel is a PUSCH (Physical Uplink Shared Channel, physical uplink shared channel), and the execution is receiving.
作为上述实施例的一个子实施例,所述物理层数据信道是sPUSCH(short PUSCH,短PUSCH),所述执行是接收。As a sub-embodiment of the above embodiment, the physical layer data channel is sPUSCH (short PUSCH, short PUSCH), and the execution is reception.
具体的,根据本申请的一个方面,其特征在于,所述执行是接收,所述第一无线信号包括L个参考信号,所述L个参考信号分别被所述L个天线端口发送。Specifically, according to an aspect of the present application, the performing is receiving, the first wireless signal includes L reference signals, and the L reference signals are respectively transmitted by the L antenna ports.
具体的,根据本申请的一个方面,其特征在于,所述步骤B还包括如下步骤:Specifically, according to an aspect of the present application, the step B further includes the following steps:
-步骤B0.发送Q个参考信号。- Step B0. Sending Q reference signals.
其中,所述执行是发送,所述第一信令中的所述第一域被用于形成Q个天线端口,所述Q个参考信号分别被所述Q个天线端口发送。所述Q是正整数。Wherein, the performing is sending, the first field in the first signaling is used to form Q antenna ports, and the Q reference signals are respectively sent by the Q antenna ports. The Q is a positive integer.
具体的,根据本申请的一个方面,其特征在于,所述第一域被用于确定第一矩阵,所述第一矩阵被用于确定所述第一无线信号的预编码矩阵。所述第二域被用于确定M个第二矩阵,所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述M是正整数,所述P是大于或者等于所述M的正整数。Specifically, according to an aspect of the present application, the first field is used to determine a first matrix, and the first matrix is used to determine a precoding matrix of the first wireless signal. The second domain is used to determine M second matrices, the frequency resources occupied by the first wireless signal are divided into P frequency regions, the M second matrices and M in the P frequency regions Each of the frequency regions is in one-to-one correspondence. The M is a positive integer, and the P is a positive integer greater than or equal to the M.
作为一个实施例,所述第二矩阵被用于确定所述第一无线信号在对应的所述频率区域上的预编码矩阵。As an embodiment, the second matrix is used to determine a precoding matrix of the first wireless signal in the corresponding frequency region.
具体的,根据本申请的一个方面,其特征在于,所述步骤A还包括如下步骤:Specifically, according to an aspect of the present application, the step A further includes the following steps:
-步骤A0.发送下行信息。- Step A0. Send downlink information.
其中,所述下行信息被用于确定{所述第一时间窗,所述第二时间窗,所述第一时间窗的时间长度和所述第二时间窗的时间长度的比值}中至少之一。The downlink information is used to determine at least one of {the first time window, the second time window, the ratio of the time length of the first time window to the time length of the second time window} one.
具体的,根据本申请的一个方面,其特征在于,还包括如下步骤:Specifically, according to an aspect of the present application, it is characterized in that it further comprises the following steps:
-步骤C.执行第二参考信号。- Step C. Execute the second reference signal.
其中,基于所述第二参考信号的测量被用于确定{所述第一域,所述第二域}中至少之一。Wherein, the measurement based on the second reference signal is used to determine at least one of {the first domain, the second domain}.
作为一个实施例,所述第二参考信号包括SRS,所述执行是接收。As one embodiment, the second reference signal includes an SRS, and the performing is receiving.
作为一个实施例,所述第二参考信号包括CSI-RS,所述执行是发送。As an embodiment, the second reference signal includes CSI-RS, and the performing is transmitting.
作为一个实施例,所述第二参考信号包括DMRS。所述执行是接收;或者所述执行是发送。As an embodiment, the second reference signal includes a DMRS. The execution is receiving; or the execution is sending.
具体的,根据本申请的一个方面,其特征在于,还包括如下步骤:Specifically, according to an aspect of the present application, it is characterized in that it further comprises the following steps:
-步骤D.接收上行信息。- Step D. Receiving upstream information.
其中,所述上行信息被用于确定{所述第一域,所述第二域}中至少之一,所述执行是发送。Wherein, the uplink information is used to determine at least one of {the first field, the second field}, and the execution is sending.
本申请公开了一种被用于多天线传输的用户设备,其中,包括如下模块:The present application discloses a user equipment used for multi-antenna transmission, which includes the following modules:
第一接收模块:用于在第一时间窗中监测第一信令,在第二时间窗中监测第二信令;The first receiving module: used to monitor the first signaling in the first time window, and monitor the second signaling in the second time window;
第一处理模块:用于操作第一无线信号。The first processing module: used to operate the first wireless signal.
其中,所述第一时间窗和所述第二时间窗在时域上相互正交,所述第一信令包括第一域,所述第二信令包括第二域。所述第一信令中的所述第一域被用于形成L个天线端口。所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被用于形成所述L个天线端口。所述第一无线信号被所述L个天线端口分别发送。所述L是正整数。所述操作是接收,或者所述操作是发送。Wherein, the first time window and the second time window are orthogonal to each other in the time domain, the first signaling includes a first domain, and the second signaling includes a second domain. The first field in the first signaling is used to form L antenna ports. The first signaling includes the second field, at least one of {the second field in the first signaling, the second field in the second signaling} is used for forming the L antenna ports; or the first signaling includes the former of {the first field, the second field}, and the second field in the second signaling is used to form the the L antenna ports. The first wireless signals are respectively transmitted by the L antenna ports. The L is a positive integer. The operation is receiving, or the operation is sending.
作为一个实施例,上述用于多天线传输的用户设备的特征在于,所述操作是发送,所述第一无线信号包括L个参考信号,所述L个参考信号分别被所述L个天线端口发送。As an embodiment, the above-mentioned user equipment for multi-antenna transmission is characterized in that the operation is sending, the first wireless signal includes L reference signals, and the L reference signals are respectively used by the L antenna ports send.
作为一个实施例,上述用于多天线传输的用户设备的特征在于,所述第一处理模块还用于接收Q个参考信号。其中,所述操作是接收,所述第一信令中的所述第一域被用于形成Q个天线端口,所述Q个参考信号分别被所述Q个天线端口发送。所述Q是正整数。As an embodiment, the foregoing user equipment for multi-antenna transmission is characterized in that the first processing module is further configured to receive Q reference signals. Wherein, the operation is receiving, the first field in the first signaling is used to form Q antenna ports, and the Q reference signals are respectively sent by the Q antenna ports. The Q is a positive integer.
作为一个实施例,上述用于多天线传输的用户设备的特征在于,所述第一域被用于确定第一矩阵,所述第一矩阵被用于确定所述第一无线信号的预编码矩阵。所述第二域被用于确定M个第二矩阵,所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述M是正整数,所述P是大于或者等于所述M的正整数。As an embodiment, the above-mentioned user equipment for multi-antenna transmission is characterized in that the first field is used to determine a first matrix, and the first matrix is used to determine a precoding matrix of the first wireless signal . The second domain is used to determine M second matrices, the frequency resources occupied by the first wireless signal are divided into P frequency regions, the M second matrices and M in the P frequency regions Each of the frequency regions is in one-to-one correspondence. The M is a positive integer, and the P is a positive integer greater than or equal to the M.
作为一个实施例,上述用于多天线传输的用户设备的特征在于,所述第一接收模块还用于接收下行信息。其中,所述下行信息被用于确定{所述第一时间窗,所述第二时间窗,所述第一时间窗的时间长度和所述第二时间窗的时间长度的比值}中至少之一。As an embodiment, the above-mentioned user equipment for multi-antenna transmission is characterized in that the first receiving module is further configured to receive downlink information. The downlink information is used to determine at least one of {the first time window, the second time window, the ratio of the time length of the first time window to the time length of the second time window} one.
作为一个实施例,上述用于多天线传输的用户设备的特征在于,还包括如下模块:As an embodiment, the above-mentioned user equipment for multi-antenna transmission is characterized in that it further includes the following modules:
第二处理模块:用于操作第二参考信号。Second processing module: used to operate the second reference signal.
其中,基于所述第二参考信号的测量被用于确定{所述第一域,所述第二域}中至少之一。Wherein, the measurement based on the second reference signal is used to determine at least one of {the first domain, the second domain}.
作为一个实施例,上述用于多天线传输的用户设备的特征在于,还包括如下模块:As an embodiment, the above-mentioned user equipment for multi-antenna transmission is characterized in that it further includes the following modules:
第一发送模块:用于发送上行信息。The first sending module: used for sending uplink information.
其中,所述上行信息被用于确定{所述第一域,所述第二域}中至少之一,所述操作是接收。Wherein, the uplink information is used to determine at least one of {the first domain, the second domain}, and the operation is receiving.
本申请公开了一种被用于多天线传输的基站设备,其中,包括如下模块:The present application discloses a base station device used for multi-antenna transmission, which includes the following modules:
第二发送模块:用于在第一时间窗中发送第一信令,在第二时间窗中发送第二信令;The second sending module: used to send the first signaling in the first time window, and send the second signaling in the second time window;
第三处理模块:用于执行第一无线信号。The third processing module: used to execute the first wireless signal.
其中,所述第一时间窗和所述第二时间窗在时域上相互正交,所述第一信令包括第一域,所述第二信令包括第二域。所述第一信令中的所述第一域被用于形成L个天线端口。所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被用于形成所述L个天线端口。所述第一无线信号被所述L个天线端口分别发送。所述L是正整数。所述执行是发送,或者所述执行是接收。Wherein, the first time window and the second time window are orthogonal to each other in the time domain, the first signaling includes a first domain, and the second signaling includes a second domain. The first field in the first signaling is used to form L antenna ports. The first signaling includes the second field, at least one of {the second field in the first signaling, the second field in the second signaling} is used for forming the L antenna ports; or the first signaling includes the former of {the first field, the second field}, and the second field in the second signaling is used to form the the L antenna ports. The first wireless signals are respectively transmitted by the L antenna ports. The L is a positive integer. The execution is sending, or the execution is receiving.
作为一个实施例,上述用于多天线传输的基站设备的特征在于,所述执行是接收,所述第一无线信号包括L个参考信号,所述L个参考信号分别被所述L个天线端口发送。As an embodiment, the above-mentioned base station device for multi-antenna transmission is characterized in that the execution is receiving, the first wireless signal includes L reference signals, and the L reference signals are respectively used by the L antenna ports send.
作为一个实施例,上述用于多天线传输的基站设备的特征在于,所述第三处理模块还用于发送Q个参考信号。其中,所述执行是发送,所述第一信令中的所述第一域被用于形成Q个天线端口,所述Q个参考信号分别被所述Q个天线端口发送。所述Q是正整数。As an embodiment, the foregoing base station device for multi-antenna transmission is characterized in that the third processing module is further configured to send Q reference signals. Wherein, the performing is sending, the first field in the first signaling is used to form Q antenna ports, and the Q reference signals are respectively sent by the Q antenna ports. The Q is a positive integer.
作为一个实施例,上述用于多天线传输的基站设备的特征在于,所述第一域被用于确定第一矩阵,所述第一矩阵被用于确定所述第一无线信号的预编码矩阵。所述第二域被用于确定M个第二矩阵,所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述M是正整数,所述P是大于或者等于所述M的正整数。As an embodiment, the above-mentioned base station device for multi-antenna transmission is characterized in that the first domain is used to determine a first matrix, and the first matrix is used to determine a precoding matrix of the first wireless signal . The second domain is used to determine M second matrices, the frequency resources occupied by the first wireless signal are divided into P frequency regions, the M second matrices and M in the P frequency regions Each of the frequency regions is in one-to-one correspondence. The M is a positive integer, and the P is a positive integer greater than or equal to the M.
作为一个实施例,上述用于多天线传输的基站设备的特征在于,所述第二发送模块还用于发送下行信息。其中,所述下行信息被用于确定{所述第一时间窗,所述第二时间窗,所述第一时间窗的时间长度和所述第二时间窗的时间长度的比值}中至少之一。As an embodiment, the foregoing base station device for multi-antenna transmission is characterized in that the second sending module is further configured to send downlink information. The downlink information is used to determine at least one of {the first time window, the second time window, the ratio of the time length of the first time window to the time length of the second time window} one.
作为一个实施例,上述用于多天线传输的基站设备的特征在于,还包括如下模块:As an embodiment, the above-mentioned base station device for multi-antenna transmission is characterized in that it further includes the following modules:
第四处理模块:用于执行第二参考信号。Fourth processing module: used to execute the second reference signal.
其中,基于所述第二参考信号的测量被用于确定{所述第一域,所述第二域}中至少之一。Wherein, the measurement based on the second reference signal is used to determine at least one of {the first domain, the second domain}.
作为一个实施例,上述用于多天线传输的基站设备的特征在于,还包括如下模块:As an embodiment, the above-mentioned base station device for multi-antenna transmission is characterized in that it further includes the following modules:
第二接收模块:用于接收上行信息。The second receiving module: used to receive uplink information.
其中,所述上行信息被用于确定{所述第一域,所述第二域}中至少之一,所述执行是发送。Wherein, the uplink information is used to determine at least one of {the first field, the second field}, and the execution is sending.
作为一个实施例,和传统方案相比,本申请具备如下优势:As an embodiment, compared with the traditional solution, the present application has the following advantages:
-.通过将预编码矩阵分解为非频率选择性的第一矩阵和频率选择性的第二矩阵的乘积,并且对第一矩阵和第二矩阵采用不同的更新周期和量化精度,降低了频率选择性预编码需要的信令开销。-. By decomposing the precoding matrix into the product of the non-frequency selective first matrix and the frequency selective second matrix, and using different update periods and quantization precisions for the first matrix and the second matrix, the frequency selection is reduced Signaling overhead required for precoding.
-.对携带第一矩阵信息和不携带第一矩阵信息的DCI设计不同的负载尺寸,避免了DCI开销的浪费。-. Different load sizes are designed for the DCI carrying the first matrix information and the DCI not carrying the first matrix information, so as to avoid the waste of DCI overhead.
-.通过限制在给定时间窗内以固定的负载尺寸进行DCI盲检测,避免了由于DCI负载尺寸不同带来的盲检测次数的增加,保持了较低的盲检测复杂度。- By limiting the DCI blind detection with a fixed load size within a given time window, the increase in the number of blind detections due to different DCI load sizes is avoided, and the blind detection complexity is kept low.
附图说明Description of drawings
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:Other features, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1示出了根据本申请的一个实施例的无线传输的流程图;FIG. 1 shows a flowchart of wireless transmission according to an embodiment of the present application;
图2示出了根据本申请的另一个实施例的无线传输的流程图;FIG. 2 shows a flowchart of wireless transmission according to another embodiment of the present application;
图3示出了根据本申请的一个实施例的第一时间窗和第二时间窗在时域上的资源映射的示意图;3 shows a schematic diagram of resource mapping of the first time window and the second time window in the time domain according to an embodiment of the present application;
图4示出了根据本申请的一个实施例的第一信令的示意图;FIG. 4 shows a schematic diagram of first signaling according to an embodiment of the present application;
图5示出了根据本申请的另一个实施例的第一信令的示意图;FIG. 5 shows a schematic diagram of first signaling according to another embodiment of the present application;
图6示出了根据本申请的一个实施例的第二信令的示意图;FIG. 6 shows a schematic diagram of second signaling according to an embodiment of the present application;
图7示出了根据本申请的一个实施例的{第一矩阵,M个第二矩阵}和第一无线信号的预编码矩阵之间关系的示意图;FIG. 7 shows a schematic diagram of the relationship between {first matrix, M second matrices} and a precoding matrix of a first wireless signal according to an embodiment of the present application;
图8示出了根据本申请的一个实施例的L个参考信号在时频域上的资源映射的示意图;FIG. 8 shows a schematic diagram of resource mapping of L reference signals in the time-frequency domain according to an embodiment of the present application;
图9示出了根据本申请的一个实施例的Q个参考信号在时频域上的资源映射的示意图;FIG. 9 shows a schematic diagram of resource mapping of Q reference signals in the time-frequency domain according to an embodiment of the present application;
图10示出了根据本申请的一个实施例的用于UE中的处理装置的结构框图;10 shows a structural block diagram of a processing apparatus used in a UE according to an embodiment of the present application;
图11示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图。FIG. 11 shows a structural block diagram of a processing apparatus used in a base station according to an embodiment of the present application.
实施例1Example 1
实施例1示例了无线传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区维持基站。附图1中,方框F1和方框F2中的步骤分别是可选的。
对于N1,在步骤S101中发送下行信息;在步骤S102中接收第二参考信号;在步骤S11中在第一时间窗中发送第一信令,在第二时间窗中发送第二信令;在步骤S12中接收第一无线信号。For N1, the downlink information is sent in step S101; the second reference signal is received in step S102; the first signaling is sent in the first time window in step S11, and the second signaling is sent in the second time window; In step S12, the first wireless signal is received.
对于U2,在步骤S201中接收下行信息;在步骤S202中发送第二参考信号;在步骤S21中在第一时间窗中监测第一信令,在第二时间窗中监测第二信令;在步骤S22中发送第一无线信号。For U2, the downlink information is received in step S201; the second reference signal is sent in step S202; the first signaling is monitored in the first time window in step S21, and the second signaling is monitored in the second time window; In step S22, the first wireless signal is sent.
在实施例1中,所述第一时间窗和所述第二时间窗在时域上相互正交,所述第一信令包括第一域,所述第二信令包括第二域。所述第一信令中的所述第一域被所述U2用于形成L个天线端口。所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被所述U2用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被所述U2用于形成所述L个天线端口。所述第一无线信号被所述L个天线端口分别发送。所述L是正整数。所述第一无线信号包括L个参考信号,所述L个参考信号分别被所述L个天线端口发送。所述下行信息被所述U2用于确定{所述第一时间窗,所述第二时间窗,所述第一时间窗的时间长度和所述第二时间窗的时间长度的比值}中至少之一。基于所述第二参考信号的测量被所述N1用于确定{所述第一域,所述第二域}中至少之一。In
作为实施例1的子实施例1,所述第一域被所述U2用于确定第一矩阵,所述第一矩阵被所述U2用于确定所述第一无线信号的预编码矩阵。所述第二域被所述U2用于确定M个第二矩阵,所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述M是正整数,所述P是大于或者等于所述M的正整数As a
作为实施例1的子实施例1的一个子实施例,所述第二矩阵被所述U2用于确定所述第一无线信号在对应的所述频率区域上的预编码矩阵。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述P等于所述M。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述P大于所述M。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述第一信令指示所述M个频率区域中的每一个所述频率区域在所述P个频率区域中的索引。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述第二信令指示所述M个频率区域中的每一个所述频率区域在所述P个频率区域中的索引。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述所述第一无线信号的预编码矩阵在同一个所述频率区域的不同子载波上是相同的。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述所述第一无线信号的预编码矩阵在不同所述频率区域的上是不同的。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述第一无线信号在所述M个频率区域中的任意一个所述频率区域上的预编码矩阵是由所述第一矩阵和对应的所述第二矩阵的乘积得到的。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述L个天线端口被分成P个天线端口组,所述天线端口组包括R个所述天线端口,所述第二矩阵的列的数目等于所述R,所述P乘以所述R等于所述L。所述P个天线端口组和所述P个频率区域一一对应,任意一个所述天线端口组发送的无线信号不占用对应的所述频率区域以外的频率资源。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述天线端口是多根物理天线通过天线虚拟化(Virtualization)而形成的,所述多根物理天线到所述天线端口的映射系数组成波束赋型向量。所述P个天线端口组中的M个所述天线端口组和所述M个第二矩阵一一对应,所述第一矩阵和所述第二矩阵相乘得到参考矩阵,所述参考矩阵中的R个列分别是对应的所述天线端口组中包括的R个所述天线端口的所述波束赋型向量。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述第一矩阵是第一候选矩阵集合中的一个矩阵,所述第一域包括所述第一矩阵在所述第一候选矩阵集合中的索引,所述第一候选矩阵集合包括正整数个矩阵。As a sub-embodiment of
作为实施例1的子实施例1的一个子实施例,所述第二矩阵是第二候选矩阵集合中的一个矩阵,所述第二域包括所述M个第二矩阵中的每一个所述第二矩阵在所述第二候选矩阵集合中的索引,所述第二候选矩阵集合包括正整数个矩阵。As a sub-embodiment of
作为实施例1的子实施例2,所述第一域中的比特的数量大于所述第二域中的比特的数量。As a sub-embodiment 2 of
作为实施例1的子实施例3,所述第一域中的比特的数量小于所述第二域中的比特的数量。As a sub-embodiment 3 of
作为实施例1的子实施例4,所述第一域中的比特的数量等于所述第二域中的比特的数量。As a sub-embodiment 4 of
作为实施例1的子实施例5,所述第一信令包括所述第一域和所述第二域之外的K个域,所述第二信令包括所述K个域,所述K是正整数。As a sub-embodiment 5 of
作为实施例1的子实施例6,所述K个域中的任意一个包括{资源分配域,MCS域,RV域,NDI域,HARQ进程号域,发送功率控制域}中的一种或者多种。As a sub-embodiment 6 of
作为实施例1的子实施例7,所述天线端口是多根物理天线通过天线虚拟化(Virtualization)而形成的,所述多根物理天线到所述天线端口的映射系数组成波束赋型向量。As a sub-embodiment 7 of
作为实施例1的子实施例8,给定域被用于形成给定天线端口是指:所述给定域被用于生成所述给定天线端口对应的波束赋型向量。所述给定域是所述第一域或者所述第二域。As a
作为实施例1的子实施例8的一个子实施例,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的,所述给定域被用于生成{所述给定天线端口对应的所述模拟波束赋型矩阵,所述给定天线端口对应的所述数字波束赋型向量}中的至少之一。As a sub-embodiment of
作为实施例1的子实施例8的一个子实施例,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的,所述第一域被用于生成所述L个天线端口对应的所述模拟波束赋型矩阵,所述第二域被用于生成所述L个天线端口对应的所述数字波束赋型向量。As a sub-embodiment of
作为实施例1的子实施例9,给定域被用于形成给定天线端口是指:所述给定域指示所述给定天线端口对应的波束赋型向量。所述给定域是所述第一域或者所述第二域。As a sub-embodiment 9 of
作为实施例1的子实施例9的一个子实施例,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的,所述给定域指示{所述给定天线端口对应的所述模拟波束赋型矩阵,所述给定天线端口对应的所述数字波束赋型向量}中的至少之一。As a sub-embodiment of sub-embodiment 9 of
作为实施例1的子实施例9的一个子实施例,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的,所述第一域指示所述L个天线端口对应的所述模拟波束赋型矩阵,所述第二域指示所述L个天线端口对应的所述数字波束赋型向量。As a sub-embodiment of sub-embodiment 9 of
作为实施例1的子实施例10,所述第一信令和所述第二信令分别是动态信令。As a sub-embodiment 10 of the
作为实施例1的子实施例11,所述第一信令和所述第二信令分别是用于上行授予(Uplink Grant)的DCI。As a sub-embodiment 11 of
作为实施例1的子实施例12,所述第一信令携带所述第一无线信号的调度信息。As a sub-embodiment 12 of
作为实施例1的子实施例13,所述第二信令携带所述第一无线信号的调度信息。As a sub-embodiment 13 of
作为实施例1的子实施例13的一个子实施例,所述调度信息包括{所占用的时域资源,所占用的频域资源,MCS,HARQ进程号,RV,NDI}中的至少之一。As a sub-embodiment of sub-embodiment 13 of
作为实施例1的子实施例14,所述第一信令和所述第二信令分别在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。As a sub-embodiment 14 of
作为实施例1的子实施例14的一个子实施例,所述下行物理层控制信道是PDCCH。As a sub-embodiment of sub-embodiment 14 of
作为实施例1的子实施例14的一个子实施例,所述下行物理层控制信道是sPDCCH。As a sub-embodiment of sub-embodiment 14 of
作为实施例1的子实施例15,所述第一无线信号在物理层数据信道上传输。As a sub-embodiment 15 of
作为实施例1的子实施例15的一个子实施例,所述物理层数据信道是PUSCH。As a sub-embodiment of sub-embodiment 15 of
作为实施例1的子实施例15的一个子实施例,所述物理层数据信道是sPUSCH。As a sub-embodiment of sub-embodiment 15 of
作为实施例1的子实施例16,所述第一域包括第一TPMI。As a sub-embodiment 16 of
作为实施例1的子实施例16的一个子实施例,所述第一TPMI是宽带的TPMI,所述第一TPMI在所述第一无线信号占用的所有子载波上被所述U2用于确定所述第一无线信号的预编码矩阵。As a sub-embodiment of sub-embodiment 16 of
作为实施例1的子实施例17,所述第二域包括M个第二TPMI,所述M是正整数。As a sub-embodiment 17 of
作为实施例1的子实施例17的一个子实施例,所述第二TPMI是子带(sub-band)的TPMI,所述第一无线信号占用的频率资源被划分成多个频率区域,所述第二TPMI只在部分所述频率区域上被所述U2用于确定所述第一无线信号的预编码矩阵。As a sub-embodiment of sub-embodiment 17 of
作为实施例1的子实施例17的一个子实施例,所述K等于所述M。As a sub-embodiment of sub-embodiment 17 of
作为实施例1的子实施例17的一个子实施例,所述K不等于所述M。As a sub-embodiment of sub-embodiment 17 of
作为实施例1的子实施例18,所述所述第一无线信号被所述L个天线端口分别发是指:所述第一无线信号包括L个子信号,所述L个子信号分别被所述L个天线端口发送。As a sub-embodiment 18 of
作为实施例1的子实施例19,所述第一信令的负载尺寸(payload size)大于所述第二信令的负载尺寸。As a sub-embodiment 19 of
作为实施例1的子实施例20,所述第一信令的负载尺寸(payload size)小于所述第二信令的负载尺寸。As a sub-embodiment 20 of
作为实施例1的子实施例21,所述第一信令的负载尺寸(payload size)等于所述第二信令的负载尺寸。As a sub-embodiment 21 of
作为实施例1的子实施例22,所述监测是指基于盲检测的接收,即在给定时间窗中接收信号并执行译码操作,如果根据校验比特确定译码正确则判断接收成功,否则判断接收失败。所述给定时间窗是所述第一时间窗或者所述第二时间窗。As a sub-embodiment 22 of
作为实施例1的子实施例22的一个子实施例,所述UE在所述第一时间窗中以所述第一信令的负载尺寸进行盲检测,所述UE在所述第二时间窗中以所述第二信令的负载尺寸进行盲检测。As a sub-embodiment of sub-embodiment 22 of
作为实施例1的子实施例23,所述第一信令指示所述L个参考信号的RS端口信息。As a sub-embodiment 23 of
作为实施例1的子实施例24,所述第二信令指示所述L个参考信号的RS端口信息。As a sub-embodiment 24 of
作为实施例1的子实施例24的一个子实施例,所述RS端口信息包括{所占用的时域资源,所占用的频域资源,RS图案(pattern),RS序列,CS(Cyclic Shift,循环位移量),OCC(Orthogonal Cover Code,正交掩码)}中的至少之一。As a sub-embodiment of sub-embodiment 24 of
作为实施例1的子实施例25,所述L个参考信号包括DMRS。As a sub-embodiment 25 of
作为实施例1的子实施例26,所述下行信息是由高层信令承载的。As a sub-embodiment 26 of
作为实施例1的子实施例26的一个子实施例,所述下行信息是由RRC信令承载的。As a sub-embodiment of sub-embodiment 26 of
作为实施例1的子实施例27,所述下行信息是半静态配置的。As a sub-embodiment 27 of
作为实施例1的子实施例28,所述下行信息是小区公共的。As a sub-embodiment 28 of
作为实施例1的子实施例29,所述下行信息是UE特定(UE-specific)的。As a sub-embodiment 29 of
作为实施例1的子实施例30,所述第二参考信号包括SRS。As sub-embodiment 30 of
作为实施例1的子实施例31,所述第二参考信号包括DMRS。As sub-embodiment 31 of
作为实施例1的子实施例32,基于所述第二参考信号的测量被所述N1用于确定P1个第一信道矩阵,所述P1个第一信道矩阵被所述N1用于确定{所述第一域,所述第二域}中至少之一,所述P1是正整数。As a sub-embodiment 32 of
作为实施例1的子实施例32的一个子实施例,所述第一信道矩阵的秩大于或者等于所述L除以所述P。As a sub-embodiment of sub-embodiment 32 of
作为实施例1的子实施例32的一个子实施例,所述P1大于所述P。As a sub-embodiment of sub-embodiment 32 of
作为实施例1的子实施例32的一个子实施例,所述P1等于所述P。As a sub-embodiment of sub-embodiment 32 of
作为实施例1的子实施例32的一个子实施例,所述P1小于所述P。As a sub-embodiment of sub-embodiment 32 of
作为实施例1的子实施例33,所述第二参考信号占用的频域资源被分成P1个频率区域,所述第二参考信号被正整数个天线端口分别发送,基于所述第二参考信号的测量被所述N1用于确定所述正整数个天线端口在所述P1个频率区域上所对应的信道参数,所述所述正整数个天线端口在所述P1个频率区域上所对应的信道参数分别构成所述P1个第一信道矩阵。As a sub-embodiment 33 of
作为实施例1的子实施例34,附图1中的方框F1和方框F2都存在。As a sub-embodiment 34 of the
作为实施例1的子实施例35,附图1中的方框F1存在,方框F2不存在。As a sub-embodiment 35 of the
作为实施例1的子实施例36,附图1中的方框F1不存在,方框F2存在。As a sub-embodiment 36 of the
作为实施例1的子实施例37,附图1中的方框F1和方框F2都不存在。As a sub-embodiment 37 of the
实施例2Example 2
实施例2示例了无线传输的流程图,如附图2所示。附图2中,基站N3是UE U4的服务小区维持基站。附图2中,方框F3,方框F4和方框F5中的步骤分别是可选的。Embodiment 2 illustrates a flowchart of wireless transmission, as shown in FIG. 2 . In FIG. 2, the base station N3 is the serving cell maintenance base station of the UE U4. In Figure 2, the steps in block F3, block F4 and block F5 are respectively optional.
对于N3,在步骤S301中发送下行信息;在步骤S302中发送第二参考信号;在步骤S303中接收上行信息;在步骤S31中在第一时间窗中发送第一信令,在第二时间窗中发送第二信令;在步骤S32中发送Q个参考信号;在步骤S33中发送第一无线信号。For N3, the downlink information is sent in step S301; the second reference signal is sent in step S302; the uplink information is received in step S303; the first signaling is sent in the first time window in step S31, and the second time window send the second signaling in step S32; send Q reference signals in step S32; send the first wireless signal in step S33.
对于U4,在步骤S401中接收下行信息;在步骤S402中接收第二参考信号;在步骤S403中发送上行信息;在步骤S41中在第一时间窗中监测第一信令,在第二时间窗中监测第二信令;在步骤S42中接收Q个参考信号;在步骤S43中接收第一无线信号。For U4, the downlink information is received in step S401; the second reference signal is received in step S402; the uplink information is sent in step S403; the first signaling is monitored in the first time window in step S41, and in the second time window monitor the second signaling in step S42; receive Q reference signals in step S42; and receive the first wireless signal in step S43.
在实施例2中,所述第一时间窗和所述第二时间窗在时域上相互正交,所述第一信令包括第一域,所述第二信令包括第二域。所述第一信令中的所述第一域被所述N3用于形成L个天线端口。所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被所述N3用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被所述N3用于形成所述L个天线端口。所述第一无线信号被所述L个天线端口分别发送。所述L是正整数。所述第一信令中的所述第一域被所述N3用于形成Q个天线端口,所述Q个参考信号分别被所述Q个天线端口发送。所述Q是正整数。所述下行信息被所述U4用于确定{所述第一时间窗,所述第二时间窗,所述第一时间窗的时间长度和所述第二时间窗的时间长度的比值}中至少之一。基于所述第二参考信号的测量被所述U4用于确定所述上行信息,所述上行信息被所述N3用于确定{所述第一域,所述第二域}中至少之一。In Embodiment 2, the first time window and the second time window are orthogonal to each other in the time domain, the first signaling includes a first domain, and the second signaling includes a second domain. The first field in the first signaling is used by the N3 to form L antenna ports. The first signaling includes the second field, at least one of {the second field in the first signaling, the second field in the second signaling} is N3 is used to form the L antenna ports; or the first signaling includes the former of {the first field, the second field}, and the second field in the second signaling is The N3 is used to form the L antenna ports. The first wireless signals are respectively transmitted by the L antenna ports. The L is a positive integer. The first field in the first signaling is used by the N3 to form Q antenna ports, and the Q reference signals are respectively sent by the Q antenna ports. The Q is a positive integer. The downlink information is used by the U4 to determine at least one of {the first time window, the second time window, the ratio of the time length of the first time window and the time length of the second time window}. one. The measurement based on the second reference signal is used by the U4 to determine the uplink information, and the uplink information is used by the N3 to determine at least one of {the first field, the second field}.
作为实施例2的子实施例1,所述第一域被所述N3用于确定第一矩阵,所述第一矩阵被所述N3用于确定所述第一无线信号的预编码矩阵。所述第二域被所述N3和所述U4用于确定M个第二矩阵,所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述M是正整数,所述P是大于或者等于所述M的正整数。As a
作为实施例2的子实施例1的一个子实施例,所述第二矩阵被所述N3和所述U4用于确定所述第一无线信号在对应的所述频率区域上的预编码矩阵。As a sub-embodiment of
作为实施例2的子实施例1的一个子实施例,所述天线端口是多根物理天线通过天线虚拟化(Virtualization)而形成的,所述多根物理天线到所述天线端口的映射系数组成波束赋型向量。所述第一矩阵的列的数目等于所述Q,所述第一矩阵的列分别是所述Q个天线端口对应的所述波束赋型向量。As a sub-embodiment of
作为实施例2的子实施例1的一个子实施例,所述Q大于或者等于所述L除以所述P。As a sub-embodiment of
作为实施例2的子实施例2,所述第一信令和所述第二信令分别是用于下行授予(Downlink Grant)的DCI。As sub-embodiment 2 of embodiment 2, the first signaling and the second signaling are DCIs for downlink grants (Downlink Grant), respectively.
作为实施例2的子实施例3,所述第一无线信号在物理层数据信道上传输。As sub-embodiment 3 of embodiment 2, the first wireless signal is transmitted on a physical layer data channel.
作为实施例2的子实施例3的一个子实施例,所述物理层数据信道是PDSCH。As a sub-embodiment of sub-embodiment 3 of embodiment 2, the physical layer data channel is PDSCH.
作为实施例2的子实施例3的一个子实施例,所述物理层数据信道是sPDSCH。As a sub-embodiment of sub-embodiment 3 of embodiment 2, the physical layer data channel is sPDSCH.
作为实施例2的子实施例4,所述第一信令指示所述Q个参考信号的RS端口信息。As a sub-embodiment 4 of embodiment 2, the first signaling indicates RS port information of the Q reference signals.
作为实施例2的子实施例5,所述第二信令指示所述Q个参考信号的RS端口信息。As a sub-embodiment 5 of the embodiment 2, the second signaling indicates RS port information of the Q reference signals.
作为实施例2的子实施例5的一个子实施例,所述RS端口信息包括{所占用的时域资源,所占用的频域资源,RS图案(pattern),RS序列,CS(Cyclic Shift,循环位移量),OCC(Orthogonal Cover Code,正交掩码)}中的至少之一。As a sub-embodiment of sub-embodiment 5 of embodiment 2, the RS port information includes {occupied time domain resources, occupied frequency domain resources, RS pattern (pattern), RS sequence, CS (Cyclic Shift, Circular displacement), at least one of OCC (Orthogonal Cover Code, orthogonal mask)}.
作为实施例2的子实施例6,所述Q个参考信号包括DMRS。As sub-embodiment 6 of embodiment 2, the Q reference signals include DMRS.
作为实施例2的子实施例7,所述Q个参考信号包括CSI-RS。As sub-embodiment 7 of embodiment 2, the Q reference signals include CSI-RS.
作为实施例2的子实施例8,所述第一域被所述N3用于生成所述Q个天线端口对应的所述波束赋型向量。As a
作为实施例2的子实施例9,所述第一域指示所述Q个天线端口对应的所述波束赋型向量。As a sub-embodiment 9 of embodiment 2, the first field indicates the beamforming vectors corresponding to the Q antenna ports.
作为实施例2的子实施例10,基于所述Q个参考信号的测量和所述第二域被所述U4用于确定所述L个天线端口对应的信道参数。As a sub-embodiment 10 of Embodiment 2, the U4 is used to determine the channel parameters corresponding to the L antenna ports based on the measurement of the Q reference signals and the second domain.
作为实施例2的子实施例10的一个子实施例,所述信道参数是CIR。As a sub-embodiment of sub-embodiment 10 of embodiment 2, the channel parameter is CIR.
作为实施例2的子实施例11,所述第二参考信号包括CSI-RS。As sub-embodiment 11 of embodiment 2, the second reference signal includes CSI-RS.
作为实施例2的子实施例12,所述第二参考信号包括DMRS。As a sub-embodiment 12 of the embodiment 2, the second reference signal includes a DMRS.
作为实施例2的子实施例13,基于所述第二参考信号的测量被所述U4用于确定P1个第一信道矩阵,所述P1是正整数。As a sub-embodiment 13 of embodiment 2, the measurement based on the second reference signal is used by the U4 to determine P1 first channel matrices, where P1 is a positive integer.
作为实施例2的子实施例13的一个子实施例,所述第二参考信号占用的频域资源被分成P1个频率区域,所述第二参考信号被正整数个天线端口分别发送,基于所述第二参考信号的测量被所述U4用于确定所述正整数个天线端口在所述P1个频率区域上所对应的信道参数,所述所述正整数个天线端口在所述P1个频率区域上所对应的信道参数分别构成所述P1个第一信道矩阵。As a sub-embodiment of sub-embodiment 13 of embodiment 2, the frequency domain resources occupied by the second reference signal are divided into P1 frequency regions, the second reference signal is respectively sent by a positive integer number of antenna ports, based on the The measurement of the second reference signal is used by the U4 to determine the channel parameters corresponding to the positive integer number of antenna ports in the P1 frequency regions, and the positive integer number of antenna ports are in the P1 frequencies The channel parameters corresponding to the regions respectively constitute the P1 first channel matrices.
作为实施例2的子实施例13的一个子实施例,所述第一信道矩阵的秩大于或者等于所述Q。As a sub-embodiment of sub-embodiment 13 of embodiment 2, the rank of the first channel matrix is greater than or equal to the Q.
作为实施例2的子实施例14,所述上行信息指示{所述第一域,所述第二域}中至少之一。As a sub-embodiment 14 of embodiment 2, the uplink information indicates at least one of {the first domain and the second domain}.
作为实施例2的子实施例15,所述P1个第一信道矩阵被所述U4用于生成所述上行信息。As a sub-embodiment 15 of Embodiment 2, the P1 first channel matrices are used by the U4 to generate the uplink information.
作为实施例2的子实施例16,所述上行信息包括P2个第一信道矩阵的量化信息,所述P2个第一信道矩阵是所述P1个第一信道矩阵的子集,所述P2是小于或者等于所述P1的正整数。As a sub-embodiment 16 of Embodiment 2, the uplink information includes quantization information of P2 first channel matrices, the P2 first channel matrices are a subset of the P1 first channel matrices, and the P2 is A positive integer less than or equal to the P1.
作为实施例2的子实施例17,所述P2个第一量化矩阵被所述N3用于生成{所述第一域,所述第二域}中至少之一。As a sub-embodiment 17 of embodiment 2, the P2 first quantization matrices are used by the N3 to generate at least one of {the first domain, the second domain}.
作为实施例2的子实施例18,所述上行信息包括UCI。As a sub-embodiment 18 of Embodiment 2, the uplink information includes UCI.
作为实施例2的子实施例19,所述上行信息在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。As a sub-embodiment 19 of Embodiment 2, the uplink information is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
作为实施例2的子实施例19的一个子实施例,所述上行物理层控制信道是PUCCH。As a sub-embodiment of sub-embodiment 19 of embodiment 2, the uplink physical layer control channel is PUCCH.
作为实施例2的子实施例20,所述上行信息在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。As a sub-embodiment 20 of Embodiment 2, the uplink information is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
作为实施例2的子实施例20的一个子实施例,所述上行物理层数据信道是PUSCH。As a sub-embodiment of sub-embodiment 20 of embodiment 2, the uplink physical layer data channel is PUSCH.
作为实施例2的子实施例21,附图2中的方框F3,方框F4和方框F5都存在。As sub-embodiment 21 of embodiment 2, block F3, block F4 and block F5 in FIG. 2 all exist.
作为实施例2的子实施例22,附图2中的方框F3和方框F4存在,方框F5不存在。As a sub-embodiment 22 of the embodiment 2, the blocks F3 and F4 in FIG. 2 exist, and the block F5 does not exist.
作为实施例2的子实施例23,附图2中的方框F3存在,方框F4和方框F5不存在。As a sub-embodiment 23 of the embodiment 2, the block F3 in FIG. 2 exists, and the block F4 and the block F5 do not exist.
作为实施例2的子实施例24,附图2中的方框F3和方框F5存在,方框F4不存在。As a sub-embodiment 24 of the embodiment 2, the blocks F3 and F5 in FIG. 2 exist, and the block F4 does not exist.
作为实施例2的子实施例25,附图2中的方框F3不存在,方框F4和方框F5存在。As a sub-embodiment 25 of the embodiment 2, the block F3 in FIG. 2 does not exist, and the block F4 and the block F5 exist.
作为实施例2的子实施例26,附图2中的方框F3和方框F4不存在,方框F5存在。As a sub-embodiment 26 of the embodiment 2, the blocks F3 and F4 in FIG. 2 do not exist, and the block F5 exists.
作为实施例2的子实施例27,附图2中的方框F3和方框F5不存在,方框F4存在。As a sub-embodiment 27 of the embodiment 2, the blocks F3 and F5 in FIG. 2 do not exist, and the block F4 exists.
作为实施例2的子实施例28,附图2中的方框F3,方框F4和方框F5都不存在。As a sub-embodiment 28 of the embodiment 2, block F3, block F4 and block F5 in FIG. 2 do not exist.
实施例3Example 3
实施例3示例了第一时间窗和第二时间窗在时域上的资源映射的示意图,如附图3所示。Embodiment 3 illustrates a schematic diagram of resource mapping of the first time window and the second time window in the time domain, as shown in FIG. 3 .
在实施例3中,所述第一时间窗和所述第二时间窗在时域上相互正交,UE在所述第一时间窗中监测第一信令,在所述第二时间窗中监测第二信令。所述第一信令包括第一域和第二域,或者所述第一信令包括所述第一域。所述第二信令包括所述第二域。所述第一时间窗包括T1个时间单位,所述第二时间窗包括T2个时间单位,所述T1和所述T2分别是正整数。In Embodiment 3, the first time window and the second time window are orthogonal to each other in the time domain, the UE monitors the first signaling in the first time window, and in the second time window Monitor the second signaling. The first signaling includes a first domain and a second domain, or the first signaling includes the first domain. The second signaling includes the second field. The first time window includes T1 time units, the second time window includes T2 time units, and T1 and T2 are positive integers respectively.
作为实施例3的子实施例1,所述时间单位是子帧。As
作为实施例3的子实施例2,所述时间单位是1ms。As a sub-embodiment 2 of the embodiment 3, the time unit is 1 ms.
作为实施例3的子实施例3,所述T1个时间单位在时域上是不连续的。As a sub-embodiment 3 of the embodiment 3, the T1 time units are discontinuous in the time domain.
作为实施例3的子实施例4,所述T2个时间单位在时域上是不连续的。As a sub-embodiment 4 of the embodiment 3, the T2 time units are discontinuous in the time domain.
作为实施例3的子实施例5,所述T1大于所述T2。As a sub-embodiment 5 of the embodiment 3, the T1 is greater than the T2.
作为实施例3的子实施例6,所述T1等于所述T2。As a sub-embodiment 6 of the embodiment 3, the T1 is equal to the T2.
作为实施例3的子实施例7,所述T1小于所述T2。As a sub-embodiment 7 of the embodiment 3, the T1 is smaller than the T2.
作为实施例3的子实施例8,所述第一信令的负载尺寸(payload size)大于所述第二信令的负载尺寸。As a
作为实施例3的子实施例9,所述第一信令的负载尺寸(payload size)小于所述第二信令的负载尺寸。As a sub-embodiment 9 of the embodiment 3, the payload size of the first signaling is smaller than the payload size of the second signaling.
作为实施例3的子实施例10,所述第一信令的负载尺寸(payload size)等于所述第二信令的负载尺寸。As a sub-embodiment 10 of Embodiment 3, the payload size of the first signaling is equal to the payload size of the second signaling.
作为实施例3的子实施例11,所述监测是指基于盲检测的接收,即在给定时间窗中接收信号并执行译码操作,如果根据校验比特确定译码正确则判断接收成功,否则判断接收失败。所述给定时间窗是所述第一时间窗或者所述第二时间窗。As a sub-embodiment 11 of Embodiment 3, the monitoring refers to reception based on blind detection, that is, receiving a signal in a given time window and performing a decoding operation, if it is determined that the decoding is correct according to the check bits, it is judged that the reception is successful, Otherwise, it is judged that the reception fails. The given time window is the first time window or the second time window.
作为实施例3的子实施例11的一个子实施例,所述UE在所述第一时间窗中以所述第一信令的负载尺寸进行盲检测,所述UE在所述第二时间窗中以所述第二信令的负载尺寸进行盲检测。As a sub-embodiment of sub-embodiment 11 of Embodiment 3, the UE performs blind detection with the payload size of the first signaling in the first time window, and the UE performs blind detection in the second time window Blind detection is performed based on the payload size of the second signaling.
实施例4Example 4
实施例4示例了第一信令的示意图,如附图4所示。Embodiment 4 illustrates a schematic diagram of the first signaling, as shown in FIG. 4 .
在实施例4中,所述第一信令包括{第一域,第二域,所述第一域和所述第二域之外的K个域}。所述第一域指示第一TPMI,所述第一TPMI被用于确定第一矩阵,所述第一矩阵被用于确定本申请中的所述第一无线信号的预编码矩阵。所述第二域包括P个比特组成的比特图(C0~CP-1)和M个第二TPMI。所述M个第二TPMI被用于确定M个第二矩阵,所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述第二域包括的P个比特分别指示所述P个频率区域中的每一个所述频率区域是否属于所述M个频率区域,所述P个比特中有M个比特的状态为第一状态,其余比特的状态为第二状态。所述P个比特中状态为所述第一状态的比特对应的所述频率区域属于所述M个频率区域,所述P个比特中状态为所述第二状态的比特对应的所述频率区域不属于所述M个频率区域。所述M是正整数,所述P是大于或者等于所述M的正整数。In Embodiment 4, the first signaling includes {first domain, second domain, K domains other than the first domain and the second domain}. The first field indicates a first TPMI, and the first TPMI is used to determine a first matrix, and the first matrix is used to determine a precoding matrix of the first wireless signal in this application. The second field includes a bitmap (C 0 to C P-1 ) composed of P bits and M second TPMIs. The M second TPMIs are used to determine M second matrices, the frequency resources occupied by the first wireless signal are divided into P frequency regions, the M second matrices and the P frequency regions The M of the frequency regions correspond one-to-one. The P bits included in the second field respectively indicate whether each of the frequency regions in the P frequency regions belongs to the M frequency regions, and the state of M bits in the P bits is the first state, and the state of the remaining bits is the second state. The frequency region corresponding to the bit in the first state among the P bits belongs to the M frequency regions, and the frequency region corresponding to the bit in the second state among the P bits does not belong to the M frequency regions. The M is a positive integer, and the P is a positive integer greater than or equal to the M.
作为实施例4的子实施例1,所述第二矩阵被用于确定所述第一无线信号在对应的所述频率区域上的预编码矩阵。As a
作为实施例4的子实施例2,所述第一矩阵是第一候选矩阵集合中的一个矩阵,所述第一TPMI是所述第一矩阵在所述第一候选矩阵集合中的索引,所述第一候选矩阵集合包括正整数个矩阵。As a sub-embodiment 2 of embodiment 4, the first matrix is a matrix in the first candidate matrix set, the first TPMI is an index of the first matrix in the first candidate matrix set, and the The first candidate matrix set includes a positive integer number of matrices.
作为实施例4的子实施例2的一个子实施例,所述第一TPMI包括的比特数是不小于所述第一候选矩阵集合包括的矩阵数目的以2为底的对数的最小正整数。As a sub-embodiment of sub-embodiment 2 of embodiment 4, the number of bits included in the first TPMI is the smallest positive integer that is not less than a base-2 logarithm of the number of matrices included in the first candidate matrix set .
作为实施例4的子实施例2的一个子实施例,所述第一TPMI包括的比特数是3。As a sub-embodiment of sub-embodiment 2 of embodiment 4, the number of bits included in the first TPMI is three.
作为实施例4的子实施例2的一个子实施例,所述第一TPMI包括的比特数是4。As a sub-embodiment of sub-embodiment 2 of embodiment 4, the number of bits included in the first TPMI is 4.
作为实施例4的子实施例2的一个子实施例,所述第一TPMI包括的比特数是5。As a sub-embodiment of sub-embodiment 2 of embodiment 4, the number of bits included in the first TPMI is 5.
作为实施例4的子实施例2的一个子实施例,所述第一TPMI包括的比特数是6。As a sub-embodiment of sub-embodiment 2 of embodiment 4, the number of bits included in the first TPMI is 6.
作为实施例4的子实施例3,所述第二矩阵是第二候选矩阵集合中的一个矩阵,所述M个第二TPMI分别是所述M个第二矩阵中的每一个所述第二矩阵在所述第二候选矩阵集合中的索引,所述第二候选矩阵集合包括正整数个矩阵。As a sub-embodiment 3 of embodiment 4, the second matrix is one matrix in a second candidate matrix set, and the M second TPMIs are each of the M second matrices. The index of the matrix in the second candidate matrix set, the second candidate matrix set includes a positive integer number of matrices.
作为实施例4的子实施例3的一个子实施例,所述第二TPMI包括的比特数是不小于所述第二候选矩阵集合包括的矩阵数目的以2为底的对数的最小正整数,所述第二域包括的比特数等于M乘以所述第二TPMI包括的比特数再加上P。As a sub-embodiment of sub-embodiment 3 of embodiment 4, the number of bits included in the second TPMI is the smallest positive integer that is not less than a base-2 logarithm of the number of matrices included in the second candidate matrix set , the number of bits included in the second field is equal to M multiplied by the number of bits included in the second TPMI plus P.
作为实施例4的子实施例3的一个子实施例,所述第二TPMI包括的比特数是2。As a sub-embodiment of sub-embodiment 3 of embodiment 4, the number of bits included in the second TPMI is 2.
作为实施例4的子实施例3的一个子实施例,所述第二TPMI包括的比特数是3。As a sub-embodiment of sub-embodiment 3 of embodiment 4, the number of bits included in the second TPMI is three.
作为实施例4的子实施例3的一个子实施例,所述第二TPMI包括的比特数是4。As a sub-embodiment of sub-embodiment 3 of embodiment 4, the number of bits included in the second TPMI is 4.
作为实施例4的子实施例4,所述第一候选矩阵集合包括的矩阵的数量大于所述第二候选矩阵集合包括的矩阵的数量。As a sub-embodiment 4 of embodiment 4, the number of matrices included in the first candidate matrix set is greater than the number of matrices included in the second candidate matrix set.
作为实施例4的子实施例5,所述第一候选矩阵集合包括的矩阵的数量等于所述第二候选矩阵集合包括的矩阵的数量。As a sub-embodiment 5 of Embodiment 4, the number of matrices included in the first candidate matrix set is equal to the number of matrices included in the second candidate matrix set.
作为实施例4的子实施例6,所述第一候选矩阵集合包括的矩阵的数量小于所述第二候选矩阵集合包括的矩阵的数量。As a sub-embodiment 6 of embodiment 4, the number of matrices included in the first candidate matrix set is smaller than the number of matrices included in the second candidate matrix set.
作为实施例4的子实施例7,所述第一域中的比特的数量大于所述第二域中的比特的数量。As a sub-embodiment 7 of the embodiment 4, the number of bits in the first field is greater than the number of bits in the second field.
作为实施例4的子实施例8,所述第一域中的比特的数量小于所述第二域中的比特的数量。As a
作为实施例4的子实施例9,所述第一域中的比特的数量等于所述第二域中的比特的数量。As a sub-embodiment 9 of embodiment 4, the number of bits in the first field is equal to the number of bits in the second field.
作为实施例4的子实施例10,所述K个域中的任意一个包括{资源分配域,MCS域,RV域,NDI域,HARQ进程号域,发送功率控制域}中的一种或者多种。As a sub-embodiment 10 of embodiment 4, any one of the K fields includes one or more of {resource allocation field, MCS field, RV field, NDI field, HARQ process number field, transmit power control field} kind.
作为实施例4的子实施例11,所述K等于所述M。As a sub-embodiment 11 of the embodiment 4, the K is equal to the M.
作为实施例4的子实施例12,所述K不等于所述M。As a sub-embodiment 12 of embodiment 4, the K is not equal to the M.
作为实施例4的子实施例13,所述第一状态是1,所述第二状态是0。As a sub-embodiment 13 of the embodiment 4, the first state is 1 and the second state is 0.
作为实施例4的子实施例14,所述第一状态是0,所述第二状态是1。As a sub-embodiment 14 of the embodiment 4, the first state is 0 and the second state is 1.
实施例5Example 5
实施例5示例了第一信令的示意图,如附图5所示。Embodiment 5 illustrates a schematic diagram of the first signaling, as shown in FIG. 5 .
在实施例5中,所述第一信令包括{第一域,所述第一域之外的K个域}。所述第一域指示第一TPMI,所述第一TPMI被用于确定第一矩阵,所述第一矩阵被用于确定本申请中的所述第一无线信号的预编码矩阵。In Embodiment 5, the first signaling includes {first domain, K domains other than the first domain}. The first field indicates a first TPMI, and the first TPMI is used to determine a first matrix, and the first matrix is used to determine a precoding matrix of the first wireless signal in this application.
作为实施例5的子实施例1,所述K个域中的任意一个包括{资源分配域,MCS域,RV域,NDI域,HARQ进程号域,发送功率控制域}中的一种或者多种。As a
实施例6Example 6
实施例6示例了第二信令的示意图,如附图6所示。Embodiment 6 illustrates a schematic diagram of the second signaling, as shown in FIG. 6 .
在实施例6中,所述第二信令包括{第二域,所述第二域之外的K个域}。所述第二域包括P个比特组成的比特图(C0~CP-1)和M个第二TPMI。所述M个第二TPMI被用于确定M个第二矩阵。本申请中的所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述第二域包括的P个比特分别指示所述P个频率区域中的每一个所述频率区域是否属于所述M个频率区域,所述P个比特中有M个比特的状态为第一状态,其余比特的状态为第二状态。所述P个比特中状态为所述第一状态的比特对应的所述频率区域属于所述M个频率区域,所述P个比特中状态为所述第二状态的比特对应的所述频率区域不属于所述M个频率区域。所述M是正整数,所述P是大于或者等于所述M的正整数。In Embodiment 6, the second signaling includes {the second domain, K domains other than the second domain}. The second field includes a bitmap (C 0 to C P-1 ) composed of P bits and M second TPMIs. The M second TPMIs are used to determine the M second matrices. The frequency resource occupied by the first wireless signal in the present application is divided into P frequency regions, and the M second matrices correspond to the M frequency regions in the P frequency regions one-to-one. The P bits included in the second field respectively indicate whether each of the frequency regions in the P frequency regions belongs to the M frequency regions, and the state of M bits in the P bits is the first state, and the state of the remaining bits is the second state. The frequency region corresponding to the bit in the first state among the P bits belongs to the M frequency regions, and the frequency region corresponding to the bit in the second state among the P bits does not belong to the M frequency regions. The M is a positive integer, and the P is a positive integer greater than or equal to the M.
作为实施例6的子实施例1,所述第二矩阵被用于确定所述第一无线信号在对应的所述频率区域上的预编码矩阵。As a
作为实施例6的子实施例2,所述第二矩阵是第二候选矩阵集合中的一个矩阵,所述M个第二TPMI分别是所述M个第二矩阵中的每一个所述第二矩阵在所述第二候选矩阵集合中的索引,所述第二候选矩阵集合包括正整数个矩阵。As a sub-embodiment 2 of embodiment 6, the second matrix is one matrix in a second candidate matrix set, and the M second TPMIs are each of the M second matrices, respectively, the second matrix The index of the matrix in the second candidate matrix set, the second candidate matrix set includes a positive integer number of matrices.
作为实施例6的子实施例2的一个子实施例,所述第二TPMI包括的比特数是不小于所述第二候选矩阵集合包括的矩阵数目的以2为底的对数的最小正整数,所述第二域包括的比特数等于M乘以所述第二TPMI包括的比特数再加上P。As a sub-embodiment of sub-embodiment 2 of embodiment 6, the number of bits included in the second TPMI is the smallest positive integer that is not less than a base-2 logarithm of the number of matrices included in the second candidate matrix set , the number of bits included in the second field is equal to M multiplied by the number of bits included in the second TPMI plus P.
作为实施例6的子实施例2的一个子实施例,所述第二TPMI包括的比特数是2。As a sub-embodiment of sub-embodiment 2 of embodiment 6, the number of bits included in the second TPMI is 2.
作为实施例6的子实施例2的一个子实施例,所述第二TPMI包括的比特数是3。As a sub-embodiment of sub-embodiment 2 of embodiment 6, the number of bits included in the second TPMI is three.
作为实施例6的子实施例2的一个子实施例,所述第二TPMI包括的比特数是4。As a sub-embodiment of sub-embodiment 2 of embodiment 6, the number of bits included in the second TPMI is 4.
作为实施例6的子实施例3,所述K个域中的任意一个包括{资源分配域,MCS域,RV域,NDI域,HARQ进程号域,发送功率控制域}中的一种或者多种。As a sub-embodiment 3 of embodiment 6, any one of the K fields includes one or more of {resource allocation field, MCS field, RV field, NDI field, HARQ process number field, transmit power control field} kind.
作为实施例6的子实施例4,所述K等于所述M。As a sub-embodiment 4 of the embodiment 6, the K is equal to the M.
作为实施例6的子实施例5,所述K不等于所述M。As a sub-embodiment 5 of the embodiment 6, the K is not equal to the M.
作为实施例6的子实施例6,所述第一状态是1,所述第二状态是0。As a sub-embodiment 6 of the embodiment 6, the first state is 1 and the second state is 0.
作为实施例6的子实施例7,所述第一状态是0,所述第二状态是1。As a sub-embodiment 7 of the embodiment 6, the first state is 0 and the second state is 1.
实施例7Example 7
实施例7示例了{第一矩阵,M个第二矩阵}和第一无线信号的预编码矩阵之间关系的示意图,如附图7所示。Embodiment 7 illustrates a schematic diagram of the relationship between {first matrix, M second matrices} and the precoding matrix of the first wireless signal, as shown in FIG. 7 .
在实施例7中,所述第一无线信号的预编码矩阵由{所述第一矩阵,所述M个第二矩阵}所确定。所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述第一无线信号在所述M个频率区域中的任意一个所述频率区域上的预编码矩阵由{所述第一矩阵,对应的所述第二矩阵}所确定。所述M是正整数,所述P是大于或者等于所述M的正整数。In Embodiment 7, the precoding matrix of the first wireless signal is determined by {the first matrix, the M second matrices}. The frequency resource occupied by the first wireless signal is divided into P frequency regions, and the M second matrices are in one-to-one correspondence with the M frequency regions in the P frequency regions. The precoding matrix of the first wireless signal in any one of the M frequency regions is determined by {the first matrix, the corresponding second matrix}. The M is a positive integer, and the P is a positive integer greater than or equal to the M.
作为实施例7的子实施例1,所述第一无线信号在所述M个频率区域中的任意一个所述频率区域上的预编码矩阵是由所述第一矩阵和对应的所述第二矩阵的乘积得到的。As a
作为实施例7的子实施例2,所述P等于所述M。As a sub-embodiment 2 of embodiment 7, the P is equal to the M.
作为实施例7的子实施例3,所述P大于所述M。As a sub-embodiment 3 of embodiment 7, the P is greater than the M.
作为实施例7的子实施例4,所述频率区域包括正整数个连续的子载波。As a sub-embodiment 4 of the embodiment 7, the frequency region includes a positive integer number of consecutive subcarriers.
作为实施例7的子实施例5,任意两个所述频率区域包括的子载波的数目是相同的。As a sub-embodiment 5 of the embodiment 7, the number of subcarriers included in any two of the frequency regions is the same.
作为实施例7的子实施例6,至少存在两个不同的所述频率区域包括的子载波的数目是不同的。As a sub-embodiment 6 of the embodiment 7, there are at least two different frequency regions including different numbers of subcarriers.
作为实施例7的子实施例7,所述P个频率区域在频域上是两两相互正交的,即不存在一个子载波同时属于两个不同的所述频率区域。As a sub-embodiment 7 of the embodiment 7, the P frequency regions are mutually orthogonal in the frequency domain, that is, there is no subcarrier belonging to two different frequency regions at the same time.
作为实施例7的子实施例8,所述所述第一无线信号的预编码矩阵在同一个所述频率区域的不同子载波上是相同的。As a
作为实施例7的子实施例9,所述所述第一无线信号的预编码矩阵在不同所述频率区域的上是不同的。As a sub-embodiment 9 of the embodiment 7, the precoding matrix of the first wireless signal is different in different frequency regions.
作为实施例7的子实施例10,所述M个第二矩阵由本申请中的所述第一信令所指示。As a sub-embodiment 10 of embodiment 7, the M second matrices are indicated by the first signaling in this application.
作为实施例7的子实施例11,所述M个第二矩阵由本申请中的所述第二信令所指示。As sub-embodiment 11 of embodiment 7, the M second matrices are indicated by the second signaling in this application.
作为实施例7的子实施例12,本申请中的所述第一信令指示所述M个频率区域中的每一个所述频率区域在所述P个频率区域中的索引。As a sub-embodiment 12 of Embodiment 7, the first signaling in this application indicates an index of each of the M frequency regions in the P frequency regions.
作为实施例7的子实施例13,本申请中的所述第二信令指示所述M个频率区域中的每一个所述频率区域在所述P个频率区域中的索引。As a sub-embodiment 13 of Embodiment 7, the second signaling in this application indicates an index of each of the M frequency regions in the P frequency regions.
实施例8Example 8
实施例8示例了L个参考信号在时频域上的资源映射的示意图,如附图8所示。
在实施例8中,所述L个参考信号分别被L个天线端口发送,所述L个天线端口还被用于发送本申请中的所述第一无线信号。本申请中的所述第一矩阵和本申请中的所述M个第二矩阵被用于形成所述L个天线端口。所述第一无线信号占用的频率资源被划分成P个频率区域,所述L个天线端口被分成P个天线端口组,所述天线端口组包括R个所述天线端口,所述P个天线端口组和所述P个频率区域一一对应,任意一个所述天线端口组发送的无线信号不占用对应的所述频率区域以外的频率资源。所述L个参考信号被分成P个参考信号组,所述参考信号组包括R个所述参考信号,所述P个参考信号组和所述P个天线端口组一一对应,所述参考信号组中的R个所述参考信号分别由对应的天线端口组中的R个所述天线端口发送。所述第二矩阵的列的数目等于所述R,所述P乘以所述R等于所述L。In
作为实施例8的子实施例1,所述第一无线信号在所述频率区域上由对应的所述天线端口组发送。As a
作为实施例8的子实施例2,所述天线端口是多根物理天线通过天线虚拟化(Virtualization)而形成的,所述多根物理天线到所述天线端口的映射系数组成波束赋型向量。As a sub-embodiment 2 of
作为实施例8的子实施例3,所述P个天线端口组中的M个所述天线端口组和所述M个第二矩阵一一对应,所述第一矩阵和所述第二矩阵相乘得到参考矩阵,所述参考矩阵中的R个列分别是对应的所述天线端口组中包括的R个所述天线端口的所述波束赋型向量。As a sub-embodiment 3 of
作为实施例8的子实施例3的一个子实施例,本申请中的所述第一信令指示所述M个天线端口组中的每一个所述天线端口组在所述P个天线端口组中的索引。As a sub-embodiment of sub-embodiment 3 of
作为实施例8的子实施例3的一个子实施例,本申请中的所述第二信令指示所述M个天线端口组中的每一个所述天线端口组在所述P个天线端口组中的索引。As a sub-embodiment of sub-embodiment 3 of
作为实施例8的子实施例4,所述波束赋型向量是由一个模拟波束赋型矩阵和一个数字波束赋型向量的乘积所生成的。As a sub-embodiment 4 of
作为实施例8的子实施例4的一个子实施例,所述L个天线端口对应的所述模拟波束赋型矩阵是相同的。As a sub-embodiment of sub-embodiment 4 of
作为实施例8的子实施例4的一个子实施例,所述L个天线端口对应的所述模拟波束赋型矩阵分别是所述第一矩阵。As a sub-embodiment of sub-embodiment 4 of
作为实施例8的子实施例4的一个子实施例,不同所述天线端口组中的所述天线端口对应不同的所述数字波束赋型向量。As a sub-embodiment of sub-embodiment 4 of
作为实施例8的子实施例4的一个子实施例,所述第二矩阵中的列构成了对应的所述天线端口组中的所述天线端口的所述数字波束赋型向量。As a sub-embodiment of sub-embodiment 4 of
作为实施例8的子实施例5,所述L个参考信号包括DMRS。As sub-embodiment 5 of
作为实施例8的子实施例6,所述L个参考信号中的任意一个所述参考信号采用DMRS的图案(pattern)。As a sub-embodiment 6 of the
作为实施例8的子实施例7,所述P个参考信号组和所述P个频率区域一一对应,所述参考信号组不占用的对应的所述频率区域之外的频率资源。As a sub-embodiment 7 of
作为实施例8的子实施例8,所述M个第二矩阵由本申请中的所述第一信令所指示。As a
作为实施例8的子实施例9,所述M个第二矩阵由本申请中的所述第二信令所指示。As a sub-embodiment 9 of
实施例9Example 9
实施例9示例了Q个参考信号在时频域上的资源映射的示意图,由附图9所示。Embodiment 9 illustrates a schematic diagram of resource mapping of Q reference signals in the time-frequency domain, as shown in FIG. 9 .
在实施例9中,所述Q个参考信号分别被Q个天线端口发送,本申请中的所述第一矩阵被用于形成所述Q个天线端口。In Embodiment 9, the Q reference signals are respectively transmitted by the Q antenna ports, and the first matrix in this application is used to form the Q antenna ports.
作为实施例9的子实施例1,所述第一矩阵的列的数目等于所述Q,所述第一矩阵的列分别是所述Q个天线端口对应的所述波束赋型向量。As a
作为实施例9的子实施例2,所述Q个参考信号包括DMRS。As sub-embodiment 2 of embodiment 9, the Q reference signals include DMRS.
作为实施例9的子实施例3,所述Q个参考信号中的任意一个所述参考信号采用DMRS的图案(pattern)。As a third sub-embodiment of the ninth embodiment, any one of the Q reference signals adopts a DMRS pattern.
作为实施例9的子实施例4,所述Q个参考信号包括CSI-RS。As sub-embodiment 4 of embodiment 9, the Q reference signals include CSI-RS.
作为实施例9的子实施例5,所述Q个参考信号中的任意一个所述参考信号采用CSI-RS的图案。As a sub-embodiment 5 of Embodiment 9, any one of the Q reference signals adopts a CSI-RS pattern.
作为实施例9的子实施例6,基于所述Q个参考信号的测量和本申请中的所述M个第二矩阵被用于确定本申请中的所述L个天线端口对应的信道参数。As a sub-embodiment 6 of Embodiment 9, channel parameters corresponding to the L antenna ports in the present application are determined based on the measurements of the Q reference signals and the M second matrices in the present application.
作为实施例9的子实施例6的一个子实施例,所述信道参数是CIR。As a sub-embodiment of sub-embodiment 6 of embodiment 9, the channel parameter is CIR.
作为实施例9的子实施例6的一个子实施例,所述L个天线端口被分成P个天线端口组,所述P个天线端口组中的M个所述天线端口组和所述M个第二矩阵一一对应。所述M个天线端口组对应的信道参数构成M个目标信道矩阵,基于所述Q个参考信号的测量被用于确定参考信道矩阵,所述参考信道矩阵分别和所述M个第二矩阵相乘得到所述M个目标信道矩阵。所述M是正整数,所述P是大于或者等于所述M的正整数。As a sub-embodiment of sub-embodiment 6 of embodiment 9, the L antenna ports are divided into P antenna port groups, and the M antenna port groups and the M antenna port groups in the P antenna port groups The second matrix is in one-to-one correspondence. The channel parameters corresponding to the M antenna port groups constitute M target channel matrices, and measurements based on the Q reference signals are used to determine a reference channel matrix, and the reference channel matrices are respectively the same as the M second matrices. Multiply to obtain the M target channel matrices. The M is a positive integer, and the P is a positive integer greater than or equal to the M.
实施例10Example 10
实施例10示例了用于UE中的处理装置的结构框图,如附图10所示。在附图10中,UE装置200主要由第一接收模块201,第一处理模块202,第二处理模块203和第一发送模块204组成。Embodiment 10 illustrates a structural block diagram of a processing apparatus used in a UE, as shown in FIG. 10 . In FIG. 10 , the
在实施例10中,第一接收模块201用于在第一时间窗中监测第一信令,在第二时间窗中监测第二信令;第一处理模块202用于操作第一无线信号;第二处理模块203用于操作第二参考信号;第一发送模块204用于发送上行信息。在附图10中,第一发送模块204是可选的。In Embodiment 10, the
在实施例10中,所述第一时间窗和所述第二时间窗在时域上相互正交,所述第一信令包括第一域,所述第二信令包括第二域。所述第一信令中的所述第一域被用于形成L个天线端口。所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被用于形成所述L个天线端口。所述第一无线信号被所述L个天线端口分别发送。所述L是正整数。所述操作是接收,所述第一发送模块204存在,基于所述第二参考信号的测量被所述第一发送模块204用于确定所述上行信息,所述上行信息被用于确定{所述第一域,所述第二域}中至少之一;或者所述操作是发送,所述第一发送模块204不存在,基于所述第二参考信号的测量被用于确定{所述第一域,所述第二域}中至少之一。In Embodiment 10, the first time window and the second time window are orthogonal to each other in the time domain, the first signaling includes a first domain, and the second signaling includes a second domain. The first field in the first signaling is used to form L antenna ports. The first signaling includes the second field, at least one of {the second field in the first signaling, the second field in the second signaling} is used for forming the L antenna ports; or the first signaling includes the former of {the first field, the second field}, and the second field in the second signaling is used to form the the L antenna ports. The first wireless signals are respectively transmitted by the L antenna ports. The L is a positive integer. The operation is receiving, the
作为实施例10的子实施例1,所述操作是发送,所述第一无线信号包括L个参考信号,所述L个参考信号分别被所述L个天线端口发送。As a
作为实施例10的子实施例2,所述第一处理模块202还用于接收Q个参考信号。其中,所述操作是接收,所述第一信令中的所述第一域被用于形成Q个天线端口,所述Q个参考信号分别被所述Q个天线端口发送。所述Q是正整数。As sub-embodiment 2 of embodiment 10, the
作为实施例10的子实施例3,所述第一域被用于确定第一矩阵,所述第一矩阵被用于确定所述第一无线信号的预编码矩阵。所述第二域被所述第一处理模块202用于确定M个第二矩阵,所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述M是正整数,所述P是大于或者等于所述M的正整数。As a sub-embodiment 3 of embodiment 10, the first field is used to determine a first matrix, and the first matrix is used to determine a precoding matrix of the first wireless signal. The second domain is used by the
作为实施例10的子实施例3的一个子实施例,所述操作是发送,所述第一域被所述第一处理模块202用于确定所述第一矩阵,所述第一矩阵被所述第一处理模块202用于确定所述第一无线信号的预编码矩阵。As a sub-embodiment of sub-embodiment 3 of embodiment 10, the operation is sending, the first field is used by the
作为实施例10的子实施例4,所述第一接收模块201还用于接收下行信息。其中,所述下行信息被用于确定{所述第一时间窗,所述第二时间窗,所述第一时间窗的时间长度和所述第二时间窗的时间长度的比值}中至少之一。As the fourth sub-embodiment of the tenth embodiment, the
作为实施例10的子实施例5,所述操作是发送,所述第一信令中的所述第一域被所述第一处理模块202用于形成所述L个天线端口。As a sub-embodiment 5 of embodiment 10, the operation is sending, and the first field in the first signaling is used by the
作为实施例10的子实施例6,所述操作是发送,所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被所述第一处理模块202用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被所述第一处理模块202用于形成所述L个天线端口。As a sub-embodiment 6 of embodiment 10, the operation is sending, the first signaling includes the second field, {the second field in the first signaling, the second signaling at least one of the second fields in the } is used by the
作为实施例10的子实施例7,所述操作是接收,所述第一发送模块204存在。As a sub-embodiment 7 of the embodiment 10, the operation is receiving, and the
作为实施例10的子实施例8,所述操作是发送,所述第一发送模块204不存在。As a
实施例11Example 11
实施例11示例了用于基站中的处理装置的结构框图,如附图11所示。在附图11中,基站装置300主要由第二发送模块301,第三处理模块302,第四处理模块303和第二接收模块304组成。Embodiment 11 illustrates a structural block diagram of a processing apparatus used in a base station, as shown in FIG. 11 . In FIG. 11 , the
在实施例11中,第二发送模块301用于在第一时间窗中发送第一信令,在第二时间窗中发送第二信令;第三处理模块302用于执行第一无线信号;第四处理模块303用于执行第二参考信号;第二接收模块304用于接收上行信息。在附图11中,第二接收模块304是可选的,如果第二接收模块304存在,第四处理模块303和第二发送模块301之间的连接线不存在;如果第二接收模块304不存在,第四处理模块303和第二发送模块301之间的连接线变成实线。In Embodiment 11, the
在实施例11中,所述第一时间窗和所述第二时间窗在时域上相互正交,所述第一信令包括第一域,所述第二信令包括第二域。所述第一信令中的所述第一域被用于形成L个天线端口。所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被用于形成所述L个天线端口。所述第一无线信号被所述L个天线端口分别发送。所述L是正整数。所述执行是发送,所述第二接收模块304存在,基于所述第二参考信号的测量被用于确定所述上行信息,所述上行信息被所述第二发送模块301用于确定{所述第一域,所述第二域}中至少之一;或者所述执行是接收,所述第二接收模块304不存在,基于所述第二参考信号的测量被所述第二发送模块301用于确定{所述第一域,所述第二域}中至少之一。In Embodiment 11, the first time window and the second time window are orthogonal to each other in the time domain, the first signaling includes a first domain, and the second signaling includes a second domain. The first field in the first signaling is used to form L antenna ports. The first signaling includes the second field, at least one of {the second field in the first signaling, the second field in the second signaling} is used for forming the L antenna ports; or the first signaling includes the former of {the first field, the second field}, and the second field in the second signaling is used to form the the L antenna ports. The first wireless signals are respectively transmitted by the L antenna ports. The L is a positive integer. The execution is sending, the
作为实施例11的子实施例1,所述执行是接收,所述第一无线信号包括L个参考信号,所述L个参考信号分别被所述L个天线端口发送。As a
作为实施例11的子实施例2,所述第三处理模块302还用于发送Q个参考信号。其中,所述执行是发送,所述第一信令中的所述第一域被所述第三处理模块302用于形成Q个天线端口,所述Q个参考信号分别被所述Q个天线端口发送。所述Q是正整数。As a sub-embodiment 2 of Embodiment 11, the
作为实施例11的子实施例3,所述第一域被用于确定第一矩阵,所述第一矩阵被用于确定所述第一无线信号的预编码矩阵。所述第二域被用于确定M个第二矩阵,所述第一无线信号占用的频率资源被划分成P个频率区域,所述M个第二矩阵和所述P个频率区域中的M个所述频率区域一一对应。所述M是正整数,所述P是大于或者等于所述M的正整数。As a sub-embodiment 3 of embodiment 11, the first field is used to determine a first matrix, and the first matrix is used to determine a precoding matrix of the first wireless signal. The second domain is used to determine M second matrices, the frequency resources occupied by the first wireless signal are divided into P frequency regions, the M second matrices and M in the P frequency regions Each of the frequency regions is in one-to-one correspondence. The M is a positive integer, and the P is a positive integer greater than or equal to the M.
作为实施例11的子实施例3的一个子实施例,所述执行是发送,所述第一域被所述第三处理模块302用于确定第一矩阵,所述第一矩阵被所述第三处理模块302用于确定所述第一无线信号的预编码矩阵,所述第二域被所述第三处理模块302用于确定M个第二矩阵。As a sub-embodiment of sub-embodiment 3 of embodiment 11, the execution is sending, the first field is used by the
作为实施例11的子实施例4,所述第二发送模块301还用于发送下行信息。其中,所述下行信息被用于确定{所述第一时间窗,所述第二时间窗,所述第一时间窗的时间长度和所述第二时间窗的时间长度的比值}中至少之一。As sub-embodiment 4 of embodiment 11, the
作为实施例11的子实施例5,所述执行是发送,所述第一信令中的所述第一域被所述第三处理模块302用于形成L个天线端口。As a sub-embodiment 5 of embodiment 11, the execution is sending, and the first field in the first signaling is used by the
作为实施例11的子实施例6,所述执行是发送,所述第一信令包括所述第二域,{所述第一信令中的所述第二域,所述第二信令中的所述第二域}中的至少之一被所述第三处理模块302用于形成所述L个天线端口;或者所述第一信令包括{所述第一域,所述第二域}中的前者,所述第二信令中的所述第二域被所述第三处理模块302用于形成所述L个天线端口。As a sub-embodiment 6 of embodiment 11, the execution is sending, the first signaling includes the second field, {the second field in the first signaling, the second signaling At least one of the second fields in the {} is used by the
作为实施例11的子实施例7,所述执行是发送,所述第二接收模块304存在,所述第四处理模块303和所述第二发送模块301之间的连接线不存在。As a sub-embodiment 7 of the embodiment 11, the execution is sending, the
作为实施例11的子实施例8,所述执行是接收,所述第二接收模块304不存在,所述第四处理模块303和所述第二发送模块301之间的连接线变成实线。As a
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,物联网通信模块,车载通信设备,NB-IOT终端,eMTC终端等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。Those of ordinary skill in the art can understand that all or part of the steps in the above method can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium, such as a read-only memory, a hard disk or an optical disk. Optionally, all or part of the steps in the foregoing embodiments may also be implemented using one or more integrated circuits. Correspondingly, each module unit in the above-mentioned embodiments may be implemented in the form of hardware, or may be implemented in the form of software function modules, and the present application is not limited to any specific form of the combination of software and hardware. The UE or terminal in this application includes, but is not limited to, mobile phones, tablet computers, notebooks, network cards, Internet of Things communication modules, in-vehicle communication equipment, NB-IOT terminals, eMTC terminals and other wireless communication equipment. The base station or system equipment in this application includes but is not limited to wireless communication equipment such as macrocell base station, microcell base station, home base station, and relay base station.
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the protection scope of the present application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.
Claims (28)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210542834.XA CN114944852B (en) | 2017-01-26 | 2017-01-26 | A method and device in user equipment and base station for multi-antenna transmission |
CN202210518654.8A CN114944857A (en) | 2017-01-26 | 2017-01-26 | A user equipment, method and apparatus in a base station for multi-antenna transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/072714 WO2018137228A1 (en) | 2017-01-26 | 2017-01-26 | Method and device for multi-antenna transmission in user equipment and base station |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210542834.XA Division CN114944852B (en) | 2017-01-26 | 2017-01-26 | A method and device in user equipment and base station for multi-antenna transmission |
CN202210518654.8A Division CN114944857A (en) | 2017-01-26 | 2017-01-26 | A user equipment, method and apparatus in a base station for multi-antenna transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109964416A CN109964416A (en) | 2019-07-02 |
CN109964416B true CN109964416B (en) | 2022-06-17 |
Family
ID=62978362
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780065831.9A Active CN109964416B (en) | 2017-01-26 | 2017-01-26 | A user equipment, method and apparatus in a base station for multi-antenna transmission |
CN202210518654.8A Pending CN114944857A (en) | 2017-01-26 | 2017-01-26 | A user equipment, method and apparatus in a base station for multi-antenna transmission |
CN202210542834.XA Active CN114944852B (en) | 2017-01-26 | 2017-01-26 | A method and device in user equipment and base station for multi-antenna transmission |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210518654.8A Pending CN114944857A (en) | 2017-01-26 | 2017-01-26 | A user equipment, method and apparatus in a base station for multi-antenna transmission |
CN202210542834.XA Active CN114944852B (en) | 2017-01-26 | 2017-01-26 | A method and device in user equipment and base station for multi-antenna transmission |
Country Status (2)
Country | Link |
---|---|
CN (3) | CN109964416B (en) |
WO (1) | WO2018137228A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103119859A (en) * | 2010-09-26 | 2013-05-22 | Lg电子株式会社 | Method and apparatus for efficient feedback in a wireless communication system that supports multiple antennas |
CN103580796A (en) * | 2012-08-03 | 2014-02-12 | 中兴通讯股份有限公司 | Receiving and sending method of enhanced physical downlink control channel and corresponding device |
CN105052047A (en) * | 2013-03-11 | 2015-11-11 | Lg电子株式会社 | Method and device for reporting channel state information in wireless communication system |
CN105323034A (en) * | 2014-07-11 | 2016-02-10 | 上海朗帛通信技术有限公司 | Massive MIMO (Multiple Input Multiple output) communication method and device |
CN105830355A (en) * | 2013-12-17 | 2016-08-03 | 三星电子株式会社 | Communication Method And Apparatus In Full-Dimensional Multiple-Input Multiple-Output Mobile Communication System |
CN105934904A (en) * | 2014-01-22 | 2016-09-07 | 日本电气株式会社 | Method and apparatus for channel measurement and feedback |
CN106034360A (en) * | 2015-03-17 | 2016-10-19 | 上海朗帛通信技术有限公司 | Multi-user superposition transmission method and apparatus thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102868479B (en) * | 2011-07-07 | 2015-06-03 | 华为技术有限公司 | Method, device and system for multi-antenna transmission |
EP2763326A4 (en) * | 2011-09-26 | 2015-07-01 | Lg Electronics Inc | Method and apparatus for transmitting uplink control signal in wireless communication system |
CN103905104B (en) * | 2012-12-28 | 2017-12-19 | 中兴通讯股份有限公司 | It is a kind of according to the multi-antenna sending method and terminal of detection reference signal and base station |
EP2961215B1 (en) * | 2013-04-03 | 2017-03-29 | Huawei Technologies Co., Ltd. | Methods and apparatus for receiving and sending reference signal, user equipment, and base station |
CN105227272B (en) * | 2014-06-28 | 2019-08-09 | 上海朗帛通信技术有限公司 | A kind of large scale MIMO transmission method and device |
CN110401472B (en) * | 2014-09-17 | 2021-03-09 | 上海朗帛通信技术有限公司 | 3D MIMO transmission method and device |
-
2017
- 2017-01-26 CN CN201780065831.9A patent/CN109964416B/en active Active
- 2017-01-26 CN CN202210518654.8A patent/CN114944857A/en active Pending
- 2017-01-26 WO PCT/CN2017/072714 patent/WO2018137228A1/en active Application Filing
- 2017-01-26 CN CN202210542834.XA patent/CN114944852B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103119859A (en) * | 2010-09-26 | 2013-05-22 | Lg电子株式会社 | Method and apparatus for efficient feedback in a wireless communication system that supports multiple antennas |
CN103580796A (en) * | 2012-08-03 | 2014-02-12 | 中兴通讯股份有限公司 | Receiving and sending method of enhanced physical downlink control channel and corresponding device |
CN105052047A (en) * | 2013-03-11 | 2015-11-11 | Lg电子株式会社 | Method and device for reporting channel state information in wireless communication system |
CN105830355A (en) * | 2013-12-17 | 2016-08-03 | 三星电子株式会社 | Communication Method And Apparatus In Full-Dimensional Multiple-Input Multiple-Output Mobile Communication System |
CN105934904A (en) * | 2014-01-22 | 2016-09-07 | 日本电气株式会社 | Method and apparatus for channel measurement and feedback |
CN105323034A (en) * | 2014-07-11 | 2016-02-10 | 上海朗帛通信技术有限公司 | Massive MIMO (Multiple Input Multiple output) communication method and device |
CN106034360A (en) * | 2015-03-17 | 2016-10-19 | 上海朗帛通信技术有限公司 | Multi-user superposition transmission method and apparatus thereof |
Non-Patent Citations (1)
Title |
---|
Frequency-domain user-multiplexing for the E-UTRAN downlink;Nokia;《3GPP TSG RAN WG1 LTE Ad Hoc Meeting R1-060188》;20060118;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114944857A (en) | 2022-08-26 |
CN109964416A (en) | 2019-07-02 |
CN114944852B (en) | 2024-08-02 |
CN114944852A (en) | 2022-08-26 |
WO2018137228A1 (en) | 2018-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110073620B (en) | Method and apparatus for multiplexing channel state information | |
CN109565395B (en) | Method and apparatus for reporting channel state information | |
US8259825B2 (en) | Mapping and signaling of common reference symbols for multiple antennas | |
CN118944844A (en) | Signaling information transmission method, device, communication node and storage medium | |
CN110535508A (en) | A kind of transmission method, device and computer readable storage medium | |
WO2017031672A1 (en) | Precoding information sending and feedback method and apparatus | |
EP3800945B1 (en) | Power allocation method and related device | |
CN107979439B (en) | UE supporting channel coding, method and equipment in base station | |
US11510213B2 (en) | Method for signal transmission, and corresponding user terminals and base stations | |
CN107371250A (en) | Method and device for sending instructions, method and device for receiving instructions | |
CN108737041A (en) | A kind of user equipment for multi-antenna transmission, the method and apparatus in base station | |
JP7293204B2 (en) | Terminal, wireless communication method, base station and system | |
WO2019062491A1 (en) | Method for channel measurement | |
CN111164942B (en) | Bit-to-symbol mapping method and communication device | |
CN109964416B (en) | A user equipment, method and apparatus in a base station for multi-antenna transmission | |
CN119485392A (en) | Method, device, network equipment, terminal and medium for selecting reporting sub-configuration | |
CN112398511B (en) | Data sending method, data receiving method and device | |
WO2015003367A1 (en) | Method for feeding back channel state information (csi), user equipment, and base station | |
WO2017133520A1 (en) | Information transmitting and receiving method and apparatus | |
CN112602269B (en) | Precoding indication method for uplink data transmission and related equipment | |
CN108667491B (en) | Sending method, receiving method, related equipment and system of PMI information | |
KR101590161B1 (en) | Method and device for transmitting control signaling | |
CN117917156A (en) | System and method for non-codebook based transmission | |
CN108023616B (en) | Method and device for UE (user equipment) and base station of multi-antenna system | |
CN111052825B (en) | Channel demodulation method and related equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210916 Address after: Room A2117, Building B, 555 Dongchuan Road, Minhang District, Shanghai, 200240 Applicant after: SHANGHAI LANGBO COMMUNICATION TECHNOLOGY Co.,Ltd. Address before: 226300 266 Century Avenue, Nantong hi tech Zone, Nantong, Jiangsu Applicant before: NANTONG LANGHENG COMMUNICATION TECHNOLOGY Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240115 Address after: 518040 unit a, building 6, Shenye Zhongcheng, No. 8089, Hongli West Road, Xiangmihu street, Futian District, Shenzhen, Guangdong Province Patentee after: Honor Device Co.,Ltd. Address before: Room A2117, Building B, 555 Dongchuan Road, Minhang District, Shanghai, 200240 Patentee before: SHANGHAI LANGBO COMMUNICATION TECHNOLOGY Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
CP03 | Change of name, title or address |
Address after: Unit 3401, unit a, building 6, Shenye Zhongcheng, No. 8089, Hongli West Road, Donghai community, Xiangmihu street, Futian District, Shenzhen, Guangdong 518040 Patentee after: Honor Terminal Co.,Ltd. Country or region after: China Address before: 3401, unit a, building 6, Shenye Zhongcheng, No. 8089, Hongli West Road, Donghai community, Xiangmihu street, Futian District, Shenzhen, Guangdong Patentee before: Honor Device Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |