CN109935888A - Current collector structure, lithium battery cell and its lithium battery - Google Patents
Current collector structure, lithium battery cell and its lithium battery Download PDFInfo
- Publication number
- CN109935888A CN109935888A CN201711371111.3A CN201711371111A CN109935888A CN 109935888 A CN109935888 A CN 109935888A CN 201711371111 A CN201711371111 A CN 201711371111A CN 109935888 A CN109935888 A CN 109935888A
- Authority
- CN
- China
- Prior art keywords
- lithium battery
- layer
- lithium
- electrode layer
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 223
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 218
- 239000013078 crystal Substances 0.000 claims abstract description 62
- 238000003475 lamination Methods 0.000 claims abstract description 3
- 239000003792 electrolyte Substances 0.000 claims description 88
- PNUGDRJNKILROY-UHFFFAOYSA-N [C].[Si].[Li] Chemical compound [C].[Si].[Li] PNUGDRJNKILROY-UHFFFAOYSA-N 0.000 claims description 33
- 239000002153 silicon-carbon composite material Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 15
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910000733 Li alloy Inorganic materials 0.000 claims description 6
- 239000001989 lithium alloy Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 5
- 239000011852 carbon nanoparticle Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229910021450 lithium metal oxide Inorganic materials 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 8
- 239000007787 solid Substances 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 278
- 210000004027 cell Anatomy 0.000 description 113
- 239000003575 carbonaceous material Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 15
- 238000000151 deposition Methods 0.000 description 9
- 239000007784 solid electrolyte Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 150000002641 lithium Chemical class 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910010953 LiGePS Inorganic materials 0.000 description 2
- 229910012422 LiSnPS Inorganic materials 0.000 description 2
- 239000002228 NASICON Substances 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000006255 coating slurry Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000011868 silicon-carbon composite negative electrode material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002203 sulfidic glass Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明涉及锂电池领域,特别涉及一种集流体结构、锂电池电芯及其锂电池。The invention relates to the field of lithium batteries, in particular to a current collector structure, a lithium battery cell and a lithium battery.
【背景技术】【Background technique】
全固态锂电池是由于其安全性、循环性能优良等优点成为二次电池的重要发展方向,同时由于金属锂元素原子半径小、具有最低的电化学势,全固态锂电池相比其他钠离子电池具有更大的市场应用潜力。All-solid-state lithium batteries have become an important development direction of secondary batteries due to their advantages such as safety and excellent cycle performance. At the same time, due to the small atomic radius of metal lithium and the lowest electrochemical potential, all-solid-state lithium batteries are compared with other sodium-ion batteries. It has greater market application potential.
目前锂电池电芯材料体系,能量密度只能达到250-300Wh/kg。其本质问题是电池电极材料限制,具体来说负极材料使用石墨或者C-Si负极,正极采用磷酸铁锂、三元材料和钴酸锂造成了上述结果。At present, the energy density of lithium battery cell material system can only reach 250-300Wh/kg. The essential problem is the limitation of battery electrode materials. Specifically, graphite or C-Si negative electrode is used as negative electrode material, and lithium iron phosphate, ternary material and lithium cobalt oxide are used as positive electrode to cause the above results.
现有基于固相烧结等方法的固态锂电池由于无法保证大面积材料制备的均匀性,无法根本解决锂枝晶的产生,其原因是无法保证电极表面的电场均匀分布,只能用于制备小面积电池样品。现有技术无法满足大面积全固态锂电池的制备需求。The existing solid-state lithium batteries based on solid-phase sintering and other methods cannot guarantee the uniformity of large-area material preparation, and cannot fundamentally solve the generation of lithium dendrites. Area battery samples. The existing technology cannot meet the preparation requirements of large-area all-solid-state lithium batteries.
上述问题限制了低成本全固态锂电池的大规模制备和推广。The above problems limit the large-scale fabrication and promotion of low-cost all-solid-state lithium batteries.
【发明内容】[Content of the invention]
为克服现有无法实现低成本全固态锂电池的大规模制备和推广的问题,本发明提供了一种集流体结构、锂电池电芯及其锂电池。In order to overcome the existing problems that the large-scale preparation and promotion of low-cost all-solid-state lithium batteries cannot be realized, the present invention provides a current collector structure, a lithium battery cell and a lithium battery.
本发明为解决上述技术问题提供一技术方案如下:一种集流体结构,其包括集流体,所述集流体包括两个相对的主表面,其中一个主表面上形成柱状晶体正极层,以作为一锂电池电芯的正极结构,另一主表面上形成负极层,以作为另一锂电池电芯的负极结构。The present invention provides a technical solution to solve the above technical problems as follows: a current collector structure, which includes a current collector, the current collector includes two opposite main surfaces, and a columnar crystal positive electrode layer is formed on one of the main surfaces to serve as a In the positive electrode structure of a lithium battery cell, a negative electrode layer is formed on the other main surface to serve as the negative electrode structure of another lithium battery cell.
本发明为解决上述技术问题提供又一技术方案如下:一种锂电池电芯,其包括第一集流体,该第一集流体包括两个相对的主表面,其中一个主表面上形成柱状晶体正极层,以作为该锂电池电芯的正极结构,另一主表面上形成负极层,以作为另一锂电池电芯的负极结构。The present invention provides another technical solution to solve the above technical problems as follows: a lithium battery cell, which includes a first current collector, the first current collector includes two opposite main surfaces, and a columnar crystal positive electrode is formed on one of the main surfaces. layer to serve as the positive electrode structure of the lithium battery cell, and a negative electrode layer is formed on the other main surface to serve as the negative electrode structure of another lithium battery cell.
优选地,所述柱状晶体正极层的厚度为10nm-100μm;所述柱状晶体正极层包括V、Mo、Mn、Ni、Fe、Co、Cr、Ti或Bi金属元素中一种或几种组合的金属氧化物和含锂金属氧化物。Preferably, the thickness of the columnar crystal positive electrode layer is 10 nm-100 μm; the columnar crystal positive electrode layer comprises one or a combination of V, Mo, Mn, Ni, Fe, Co, Cr, Ti or Bi metal elements Metal oxides and lithium-containing metal oxides.
优选地,所述锂电池电芯包括第二集流体以及形成在第二集流体一表面的负极层,该负极层包括锂硅碳复合负极层,该负极层面向所述柱状晶体正极层。Preferably, the lithium battery cell includes a second current collector and a negative electrode layer formed on one surface of the second current collector, the negative electrode layer comprises a lithium silicon carbon composite negative electrode layer, and the negative electrode layer faces the columnar crystal positive electrode layer.
优选地,所述锂硅碳复合负极层包括沉积形成在所述负极集流体之上的硅-锂合金,碳纳米颗粒复合在硅-锂合金之内。Preferably, the lithium-silicon-carbon composite negative electrode layer comprises a silicon-lithium alloy deposited on the negative electrode current collector, and carbon nanoparticles are composited in the silicon-lithium alloy.
优选地,所述锂硅碳复合负极层朝向所述正极结构的表面形成一碳基材料层或所述锂硅碳复合负极层朝向所述第二集流体的表面形成一碳基材料层。Preferably, a carbon-based material layer is formed on the surface of the lithium-silicon-carbon composite negative electrode layer facing the positive electrode structure or a carbon-based material layer is formed on the surface of the lithium-silicon-carbon composite negative electrode layer facing the second current collector.
优选地,在所述柱状晶体正极层与所述锂硅碳复合负极层之间填充形成包覆所述柱状晶体的第一电解质层,所述第一电解质层的厚度为1nm-50μm。Preferably, a first electrolyte layer covering the columnar crystals is filled between the columnar crystal positive electrode layer and the lithium-silicon-carbon composite negative electrode layer, and the thickness of the first electrolyte layer is 1 nm-50 μm.
优选地,所述锂电池电芯包括形成在所述第一电解质层面向所述负极层的一面上的第二电解质层,所述第二电解质层的厚度为1-3000nm。Preferably, the lithium battery cell includes a second electrolyte layer formed on the side of the first electrolyte layer facing the negative electrode layer, and the thickness of the second electrolyte layer is 1-3000 nm.
本发明为解决上述技术问题提供一技术方案如下:一种锂电池,其包括至少两个连续叠层设置的锂电池电芯,直接叠加设置的至少两个锂电池电芯之间共用一正负共极集流体,该正负共极集流板包括两个相对的主表面,其中一个主表面上形成柱状晶体正极层,以作为其中一锂电池电芯的正极结构,另一主表面上形成负极层,以作为另一锂电池电芯的负极结构。The present invention provides a technical solution to solve the above-mentioned technical problems as follows: a lithium battery, which includes at least two lithium battery cells arranged in a continuous stack, and a positive and negative value is shared between the at least two lithium battery cells that are directly stacked and arranged Common electrode current collector, the positive and negative common electrode current collector plate includes two opposite main surfaces, and a columnar crystal positive electrode layer is formed on one of the main surfaces to serve as the positive electrode structure of one of the lithium battery cells, and the other main surface is formed The negative electrode layer is used as the negative electrode structure of another lithium battery cell.
优选地,共用一正负共极集流体的两个锂电池电芯之间为串联或并联连接。Preferably, two lithium battery cells sharing a positive and negative common current collector are connected in series or in parallel.
与现有技术相比,本发明所提供的集流体结构、锂电池电芯及其锂电池,具有如下的有益效果:Compared with the prior art, the current collector structure, the lithium battery cell and the lithium battery provided by the present invention have the following beneficial effects:
本发明所提供的集流体结构、锂电池电芯及锂电池,其中集流体包括两个相对的主表面,其中一个主表面上形成柱状晶体正极层,以作为一锂电池电芯的正极结构,另一主表面上形成负极层,以作为另一锂电池电芯的负极结构。通过在集流体的两个面上设置正负极,以形成正负共极的集流体,可实现多个锂电池电芯叠层制备,从而实现大面积全固态锂电池的制备。In the current collector structure, lithium battery cell and lithium battery provided by the present invention, the current collector includes two opposite main surfaces, and a columnar crystal positive electrode layer is formed on one of the main surfaces to serve as the positive electrode structure of a lithium battery cell, A negative electrode layer is formed on the other main surface to serve as the negative electrode structure of another lithium battery cell. By arranging positive and negative electrodes on both sides of the current collector to form a current collector of positive and negative common electrodes, multiple lithium battery cells can be fabricated by stacking, thereby realizing the fabrication of large-area all-solid-state lithium batteries.
利用正负共极的集流体还可降低锂电池电芯、锂电池的整体厚度。进一步地,利用正负共极的集流体,可实现多个锂电池电芯之间为串联连接。当锂电池中锂电池电芯串联连接时,可直接利用集流体作为锂电池的电极,从而简化所述锂电池的封装结构。The use of positive and negative common current collectors can also reduce the overall thickness of lithium battery cells and lithium batteries. Further, by using the current collectors of the positive and negative electrodes, a series connection between a plurality of lithium battery cells can be realized. When the lithium battery cells in the lithium battery are connected in series, the current collector can be directly used as the electrode of the lithium battery, thereby simplifying the packaging structure of the lithium battery.
此外,在本发明中利用具有柱状晶体结构的正极材料作为正极层,从而其所形成的完整的柱状晶体可以为锂离子在充放电的过程中提供畅通的扩散和迁移通道,柱状晶体目的是匹配高性能的负极材料以提高正极材料锂嵌入和脱出的效率。In addition, in the present invention, a positive electrode material with a columnar crystal structure is used as the positive electrode layer, so that the formed complete columnar crystals can provide smooth diffusion and migration channels for lithium ions in the process of charging and discharging. The purpose of the columnar crystals is to match the High-performance anode materials to improve the efficiency of lithium insertion and extraction of cathode materials.
在本发明中,所述锂电池电芯及锂电池可进一步采用在负极集流体面向正极结构的一面上形成的锂硅碳复合负极层。采用锂硅碳复合负极层可进一步提高锂电池的能量密度,从而获得高性能锂电池电芯及其锂电池。In the present invention, the lithium battery cell and the lithium battery may further use a lithium silicon carbon composite negative electrode layer formed on the side of the negative electrode current collector facing the positive electrode structure. The use of the lithium-silicon-carbon composite negative electrode layer can further improve the energy density of the lithium battery, thereby obtaining high-performance lithium battery cells and lithium batteries.
本发明所提供的的锂电池电芯及锂电池中,还包括一碳基材料层,所述碳基材料层可形成于锂硅碳复合负极层与所述第二集流体之间形成一碳基材料层或所述碳基材料层可形成于所述锂硅碳复合负极层朝向所述正极结构的一面上。所述碳基材料层的设置可增强导电性,从而提高所述锂电池电芯及锂电池的稳定性和安全性。The lithium battery cell and the lithium battery provided by the present invention further include a carbon-based material layer, and the carbon-based material layer can be formed between the lithium-silicon-carbon composite negative electrode layer and the second current collector to form a carbon-based material layer. The base material layer or the carbon-based material layer may be formed on the side of the lithium-silicon-carbon composite negative electrode layer facing the positive electrode structure. The arrangement of the carbon-based material layer can enhance electrical conductivity, thereby improving the stability and safety of the lithium battery cell and the lithium battery.
本发明所述锂电池电芯及锂电池中在所述柱状晶体正极层与所述锂硅碳复合负极层之间填充形成第一电解质层,所述第一电解质层的厚度为1nm-50μm。所述第一电解质层可包覆所述柱状晶体正极层,因此具有较大表面积,故形成第一电解质层可为锂电池中的电解质与正极层之间提供更多的反应界面,有利于电池充放电过程的完全反应。In the lithium battery cell and the lithium battery of the present invention, a first electrolyte layer is formed by filling between the columnar crystal positive electrode layer and the lithium silicon carbon composite negative electrode layer, and the thickness of the first electrolyte layer is 1 nm-50 μm. The first electrolyte layer can cover the columnar crystal positive electrode layer, so it has a larger surface area, so the formation of the first electrolyte layer can provide more reaction interfaces between the electrolyte and the positive electrode layer in the lithium battery, which is beneficial to the battery Complete reaction of charge and discharge process.
本发明所述锂电池电芯及锂电池中在所述第一电解质层的表面还可形成一第二电解质层,可进一步提高所述第一电解质层的平整度及负极表面电场分布均匀度,同时也可增加第一电解质层的硬度,防止正负极接触而造成短路。In the lithium battery cell and the lithium battery of the present invention, a second electrolyte layer can also be formed on the surface of the first electrolyte layer, which can further improve the flatness of the first electrolyte layer and the uniformity of the electric field distribution on the surface of the negative electrode. At the same time, the hardness of the first electrolyte layer can also be increased to prevent short circuit caused by the contact between the positive and negative electrodes.
【附图说明】【Description of drawings】
图1是本发明第一实施例所提供的集流体结构的层结构示意图。FIG. 1 is a schematic diagram of the layer structure of the current collector structure provided by the first embodiment of the present invention.
图2是本发明第二实施例所提供的锂电池电芯的层结构示意图。FIG. 2 is a schematic diagram of a layer structure of a lithium battery cell provided by a second embodiment of the present invention.
图3是图2中所示另一实施方式的锂电池电芯的层结构示意图。FIG. 3 is a schematic diagram of a layer structure of a lithium battery cell of another embodiment shown in FIG. 2 .
图4A是本发明第三实施例所提供的锂电池电芯其中一具体实施方式的层结构示意图。FIG. 4A is a schematic diagram of a layer structure of a specific implementation manner of a lithium battery cell provided by the third embodiment of the present invention.
图4B是本发明第三实施例所提供的锂电池电芯另一一具体实施方式的层结构示意图。4B is a schematic diagram of a layer structure of another specific implementation manner of a lithium battery cell provided by the third embodiment of the present invention.
图5是本发明第四实施例所提供的锂电池的结构示意图。FIG. 5 is a schematic structural diagram of a lithium battery provided by a fourth embodiment of the present invention.
图6是本发明第五实施例所提供的锂电池的结构示意图。FIG. 6 is a schematic structural diagram of a lithium battery provided by a fifth embodiment of the present invention.
图7是本发明第六实施例所提供的锂电池的结构示意图。FIG. 7 is a schematic structural diagram of a lithium battery provided by a sixth embodiment of the present invention.
图8是本发明第七实施例所提供的锂电池的制备方法的流程示意图。FIG. 8 is a schematic flowchart of a method for preparing a lithium battery according to a seventh embodiment of the present invention.
【具体实施方式】【Detailed ways】
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图及实施实例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and implementation examples. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
请参阅图1,本发明的第一实施例提供一种集流体结构100,所述集流体结构100包括一集流体101,所述集流体101包括两个相对的主表面109,其中一个主表面109上形成柱状晶体正极层102,以作为一锂电池电芯的正极结构,另一主表面109上形成负极层103,以作为另一锂电池电芯的负极结构。Referring to FIG. 1, a first embodiment of the present invention provides a current collector structure 100, the current collector structure 100 includes a current collector 101, the current collector 101 includes two opposite main surfaces 109, one of the main surfaces A columnar crystal positive electrode layer 102 is formed on 109 to serve as a positive electrode structure of a lithium battery cell, and a negative electrode layer 103 is formed on the other main surface 109 to serve as a negative electrode structure of another lithium battery cell.
本发明此处及以下所有实施例中,针对所述集流体材质的限定如下:所述集流体可包括Cu、Al、Ni、Ag、Au、Cr、Ta、Ti、Mo等其它金属中的一种或几种的组合所获得的单质金属或金属合金。In this and all the following embodiments of the present invention, the material of the current collector is limited as follows: the current collector may include one of other metals such as Cu, Al, Ni, Ag, Au, Cr, Ta, Ti, Mo, etc. Elemental metal or metal alloy obtained by one or a combination of several.
请参阅图2,本发明的第二实施例提供一种锂电池电芯10,其包括第一集流体11及第二集流体12,其中,所述第一集流体11包括两个相对的主表面110,其中一个主表面110上形成正极层111,以作为所述锂电池电芯10的正极结构,另一主表面上形成负极层112,以作为另一锂电池电芯10的负极结构。所述第二集流体12同样也包括两个相对的主表面120,其中一个主表面120上形成负极层121,以作为所述锂电池电芯10的负极结构,而在所述第二集流体12的另一主表面上形成正极层122,以作为另一锂电池电芯10的正极结构。Referring to FIG. 2, a second embodiment of the present invention provides a lithium battery cell 10, which includes a first current collector 11 and a second current collector 12, wherein the first current collector 11 includes two opposite mains On the surfaces 110 , a positive electrode layer 111 is formed on one main surface 110 to serve as the positive electrode structure of the lithium battery cell 10 , and a negative electrode layer 112 is formed on the other main surface to serve as the negative electrode structure of another lithium battery cell 10 . The second current collector 12 also includes two opposite main surfaces 120 , and a negative electrode layer 121 is formed on one of the main surfaces 120 to serve as the negative electrode structure of the lithium battery cell 10 . A positive electrode layer 122 is formed on the other main surface of the 12 to serve as a positive electrode structure of another lithium battery cell 10 .
在本发明中,所述第一集流体11与所述第二集流体12的厚度为10nm-100μm,具体地,所述第一集流体11与所述第二集流体12的厚度还可为10nm、15nm、20nm、24nm、56nm、143nm、350nm、567nm、778nm、983nm、1μm、19μm、31μm、45μm、50μm、61μm、76μm、89μm或100μm。In the present invention, the thicknesses of the first current collector 11 and the second current collector 12 are 10 nm-100 μm, and specifically, the thicknesses of the first current collector 11 and the second current collector 12 may also be 10nm, 15nm, 20nm, 24nm, 56nm, 143nm, 350nm, 567nm, 778nm, 983nm, 1µm, 19µm, 31µm, 45µm, 50µm, 61µm, 76µm, 89µm or 100µm.
在本发明一些具体的实施例中,上述正极层111可包括柱状晶体,所述正极层111的厚度为10nm-100μm;具体地,所述正极层111的厚度可进一步为:10nm、15nm、20nm、24nm、56nm、143nm、350nm、567nm、778nm、983nm、1μm、19μm、31μm、45μm、50μm、61μm、76μm、89μm或100μm。In some specific embodiments of the present invention, the positive electrode layer 111 may include columnar crystals, and the thickness of the positive electrode layer 111 is 10 nm-100 μm; specifically, the thickness of the positive electrode layer 111 may be further: 10 nm, 15 nm, 20 nm , 24nm, 56nm, 143nm, 350nm, 567nm, 778nm, 983nm, 1µm, 19µm, 31µm, 45µm, 50µm, 61µm, 76µm, 89µm or 100µm.
上述负极层111的厚度可为10nm-100μm,具体地,所述负极层111的厚度可进一步为:10nm、15nm、20nm、24nm、56nm、143nm、350nm、567nm、778nm、983nm、1μm、19μm、31μm、45μm、50μm、61μm、76μm、89μm或100μm。The thickness of the negative electrode layer 111 can be 10 nm-100 μm, specifically, the thickness of the negative electrode layer 111 can be further: 10 nm, 15 nm, 20 nm, 24 nm, 56 nm, 143 nm, 350 nm, 567 nm, 778 nm, 983 nm, 1 μm, 19 μm, 31μm, 45μm, 50μm, 61μm, 76μm, 89μm or 100μm.
在本发明中,所述柱状晶体的材质还可包括:包括V、Mo、Mn、Ni、Fe、Co、Cr、Ti或Bi等金属元素中一种或几种组合的金属氧化物和含锂金属氧化物。所述正极层111包括至少一层柱状晶体。具体地,柱状晶体可为V2O5柱状晶体、V6O13柱状晶体、MnO2柱状晶体、Mo2O3柱状晶体或Co1.5V0.5O3柱状晶体等等。In the present invention, the material of the columnar crystal may further include: metal oxides and lithium-containing metal oxides including one or more combinations of metal elements such as V, Mo, Mn, Ni, Fe, Co, Cr, Ti or Bi Metal oxide. The positive electrode layer 111 includes at least one layer of columnar crystals. Specifically, the columnar crystals may be V 2 O 5 columnar crystals, V 6 O 13 columnar crystals, MnO 2 columnar crystals, Mo 2 O 3 columnar crystals, Co 1.5 V 0.5 O 3 columnar crystals, and the like.
具体地,在本发明另一些具体的实施例中,所述正极层111可包括磷酸铁锂、钴酸锂或者三元正极材料等的柱状晶体。Specifically, in other specific embodiments of the present invention, the positive electrode layer 111 may include columnar crystals such as lithium iron phosphate, lithium cobalt oxide, or a ternary positive electrode material.
在所述正极层111中,所述柱状晶体呈规律排布,因此,可为锂离子在充放电的过程中提供通畅的扩散和迁移通道,以利于锂的嵌入及脱出,从而改善锂电池的倍率特性,并可使所述正极层111可具有较高的容量密度。In the positive electrode layer 111, the columnar crystals are regularly arranged, therefore, it can provide smooth diffusion and migration channels for lithium ions during the charging and discharging process, so as to facilitate the insertion and extraction of lithium, thereby improving the performance of lithium batteries. rate characteristics, and the positive electrode layer 111 can have a higher capacity density.
具体地,相邻设置的所述柱状晶体之间无间隙致密排布。在同样面积的范围内可设置的所述柱状晶体的数量越多,则可进一步提高由其所制备获得的正极结构的容量密度。Specifically, the adjacent columnar crystals are densely arranged without gaps. The larger the number of the columnar crystals that can be provided within the same area, the further increase the capacity density of the positive electrode structure prepared therefrom.
本发明此处及以下所述柱状晶体的尺寸是指沿所述正极结构厚度方向的尺寸大小。所述柱状晶体的尺寸为1nm-100μm。在本发明一些具体的实施例中,所述柱状晶体的尺寸具体为1nm、3nm、5nm、7nm、10nm、17nm、23nm、26nm、46nm、57nm、101nm、143nm、350nm、567nm、778nm、983nm、1μm、19μm、31μm、45μm、50μm、61μm、76μm、89μm或100μm。The size of the columnar crystals here and below in the present invention refers to the size along the thickness direction of the positive electrode structure. The size of the columnar crystals is 1 nm-100 μm. In some specific embodiments of the present invention, the size of the columnar crystals is specifically 1 nm, 3 nm, 5 nm, 7 nm, 10 nm, 17 nm, 23 nm, 26 nm, 46 nm, 57 nm, 101 nm, 143 nm, 350 nm, 567 nm, 778 nm, 983 nm, 1 μm, 19 μm, 31 μm, 45 μm, 50 μm, 61 μm, 76 μm, 89 μm or 100 μm.
如图3中所示,在本发明一些具体实施方式中,所述柱状晶体正极层111采用磁控溅射、电子束蒸发、脉冲激光沉积以及原子层沉积等PVD技术在第一集流体11其中一主表面上沉积形成。As shown in FIG. 3 , in some specific embodiments of the present invention, the columnar crystal positive electrode layer 111 is formed in the first current collector 11 using PVD technologies such as magnetron sputtering, electron beam evaporation, pulsed laser deposition, and atomic layer deposition. formed by deposition on a major surface.
同样地,在第二集流体12上也可以同样的方式沉积形成另一个锂电池电芯10的柱状晶体的正极层122。Likewise, the positive electrode layer 122 forming the columnar crystals of the other lithium battery cell 10 can also be deposited on the second current collector 12 in the same manner.
在本发明一些具体的实施例中,上述负极层112可进一步包括锂硅碳复合负极。以所述锂硅碳复合负极材料为所述负极层112时,所述负极层112的厚度为2nm-20μm,具体地,所锂硅碳复合负极层的厚度可进一步为:2nm、4nm、7nm、10nm、20nm、67nm、250nm、345nm、456nm、778nm、983nm、1μm、3μm、4.5μm、5μm、7μm、11μm、15μm或20μm。In some specific embodiments of the present invention, the above-mentioned negative electrode layer 112 may further include a lithium-silicon-carbon composite negative electrode. When the lithium-silicon-carbon composite negative electrode material is used as the negative electrode layer 112, the thickness of the negative electrode layer 112 is 2nm-20 μm, and specifically, the thickness of the lithium-silicon-carbon composite negative electrode layer can be further: 2nm, 4nm, 7nm , 10nm, 20nm, 67nm, 250nm, 345nm, 456nm, 778nm, 983nm, 1μm, 3μm, 4.5μm, 5μm, 7μm, 11μm, 15μm or 20μm.
在本发明一些具体的实施例中,所述锂硅碳复合负极层可采用磁控溅射、电子束蒸发、脉冲激光沉积以及原子层沉积等PVD技术沉积形成硅-锂合金,进一步采用热压技术将碳纳米颗粒复合在硅-锂合金之内制备而成。In some specific embodiments of the present invention, the lithium-silicon-carbon composite negative electrode layer can be deposited to form a silicon-lithium alloy by using PVD techniques such as magnetron sputtering, electron beam evaporation, pulsed laser deposition, and atomic layer deposition, and further hot pressing is used. The technology is made by compounding carbon nanoparticles in a silicon-lithium alloy.
具体地,在进行热压之前,可以将碳纳米颗粒溶解在锂盐溶液中形成涂覆浆料后,涂覆于锂-硅复合负极表面,然后用耐高温腐蚀基板对其加热和加压,以使浆料热压进入锂-硅合金之内,在高温的作用下,浆料溶液会发散尽,从而获得所需的锂硅碳复合负极层。Specifically, before hot pressing, carbon nanoparticles can be dissolved in a lithium salt solution to form a coating slurry, and then coated on the surface of the lithium-silicon composite negative electrode, and then heated and pressurized with a high-temperature corrosion-resistant substrate, In order to make the slurry hot-pressed into the lithium-silicon alloy, under the action of high temperature, the slurry solution will be dissipated completely, so as to obtain the required lithium-silicon-carbon composite negative electrode layer.
进一步如图2中所示,在本实施例的第一具体实施方式中,在所述锂电池电芯10中,在所述柱状晶体正极层111与所述锂硅碳复合负极层121之间填充形成包覆所述柱状晶体表面的第一电解质层13,所述第一电解质层13的厚度为1nm-50μm。具体地,所述第一电解质层13的厚度可为1nm、3nm、5nm、7nm、10nm、15nm、26nm、31nm、46nm、57nm、101nm、147nm、250nm、356nm、567nm、778nm、983nm、1μm、19μm、31μm、45μm或50μm。As further shown in FIG. 2 , in the first specific implementation of this embodiment, in the lithium battery cell 10 , between the columnar crystal positive electrode layer 111 and the lithium silicon carbon composite negative electrode layer 121 A first electrolyte layer 13 covering the surface of the columnar crystal is filled and formed, and the thickness of the first electrolyte layer 13 is 1 nm-50 μm. Specifically, the thickness of the first electrolyte layer 13 may be 1 nm, 3 nm, 5 nm, 7 nm, 10 nm, 15 nm, 26 nm, 31 nm, 46 nm, 57 nm, 101 nm, 147 nm, 250 nm, 356 nm, 567 nm, 778 nm, 983 nm, 1 μm, 19μm, 31μm, 45μm or 50μm.
所述第一电解质层13的材质包括钙钛型固态电解质、NASICON型固态电解质、石榴石型固态电解质、LiGePS型硫化物固态电解质、LiSiPS型硫化物固态电解质或LiSnPS型硫化物固态电解质一种或几种的组合。The material of the first electrolyte layer 13 includes perovskite type solid electrolyte, NASICON type solid electrolyte, garnet type solid electrolyte, LiGePS type sulfide solid state electrolyte, LiSiPS type sulfide solid state electrolyte or LiSnPS type sulfide solid state electrolyte one or several combinations.
与现有技术中,直接在正负极材料之间填充电解质材料不同,由于在本实施方式中,所述正极层11采用柱状晶粒,其具有较大表面积,故形成第一电解质层13可为锂电池中的电解质与正极层111之间提供更多的反应界面,因此,有利于电池充放电过程的完全反应。进一步地,所述第一电解质层13厚度较大时,所述第一电解质层13的表面均匀,从而可保证负极层121的表面电场也均匀分布。Unlike in the prior art, the electrolyte material is directly filled between the positive and negative electrode materials, because in this embodiment, the positive electrode layer 11 adopts columnar grains, which have a large surface area, so the formation of the first electrolyte layer 13 can More reaction interfaces are provided between the electrolyte in the lithium battery and the positive electrode layer 111, thus, it is beneficial to the complete reaction of the battery charging and discharging process. Further, when the thickness of the first electrolyte layer 13 is relatively large, the surface of the first electrolyte layer 13 is uniform, thereby ensuring that the surface electric field of the negative electrode layer 121 is also uniformly distributed.
请继续参阅图3,在本实施例的第二具体实施方式中,其与上述第一具体实施方式的区别在于:当所述第一电解质层13表面不均匀时,则在所述锂电池电芯10中还包括形成在所述第一电解质层13面向所述负极层121的一面上的第二电解质层14,所述第二电解质层14的厚度为1-3000nm。具体地,所述第二电解质层14的厚度为1nm、3nm、5nm、7nm、10nm、17nm、23nm、26nm、46nm、57nm、101nm、143nm、350nm、567nm、778nm、983nm、1000nm、1500nm、2100nm、2189nm或3000nm。Please continue to refer to FIG. 3 , in the second specific implementation of this embodiment, the difference from the above-mentioned first specific implementation is that when the surface of the first electrolyte layer 13 is uneven, the The core 10 further includes a second electrolyte layer 14 formed on the side of the first electrolyte layer 13 facing the negative electrode layer 121 , and the thickness of the second electrolyte layer 14 is 1-3000 nm. Specifically, the thickness of the second electrolyte layer 14 is 1 nm, 3 nm, 5 nm, 7 nm, 10 nm, 17 nm, 23 nm, 26 nm, 46 nm, 57 nm, 101 nm, 143 nm, 350 nm, 567 nm, 778 nm, 983 nm, 1000 nm, 1500 nm, 2100 nm , 2189nm or 3000nm.
在本发明中,所述第二电解质层14的设置是为了填补所述第一电解质层13厚度分布不均匀的部分,从而提高所述负极层121的表面电场分布的均匀性,通过设置所述第二电解质层14,还可进一步增加电解质层的硬度,防止正负极接触造成短路。In the present invention, the arrangement of the second electrolyte layer 14 is to fill in the uneven thickness distribution of the first electrolyte layer 13, so as to improve the uniformity of the surface electric field distribution of the negative electrode layer 121. The second electrolyte layer 14 can further increase the hardness of the electrolyte layer to prevent short circuit caused by the contact between the positive and negative electrodes.
请继续参阅图4A及图4B,本发明的第三实施例提供一种锂电池电芯20,本实施例与上述第二实施例的区别在于:所述锂电池电芯20还包括一碳基材料层29。所述碳基材料层29具体为石墨薄层、碳纳米管、石墨烯薄膜层等,在此仅作为实例,不作为本发明的限定。Please continue to refer to FIG. 4A and FIG. 4B , a third embodiment of the present invention provides a lithium battery cell 20 . The difference between this embodiment and the above-mentioned second embodiment is that the lithium battery cell 20 further includes a carbon-based battery cell 20 . Material layer 29 . The carbon-based material layer 29 is specifically a graphite thin layer, a carbon nanotube, a graphene thin film layer, etc., which is only used as an example, and is not a limitation of the present invention.
所述碳基材料层29的作用是改善负极表面的电场分布,增强导电性,有助于锂负极的嵌入或脱出,以及可避免锂负极形成锂枝晶。The role of the carbon-based material layer 29 is to improve the electric field distribution on the surface of the negative electrode, enhance the conductivity, facilitate the insertion or extraction of the lithium negative electrode, and prevent the lithium negative electrode from forming lithium dendrites.
如图4A中所示,在本发明一些实施例中,可在所述负极层221面向第一电解质层23的表面形成所述碳基材料层29。As shown in FIG. 4A , in some embodiments of the present invention, the carbon-based material layer 29 may be formed on the surface of the negative electrode layer 221 facing the first electrolyte layer 23 .
如图4B中所示,在本发明另外的一些实施例中,所述碳基材料层29可设置在所述负极层221与第二集流体22之间。As shown in FIG. 4B , in other embodiments of the present invention, the carbon-based material layer 29 may be disposed between the negative electrode layer 221 and the second current collector 22 .
在本发明一些具体的实施例中,所述碳基材料层29是通过热压工艺形成于负极层221面向第一电解质层23或面向所述第二集流体22的表面,因此,所述碳基材料层29会在所述负极层221的内部实现一定深度的梯度碳材料分布,并在一定程度上对负极层221形成包覆和支撑,增强负极层221的强度,避免负极层221崩塌。In some specific embodiments of the present invention, the carbon-based material layer 29 is formed on the surface of the negative electrode layer 221 facing the first electrolyte layer 23 or facing the second current collector 22 through a hot pressing process. The base material layer 29 will realize a certain depth of gradient carbon material distribution inside the negative electrode layer 221 , and form a coating and support for the negative electrode layer 221 to a certain extent, so as to enhance the strength of the negative electrode layer 221 and prevent the negative electrode layer 221 from collapsing.
在本发明一些具体的实施例中,所述碳基材料层29还可通过涂布的方式在所述负极层221面向第一电解质层23或面向所述第二集流体22的表面上形成所需要厚度的碳基材料层29。In some specific embodiments of the present invention, the carbon-based material layer 29 can also be formed on the surface of the negative electrode layer 221 facing the first electrolyte layer 23 or facing the second current collector 22 by coating. A carbon-based material layer 29 of thickness is required.
请参阅图5,本发明第四实施例提供一锂电池30,所述锂电池30可包括两个连续叠层设置的第一锂电池电芯301及第二锂电池电芯302。第一锂电池电芯301及第二锂电池电芯302之间共用一正负共极集流体31,该正负共极集流体31包括两个相对的主表面310,其中一个主表面310上形成柱状晶体正极层311,以作为第一锂电池电芯301的正极结构,另一主表面310上形成负极层312,以作为第二锂电池电芯302的负极结构。Referring to FIG. 5 , a fourth embodiment of the present invention provides a lithium battery 30 . The lithium battery 30 may include two consecutively stacked first lithium battery cells 301 and second lithium battery cells 302 . A positive and negative common electrode current collector 31 is shared between the first lithium battery cell 301 and the second lithium battery cell 302 , and the positive and negative common electrode current collector 31 includes two opposite main surfaces 310 , one of which is on the main surface 310 A columnar crystal positive electrode layer 311 is formed to serve as the positive electrode structure of the first lithium battery cell 301 , and a negative electrode layer 312 is formed on the other main surface 310 to serve as the negative electrode structure of the second lithium battery cell 302 .
继续如图5中所示,在所述第一锂电池电芯301中还包括负极集流体32,所述第二锂电池电芯302包括正极集流体35。其中,负极集流体32上面向柱状晶体正极层311一侧形成有负极层321,所述正极集流体35朝向所述正负共极集流体31的表面设有正极层351,其中,有关负极层321及正极层351的相关限定如上述第二实施例及第三实施例中所示,在此不再赘述。Continuing as shown in FIG. 5 , the first lithium battery cell 301 further includes a negative electrode current collector 32 , and the second lithium battery cell 302 includes a positive electrode current collector 35 . A negative electrode layer 321 is formed on the side of the negative electrode current collector 32 facing the columnar crystal positive electrode layer 311 , and a positive electrode layer 351 is formed on the surface of the positive electrode current collector 35 facing the positive and negative common electrode current collectors 31 . Relevant definitions of 321 and the positive electrode layer 351 are as shown in the second embodiment and the third embodiment, and will not be repeated here.
在本实施例的一些具体实施方式中,所述第一锂电池电芯301中还包括设置在柱状晶体正极层311及负极层321之间填充形成的第一电解质层33、以及形成在第一电解质层33面向所述负极层312的表面上的第二电解质层34。所述第二锂电池电芯302还包括在正极层351及负极层312之间填充形成的第一电解质层33,以及形成在第一电解质层33面向所述负极层321的表面上的第二电解质层34,所述负极层312朝向所述第二电解质层34的表面还可进一步包括一碳基材料层39。In some specific implementations of this embodiment, the first lithium battery cell 301 further includes a first electrolyte layer 33 filled and formed between the columnar crystal positive electrode layer 311 and the negative electrode layer 321 , and a first electrolyte layer 33 formed on the first The electrolyte layer 33 faces the second electrolyte layer 34 on the surface of the negative electrode layer 312 . The second lithium battery cell 302 further includes a first electrolyte layer 33 formed between the positive electrode layer 351 and the negative electrode layer 312 , and a second electrolyte layer 33 formed on the surface of the first electrolyte layer 33 facing the negative electrode layer 321 . The electrolyte layer 34 , the surface of the negative electrode layer 312 facing the second electrolyte layer 34 may further include a carbon-based material layer 39 .
在本发明另外的实施例中,所述第一锂电池电芯301及所述第二锂电池电芯302可为上述第二实施例或第三实施例中任一种锂电池电芯10或锂电池电芯20,其具体层结构可依据实际电池性能需求做调整。上述有关层结构的限定仅作为举例,不作为本发明的限定。In another embodiment of the present invention, the first lithium battery cell 301 and the second lithium battery cell 302 may be any one of the lithium battery cells 10 or The specific layer structure of the lithium battery cell 20 can be adjusted according to actual battery performance requirements. The above limitation on the layer structure is only an example, and not a limitation of the present invention.
在本发明另外的一些实施例中,当所述锂电池30中还可包括两个以上的锂电池电芯301或302,至少部分锂电池电芯301或302通过连续叠层设置形成一个整体,设置在连续叠层设置的中间的锂电池电芯301或302共用集流体,而设置在两端的锂电池电芯10的集流体仅作为正极集流体或负极集流体。In some other embodiments of the present invention, when the lithium battery 30 may further include two or more lithium battery cells 301 or 302, at least some of the lithium battery cells 301 or 302 are formed by continuous lamination to form a whole, The lithium battery cells 301 or 302 arranged in the middle of the continuous stack share a current collector, while the current collectors of the lithium battery cells 10 arranged at both ends only serve as positive current collectors or negative electrode current collectors.
具体请参阅图6,本发明的第五实施例提供一锂电池40,所述锂电池40包括多个锂电池电芯10,所述锂电池40可通过逐层叠加的方式制成,其具体锂离子单电芯10的叠合数量不受限制。Please refer to FIG. 6 for details. A fifth embodiment of the present invention provides a lithium battery 40 . The lithium battery 40 includes a plurality of lithium battery cells 10 . The lithium battery 40 can be fabricated by layer-by-layer stacking. The number of stacked lithium-ion single cells 10 is not limited.
所述锂离子单电芯10包括叠合设置的第一集流体41、正极层44、固态电解质层43、负极层45及第二集流体42。相邻设置的锂离子单电芯10通过共用一个正极集流体41或负极集流体42叠合在一起。The lithium ion single cell 10 includes a first current collector 41 , a positive electrode layer 44 , a solid electrolyte layer 43 , a negative electrode layer 45 and a second current collector 42 that are stacked. Adjacent lithium-ion single cells 10 are stacked together by sharing one positive electrode current collector 41 or negative electrode current collector 42 .
如图6中所示,相邻设置的两个锂电池电芯10的叠加处共用第二集流体42,即第二集流体42为正负共极集流体。如图中所示,设置在第二集流体42两侧的分别为正极层44及负极层45。如图6中所示,多个锂电池电芯40之间可为串联连接。当锂电池中锂电池电芯串联连接时,可直接利用集流体作为锂电池的电极,从而简化所述锂电池的封装结构。As shown in FIG. 6 , the superposition of two adjacent lithium battery cells 10 share the second current collector 42 , that is, the second current collector 42 is a positive and negative common current collector. As shown in the figure, the positive electrode layer 44 and the negative electrode layer 45 are respectively disposed on both sides of the second current collector 42 . As shown in FIG. 6 , the plurality of lithium battery cells 40 may be connected in series. When the lithium battery cells in the lithium battery are connected in series, the current collector can be directly used as the electrode of the lithium battery, thereby simplifying the packaging structure of the lithium battery.
请参阅图7,在本发明的第六实施例提供一锂电池50,在本实施例中,所述锂电池50中包括5个锂电池电芯,分别为依次叠层设置的第一锂电池电芯501、第二锂电池电芯502、第三锂电池电芯503、第四锂电池电芯504及第五锂电池电芯505。如图7中所示,以上述多个锂电池电芯均可包括:第一集流体51、正极层54、固态电解质层53、负极层55及第二集流体52。Referring to FIG. 7 , a sixth embodiment of the present invention provides a lithium battery 50 . In this embodiment, the lithium battery 50 includes five lithium battery cells, which are the first lithium batteries that are stacked in sequence. Cells 501 , second lithium battery cells 502 , third lithium battery cells 503 , fourth lithium battery cells 504 and fifth lithium battery cells 505 . As shown in FIG. 7 , the above-mentioned multiple lithium battery cells may include: a first current collector 51 , a positive electrode layer 54 , a solid electrolyte layer 53 , a negative electrode layer 55 and a second current collector 52 .
如图7中所示,第一锂电池电芯501与第二锂电池电芯502之间共用第二集流体52,所述第二集流体52的两个相对的主表面上均设置负极层55,可见,第一锂电池电芯501与第二锂电池电芯502之间可为并联连接。As shown in FIG. 7 , a second current collector 52 is shared between the first lithium battery cells 501 and the second lithium battery cells 502 , and negative electrode layers are provided on both opposite main surfaces of the second current collector 52 55. It can be seen that the first lithium battery cell 501 and the second lithium battery cell 502 may be connected in parallel.
在第二锂电池电芯502与第三锂电池503之间,同样也共用第二集流体52,而在所述第二集流体52的两个相对的主表面上分别设置正极层54及负极层55,可见,第二锂电池电芯502与第三锂电池电芯503之间可为串联连接。The second current collector 52 is also shared between the second lithium battery cell 502 and the third lithium battery 503 , and a positive electrode layer 54 and a negative electrode are respectively provided on the two opposite main surfaces of the second current collector 52 Layer 55, it can be seen that the second lithium battery cell 502 and the third lithium battery cell 503 can be connected in series.
进一步地,在第三锂电池电芯503的第二集流体532与第四锂电池电芯504的第一集流体541叠合设置,且第一集流体532与第二集流体541分别表示为所述第三锂电池电芯503及所述第四锂电池电芯504的正极集流体或负极集流体。可见,所述第三锂电池电芯503与所述第四锂电池电芯504可通过外界电路形成并联连接关系。Further, the second current collector 532 of the third lithium battery cell 503 and the first current collector 541 of the fourth lithium battery cell 504 are superposed and arranged, and the first current collector 532 and the second current collector 541 are respectively represented as The positive electrode current collector or the negative electrode current collector of the third lithium battery cell 503 and the fourth lithium battery cell 504 . It can be seen that the third lithium battery cell 503 and the fourth lithium battery cell 504 can form a parallel connection relationship through an external circuit.
在本实施例中,上述正极层54与负极层55、第一集流体51及第二集流体52的相对位置可调整。In this embodiment, the relative positions of the positive electrode layer 54 and the negative electrode layer 55 , the first current collector 51 and the second current collector 52 can be adjusted.
图7中所示仅为实例,在实际的锂电池50中,其具体连接方式可依据实际锂电池的性能要求做调整,在此不作为本发明的限定。7 is only an example. In an actual lithium battery 50, the specific connection method can be adjusted according to the performance requirements of the actual lithium battery, which is not a limitation of the present invention.
请继续参阅图8,本发明的第七实施例提供一锂电池的制备方法S10,其中一个具体实施方式包括如下的步骤:Please continue to refer to FIG. 8 , a seventh embodiment of the present invention provides a method S10 for preparing a lithium battery, wherein a specific implementation includes the following steps:
步骤S11,提供一第一集流体,在第一集流体的其中一面之上形成柱状晶体正极层;Step S11, providing a first current collector, and forming a columnar crystal positive electrode layer on one side of the first current collector;
步骤S12,在柱状晶体正极层远离第一集流体的表面通过包覆形成第一电解质层;Step S12, forming a first electrolyte layer by coating on the surface of the columnar crystal positive electrode layer away from the first current collector;
步骤S13,在所述第一电解质层的表面形成第二电解质层;Step S13, forming a second electrolyte layer on the surface of the first electrolyte layer;
步骤S14,在第二电解质层远离所述第一电解质层的表面形成碳基材料层;Step S14, forming a carbon-based material layer on the surface of the second electrolyte layer away from the first electrolyte layer;
步骤S15,在所述碳基材料层远离所述第二电解质层的表面形成负极层;Step S15, forming a negative electrode layer on the surface of the carbon-based material layer away from the second electrolyte layer;
步骤S16,在所述负极层远离所述碳基材料层的表面形成第二集流体。Step S16, forming a second current collector on the surface of the negative electrode layer away from the carbon-based material layer.
至此,上述步骤S11至步骤S16完成了单个锂电池电芯的制备。So far, the above steps S11 to S16 have completed the preparation of a single lithium battery cell.
在本实施例另外的一些实施方式中,上述步骤S14-步骤S16可为:In other implementations of this embodiment, the above steps S14 to S16 may be:
步骤S14b:在第二电解质层远离所述第一电解质层的表面形成负极层;Step S14b: forming a negative electrode layer on the surface of the second electrolyte layer away from the first electrolyte layer;
步骤S15b,在所述负极层远离所述第二电解质层的表面形成碳基材料层;Step S15b, forming a carbon-based material layer on the surface of the negative electrode layer away from the second electrolyte layer;
步骤S16b,在所述碳基材料层远离所述碳基材料层的表面形成第二集流体。Step S16b, forming a second current collector on the surface of the carbon-based material layer away from the carbon-based material layer.
为了继续获得多个锂电池电芯叠加的锂电池,在本实施例一些具体的实施方式中,上述步骤S16或步骤S16b之后还可包括如下的步骤:In order to continue to obtain a lithium battery with multiple lithium battery cells superimposed, in some specific implementations of this embodiment, the following steps may be further included after the above step S16 or step S16b:
步骤S17a,在第二集流体与设有负极层相对的一面上沉积形成另一锂电池电芯的正极层。Step S17a, depositing a positive electrode layer of another lithium battery cell on the side of the second current collector opposite to the negative electrode layer.
步骤S18a,重复上述步骤S12-步骤S16或步骤S12-步骤S16b,直至锂电池中所包括的锂电池电芯数量达到预定要求。In step S18a, the above steps S12-S16 or steps S12-S16b are repeated until the number of lithium battery cells included in the lithium battery reaches a predetermined requirement.
步骤S19a,对连续叠层设置的多个锂电池电芯进行封装,以获得所需的锂电池。Step S19a, encapsulating a plurality of lithium battery cells that are continuously stacked to obtain a desired lithium battery.
在本实施例另一些具体的实施方式中,上述步骤S16之后还可包括如下的步骤:In other specific implementations of this embodiment, the following steps may be further included after the above step S16:
步骤S17b,在第一集流体设有正极层相对的一面上形成另一个锂电池电芯的负极层;Step S17b, forming a negative electrode layer of another lithium battery cell on the opposite side of the first current collector with the positive electrode layer;
步骤P18b,在所述负极层之上形成碳基材料层;Step P18b, forming a carbon-based material layer on the negative electrode layer;
步骤P19b,在碳基材料层远离所述负极层的一面上依次形成第二电解质层、第一电解质层;Step P19b, forming a second electrolyte layer and a first electrolyte layer in sequence on the side of the carbon-based material layer away from the negative electrode layer;
步骤P20b,在第一电解质层远离所述负极层的表面依次形成正极层、第二集流体;Step P20b, forming a positive electrode layer and a second current collector in sequence on the surface of the first electrolyte layer away from the negative electrode layer;
步骤S21b,在所述第二集流体设有正极层的相对一面上沉积另一锂电池电芯的负极层。Step S21b, depositing a negative electrode layer of another lithium battery cell on the opposite side of the second current collector with the positive electrode layer.
步骤P22b,重复上述步骤P18b-步骤P21b,直至锂电池中所包括的锂电池电芯数量达到预定要求。In step P22b, the above steps P18b to P21b are repeated until the number of lithium battery cells included in the lithium battery reaches a predetermined requirement.
步骤S23b,对连续叠层设置的多个锂电池电芯进行封装,以获得所需的锂电池。Step S23b, encapsulating a plurality of lithium battery cells that are continuously stacked to obtain a desired lithium battery.
具体地,有关上述步骤中针对第一集流体、第二集流体、正极层、负极层、碳基材料层、第一电解质层或第二电解质层厚度、材质选择如上述第二实施例、第三实施例中所述,在此不再赘述。Specifically, the thickness and material selection for the first current collector, the second current collector, the positive electrode layer, the negative electrode layer, the carbon-based material layer, the first electrolyte layer or the second electrolyte layer in the above steps are as described in the second embodiment and the second embodiment. It is described in the third embodiment and will not be repeated here.
特别地,在上述锂电池的制备方法S10中,在第一集流体和/或第二集流体之上形成正极层或负极层之前,均需要对第一集流体和/或第二集流体之上表面进行平整化处理,以保证集流体表面平整、没有氧化物表面层。其中,平整化处理可采用化学机械抛光工艺,一磨料加抛光机进行局部抛光和研磨。In particular, in the preparation method S10 of the above-mentioned lithium battery, before the positive electrode layer or the negative electrode layer is formed on the first current collector and/or the second current collector, it is necessary to conduct the first current collector and/or the second current collector. The upper surface is flattened to ensure that the surface of the current collector is flat and has no oxide surface layer. Among them, the planarization treatment can use chemical mechanical polishing process, an abrasive plus a polishing machine for partial polishing and grinding.
需要特别说明的是,制备所述第一电解质层及所述第二电解质层所使用的固态电解质包括钙钛型固态电解质、NASICON型固态电解质、石榴石型固态电解质、LiGePS型硫化物固态电解质、LiSiPS型硫化物固态电解质或LiSnPS型硫化物固态电解质一种或几种的组合。It should be noted that the solid electrolytes used for preparing the first electrolyte layer and the second electrolyte layer include perovskite type solid electrolytes, NASICON type solid electrolytes, garnet type solid electrolytes, LiGePS type sulfide solid electrolytes, One or a combination of LiSiPS type sulfide solid state electrolyte or LiSnPS type sulfide solid state electrolyte.
在本发明一些具体的实施例中,上述步骤S11中,在集流体之上形成柱状晶体正极层可利用磁控溅射掠入射的方法制备:In some specific embodiments of the present invention, in the above step S11, the formation of the columnar crystal positive electrode layer on the current collector can be prepared by the method of magnetron sputtering grazing incidence:
(1)将基片置入磁控溅射腔体中,设置垂直基片方向和垂直靶材方向的夹角大于45°,基底水冷保持室温;(1) Put the substrate into the magnetron sputtering cavity, set the included angle between the vertical substrate direction and the vertical target direction to be greater than 45°, and keep the substrate water-cooled at room temperature;
(2)抽真空至10-5Pa,通入氩气,调节腔体工作气压至2Pa开始沉积磷酸铁锂正极材料;(2) evacuate to 10 -5 Pa, feed argon gas, adjust the working pressure of the cavity to 2Pa and start to deposit the lithium iron phosphate positive electrode material;
(3)同时基片自转,沉积50分钟后,形成2微米柱状晶体。(3) At the same time, the substrate rotates, and after 50 minutes of deposition, a 2-micron columnar crystal is formed.
上述针对柱状晶体正极层制备方法仅作为示例,不作为本发明的限定。The above-mentioned preparation method for the columnar crystal positive electrode layer is only an example, and not a limitation of the present invention.
在本发明第八实施例中进一步提供一种锂电池的制备方法P60,其与上述第七实施例的区别在于:其先在一集流体结构的上下表面分别形成正极层及负极层。The eighth embodiment of the present invention further provides a method P60 for preparing a lithium battery, which is different from the seventh embodiment in that it first forms a positive electrode layer and a negative electrode layer on the upper and lower surfaces of a current collector structure.
所述锂电池的制备方法P60具体包括如下的步骤:The preparation method P60 of the lithium battery specifically includes the following steps:
步骤P11,提供一第一集流体,在第一集流体的其中一面之上沉积柱状晶体正极层,在集流体的另一面沉积锂硅碳复合负极层;Step P11, providing a first current collector, depositing a columnar crystal positive electrode layer on one side of the first current collector, and depositing a lithium-silicon-carbon composite negative electrode layer on the other side of the current collector;
其中,沉积柱状晶体正极层与沉积锂硅碳复合负极层可同时或依次进行。The deposition of the columnar crystal positive electrode layer and the deposition of the lithium-silicon-carbon composite negative electrode layer can be performed simultaneously or sequentially.
在步骤P11之后,可细分为如下两种方式:After step P11, it can be subdivided into the following two ways:
第一种为在沉积有柱状晶体正极层的一面作为基材层,并在其上继续形成所需功能层,具体步骤包括:The first is to use the side where the columnar crystal positive electrode layer is deposited as the base material layer, and to continue to form the required functional layer on it. The specific steps include:
步骤P12a,依次在所述柱状晶体正极层之上形成第一电解质层、第二电解质层;Step P12a, forming a first electrolyte layer and a second electrolyte layer on the columnar crystal positive electrode layer in sequence;
步骤P13a,在第二电解质层远离所述正极层的一面上形成碳基材料层;Step P13a, forming a carbon-based material layer on the side of the second electrolyte layer away from the positive electrode layer;
步骤P14a,在碳基材料层远离所述第二电解质层的面上形成负极层。Step P14a, forming a negative electrode layer on the surface of the carbon-based material layer away from the second electrolyte layer.
步骤P15a,在负极层远离所述碳基材料层的面上形成第二集流体。Step P15a, forming a second current collector on the surface of the negative electrode layer away from the carbon-based material layer.
第二种为在沉积有锂硅碳复合负极层的一面作为基材层,并在其上继续形成所需功能层,具体步骤包括:The second is to use the side deposited with the lithium-silicon-carbon composite negative electrode layer as the base material layer, and continue to form the required functional layer on it, and the specific steps include:
步骤P12b,在所述锂硅碳复合负极层之上形成碳基材料层;Step P12b, forming a carbon-based material layer on the lithium-silicon-carbon composite negative electrode layer;
步骤P13b,在碳基材料层远离所述负极层的一面上依次形成第二电解质层、第一电解质层;Step P13b, forming a second electrolyte layer and a first electrolyte layer in sequence on the side of the carbon-based material layer away from the negative electrode layer;
步骤P14b,在第一电解质层远离所述负极层的表面依次形成正极层、第二集流体;Step P14b, forming a positive electrode layer and a second current collector in sequence on the surface of the first electrolyte layer away from the negative electrode layer;
上述步骤P11之后,在沉积有柱状晶体正极层的一面逐层沉积所需功能层或在沉积有柱状晶体正极层的一面逐层沉积所需功能层的先后顺序不受限制,可依次进行,也可同时进行。After the above step P11, the order of depositing the required functional layers layer by layer on the side where the columnar crystal positive electrode layer is deposited or layer by layer on the side where the columnar crystal positive electrode layer is deposited is not limited, and can be performed sequentially, or can be performed simultaneously.
进一步地,上述步骤P12a-步骤P15与步骤P12b-步骤P14b可重复进行,以至完成所需锂电池电芯数量的锂电池而停止。Further, the above-mentioned steps P12a-step P15 and steps P12b-step P14b can be repeated until the lithium battery with the required number of lithium battery cells is completed and stopped.
在本实施中,所述碳基材料层也可形成在所述锂硅碳复合负极层远离所述第二电解质层的一面之上,其具体的位置可依据实际的需求做调整,在此不作为本发明的限定。In this implementation, the carbon-based material layer can also be formed on the side of the lithium-silicon-carbon composite negative electrode layer away from the second electrolyte layer, and its specific position can be adjusted according to actual needs. as a limitation of the present invention.
具体地,有关上述步骤中针对第一集流体、第二集流体、正极层、负极层、碳基材料层、第一电解质层或第二电解质层厚度、材质选择如上述第二实施例、第三实施例中所述,在此不再赘述。Specifically, the thickness and material selection for the first current collector, the second current collector, the positive electrode layer, the negative electrode layer, the carbon-based material layer, the first electrolyte layer or the second electrolyte layer in the above steps are as described in the second embodiment and the second embodiment. It is described in the third embodiment and will not be repeated here.
与现有技术相比,本发明所提供的集流体结构、锂电池电芯及其锂电池,具有如下的有益效果:Compared with the prior art, the current collector structure, the lithium battery cell and the lithium battery provided by the present invention have the following beneficial effects:
(1)本发明所提供的集流体结构、锂电池电芯及锂电池,其中集流体包括两个相对的主表面,其中一个主表面上形成柱状晶体正极层,以作为一锂电池电芯的正极结构,另一主表面上形成负极层,以作为另一锂电池电芯的负极结构。通过在集流体的两个面上设置正负极,以形成正负共极的集流体,可实现多个锂电池电芯叠层制备,从而实现大面积全固态锂电池的制备。(1) The current collector structure, lithium battery cell and lithium battery provided by the present invention, wherein the current collector includes two opposite main surfaces, and a columnar crystal positive electrode layer is formed on one of the main surfaces to serve as a lithium battery cell. For the positive electrode structure, a negative electrode layer is formed on the other main surface to serve as the negative electrode structure of another lithium battery cell. By arranging positive and negative electrodes on both sides of the current collector to form a current collector of positive and negative common electrodes, multiple lithium battery cells can be fabricated by stacking, thereby realizing the fabrication of large-area all-solid-state lithium batteries.
利用正负共极的集流体还可降低锂电池电芯、锂电池的整体厚度。进一步地,利用正负共极的集流体,可实现多个锂电池电芯之间串联连接。当锂电池中锂电池电芯串联连接时,可直接利用集流体作为锂电池的电极,从而简化所述锂电池的封装结构。The use of positive and negative common current collectors can also reduce the overall thickness of lithium battery cells and lithium batteries. Further, by using the current collectors of the positive and negative electrodes, a series connection between a plurality of lithium battery cells can be realized. When the lithium battery cells in the lithium battery are connected in series, the current collector can be directly used as the electrode of the lithium battery, thereby simplifying the packaging structure of the lithium battery.
此外,在本发明中利用包括柱状晶体的正极材料作为正极层,从而可以为锂离子在充放电的过程中提供畅通的扩散和迁移通道,柱状晶体目的是匹配高性能的负极实现正极材料的最大利用,提高锂嵌入和脱出的效率。In addition, in the present invention, a positive electrode material including columnar crystals is used as the positive electrode layer, so as to provide smooth diffusion and migration channels for lithium ions in the process of charging and discharging. utilization to improve the efficiency of lithium intercalation and extraction.
(2)在本发明中,所述锂电池电芯及锂电池可进一步采用直接在负极集流体之上形成的锂硅碳复合负极层。采用锂硅碳复合负极层可进一步提高锂电池的能量密度,从而获得高能锂离子芯及其锂电池。(2) In the present invention, the lithium battery cell and the lithium battery may further use a lithium silicon carbon composite negative electrode layer formed directly on the negative electrode current collector. The use of the lithium-silicon-carbon composite negative electrode layer can further improve the energy density of the lithium battery, thereby obtaining a high-energy lithium ion core and its lithium battery.
(3)本发明所提供的锂电池电芯及锂电池,其还包括形成在锂硅碳复合负极层朝向所述正极结构的表面或在所述锂硅碳复合负极层远离所述正极结构的表面(即所述锂硅碳复合负极层朝向所述第二集流体的表面)上形成一碳基材料层。所述碳基材料层的设置可防止锂枝晶的出现,从而提高所述锂电池电芯及锂电池的稳定性和安全性。(3) The lithium battery cell and the lithium battery provided by the present invention further include a lithium-silicon-carbon composite negative electrode layer formed on the surface of the lithium-silicon-carbon composite negative electrode layer facing the positive electrode structure or on the lithium-silicon-carbon composite negative electrode layer away from the positive electrode structure. A carbon-based material layer is formed on the surface (ie, the surface of the lithium-silicon-carbon composite negative electrode layer facing the second current collector). The arrangement of the carbon-based material layer can prevent the appearance of lithium dendrites, thereby improving the stability and safety of the lithium battery cells and the lithium battery.
(4)本发明所述锂电池电芯及锂电池中在所述柱状晶体正极层与所述锂硅碳复合负极层之间填充形成第一电解质层,所述第一电解质层的厚度为1nm-50μm。所述第一电解质层可包覆所述柱状晶体正极层,因此具有较大表面积,故形成第一电解质层可为锂电池中的电解质与正极层之间提供更多的反应界面,有利于电池充放电过程的完全反应。(4) In the lithium battery cell and lithium battery of the present invention, a first electrolyte layer is formed by filling between the columnar crystal positive electrode layer and the lithium silicon carbon composite negative electrode layer, and the thickness of the first electrolyte layer is 1 nm -50μm. The first electrolyte layer can cover the columnar crystal positive electrode layer, so it has a larger surface area, so the formation of the first electrolyte layer can provide more reaction interfaces between the electrolyte and the positive electrode layer in the lithium battery, which is beneficial to the battery Complete reaction of charge and discharge process.
(5)本发明所述锂电池电芯及锂电池中在所述第一电解质层的表面还可形成一第二电解质层,可进一步提高所述第一电解质层的平整度及负极表面电场分布均匀度,同时也可增加第一电解质层的硬度,防止正负极接触而造成短路。(5) In the lithium battery cell and lithium battery of the present invention, a second electrolyte layer can be formed on the surface of the first electrolyte layer, which can further improve the flatness of the first electrolyte layer and the electric field distribution on the surface of the negative electrode The uniformity can also be increased, and the hardness of the first electrolyte layer can also be increased to prevent short circuit caused by the contact between the positive and negative electrodes.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的原则之内所作的任何修改,等同替换和改进等均应包含本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the principles of the present invention should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711371111.3A CN109935888B (en) | 2017-12-19 | 2017-12-19 | Lithium battery cell and lithium battery thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711371111.3A CN109935888B (en) | 2017-12-19 | 2017-12-19 | Lithium battery cell and lithium battery thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109935888A true CN109935888A (en) | 2019-06-25 |
CN109935888B CN109935888B (en) | 2024-06-18 |
Family
ID=66983194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711371111.3A Active CN109935888B (en) | 2017-12-19 | 2017-12-19 | Lithium battery cell and lithium battery thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109935888B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110635175A (en) * | 2019-10-28 | 2019-12-31 | 深圳吉阳智能科技有限公司 | Internal serial-type battery cell and internal serial-type battery |
CN113178666A (en) * | 2021-04-15 | 2021-07-27 | Oppo广东移动通信有限公司 | Battery and electronic device |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298066A (en) * | 1996-03-05 | 1997-11-18 | Canon Inc | Secondary battery |
JP2005063958A (en) * | 2003-07-29 | 2005-03-10 | Mamoru Baba | Thin-film solid lithium ion secondary battery and manufacturing method thereof |
CN101290985A (en) * | 2007-04-20 | 2008-10-22 | 日产自动车株式会社 | Secondary battery with non-aqueous solution |
JP2008257962A (en) * | 2007-04-03 | 2008-10-23 | Murata Mfg Co Ltd | All solid lithium secondary battery |
JP2009076278A (en) * | 2007-09-19 | 2009-04-09 | Toyota Motor Corp | Positive electrode body and lithium secondary battery |
CN101836323A (en) * | 2007-10-25 | 2010-09-15 | 日产自动车株式会社 | Manufacturing method of bipolar cell and bipolar cell |
US20130042467A1 (en) * | 2011-08-18 | 2013-02-21 | Masakazu Sanada | Preparation process of all-solid battery |
WO2013085498A1 (en) * | 2011-12-06 | 2013-06-13 | CNano Technology Limited | Carbon nanotube based pastes |
WO2013161982A1 (en) * | 2012-04-27 | 2013-10-31 | 株式会社村田製作所 | Solid-state battery, and method for producing same |
CN103943848A (en) * | 2014-04-23 | 2014-07-23 | 合肥工业大学 | Preparation method of positive pole material of cobalt-based lithium ion battery with porous rod-like structure |
JP2016085885A (en) * | 2014-10-27 | 2016-05-19 | 旭化成株式会社 | Lithium ion secondary battery |
WO2016110110A1 (en) * | 2015-01-08 | 2016-07-14 | 田东 | Preparation method for silicon-carbon composite lithium ion battery negative electrode piece |
CN106328992A (en) * | 2015-06-30 | 2017-01-11 | 比亚迪股份有限公司 | Lithium ion battery and preparation method thereof |
US20170133710A1 (en) * | 2015-11-11 | 2017-05-11 | Hyundai Motor Company | Electrolyte layer for all-solid state battery and method of manufacturing all-solid state battery using the same |
CN107240507A (en) * | 2017-07-18 | 2017-10-10 | 河北工业大学 | A kind of nanoporous nickel nickel electrode material for super capacitor and preparation method thereof |
CN107256964A (en) * | 2017-06-14 | 2017-10-17 | 哈尔滨工业大学(威海) | A kind of preparation method of the bar-shaped nickel ion doped of high-voltage lithium-battery cathode material |
CN207719340U (en) * | 2017-12-19 | 2018-08-10 | 成都亦道科技合伙企业(有限合伙) | Current collector structure, lithium battery electric core and its lithium battery |
-
2017
- 2017-12-19 CN CN201711371111.3A patent/CN109935888B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298066A (en) * | 1996-03-05 | 1997-11-18 | Canon Inc | Secondary battery |
JP2005063958A (en) * | 2003-07-29 | 2005-03-10 | Mamoru Baba | Thin-film solid lithium ion secondary battery and manufacturing method thereof |
JP2008257962A (en) * | 2007-04-03 | 2008-10-23 | Murata Mfg Co Ltd | All solid lithium secondary battery |
CN101290985A (en) * | 2007-04-20 | 2008-10-22 | 日产自动车株式会社 | Secondary battery with non-aqueous solution |
JP2009076278A (en) * | 2007-09-19 | 2009-04-09 | Toyota Motor Corp | Positive electrode body and lithium secondary battery |
CN101836323A (en) * | 2007-10-25 | 2010-09-15 | 日产自动车株式会社 | Manufacturing method of bipolar cell and bipolar cell |
US20130042467A1 (en) * | 2011-08-18 | 2013-02-21 | Masakazu Sanada | Preparation process of all-solid battery |
WO2013085498A1 (en) * | 2011-12-06 | 2013-06-13 | CNano Technology Limited | Carbon nanotube based pastes |
WO2013161982A1 (en) * | 2012-04-27 | 2013-10-31 | 株式会社村田製作所 | Solid-state battery, and method for producing same |
CN103943848A (en) * | 2014-04-23 | 2014-07-23 | 合肥工业大学 | Preparation method of positive pole material of cobalt-based lithium ion battery with porous rod-like structure |
JP2016085885A (en) * | 2014-10-27 | 2016-05-19 | 旭化成株式会社 | Lithium ion secondary battery |
WO2016110110A1 (en) * | 2015-01-08 | 2016-07-14 | 田东 | Preparation method for silicon-carbon composite lithium ion battery negative electrode piece |
CN106328992A (en) * | 2015-06-30 | 2017-01-11 | 比亚迪股份有限公司 | Lithium ion battery and preparation method thereof |
US20170133710A1 (en) * | 2015-11-11 | 2017-05-11 | Hyundai Motor Company | Electrolyte layer for all-solid state battery and method of manufacturing all-solid state battery using the same |
CN107256964A (en) * | 2017-06-14 | 2017-10-17 | 哈尔滨工业大学(威海) | A kind of preparation method of the bar-shaped nickel ion doped of high-voltage lithium-battery cathode material |
CN107240507A (en) * | 2017-07-18 | 2017-10-10 | 河北工业大学 | A kind of nanoporous nickel nickel electrode material for super capacitor and preparation method thereof |
CN207719340U (en) * | 2017-12-19 | 2018-08-10 | 成都亦道科技合伙企业(有限合伙) | Current collector structure, lithium battery electric core and its lithium battery |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110635175A (en) * | 2019-10-28 | 2019-12-31 | 深圳吉阳智能科技有限公司 | Internal serial-type battery cell and internal serial-type battery |
CN113178666A (en) * | 2021-04-15 | 2021-07-27 | Oppo广东移动通信有限公司 | Battery and electronic device |
WO2022218098A1 (en) * | 2021-04-15 | 2022-10-20 | Oppo广东移动通信有限公司 | Battery and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN109935888B (en) | 2024-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108365255B (en) | A lithium battery cell, a lithium battery and a method for preparing the same | |
JP2016517157A (en) | Electrochemical cell with solid and liquid electrolyte | |
JP2005519425A (en) | Secondary battery with permeable anode current collector | |
KR102435473B1 (en) | Cathode including sintered poly crystalline material, secondary battery including the cathode, and method of manufacturing the cathode | |
CN108134049B (en) | Negative electrode layer and preparation method thereof, lithium battery cell and lithium battery | |
CN102054961A (en) | Active negative pole piece and preparation method thereof | |
CN207719355U (en) | Current collector structure, lithium battery electric core and its lithium battery | |
CN101692493A (en) | Metallic film capable of improving stability of anode of lithium ion battery and manufacturing method | |
CN207719340U (en) | Current collector structure, lithium battery electric core and its lithium battery | |
CN109935888B (en) | Lithium battery cell and lithium battery thereof | |
CN110635107A (en) | Substrate-free bipolar solid-state lithium-ion battery and manufacturing method thereof | |
CN114300733A (en) | A kind of all-solid-state thin-film lithium battery and preparation method thereof | |
CN109935836B (en) | Current collector structure, lithium battery cell and lithium battery thereof | |
CN114927765B (en) | All-solid-state battery and preparation method thereof | |
CN207624803U (en) | A kind of lithium ion cell positive structure and lithium ion battery | |
CN117039002A (en) | Copper-based current collector and preparation method and application thereof | |
CN116404130A (en) | A Zn-Cu composite electrode with an ordered layered structure and its preparation method and aqueous zinc-ion battery | |
CN207909991U (en) | A kind of lithium battery electric core and lithium battery | |
CN103215554B (en) | BiFeO 3the preparation method of sodium-ion battery anode material | |
CN103022473B (en) | Preparation method of gamma-Fe2O3 lithium ion battery anode material | |
US10230130B2 (en) | Thin film lithium-ion battery | |
CN118676424B (en) | A garnet-type composite solid electrolyte and its preparation method and application | |
JP7206100B2 (en) | Negative electrode for all-solid-state thin-film lithium battery and all-solid-state thin-film lithium battery | |
CN112290024B (en) | All-solid-state battery and preparation method thereof | |
CN204257756U (en) | A kind of very thin si membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210207 Address after: No. 88, Yingbin Avenue, Shouan Town, Pujiang County, Chengdu, Sichuan 610000 Applicant after: Chengdu Dachao Technology Co.,Ltd. Address before: No. 1609, 16th floor, Hemei Begonia Center (Tianfu maker), No. 2039, south section of Tianfu Avenue, Tianfu New District, Chengdu, Sichuan 610213 Applicant before: CHENGDU YIDAO TECHNOLOGY PARTNERSHIP (L.P.) |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250109 Address after: Room 4008-2, Building 2, 738 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310012 Patentee after: Hangzhou Xizhe Technology Co.,Ltd. Country or region after: China Address before: No. 88, Yingbin Avenue, Shouan Town, Pujiang County, Chengdu, Sichuan 610000 Patentee before: Chengdu Dachao Technology Co.,Ltd. Country or region before: China |