CN109917615A - Method for generating photomask using optical proximity correction model - Google Patents
Method for generating photomask using optical proximity correction model Download PDFInfo
- Publication number
- CN109917615A CN109917615A CN201711318482.5A CN201711318482A CN109917615A CN 109917615 A CN109917615 A CN 109917615A CN 201711318482 A CN201711318482 A CN 201711318482A CN 109917615 A CN109917615 A CN 109917615A
- Authority
- CN
- China
- Prior art keywords
- pattern
- photomask
- serif
- patterns
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000012937 correction Methods 0.000 title claims abstract description 32
- 230000003287 optical effect Effects 0.000 title claims abstract description 22
- 238000012360 testing method Methods 0.000 claims abstract description 49
- 230000000694 effects Effects 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 20
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 239000010410 layer Substances 0.000 claims description 14
- 239000002356 single layer Substances 0.000 claims description 5
- 238000005452 bending Methods 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 description 24
- 238000010586 diagram Methods 0.000 description 18
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种半导体制造技术,且特别是关于使用光学邻近效应修正模型产生光掩模的方法。光学邻近效应修正(optical proximity correction),也下也简称为OPC。The present invention relates to a semiconductor fabrication technique, and in particular to a method of producing a photomask using an optical proximity effect correction model. Optical proximity correction (optical proximity correction), also referred to as OPC below.
背景技术Background technique
半导体元件的结构的形成一般需要光刻与蚀刻的程序来达成,其中光刻技术需要具有图案的光掩模,利用光源将图案转移到晶片上的结构层,来形成蚀刻掩模。再以蚀刻掩模,对结构层蚀刻而完成所要的结构。The formation of the structure of the semiconductor device generally requires photolithography and etching procedures, wherein the photolithography technology requires a photomask with a pattern, and a light source is used to transfer the pattern to the structure layer on the wafer to form the etching mask. Then, using an etching mask, the structure layer is etched to complete the desired structure.
随着半导体集成电路的尺寸的日渐缩小的趋势,其中的半导体元件的尺寸也对应缩小。相对应的需求,要产生其所包含的微小结构的光掩模,其图案也要缩小。然而基于光学绕射的效应,当从光掩模的图案被转到晶片上时会变形,其中例如直角形状的角落无可避免会被弧形化,而趋向圆形角落。With the decreasing trend of the size of semiconductor integrated circuits, the size of the semiconductor elements therein also shrinks accordingly. Correspondingly, in order to produce the photomask of the microstructure contained therein, the pattern of the photomask should also be reduced. However, due to the effect of optical diffraction, when the pattern from the photomask is transferred to the wafer, it is deformed, in which corners such as right-angled shapes are inevitably curved towards rounded corners.
为了微小结构能构更准确地在晶片上完成,其理想的光掩模图案会利用OPC的机制进修正,其中理想光掩模图案会被转移到晶片,且对晶片上的图案的关键尺寸进行测量,而得到对光掩模图案所需要的修正。In order for the microstructure to be more accurately completed on the wafer, its ideal photomask pattern is modified by the mechanism of OPC, wherein the ideal photomask pattern is transferred to the wafer, and the critical dimensions of the pattern on the wafer are adjusted. measurements to obtain the required corrections to the photomask pattern.
然而当光掩模的图案是二维分布时,测量关键尺寸会有较大误差。这种误差会影响OPC模型的建立,导致最后即使通过OPC对实际用于生产的光掩模的图案做修正,其OPC模型也存在有不可忽略的误差。However, when the pattern of the photomask is two-dimensionally distributed, there will be a large error in measuring the critical dimension. This kind of error will affect the establishment of the OPC model, resulting in that even if the pattern of the photomask actually used for production is corrected by OPC, the OPC model still has non-negligible errors.
因此,如何建立较佳的OPC模型是技术研发中所需要考虑的课题其一,以期能对光掩模图案做更准确的修正效果。Therefore, how to establish a better OPC model is one of the issues to be considered in the technical research and development, in order to achieve a more accurate correction effect on the photomask pattern.
发明内容SUMMARY OF THE INVENTION
本发明是关于使用OPC模型产生光掩模的方法,利用对对OPC模型的改良,可以有较大的测量准确度,使得光掩模的图案,通过OPC模型会有较佳的准确度。The present invention relates to a method of using an OPC model to generate a photomask. By improving the OPC model, the measurement accuracy can be greater, so that the pattern of the photomask can have better accuracy through the OPC model.
依据本发明一实施例,一种使用光学邻近效应修正模型产生光掩模的方法,包括提供测试光掩模,所述测试光掩模具有特征四边形,依照尺寸与长宽比的变化而不同。对所述特征四边形的每一个角落加入多种不同的衬线图案。使用具有所述衬线图案的每一个所述测试光掩模,在晶片上形成多个测试图案。测量与统计分析所述多个测试图案的至少一个几何参数,以决定出一特定衬线图案给每一个所述测试光掩模的所述角落。建立光学邻近效应修正模型,包括每一个所述测试光掩模在所述角落的所述特定衬线图案。接收一数据库布局图案。使用所述光学邻近效应修正模型产生第一数据库布局图案。执行光学邻近效应修正流程,以对所述第一数据库布局图案最佳化成第二数据库布局图案。根据所述第二数据库布局图案产生光掩模。According to one embodiment of the present invention, a method of generating a photomask using an optical proximity effect correction model includes providing a test photomask having characteristic quadrilaterals that vary in size and aspect ratio. Add a variety of different serif patterns to each corner of the feature quad. Using each of the test photomasks having the serif patterns, a plurality of test patterns are formed on the wafer. At least one geometric parameter of the plurality of test patterns is measured and statistically analyzed to determine a particular serif pattern for each of the corners of the test photomask. An optical proximity effect correction model is established including the specific serif pattern at the corner of each of the test photomasks. A database layout pattern is received. A first database layout pattern is generated using the optical proximity correction model. An optical proximity effect correction process is performed to optimize the first database layout pattern into a second database layout pattern. A photomask is generated according to the second database layout pattern.
依据本发明一实施例,对于所述的方法,所述衬线图案的变化是对应所述特征四边形的所述尺寸与所述长宽比而变化。According to an embodiment of the present invention, for the method, the change of the serif pattern corresponds to the change of the size and the aspect ratio of the characteristic quadrilateral.
依据本发明一实施例,对于所述的方法,所述衬线图案至少一层的结构。According to an embodiment of the present invention, for the method, the serif pattern has a structure of at least one layer.
依据本发明一实施例,对于所述的方法,所述衬线图案是单层。According to an embodiment of the invention, for the method, the serif pattern is a single layer.
依据本发明一实施例,对于所述的方法,所述衬线图案是双层。According to an embodiment of the present invention, for the method, the serif pattern is a double layer.
依据本发明一实施例,对于所述的方法,所述述特征四边形是正方形或是长方形,所述衬线图案包含直角弯折结构,与所述角落密合。According to an embodiment of the present invention, for the method, the characteristic quadrilateral is a square or a rectangle, and the serif pattern includes a right-angled bending structure, which is closely spaced with the corners.
依据本发明一实施例,对于所述的方法,所述衬线图案的变化包括综合线宽与线长的多种不同变化。According to an embodiment of the present invention, for the method, the variation of the serif pattern includes a plurality of different variations of the integrated line width and line length.
依据本发明一实施例,对于所述的方法,所述特征四边形包含不同的多个长方形。According to an embodiment of the present invention, for the method, the characteristic quadrilateral includes a plurality of different rectangles.
依据本发明一实施例,对于所述的方法,所述多个长方形的每一个的所述每一个角落,加入多种不同的所述衬线图案。According to an embodiment of the present invention, for the method, a plurality of different serif patterns are added to each corner of each of the plurality of rectangles.
依据本发明一实施例,对于所述的方法,所述特征四边形包含不同形状的正方形。According to an embodiment of the present invention, for the method, the characteristic quadrilaterals include squares of different shapes.
依据本发明一实施例,对于所述的方法,所述多个正方形的每一个的所述每一个角落,加入多种不同的所述衬线图案。According to an embodiment of the present invention, for the method, a plurality of different serif patterns are added to each corner of each of the plurality of squares.
依据本发明一实施例,对于所述的方法,在所述提供测试光掩模步骤中,所述测试光掩模的所述特征四边形的数量是多个,以二维方式分布。According to an embodiment of the present invention, for the method, in the step of providing a test photomask, the number of the feature quadrilaterals of the test photomask is multiple and distributed in a two-dimensional manner.
依据本发明一实施例,对于所述的方法,所述至少一个几何参数包括所述特征四边形在预定位置的横截宽度。According to an embodiment of the present invention, for the method, the at least one geometric parameter includes a cross-sectional width of the characteristic quadrilateral at a predetermined position.
附图说明Description of drawings
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。The accompanying drawings are included to provide a further understanding of the present invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
图1为本发明一实施例,未修正光掩模图案布局示意图;FIG. 1 is a schematic diagram of an unmodified photomask pattern layout according to an embodiment of the present invention;
图2为本发明一实施例,依照图1的光掩模在晶片上形成的测试图案示意图;2 is a schematic diagram of a test pattern formed on a wafer according to the photomask of FIG. 1 according to an embodiment of the present invention;
图3为本发明一实施例,对测试图案测量的几何参数示意图;3 is a schematic diagram of geometric parameters measured on a test pattern according to an embodiment of the present invention;
图4为本发明一实施例,修正后光掩模图案布局示意图;FIG. 4 is a schematic diagram of a photomask pattern layout after correction according to an embodiment of the present invention;
图5为本发明一实施例,依照图4修正后的光掩模在晶片上形成的测试图案示意图;FIG. 5 is a schematic diagram of a test pattern formed on a wafer by the photomask after correction according to FIG. 4 according to an embodiment of the present invention;
图6为本发明一实施例,对测试图案测量的几何参数示意图;6 is a schematic diagram of geometric parameters measured on a test pattern according to an embodiment of the present invention;
图7为本发明一实施例,对光掩模图案的角落修正的示意图;7 is a schematic diagram of corner correction of a photomask pattern according to an embodiment of the present invention;
图8为本发明一实施例,对光掩模图案的角落修正的示意图;8 is a schematic diagram of corner correction of a photomask pattern according to an embodiment of the present invention;
图9A到图9D为本发明一实施例,对光掩模图案的角落修正的示意图;以及9A to 9D are schematic diagrams of corner correction of a photomask pattern according to an embodiment of the present invention; and
图10为本发明一实施例,使用光学邻近效应修正模型产生光掩模的方法的流程示意图。10 is a schematic flowchart of a method for generating a photomask using an optical proximity effect correction model according to an embodiment of the present invention.
附图标号说明Explanation of reference numerals
90:光掩模90: Photomask
92:晶片92: Wafer
94:测试光掩模94: Test Photomask
96:晶片96: Wafer
100:光掩模图案100: Photomask Pattern
102:掩模图案102: Mask Pattern
104:几何参数104: Geometric parameters
106:几何参数106: Geometry parameters
110:光掩模图案110: Photomask Pattern
112、112a、112b、112c、112d:衬线图案112, 112a, 112b, 112c, 112d: Serif pattern
114、114a、114b、114c、114d:掩模图案114, 114a, 114b, 114c, 114d: mask patterns
S10、S12、S14、S16、S18、S20、S22、S24、S26:步骤S10, S12, S14, S16, S18, S20, S22, S24, S26: Steps
具体实施方式Detailed ways
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在图式和描述中用来表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals are used in the drawings and description to refer to the same or like parts.
本发明是关于OPC对光掩模修正的技术,进而可以获得对光掩模图案有较准确的修正。有利于在元件尺寸缩小化的要求下,其中的细微结构更准确被制造。The present invention relates to the technology of correcting photomasks by OPC, so that more accurate corrections to photomask patterns can be obtained. It is beneficial to manufacture the fine structure more accurately under the requirement of downsizing of the component size.
以下举一些实施例来说明本发明,但是本发明不限制于所举的实施例。The following examples are given to illustrate the present invention, but the present invention is not limited to the examples.
基于提升光掩模图案品质的需求,本发明在提出技术改良之前,对光掩模图案以及以转移到晶片上的图案的机制进行实际探讨。图1为依据本发明一实施例,未修正光掩模图案布局示意图。Based on the need to improve the quality of photomask patterns, the present invention conducts practical discussions on photomask patterns and the mechanism of patterns transferred to wafers before proposing technical improvements. FIG. 1 is a schematic diagram of a pattern layout of an unmodified photomask according to an embodiment of the present invention.
参阅图1,图中仅取光掩模90的一个区域的光掩模图案100来说明。就一般而言,光掩模90上的多个光掩模图案100是二维方式分布。理想的光掩模图案100例如包括矩形或是长方形的结合图案,其在四个角落是直角的角落。在制造的光刻过程中,例如这光掩模90的光掩模图案100会利用光学方式照射到晶片上的光致抗蚀剂层,再经过显影的过程,会在晶片上的形成蚀刻掩模,而完成将光掩模90的光掩模图案100转移到晶片上的转移过程。Referring to FIG. 1 , only the photomask pattern 100 in one area of the photomask 90 is taken for illustration. In general, the plurality of photomask patterns 100 on the photomask 90 are distributed in a two-dimensional manner. An ideal photomask pattern 100 includes, for example, a rectangle or a combination pattern of rectangles whose four corners are right-angled corners. In the photolithography process of manufacture, for example, the photomask pattern 100 of the photomask 90 will be optically irradiated to the photoresist layer on the wafer, and then through the development process, an etching mask will be formed on the wafer. The mold is used to complete the transfer process of transferring the photomask pattern 100 of the photomask 90 to the wafer.
然而光源通过光掩模图案100时会产生绕射现象,其中以具有尖角的角落的绕射效应更为明显。这导致在晶片上的光致抗蚀剂层的成像图案会变形。However, a diffraction phenomenon occurs when the light source passes through the photomask pattern 100 , wherein the diffraction effect is more pronounced in the corners with sharp corners. This results in distortion of the imaged pattern of the photoresist layer on the wafer.
图2为依据本发明一实施例,依照图1的光掩模在晶片上形成的测试图案示意图。参阅图2,光掩模图案100转移到晶片92上的光致抗蚀剂层,通过显影后所得到掩模图案102的角落会圆弧化。如果基于OPC流程的需要而要实际测量此掩模图案102的几何参数,例如宽度或是长度,来于实际光掩模图案100比较时,其对掩模图案102会产生误差,进而会影响OPC模型的准确度。2 is a schematic diagram of a test pattern formed on a wafer according to the photomask of FIG. 1 according to an embodiment of the present invention. Referring to FIG. 2 , the corners of the mask pattern 102 obtained after the photomask pattern 100 is transferred to the photoresist layer on the wafer 92 will be rounded after development. If the geometric parameters of the mask pattern 102 , such as the width or length, are actually measured based on the needs of the OPC process, when compared with the actual photomask pattern 100 , errors will be generated on the mask pattern 102 , thereby affecting the OPC. accuracy of the model.
图3为依据本发明一实施例,对测试图案测量的几何参数示意图。参阅图3,在OPC模型的建立过程中,如前述,测试用的光掩模图案100会在圆上形成测试用的掩模图案102。而对掩模图案102的几何参数104,例如是宽度、长度、或是在预定位置的宽度等,进行实际测量。FIG. 3 is a schematic diagram of geometric parameters measured on a test pattern according to an embodiment of the present invention. Referring to FIG. 3 , in the process of establishing the OPC model, as described above, the photomask pattern 100 for testing will form the mask pattern 102 for testing on the circle. The actual measurement is performed on the geometric parameters 104 of the mask pattern 102, such as width, length, or width at a predetermined position.
经过本发明的研究发现,如果对于多个掩模图案102,分布成二维的架构下,其对几何参数104的测量相对于单个的掩模图案102的测量,会有较大误差。而对于实际设计的图案一般都涉及二维分布的架构,因此测量误差会影响OPC模型的准确度。Through the research of the present invention, it is found that if a plurality of mask patterns 102 are distributed in a two-dimensional structure, the measurement of the geometric parameter 104 will have a larger error compared to the measurement of a single mask pattern 102 . However, the actual designed patterns generally involve a two-dimensional distribution structure, so the measurement error will affect the accuracy of the OPC model.
本发明至少针对测量准确度的问题进行深度研究,而提出在建立OPC模型时的提升准确度的方式,以期建立较准确的OPC模型,有利于后续的OPC流程对实际元件的光掩模图案的修正,有更佳的准确度。The present invention at least conducts in-depth research on the problem of measurement accuracy, and proposes a way to improve the accuracy when establishing an OPC model, in order to establish a more accurate OPC model, which is conducive to the subsequent OPC process for the actual component photomask pattern. Correction for better accuracy.
在建立OPC模型的过程中,就一般性,本发明提出建立OPC模型的方式包括提供测试光掩模。测试光掩模具有特征四边形,依照尺寸与长宽比的变化而不同。对所述特征四边形的每一个角落加入多种不同的衬线图案。使用具有所述衬线图案的每一个所述测试光掩模,在晶片上形成多个测试图案。测量与统计分析所述多个测试图案的至少一个几何参数,以决定出一特定衬线图案给每一个所述测试光掩模的所述角落。建立OPC模型,包括每一个所述测试光掩模在所述角落的所述特定衬线图案。In the process of establishing the OPC model, in general, the method for establishing the OPC model proposed by the present invention includes providing a test photomask. The test photomask has characteristic quadrilaterals that vary in size and aspect ratio. Add a variety of different serif patterns to each corner of the feature quad. Using each of the test photomasks having the serif patterns, a plurality of test patterns are formed on the wafer. At least one geometric parameter of the plurality of test patterns is measured and statistically analyzed to determine a particular serif pattern for each of the corners of the test photomask. Build an OPC model including the specific serif pattern at the corners of each of the test photomasks.
经过上述方式所建立的OPC模型,其准确度可以提升,有利于后续OPC流程,以产生实际需要的光掩模图案。The accuracy of the OPC model established by the above method can be improved, which is beneficial to the subsequent OPC process to generate the photomask pattern actually required.
对于要产生用于实际形成元件结构所需要的实际光掩模的流程,其包括接收一数据库布局图案。此数据库布局图案一般例如是根据实际要制造的元件结构来选择。此时的图案的角落尚未被修正。接着、使用前面建立好的OPC模型来产生第一数据库布局图案,其角落会加入衬线图案。再接着,执行OPC流程,以对第一数据库布局图案最佳化成第二数据库布局图案。第二数据库布局图案是修正过后的数据,于是根据所述第二数据库布局图案产生光掩模。For the process to generate the actual photomask required for the actual formation of the device structure, it includes receiving a database layout pattern. The database layout pattern is generally selected based on, for example, the actual component structure to be manufactured. The corners of the pattern at this time have not been corrected. Next, use the previously established OPC model to generate the first database layout pattern, with serif patterns added to the corners. Next, the OPC process is performed to optimize the layout pattern of the first database into the layout pattern of the second database. The second database layout pattern is the corrected data, and a photomask is generated according to the second database layout pattern.
以下更举一些实施例,描述如何修正OPC模型的角落的机制,有利于几何参数的测量。Some examples are given below to describe how to correct the mechanism of the corners of the OPC model, which is beneficial to the measurement of geometric parameters.
图4为依据本发明一实施例,修正后光掩模图案布局示意图示意图。参阅图4,在建立OPC模型的过程中,测试光掩模94会包含光掩模图案110,其是特征的四边形。本发明在光掩模图案110的角落处对直角的角落,加上衬线图案112。衬线图案112沿着角落的尖角设置。衬线图案112可以是单层或是多层,而厚度与长度也可以变化。本发明对每一种的特征的四边形的形状与大小,分别会进行多种衬线图案112的测试,而预先得到对应光掩模图案110的此特征的四边形的特定衬线图案112。此特定的衬线图案112是经果测量其至少一个几何参数,再经过统计分析方式对所测量的数据与光掩模图案110之间的差异进行分析。如此可以决定出对应特征的四边形的最佳化的衬线图案112。FIG. 4 is a schematic diagram illustrating the layout of a photomask pattern after modification according to an embodiment of the present invention. Referring to FIG. 4, in the process of building the OPC model, the test photomask 94 will include a photomask pattern 110, which is the quadrilateral of the feature. The present invention adds a serif pattern 112 at the corners of the photomask pattern 110 to the right-angled corners. A serif pattern 112 is provided along the sharp corners of the corners. The serif pattern 112 may be a single layer or multiple layers, and may vary in thickness and length. The present invention tests various serif patterns 112 for the shape and size of each feature of the quadrilateral, and obtains a specific quadrilateral pattern 112 corresponding to the feature of the photomask pattern 110 in advance. The specific serif pattern 112 is obtained by measuring its at least one geometric parameter, and then analyzing the difference between the measured data and the photomask pattern 110 by means of statistical analysis. In this way, an optimized serif pattern 112 for the quadrilateral of the corresponding feature can be determined.
以图4的光掩模图案110为例,在角落处加上衬线图案112会产生不同形态的绕射方式,除了补偿角落的结构,也有利于测量的准确度。图5为依据本发明一实施例,依照图4修正后的光掩模在晶片上形成的测试图案示意图。参阅图5,测试光掩模94的光掩模图案110会换到晶片96上的光致抗蚀剂层,得到掩模图案114。此掩模图案114含有衬线图案112的效应,其角落会较明显呈现。Taking the photomask pattern 110 of FIG. 4 as an example, adding the serif pattern 112 at the corners will generate different diffraction patterns, which not only compensates the structure of the corners, but also benefits the measurement accuracy. FIG. 5 is a schematic diagram of a test pattern formed on a wafer according to the photomask after correction in FIG. 4 according to an embodiment of the present invention. Referring to FIG. 5 , the photomask pattern 110 of the test photomask 94 is switched to the photoresist layer on the wafer 96 to obtain the mask pattern 114 . The mask pattern 114 contains the effect of the serif pattern 112, the corners of which are more evident.
图6为依据本发明一实施例,对测试图案测量的几何参数示意图示意图。参阅图6,虚线表示的是含有衬线图案112的光掩模图案。利用光掩模图案在晶片上96所形成的掩模图案114以实线表示,其例如是在晶片96上的光致抗蚀剂层实际形成的光致抗蚀剂图案。对于此掩模图案114,针对关键的几何参数106例如是中间位置的宽度进行测量。测量的数据与光掩模图案110进行差异的统计分析。FIG. 6 is a schematic diagram illustrating geometric parameters measured on a test pattern according to an embodiment of the present invention. Referring to FIG. 6 , the dashed line represents the photomask pattern including the serif pattern 112 . The mask pattern 114 formed on the wafer 96 using the photomask pattern, which is, for example, the photoresist pattern actually formed by the photoresist layer on the wafer 96, is represented by a solid line. For this mask pattern 114, measurements are made for key geometrical parameters 106 such as the width of the mid-position. Statistical analysis of the difference between the measured data and the photomask pattern 110 is performed.
在此需要注意的是:由于不同的衬线图案112会产生不同的掩模图案114,其测量的准确度也会随着变化。本发明的通多种衬线图案112的变化,分别分析测量的准确度,如此可以决定出较佳化后特定的衬线图案112给光掩模图案110的角落。根据预先建立好的多种光掩模图案110,而经过上述过程得到对应的较佳化的衬线图案112,而建立成OPC模型。这些OPC模型中的特征四边形的角落已经包含经过筛选后适当的衬线图案112。It should be noted here that since different serif patterns 112 will generate different mask patterns 114, the accuracy of the measurement will also vary accordingly. According to the present invention, the accuracy of the measurement is analyzed through the variation of various serif patterns 112 , so that the optimized specific serif pattern 112 can be determined for the corners of the photomask pattern 110 . According to a variety of photomask patterns 110 that have been established in advance, the corresponding optimized serif patterns 112 are obtained through the above process, and an OPC model is established. The corners of the characteristic quads in these OPC models already contain the appropriate serif patterns 112 after screening.
对于衬线图案112的变化,其可以有多种方式。图7为依据本发明一实施例,对光掩模图案的角落修正的示意图。参阅图7,掩模图案114的角落的衬线图案112,是沿着角落密合弯折。衬线图案112例如是单层的图案。衬线图案112的厚度与长度也可以变化。For the variation of the serif pattern 112, it can be done in a number of ways. 7 is a schematic diagram of corner correction of a photomask pattern according to an embodiment of the present invention. Referring to FIG. 7 , the serif patterns 112 at the corners of the mask pattern 114 are closely folded along the corners. The serif pattern 112 is, for example, a single-layer pattern. The thickness and length of the serif pattern 112 may also vary.
图8为依据本发明一实施例,对光掩模图案的角落修正的示意图。参阅图8,掩模图案114例如是两层的结构。同样地,衬线图案112的厚度与长度也可以变化。FIG. 8 is a schematic diagram of corner correction of a photomask pattern according to an embodiment of the present invention. Referring to FIG. 8 , the mask pattern 114 is, for example, a two-layer structure. Likewise, the thickness and length of the serif pattern 112 may vary.
从图7与图8的变化,以较一般性的角度来描述,就层数的变化,衬线图案112可以是单层或是多层叠置的结构。From the changes in FIGS. 7 and 8 , to describe the changes in the number of layers, the serif pattern 112 may be a single layer or a multi-layer stacked structure.
另外针对四边形的尺寸与长宽比的不同变化,衬线图案112也会随着变化。图9A到图9D为依据本发明一实施例,对光掩模图案的角落修正的示意图。参阅图9A到图9D,掩模图案114a、114b、114c、114d的四边形例如是矩形或是正方形。就OPC模型的多样本建立过程中,其会依照大小不同,以及不同矩形的形状,分别进行对应的衬线图案112a、112b、112c、112d的最佳化选择,其厚度与长度都可以变化候选,通过测量与统计分析而以得到其中的一个衬线图案,如此可以有较准确的测量。In addition, the serif pattern 112 also changes according to the different changes in the size and aspect ratio of the quadrilateral. 9A to 9D are schematic diagrams of corner correction of a photomask pattern according to an embodiment of the present invention. Referring to FIGS. 9A to 9D, the quadrilaterals of the mask patterns 114a, 114b, 114c, and 114d are, for example, rectangles or squares. During the multi-sample establishment process of the OPC model, the corresponding serif patterns 112a, 112b, 112c, and 112d will be optimally selected according to different sizes and shapes of different rectangles, and the thickness and length can be changed. , through measurement and statistical analysis to obtain one of the serif patterns, so that a more accurate measurement can be obtained.
从,图7、图8到图9A~图9D的变化,其衬线图案112的变化方式可以相互结合,而得到其它变化的实施例。本发明的衬线图案112不限制于所举的多个实施例。From the changes of FIGS. 7 and 8 to FIGS. 9A to 9D, the changes of the serif pattern 112 can be combined with each other to obtain other changed embodiments. The serif pattern 112 of the present invention is not limited to the illustrated embodiments.
对于产生光掩模的方法,图10为依据本发明一实施例,使用光学邻近效应修正模型产生光掩模的方法的流程示意图。参阅图10配合图4到图9D的结构,使用OPC模型产生光掩模的方法包括步骤S10,提供测试光掩模100。所述测试光掩模具有特征四边形,依照尺寸与长宽比的变化而不同。在步骤S12,对所述特征四边形的每一个角落加入多种不同的衬线图案。在步骤S14,使用具有所述衬线图案112的每一个所述测试光掩模,在晶片96上形成多个测试图案。在步骤S16,测量与统计分析所述多个测试图案的至少一个几何参数,以决定出一特定衬线图案给每一个所述测试光掩模的所述角落。在步骤S18,建立光学邻近效应修正模型,包括每一个所述测试光掩模在所述角落的所述特定衬线图案。As for the method for generating a photomask, FIG. 10 is a schematic flowchart of a method for generating a photomask using an optical proximity effect correction model according to an embodiment of the present invention. Referring to FIG. 10 in conjunction with the structures of FIGS. 4 to 9D , the method of using the OPC model to generate a photomask includes step S10 , providing a test photomask 100 . The test photomask has characteristic quadrilaterals that vary in size and aspect ratio. In step S12, a plurality of different serif patterns are added to each corner of the characteristic quadrilateral. At step S14 , a plurality of test patterns are formed on wafer 96 using each of the test photomasks having the serif patterns 112 . In step S16, at least one geometric parameter of the plurality of test patterns is measured and statistically analyzed to determine a specific serif pattern for each of the corners of the test photomask. In step S18, an optical proximity effect correction model is established, including the specific serif pattern at the corner of each of the test photomasks.
在步骤S20,接收一数据库布局图案。于此,数据库布局图案是依照实际需求而定,一般是由使用者端提出给光掩模制作端。在步骤S22,使用所述光学邻近效应修正模型产生第一数据库布局图案。在步骤S24,执行光学邻近效应修正流程,以对所述第一数据库布局图案最佳化成第二数据库布局图案。在步骤S26,根据所述第二数据库布局图案产生光掩模。In step S20, a database layout pattern is received. Here, the database layout pattern is determined according to actual needs, and is generally proposed by the user end to the photomask manufacturing end. In step S22, a first database layout pattern is generated using the optical proximity effect correction model. In step S24, an optical proximity effect correction process is performed to optimize the first database layout pattern into a second database layout pattern. In step S26, a photomask is generated according to the second database layout pattern.
本发明预先建立OPC模型,其角落处会依照四边形图案的大小与形状,给予最佳化的衬线图案的修正。这OPC模型会包含在后续OPC的流程中。同时,在OPC的流程中可以提升最后产生的光掩模的准确度。有利于微小结构在光刻过程中,较准确转移到晶片上的光致抗蚀剂层,更趋近理想设计的元件结构。In the present invention, an OPC model is pre-established, and the corners of the OPC model are modified to optimize the serif pattern according to the size and shape of the quadrilateral pattern. This OPC model will be included in the subsequent OPC process. At the same time, the accuracy of the final generated photomask can be improved in the OPC process. It is beneficial to transfer the microstructure to the photoresist layer on the wafer more accurately during the photolithography process, and to approach the ideally designed element structure.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711318482.5A CN109917615A (en) | 2017-12-12 | 2017-12-12 | Method for generating photomask using optical proximity correction model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711318482.5A CN109917615A (en) | 2017-12-12 | 2017-12-12 | Method for generating photomask using optical proximity correction model |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109917615A true CN109917615A (en) | 2019-06-21 |
Family
ID=66956813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711318482.5A Pending CN109917615A (en) | 2017-12-12 | 2017-12-12 | Method for generating photomask using optical proximity correction model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109917615A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112305857A (en) * | 2019-07-31 | 2021-02-02 | 京东方科技集团股份有限公司 | Mask and method of making the same |
CN114371596A (en) * | 2022-03-22 | 2022-04-19 | 合肥晶合集成电路股份有限公司 | Mask and correction method thereof |
CN113741139B (en) * | 2020-05-27 | 2024-03-01 | 力晶积成电子制造股份有限公司 | Repositioning method for optical proximity correction |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000047361A (en) * | 1998-07-27 | 2000-02-18 | Nkk Corp | Method for correcting reticle drawing |
TW403938B (en) * | 1999-04-16 | 2000-09-01 | Taiwan Semiconductor Mfg | Improving the photomask pattern correction method of optical proximity effect |
TW429415B (en) * | 1999-09-30 | 2001-04-11 | Macronix Int Co Ltd | A method for modifying the photo mask pattern of the encoding mask of ROM by using computer to eliminate the optic proximity effect |
CN1361450A (en) * | 2000-12-27 | 2002-07-31 | 联华电子股份有限公司 | Method of Correcting Optical Proximity Effect |
JP2005189362A (en) * | 2003-12-25 | 2005-07-14 | Toppan Printing Co Ltd | Photomask design processing system |
CN1940715A (en) * | 2005-09-27 | 2007-04-04 | 力晶半导体股份有限公司 | Method of correcting photomask pattern and method of forming same |
US20070141476A1 (en) * | 2005-12-16 | 2007-06-21 | Texas Instruments Incorporated | More accurate and physical method to account for lithographic and etch contributions in OPC models |
CN101071782A (en) * | 2007-05-15 | 2007-11-14 | 颀中科技(苏州)有限公司 | Method for compensating round angle of metal bump for semiconductor chip electric contact |
CN101144976A (en) * | 2007-10-30 | 2008-03-19 | 中国科学院电工研究所 | A Correction Method for Proximity Effect of Mask in Photolithography System |
-
2017
- 2017-12-12 CN CN201711318482.5A patent/CN109917615A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000047361A (en) * | 1998-07-27 | 2000-02-18 | Nkk Corp | Method for correcting reticle drawing |
TW403938B (en) * | 1999-04-16 | 2000-09-01 | Taiwan Semiconductor Mfg | Improving the photomask pattern correction method of optical proximity effect |
TW429415B (en) * | 1999-09-30 | 2001-04-11 | Macronix Int Co Ltd | A method for modifying the photo mask pattern of the encoding mask of ROM by using computer to eliminate the optic proximity effect |
CN1361450A (en) * | 2000-12-27 | 2002-07-31 | 联华电子股份有限公司 | Method of Correcting Optical Proximity Effect |
JP2005189362A (en) * | 2003-12-25 | 2005-07-14 | Toppan Printing Co Ltd | Photomask design processing system |
CN1940715A (en) * | 2005-09-27 | 2007-04-04 | 力晶半导体股份有限公司 | Method of correcting photomask pattern and method of forming same |
US20070141476A1 (en) * | 2005-12-16 | 2007-06-21 | Texas Instruments Incorporated | More accurate and physical method to account for lithographic and etch contributions in OPC models |
CN101071782A (en) * | 2007-05-15 | 2007-11-14 | 颀中科技(苏州)有限公司 | Method for compensating round angle of metal bump for semiconductor chip electric contact |
CN101144976A (en) * | 2007-10-30 | 2008-03-19 | 中国科学院电工研究所 | A Correction Method for Proximity Effect of Mask in Photolithography System |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112305857A (en) * | 2019-07-31 | 2021-02-02 | 京东方科技集团股份有限公司 | Mask and method of making the same |
CN113741139B (en) * | 2020-05-27 | 2024-03-01 | 力晶积成电子制造股份有限公司 | Repositioning method for optical proximity correction |
CN114371596A (en) * | 2022-03-22 | 2022-04-19 | 合肥晶合集成电路股份有限公司 | Mask and correction method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7463367B2 (en) | Estimating overlay error and optical aberrations | |
JP4675854B2 (en) | Pattern evaluation method, evaluation apparatus, and pattern evaluation program | |
US20140101624A1 (en) | Contour alignment system | |
US20030156276A1 (en) | Aberration mark and method for estimating overlay error and optical aberrations | |
TW200846961A (en) | Method for correcting optical proximity effect | |
TWI552245B (en) | Methodology of incorporating wafer physical measurement with digital simulation for improving semiconductor device fabrication | |
CN109917615A (en) | Method for generating photomask using optical proximity correction model | |
US20060195808A1 (en) | Method for correcting the optical proximity effect | |
US20090119635A1 (en) | Mask pattern correction method for manufacture of semiconductor integrated circuit device | |
US7544447B2 (en) | Method of forming a mask pattern for a semiconductor device | |
KR20090000868A (en) | Optical proximity effect correction method | |
CN112099316A (en) | Correction method and system of optical proximity correction model | |
JP2009251500A (en) | Method of verifying pattern, method of forming pattern, method of manufacturing semiconductor device, and program | |
JP4658589B2 (en) | Manufacturing method of semiconductor device | |
JP2011035009A (en) | Method of measuring distortion and movement characteristics of substrate stage, exposure apparatus, and device manufacturing method | |
CN114518693B (en) | Overlay error compensation method and photolithography exposure method | |
JP2019009445A (en) | Calibration of basic small patterns in variable shaped beam electron beam lithography | |
US20080044739A1 (en) | Correction Of Resist Critical Dimension Variations In Lithography Processes | |
US20100248089A1 (en) | Method for optical proximity correction | |
TWI794312B (en) | Set of microlithographic masks, method for determining edge positions of the images of the structures of a mask, system for carrying out such a method, use of such a method, method for determining an overlay error or a relative edge placement error of a plurality of microlithographic masks, method for producing a microstructured or nanostructured component and component produced according to such a method | |
US7651826B2 (en) | Semiconductor device, fabricating method thereof, and photomask | |
KR100496454B1 (en) | Method for Correcting Line-width Variation by Stage Tilt and the non-uniformity of the surface of photomasks | |
TWI284790B (en) | Calibration method for different types of exposure apparatus via using single mask and method for auto-feedback of the best focus | |
US20120246602A1 (en) | Method of preparing pattern, method of manufacturing semiconductor device, and computer program product | |
KR20100001133A (en) | Method for correcting optical proximity effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |