CN109902360A - Method, device and machine equipment for optimizing engineering parameters in drilling site operations - Google Patents
Method, device and machine equipment for optimizing engineering parameters in drilling site operations Download PDFInfo
- Publication number
- CN109902360A CN109902360A CN201910105090.3A CN201910105090A CN109902360A CN 109902360 A CN109902360 A CN 109902360A CN 201910105090 A CN201910105090 A CN 201910105090A CN 109902360 A CN109902360 A CN 109902360A
- Authority
- CN
- China
- Prior art keywords
- data
- breaking efficiency
- rock breaking
- engineering
- rock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 155
- 238000000034 method Methods 0.000 title claims abstract description 67
- 239000002245 particle Substances 0.000 claims abstract description 136
- 238000005457 optimization Methods 0.000 claims abstract description 104
- 239000011435 rock Substances 0.000 claims abstract description 101
- 238000013499 data model Methods 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims description 24
- 238000006073 displacement reaction Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 11
- 238000012549 training Methods 0.000 claims description 11
- 238000007781 pre-processing Methods 0.000 claims description 9
- 238000010606 normalization Methods 0.000 claims description 7
- 239000002002 slurry Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000003860 storage Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001730 gamma-ray spectroscopy Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Earth Drilling (AREA)
Abstract
本公开揭示了一种在钻井现场作业中优化工程参数的方法,包括:获取新井作业的地质数据、工具数据、泥浆数据以及为进行新井的作业而设定的工程数据范围;在根据工程数据范围所构建得到的寻优空间中,为预设数量的粒子随机初始化位置;根据每一粒子在寻优空间中的位置,将地质数据、工具数据、泥浆数据以及所对应的工程数据取值作为所构建大数据模型的输入,预测得到粒子所在位置所对应的破岩效率;根据所预测得到的破岩效率,调整所对应粒子在寻优空间中的寻优方向,以确定最优破岩效率所在的位置;根据所确定的位置获得最优破岩效率所对应的工程数据。从而保证了获得最优破岩效率所对应工程数据的高效性和实时性。
The present disclosure discloses a method for optimizing engineering parameters in drilling site operations, including: acquiring geological data, tool data, mud data and engineering data ranges set for new well operations; In the constructed optimization space, the positions of a preset number of particles are randomly initialized; according to the position of each particle in the optimization space, the values of geological data, tool data, mud data and corresponding engineering data are used as the Build the input of the big data model, and predict the rock-breaking efficiency corresponding to the location of the particle; according to the predicted rock-breaking efficiency, adjust the optimization direction of the corresponding particle in the optimization space to determine the optimal rock-breaking efficiency. position; obtain the engineering data corresponding to the optimal rock breaking efficiency according to the determined position. This ensures the high efficiency and real-time performance of engineering data corresponding to the optimal rock breaking efficiency.
Description
本申请要求2018年8月16日递交、发明名称为“一种用于大数据智能钻井现场作业的GPU并行快速优化方法”的中国专利申请CN2018109336177的优先权,在此通过引用将其全部内容合并于此。This application claims the priority of Chinese patent application CN2018109336177, which was filed on August 16, 2018 and is entitled "A GPU Parallel Fast Optimization Method for Big Data Intelligent Drilling Field Operations", the entire contents of which are hereby incorporated by reference. here.
技术领域technical field
本公开涉及石油开采领域,特别涉及一种在钻井现场作业中优化工程参数的方法、装置及机器设备。The present disclosure relates to the field of oil exploitation, and in particular, to a method, device and machine equipment for optimizing engineering parameters in drilling site operations.
背景技术Background technique
在钻井作业中,地质结构、工具、泥浆等钻井作业条件直接影响破岩效率,而破岩效率的高低直接影响钻井成本和钻井时间。During drilling operations, drilling conditions such as geological structure, tools, and mud directly affect the rock-breaking efficiency, and the level of rock-breaking efficiency directly affects the drilling cost and drilling time.
具体而言,在钻井过程中,钻井作业条件不同,则对应有不同的破岩效率,例如地质结构变化,例如选用的工程参数。为了保证钻井作业的破岩效率,实现高效破岩,需要作业人员对钻井作业中可调整的工程参数进行优化,来保证高的破岩效率。Specifically, during the drilling process, different drilling operating conditions correspond to different rock breaking efficiencies, such as changes in geological structure, such as selected engineering parameters. In order to ensure the rock-breaking efficiency of drilling operations and achieve high-efficiency rock-breaking, operators need to optimize the engineering parameters that can be adjusted during drilling operations to ensure high rock-breaking efficiency.
而现有技术中,一般通过经验丰富的工程师根据工作经验来优化工程参数从而最大化破岩效率,一方面,工程参数的优化基于经验丰富的工程师,对工程师的要求和依赖性很高;另一方面,在钻井过程中,钻井条件在实时变化,(例如钻井深度变化),从而需要实时的根据钻井条件的变化进行工程参数优化。而通过工程师根据工作经验来优化工程参数并不能满足优化的实时性要求。In the existing technology, the engineering parameters are generally optimized by experienced engineers according to their work experience to maximize the rock breaking efficiency. On the one hand, the optimization of engineering parameters is based on experienced engineers, which has high requirements and dependence on engineers; On the one hand, during the drilling process, the drilling conditions change in real time (eg, the drilling depth changes), so it is necessary to optimize the engineering parameters in real time according to the changes of the drilling conditions. However, optimizing engineering parameters by engineers based on work experience cannot meet the real-time requirements of optimization.
由上可知,现有技术中基于工程师的工作经验来进行工程参数优化存在效率低且不能适用于实时变化的钻井过程中的工程参数优化。It can be seen from the above that the engineering parameter optimization based on the engineer's work experience in the prior art has low efficiency and cannot be applied to the engineering parameter optimization in the drilling process that changes in real time.
因此,亟待一种在钻井作业现场中高效、实时进行工程参数优化的方法。Therefore, there is an urgent need for an efficient and real-time optimization method of engineering parameters in drilling operation sites.
发明内容SUMMARY OF THE INVENTION
为了解决相关技术中存在的问题,本公开提供了一种在钻井现场作业中优化工程参数的方法、装置及机器设备。In order to solve the problems existing in the related art, the present disclosure provides a method, device and machine equipment for optimizing engineering parameters in drilling site operations.
第一方面,一种在钻井现场作业中优化工程参数的方法,包括:In a first aspect, a method of optimizing engineering parameters in drilling site operations, comprising:
获取新井作业的地质数据、工具数据、泥浆数据以及为进行新井的作业而设定的工程数据范围;Obtain geological data, tool data, mud data and engineering data ranges for new well operations;
在根据所述工程数据范围所构建得到的寻优空间中,为预设数量的粒子随机初始化位置,所述寻优空间中的每一点对应为所述工程数据范围内的一工程数据取值;In the optimization space constructed according to the engineering data range, a preset number of particles are randomly initialized positions, and each point in the optimization space corresponds to an engineering data value within the engineering data range;
根据每一粒子在所述寻优空间中的位置,将所述地质数据、工具数据、泥浆数据以及所对应的工程数据取值作为所构建大数据模型的输入,预测得到所述粒子所在位置所对应的破岩效率;According to the position of each particle in the optimization space, the geological data, tool data, mud data and corresponding engineering data are taken as the input of the constructed big data model, and it is predicted that the position of the particle will be Corresponding rock breaking efficiency;
根据所预测得到的破岩效率,调整所对应粒子在所述寻优空间中的寻优方向,以确定最优破岩效率所在的位置;According to the predicted rock-breaking efficiency, adjust the optimization direction of the corresponding particle in the optimization space to determine the position where the optimal rock-breaking efficiency is located;
根据所确定的位置获得最优破岩效率所对应的工程数据。The engineering data corresponding to the optimal rock breaking efficiency is obtained according to the determined position.
第二方面,一种在钻井现场作业中优化工程参数的装置,所述装置包括:In a second aspect, a device for optimizing engineering parameters in drilling site operations, the device comprising:
数据获取模块,用于获取新井作业的地质数据、工具数据、泥浆数据以及为进行新井的作业而设定的工程数据范围;The data acquisition module is used to acquire the geological data, tool data, mud data of the new well operation and the range of engineering data set for the operation of the new well;
初始化模块,用于在根据所述工程数据范围所构建得到的寻优空间中,为预设数量的粒子随机初始化位置,所述寻优空间中的每一点对应为所述工程数据范围内的一工程数据取值;The initialization module is used to randomly initialize positions for a preset number of particles in the optimization space constructed according to the engineering data range, and each point in the optimization space corresponds to a point within the engineering data range. Engineering data value;
预测模块,用于根据每一粒子在所述寻优空间中的位置,将所述地质数据、工具数据、泥浆数据以及所对应的工程数据取值作为所构建大数据模型的输入,预测得到所述粒子所在位置所对应的破岩效率;The prediction module is used for taking the geological data, tool data, mud data and corresponding engineering data values as the input of the constructed big data model according to the position of each particle in the optimization space, and predicting the obtained data. The rock breaking efficiency corresponding to the position of the particle;
调整模块,用于根据所预测得到的破岩效率,调整所对应粒子在所述寻优空间中的寻优方向,以确定最优破岩效率所在的位置;The adjustment module is used to adjust the optimization direction of the corresponding particles in the optimization space according to the predicted rock-breaking efficiency, so as to determine the position where the optimal rock-breaking efficiency is located;
工程数据获取模块,用于根据所确定的位置获得最优破岩效率所对应的工程数据。The engineering data acquisition module is used to obtain the engineering data corresponding to the optimal rock breaking efficiency according to the determined position.
在一实施例中,所述装置还包括:In one embodiment, the apparatus further includes:
钻井作业数据获取模块,用于获取在钻井作业中所采集的若干钻井作业数据以及所述钻井作业数据所对应实际破岩效率,所述钻井作业数据包括所进行钻井作业过程中的地质数据、工具数据、泥浆数据以及工程数据;The drilling operation data acquisition module is used to acquire a number of drilling operation data collected during the drilling operation and the actual rock breaking efficiency corresponding to the drilling operation data. The drilling operation data includes geological data and tools during the drilling operation. data, mud data and engineering data;
预处理模块,用于对所述钻井作业数据以及所对应实际破岩效率进行预处理;a preprocessing module for preprocessing the drilling operation data and the corresponding actual rock breaking efficiency;
迭代训练模块,用于通过预处理后的所述钻井作业数据,以所对应实际破岩效率为目标进行迭代训练,构建得到所述大数据模型。The iterative training module is configured to perform iterative training with the corresponding actual rock breaking efficiency as the target through the preprocessed drilling operation data to construct the big data model.
在一实施例中,预处理模块包括:In one embodiment, the preprocessing module includes:
归一化单元,用于对每一所述钻井作业数据中的地质数据、工具数据、泥浆数据和工程数据进行归一化处理;a normalization unit for normalizing the geological data, tool data, mud data and engineering data in each of the drilling operation data;
相关系数计算单元,用于根据归一化处理之后的每一所述钻井作业数据以及所对应实际破岩效率,计算得到两不同类型参数的相关系数;a correlation coefficient calculation unit, configured to calculate the correlation coefficients of two different types of parameters according to the normalized data of each drilling operation and the corresponding actual rock breaking efficiency;
数据去除单元,用于根据所计算得到的相关系数除去所述钻井作业数据中与破岩效率相关性低的数据,和处理所述钻井作业数据中相关性高的两两数据,获得用于构建所述大数据模型的钻井作业数据。A data removal unit, configured to remove data with low correlation with rock breaking efficiency in the drilling operation data according to the calculated correlation coefficient, and process pairs of data with high correlation in the drilling operation data to obtain data for constructing Drilling operation data of the big data model.
在一实施例中,迭代训练模块包括:In one embodiment, the iterative training module includes:
预测单元,用于根据预处理后的所述钻井作业数据在预构建模型中进行破岩效率预测,得到所对应的预测破岩效率;a prediction unit, configured to predict the rock-breaking efficiency in the pre-built model according to the pre-processed drilling operation data to obtain the corresponding predicted rock-breaking efficiency;
权重参数调整单元,用于根据所预测得到的所述预测破岩效率和所对应实际破岩效率调整所述预构建模型的权重参数,以使所对应预测破岩效率与所对应实际破岩效率的距离最小;A weight parameter adjustment unit, configured to adjust the weight parameters of the pre-built model according to the predicted rock-breaking efficiency and the corresponding actual rock-breaking efficiency, so that the corresponding predicted rock-breaking efficiency and the corresponding actual rock-breaking efficiency the smallest distance;
大数据模型构建单元,用于将调整权重参数之后的所述预构建模型作为所述大数据模型。A big data model building unit, configured to use the pre-built model after adjusting the weight parameters as the big data model.
在一实施例中,所述装置还包括:In one embodiment, the apparatus further includes:
GPU分配模块,用于根据所配置GPU的数量为所述预设数量的粒子分配对应的GPU,通过所配置的GPU并行进行各粒子破岩效率的预测和/或寻优方向的调整。The GPU allocation module is configured to allocate corresponding GPUs to the preset number of particles according to the number of configured GPUs, and perform prediction of rock-breaking efficiency and/or adjustment of optimization directions of each particle in parallel through the configured GPUs.
在一实施例中,初始化模块包括:In one embodiment, the initialization module includes:
寻优空间构建单元,用于根据所述工程数据范围中顶压的范围、排量的范围和顶驱转速的范围构建得到所述寻优空间,所述寻优空间中每一点的坐标指示了所对应的顶压、排量和顶驱转速;The optimization space construction unit is configured to construct the optimization space according to the range of the top pressure, the range of displacement and the range of the rotational speed of the top drive in the engineering data range, and the coordinates of each point in the optimization space indicate the The corresponding top pressure, displacement and top drive speed;
初始化位置确定单元,用于将预设数量的粒子随机布置于所述寻优空间中,获得每一粒子初始化所确定的位置。The initialization position determination unit is used for randomly arranging a preset number of particles in the optimization space to obtain the position determined by the initialization of each particle.
在一实施例中,调整模块包括:In one embodiment, the adjustment module includes:
更新单元,用于根据所预测得到的破岩效率,更新所述粒子的个体最优破岩效率所在位置和更新群体最优破岩效率所在位置;an update unit, configured to update the position of the individual optimal rock-breaking efficiency of the particles and the position of the group's optimal rock-breaking efficiency according to the predicted rock-breaking efficiency;
寻优方向调整单元,用于根据所述个体历史最优位置和所述群体历史最优位置调整所述粒子在所述寻优空间中的寻优方向;an optimization direction adjustment unit, configured to adjust the optimization direction of the particle in the optimization space according to the individual historical optimal position and the group historical optimal position;
移动单元,用于按照所调整的寻优方向调整所述粒子在所述寻优空间中的位置,直至达到迭代结束条件;a moving unit, configured to adjust the position of the particle in the optimization space according to the adjusted optimization direction until the iteration end condition is reached;
位置确定单元,用于在达到迭代结束条件时,将群体最优破岩效率所在位置确定为最优破岩效率所在的位置。The location determination unit is used to determine the location where the optimal rock-breaking efficiency of the group is located as the location where the optimal rock-breaking efficiency is located when the iteration end condition is reached.
在一实施例中,更新单元包括:In one embodiment, the update unit includes:
获取单元,用于获取所每一粒子所存储的个体最优破岩效率和所述群体最优破岩效率;an obtaining unit for obtaining the individual optimal rock breaking efficiency and the group optimal rock breaking efficiency stored by each particle;
个体最优破岩效率调整单元,用于若所预测得到的破岩效率大于所述粒子的所述个体最优破岩效率,则将所述粒子的所述个体最优破岩效率所在位置调整为所预测得到的破岩效率所在位置;The individual optimal rock-breaking efficiency adjustment unit is used to adjust the position of the individual optimal rock-breaking efficiency of the particles if the predicted rock-breaking efficiency is greater than the individual optimal rock-breaking efficiency of the particles is the location of the predicted rock breaking efficiency;
群体最优破岩效率调整单元,用于若更新后每个粒子的所述个体最优破岩效率中最大的个体最优破岩效率大于所述群体最优破岩效率,则将所述群体最优破岩效率所在位置调整为所述最大的个体最优破岩效率所在位置。The group optimal rock-breaking efficiency adjustment unit is used to adjust the group if the largest individual optimal rock-breaking efficiency of the individual optimal rock-breaking efficiencies of each particle after the update is greater than the group optimal rock-breaking efficiency. The position of the optimal rock-breaking efficiency is adjusted to the position of the largest individual optimal rock-breaking efficiency.
第三方面,一种机器设备,所述设备包括:In a third aspect, a machine device, the device includes:
处理器;及processor; and
存储器,所述存储器上存储有计算机可读指令,所述计算机可读指令被所述处理器执行时实现如上所述的方法。A memory having computer readable instructions stored thereon, the computer readable instructions implementing the method as described above when executed by the processor.
本公开的实施例提供的技术方案可以包括以下有益效果:The technical solutions provided by the embodiments of the present disclosure may include the following beneficial effects:
通过在根据工程数据范围所构建的寻优空间中利用预设数量的粒子进行寻优,确定最优破岩效率所在的位置,进而获得最优破岩效率所对应的工程数据。从而可以在钻井作业现场实时地获得最优破岩效率所对应的工程数据。解决了现有技术中工程数据中工程参数优化对工程师的依赖,而且可以根据实时的钻井条件进行工程参数优化,具有高效性和实时性。By using a preset number of particles for optimization in the optimization space constructed according to the range of engineering data, the position of the optimal rock-breaking efficiency is determined, and the engineering data corresponding to the optimal rock-breaking efficiency is obtained. Therefore, engineering data corresponding to the optimal rock breaking efficiency can be obtained in real time at the drilling site. It solves the dependence of engineering parameter optimization on engineers in engineering data in the prior art, and can optimize engineering parameters according to real-time drilling conditions, with high efficiency and real-time performance.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。It is to be understood that the foregoing general description and the following detailed description are exemplary only and do not limit the present disclosure.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并于说明书一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention.
图1是根据一示例性实施例示出的一种服务器的框图;1 is a block diagram of a server according to an exemplary embodiment;
图2是根据一示例性实施例示出的一种在钻井现场作业中优化工程参数的方法的流程图;Fig. 2 is a flow chart of a method for optimizing engineering parameters in drilling site operations according to an exemplary embodiment;
图3是图2对应实施例的步骤S150之前步骤的流程图;Fig. 3 is the flow chart of the steps before step S150 of the corresponding embodiment of Fig. 2;
图4是图3对应实施例的步骤S230在一实施例中的流程图;FIG. 4 is a flowchart of step S230 in the embodiment corresponding to FIG. 3 in an embodiment;
图5是图3对应实施例的步骤S250在一实施例中的流程图;FIG. 5 is a flowchart of step S250 in the embodiment corresponding to FIG. 3 in an embodiment;
图6是图2对应实施例的步骤S130在一实施例中的流程图;FIG. 6 is a flowchart of step S130 in the embodiment corresponding to FIG. 2 in an embodiment;
图7是图2对应实施例的步骤S170在一实施例中的流程图;FIG. 7 is a flowchart of step S170 in the embodiment corresponding to FIG. 2 in an embodiment;
图8是图7对应实施例的步骤S171在一实施例中的流程图;FIG. 8 is a flowchart of step S171 in the embodiment corresponding to FIG. 7 in an embodiment;
图9是根据一示例性实施例示出的一种在钻井现场作业中优化工程参数的装置的框图;FIG. 9 is a block diagram of an apparatus for optimizing engineering parameters in drilling site operations according to an exemplary embodiment;
图10是根据一示例性实施例示出的一种机器设备的框图。Fig. 10 is a block diagram of a machine device according to an exemplary embodiment.
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述,这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。By means of the above-mentioned drawings, which have shown specific embodiments of the present invention, a more detailed description will follow, these drawings and written descriptions are not intended to limit the scope of the inventive concept in any way, but by reference to specific embodiments. The concept of the present invention is explained to those skilled in the art.
具体实施方式Detailed ways
这里将详细地对示例性实施例执行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。The description will now be made in detail of exemplary embodiments, examples of which are illustrated in the accompanying drawings. Where the following description refers to the drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the illustrative examples below are not intended to represent all implementations consistent with the present invention. Rather, they are merely examples of apparatus and methods consistent with some aspects of the invention as recited in the appended claims.
图1是根据一示例性实施例示出的一种服务器的框图。服务器200可以作为本公开的执行主体执行本公开的技术方案。Fig. 1 is a block diagram of a server according to an exemplary embodiment. The server 200 can act as the executive body of the present disclosure to execute the technical solutions of the present disclosure.
需要说明的是,该服务器200只是一个适配于本发明的示例,不能认为是提供了对本发明的使用范围的任何限制。该服务器200也不能解释为需要依赖于或者必须具有图2中示出的示例性的服务器200中的一个或者多个组件。It should be noted that the server 200 is only an example suitable for the present invention, and should not be considered as providing any limitation on the scope of use of the present invention. The server 200 should also not be interpreted as requiring or necessarily having one or more components of the exemplary server 200 shown in FIG. 2 .
该服务器200的硬件结构可因配置或者性能的不同而产生较大的差异,如图2所示,服务器200包括:电源210、接口230、至少一存储器250、以及至少一中央处理器(CPU,Central Processing Units)270。The hardware structure of the server 200 may vary greatly due to different configurations or performance. As shown in FIG. 2, the server 200 includes: a power supply 210, an interface 230, at least one memory 250, and at least one central processing unit (CPU, Central Processing Units) 270.
其中,电源210用于为服务器200上的各硬件设备提供工作电压。The power supply 210 is used to provide working voltages for each hardware device on the server 200 .
接口230包括至少一有线或无线网络接口231、至少一串并转换接口233、至少一输入输出接口235以及至少一USB接口237等,用于与外部设备通信。The interface 230 includes at least one wired or wireless network interface 231, at least one serial-parallel conversion interface 233, at least one input/output interface 235, and at least one USB interface 237, etc., for communicating with external devices.
存储器250作为资源存储的载体,可以是只读存储器、随机存储器、磁盘或者光盘等,其上所存储的资源包括操作系统251、应用程序253或者数据255等,存储方式可以是短暂存储或者永久存储。其中,操作系统251用于管理与控制服务器200上的各硬件设备以及应用程序253,以实现中央处理器270对海量数据255的计算与处理,其可以是WindowsServerTM、Mac OS XTM、UnixTM、LinuxTM、FreeBSDTM、FreeRTOS等。应用程序253是基于操作系统251之上完成至少一项特定工作的计算机程序,其可以包括至少一模块(图2中未示出),每个模块都可以分别包含有对服务器200的一系列计算机可读指令。数据255可以是钻井作业过程中所采集的钻井作业数据等。The memory 250 is a carrier for resource storage, which can be a read-only memory, a random access memory, a magnetic disk or an optical disk, etc. The resources stored on it include the operating system 251, the application program 253 or the data 255, etc., and the storage method can be short-term storage or permanent storage. . Wherein, the operating system 251 is used to manage and control each hardware device and application program 253 on the server 200, so as to realize the calculation and processing of the massive data 255 by the central processing unit 270, which can be WindowsServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, FreeRTOS, etc. The application program 253 is a computer program based on the operating system 251 to complete at least one specific task, which may include at least one module (not shown in FIG. 2 ), and each module may respectively include a series of computers for the server 200 Readable instructions. The data 255 may be drilling operation data collected during the drilling operation, or the like.
中央处理器270可以包括一个或多个以上的处理器,并设置为通过总线与存储器250通信,用于运算与处理存储器250中的海量数据255。The central processing unit 270 may include one or more processors, and is configured to communicate with the memory 250 through a bus, so as to operate and process the mass data 255 in the memory 250 .
如上面所详细描述的,适用本发明的服务器200将通过中央处理器270读取存储器250中存储的一系列计算机可读指令的形式来实现在钻井现场作业中优化工程参数的方法。As described in detail above, the server 200 to which the present invention is applied will implement the method of optimizing engineering parameters in drilling site operations through the central processing unit 270 reading a series of computer readable instructions stored in the memory 250 .
此外,通过硬件电路或者硬件电路结合软件指令也能同样实现本发明,因此,实现本发明并不限于任何特定硬件电路、软件以及两者的组合。In addition, the present invention can also be implemented by hardware circuits or hardware circuits combined with software instructions. Therefore, implementation of the present invention is not limited to any specific hardware circuits, software, and combinations of the two.
图2是根据一示例性实施例示出的一种在钻井现场作业中优化工程参数的方法的流程图。该在钻井现场作业中优化工程参数的方法,可以由服务器200执行,可以包括以下步骤。FIG. 2 is a flow chart of a method for optimizing engineering parameters in drilling site operations, according to an exemplary embodiment. The method for optimizing engineering parameters during drilling site operations, which may be executed by the server 200, may include the following steps.
步骤S110,获取新井作业的地质数据、工具数据、泥浆数据以及为进行新井的作业而设定的工程数据范围。In step S110, the geological data, tool data, mud data of the operation of the new well and the range of engineering data set for the operation of the new well are acquired.
其中,钻井是指利用一定的工具在地下岩层中钻出所要求孔眼的过程,例如为了开采油气而进行钻井。Among them, drilling refers to the process of using certain tools to drill required holes in underground rock formations, such as drilling for oil and gas extraction.
新井是针对于当前即将进行钻孔眼的井而言的,通过在对应地理位置处进行钻井而获得新井。而对应的,所提及地质数据、工具数据、泥浆数据以及工程数据范围也是对于新井而言的。换言之,不同的钻井现场,对有对应的地质数据、工具数据、泥浆数据,以及工程数据范围。当然,对于已经钻井完成的井而言,工程数据是确定的,即钻井过程中所使用的工程参数值。A new well is for a well that is currently about to be drilled, and is obtained by drilling at a corresponding geographic location. Correspondingly, the mentioned range of geological data, tool data, mud data and engineering data is also for new wells. In other words, different drilling sites have corresponding geological data, tool data, mud data, and engineering data ranges. Of course, for a well that has been drilled, the engineering data is determined, that is, the engineering parameter values used in the drilling process.
对于任一钻井作业而言,所进行的钻井作业是直接通过工具作用于待钻的地质结构上的。换言之,钻井所使用的工具、工具的参数以及待作业的地址结构都将影响钻井作业的效率,例如下文提到的破岩效率。As with any drilling operation, the drilling operation is performed directly through the tool on the geological formation to be drilled. In other words, the tools used for drilling, the parameters of the tools and the address structure to be operated will all affect the efficiency of drilling operations, such as the rock breaking efficiency mentioned below.
为保证钻井的高效性,在进行钻井之前,对待钻位置进行测井,获得了所对应地质结构的地质数据。也即是说,地质数据是用于描述待进行钻井作业的地质结构的数据。地质数据例如温度、压力、孔隙度、渗透率、岩性以及矿物成分等地质物理数据。In order to ensure the efficiency of drilling, before drilling, log the position to be drilled, and obtain the geological data of the corresponding geological structure. That is, the geological data is data for describing the geological structure in which the drilling operation is to be performed. Geological data such as geophysical data such as temperature, pressure, porosity, permeability, lithology, and mineral composition.
在一具体实施例中,地质数据包括中子孔隙度、伽马密度、伽马能谱、电阻率等。而这些地质数据可以通过测井工具获得。其中,中子孔隙度是用在中子刻度井中刻度过的中子测井仪器测出的地层孔隙度。伽马密度是利用伽马射线和地质介质发生的各种效应来测出的地层孔隙度。伽马能谱即通过工具,例如自然伽马能谱仪器,测量地层中天然存在的伽马射线的能量谱,通过所获得的伽马能谱能够详细地划分地层以及地层中与放射性元素分布有关的多种地质问题。In a specific embodiment, the geological data includes neutron porosity, gamma density, gamma spectroscopy, resistivity, and the like. And these geological data can be obtained by logging tools. Among them, the neutron porosity is the formation porosity measured by the neutron logging tool calibrated in the neutron calibration well. Gamma density is the porosity of the formation measured by the use of gamma rays and various effects of the geological medium. Gamma spectroscopy is to measure the energy spectrum of naturally occurring gamma rays in the formation through tools, such as natural gamma spectroscopy instruments, and the obtained gamma energy spectrum can be used to divide the formation and the distribution of radioactive elements in the formation in detail. various geological problems.
工具数据是指用于描述为进行新井作业所使用工具的数据。其中,工具数据例如套管、裸眼尺寸、水眼个数、水眼面积、钻头尺寸等。在新井作业之前,通过现有的工具来选定工具数据。Tool data refers to data describing the tools used to conduct new well operations. Among them, tool data such as casing, open hole size, number of water holes, water hole area, drill bit size, etc. Tool data is selected from existing tools prior to new well operations.
其中,套管钻井是指用套管代替钻杆对钻头施加扭矩和钻压,实现钻头旋转与钻进。工具数据中所指的套管即指采用套管钻井的方式进行钻井。在钻井过程中为了使某些特殊地层段的地层保持原有的状态,而在钻井中某些特殊层未下套管,裸眼即指没有上套管的进行钻井的方式。Among them, casing drilling refers to the use of casing instead of drill pipe to apply torque and WOB to the drill bit, so as to realize the rotation and drilling of the drill bit. The casing referred to in the tool data refers to drilling by casing drilling. In the drilling process, in order to keep the strata in some special formation sections in the original state, and some special layers are not casing during drilling, open hole refers to the way of drilling without casing.
在钻井过程中,为了保证钻头的使用寿命,钻头上一般设有喷嘴,即钻头喷嘴,又称钻头水眼,是在钻头体的适当位置开出的孔道,与钻头体内腔流道相连通,构成了钻井液由钻杆内部进入井底的通路。水眼个数即指在新井作业中所拟使用水眼的数量。水眼面积指水眼的截面面积。钻头尺寸是指例如钻头直径等钻头参数。In the drilling process, in order to ensure the service life of the drill bit, the drill bit is generally equipped with a nozzle, that is, the drill bit nozzle, also known as the drill bit water hole, which is a hole opened at the appropriate position of the drill bit body and communicated with the flow channel of the drill bit body cavity. It constitutes a channel for drilling fluid to enter the bottom of the well from the inside of the drill pipe. The number of water holes refers to the number of water holes to be used in new well operations. The water eye area refers to the cross-sectional area of the water eye. Drill size refers to drill parameters such as drill diameter.
钻井过程中必然使用到钻井泥浆,又称钻井液、泥浆,用于辅助进行钻井。泥浆数据即用于描述新井作业所使用泥浆参数的数据。泥浆数据例如泥浆密度、漏斗粘度、固相含量、动切力等。而泥浆数据可以通过对待使用的泥浆进行实验室测量获得。Drilling mud, also known as drilling fluid and mud, must be used in the drilling process to assist drilling. Mud data is the data used to describe the mud parameters used in new well operations. Mud data such as mud density, funnel viscosity, solids content, dynamic shear, etc. The mud data can be obtained by laboratory measurements of the mud to be used.
工程数据是由在钻井过程中可选择和调整的工程参数构成。在一具体实施例中,工程参数包括钻压、排量和顶驱转速。这些工程数据可以在实时钻井过程中进行调整。工程数据范围即为各个工程参数所设定的可供选择和调整的范围。Engineering data consists of engineering parameters that can be selected and adjusted during drilling. In a specific embodiment, the engineering parameters include weight on bit, displacement and top drive speed. These engineering data can be adjusted during real-time drilling. The range of engineering data is the range for selection and adjustment set by each engineering parameter.
步骤S130,在根据工程数据范围所构建得到的寻优空间中,为预设数量的粒子随机初始化位置,寻优空间中的每一点对应为工程数据范围内的一工程数据取值。Step S130: In the optimization space constructed according to the engineering data range, randomly initialize positions of a preset number of particles, and each point in the optimization space corresponds to a value of engineering data within the engineering data range.
其中所构建的寻优空间即是根据工程数据范围中为各个工程参数所设定的参数范围来构建的。通过所构建的寻优空间来限定工程数据中各工程参数的取值空间。The constructed optimization space is constructed according to the parameter range set for each engineering parameter in the engineering data range. The value space of each engineering parameter in the engineering data is limited by the constructed optimization space.
在一实施例中,如图6所示,步骤S130包括:In one embodiment, as shown in FIG. 6 , step S130 includes:
步骤S131,根据工程数据范围中顶压的范围、排量的范围和顶驱转速的范围构建得到寻优空间,寻优空间中每一点的坐标指示了所对应的顶压、排量和顶驱转速。In step S131, an optimization space is constructed according to the range of top pressure, the range of displacement and the range of top drive rotational speed in the engineering data range, and the coordinates of each point in the search space indicate the corresponding top pressure, displacement and top drive. Rotating speed.
步骤S133,将预设数量的粒子随机布置于寻优空间中,获得每一粒子初始化所确定的位置。In step S133, a preset number of particles are randomly arranged in the optimization space, and the position determined by the initialization of each particle is obtained.
即,分别以钻压、排量、顶驱转速的值作为寻优空间中每一点的坐标值,从而,寻优空间中每一点对应于工程数据范围中对应的钻压值、排量值以及顶驱转速值。That is, the values of WOB, displacement, and top drive rotational speed are taken as the coordinate value of each point in the optimization space, so that each point in the optimization space corresponds to the corresponding WOB value, displacement value and Top drive speed value.
其中,所进行的为粒子随机初始化位置即将预设数量的粒子随机分布至寻优空间中,从而粒子所在的坐标即为该粒子的初始化位置。Wherein, what is performed is the random initialization position of the particles, that is, a preset number of particles are randomly distributed into the optimization space, so that the coordinates of the particles are the initialization positions of the particles.
粒子的数量可以根据实际的计算精度来设定,即获得最优破岩效率所对应工程数据的精度,当然,在设备的硬件能力满足的情况下,粒子的数量越多,所达到的计算精度也会相应提高。在具体实施例中,可以预先设定粒子的数量,从而,根据所设定数量的粒子在寻优空间中进行寻优,获得最优破岩效率所对应工程数据。The number of particles can be set according to the actual calculation accuracy, that is, the accuracy of the engineering data corresponding to the optimal rock breaking efficiency. Of course, when the hardware capability of the equipment is satisfied, the more particles the more the number of particles, the higher the calculation accuracy. will also increase accordingly. In a specific embodiment, the number of particles can be preset, so that optimization is performed in the optimization space according to the set number of particles, and engineering data corresponding to the optimal rock breaking efficiency is obtained.
步骤S150,根据每一粒子在寻优空间中的位置,将地质数据、工具数据、泥浆数据以及所对应的工程数据取值作为所构建大数据模型的输入,预测得到粒子所在位置所对应的破岩效率。Step S150: According to the position of each particle in the optimization space, the geological data, tool data, mud data and corresponding engineering data values are used as the input of the constructed big data model, and the particle size corresponding to the position of the particle is predicted. Rock efficiency.
如上所描述,对于寻优空间中的每一点有其所对应的工程数据,例如钻压、排量和顶驱转速。则对应的,对于存在于寻优空间中一点的粒子,则可以根据粒子所在的位置确定对应的工程数据。As described above, there is corresponding engineering data for each point in the optimization space, such as WOB, displacement and top drive speed. Correspondingly, for a particle that exists at a point in the optimization space, the corresponding engineering data can be determined according to the position of the particle.
钻井过程中的破岩效率是直接与地质数据、工具数据、泥浆数据以及工程数据中的各个参数的值直接相关。从而,在本公开的技术方案中,根据地质数据、工具数据、泥浆数据以及工程数据来进行破岩效率的预测。The rock breaking efficiency in the drilling process is directly related to the values of various parameters in the geological data, tool data, mud data and engineering data. Therefore, in the technical solution of the present disclosure, the prediction of rock breaking efficiency is performed according to geological data, tool data, mud data and engineering data.
所进行的预测是通过所构建的大数据模型采用机器学习的方式来进行预测的。在步骤S150之前,通过在已完成钻井的作业中所采集的钻井作业数据以及对应的实际破岩效率来进行大数据模型的构建,详见下文描述。通过所构建的大数据模型即可根据作业中的地质数据、工具数据、泥浆数据以及工程数据预测得到破岩效率。The predictions made are made by means of machine learning through the constructed big data model. Before step S150, a big data model is constructed by using the drilling operation data collected in the completed drilling operation and the corresponding actual rock breaking efficiency, as described in the following for details. Through the constructed big data model, the rock breaking efficiency can be predicted according to the geological data, tool data, mud data and engineering data in the operation.
其中,大数据模型例如基于Boosting、神经网络构建的模型,在此不进行具体限定。The big data model is, for example, a model constructed based on Boosting or a neural network, which is not specifically limited here.
步骤S170,根据所预测得到的破岩效率,调整所对应粒子在寻优空间中的寻优方向,以确定最优破岩效率所在的位置。Step S170, according to the predicted rock-breaking efficiency, adjust the optimization direction of the corresponding particle in the optimization space to determine the position where the optimal rock-breaking efficiency is located.
在本公开的技术方案中,采用粒子群算法在寻优空间中搜寻确定最优破岩效率所在的位置,即通过预设数量的粒子在寻优空间中的移动来确定最优破岩效率所在的位置。In the technical solution of the present disclosure, the particle swarm algorithm is used to search and determine the location of the optimal rock-breaking efficiency in the optimization space, that is, the optimal rock-breaking efficiency is determined by the movement of a preset number of particles in the optimization space. s position.
在粒子群算法中,为了搜寻确定寻优空间中最优破岩效率所在的位置,粒子在寻优空间中是不断移动的,即粒子在寻优空间中的移动速度和位置是在不断调整的。In the particle swarm optimization algorithm, in order to search and determine the position of the optimal rock breaking efficiency in the optimization space, the particles are constantly moving in the optimization space, that is, the moving speed and position of the particles in the optimization space are constantly adjusted. .
在一实施例中,如图7所示,步骤S170包括:In one embodiment, as shown in FIG. 7 , step S170 includes:
步骤S171,根据所预测得到的破岩效率,更新粒子的个体最优破岩效率所在位置和更新群体最优破岩效率所在位置。Step S171, according to the predicted rock-breaking efficiency, update the position of the individual optimal rock-breaking efficiency of the particles and the position of the group's optimal rock-breaking efficiency.
其中粒子的个体最优破岩效率所在位置即粒子所经过位置中最大破岩效率所对应的位置。The position where the individual optimal rock-breaking efficiency of the particles is located is the position corresponding to the maximum rock-breaking efficiency in the positions where the particles pass.
群体最优破岩效率所在位置是指预设数量的粒子所构成的粒子群中,在每个粒子所经过位置中最大破岩效率所对应的位置。The location where the optimal rock-breaking efficiency of the group is located refers to the position corresponding to the maximum rock-breaking efficiency in the particle swarm composed of a preset number of particles, among the positions passed by each particle.
如前,通过步骤S150,通过大数据模型预测得到每个粒子在所随机初始化位置对应的破岩效率。从而,根据所预测得到的每一粒子所在位置所对应的破岩效率,来调整粒子的个体最优破岩效率所在位置和群体最优破岩效率所在位置。As before, through step S150, the rock breaking efficiency corresponding to each particle at the randomly initialized position is predicted and obtained through the big data model. Therefore, according to the predicted rock-breaking efficiency corresponding to the location of each particle, the location of the individual optimal rock-breaking efficiency of the particle and the location of the group optimal rock-breaking efficiency are adjusted.
在一实施例中,如图8所示,步骤S171包括:In one embodiment, as shown in FIG. 8 , step S171 includes:
步骤S310,获取所每一粒子所存储的个体最优破岩效率和群体最优破岩效率。In step S310, the individual optimal rock-breaking efficiency and the group optimal rock-breaking efficiency stored by each particle are obtained.
对于寻优空间中的每一个粒子,粒子存储个体最优破岩效率和群体最优破岩效率。从而,在粒子每经过一个位置,对应地根据所在位置所对应的破岩效率更新所存储的个体最优破岩效率和群体最优破岩效率。For each particle in the optimization space, the particle stores the individual optimal rock breaking efficiency and the group optimal rock breaking efficiency. Therefore, every time the particle passes through a position, the stored individual optimal rock-breaking efficiency and group optimal rock-breaking efficiency are updated correspondingly according to the rock-breaking efficiency corresponding to the location.
步骤S320,若所预测得到的破岩效率大于粒子的个体最优破岩效率,则将粒子的个体最优破岩效率所在位置调整为所预测得到的破岩效率所在位置。Step S320, if the predicted rock-breaking efficiency is greater than the individual optimal rock-breaking efficiency of the particles, adjust the location of the individual optimal rock-breaking efficiency of the particle to the location of the predicted rock-breaking efficiency.
步骤S330,若更新后每个粒子的个体最优破岩效率中最大的个体最优破岩效率大于群体最优破岩效率,则将群体最优破岩效率所在位置调整为最大的个体最优破岩效率所在位置。Step S330, if the individual optimal rock-breaking efficiency of each particle after the update is the largest individual optimal rock-breaking efficiency is greater than the group optimal rock-breaking efficiency, adjust the position of the group optimal rock-breaking efficiency to the largest individual optimal rock-breaking efficiency. The location of the rock breaking efficiency.
对于在为粒子随机初始化位置之后,由于粒子所存储的个体最优破岩效率所在位置和群体最优破岩效率所在位置为空,则直接将粒子当前位置作为个体最优破岩效率所在位置,将粒子群中破岩效率最大的粒子所在位置作为群体最优破岩效率所在位置。After randomly initializing the position for the particle, since the position of the individual optimal rock-breaking efficiency stored by the particle and the position of the group's optimal rock-breaking efficiency are empty, the current position of the particle is directly used as the location of the individual optimal rock-breaking efficiency. The position of the particle with the largest rock-breaking efficiency in the particle swarm is taken as the location of the optimal rock-breaking efficiency of the group.
而在后续的更新中,根据粒子所在位置预测得到破岩效率之后继续更新粒子的个体最优破岩效率所在位置和更新群体最优破岩效率所在的位置。In the subsequent update, after the rock-breaking efficiency is predicted according to the position of the particle, the position of the individual optimal rock-breaking efficiency of the particle and the position of the group's optimal rock-breaking efficiency are continuously updated.
步骤S172,根据个体历史最优位置和群体历史最优位置调整粒子在寻优空间中的寻优方向。Step S172, adjust the optimization direction of the particle in the optimization space according to the individual historical optimal position and the group historical optimal position.
寻优方向即指粒子在寻优空间中的移动方向。当然,粒子在寻优空间中的目标是最优破岩效率所在的位置。在粒子的每一次移动中,是基于粒子当前所在位置和所更新后的群体最优破岩效率所在位置来确定寻优方向的。换言之,粒子根据当前所在位置和更新后最优破岩效率所在位置构建寻优最短路径,从而,粒子当前所在位置指向更新后最优破岩效率所在位置的方向即为寻优方向。The optimization direction refers to the moving direction of the particle in the optimization space. Of course, the goal of particles in the optimization space is where the optimal rock breaking efficiency is located. In each movement of the particle, the optimization direction is determined based on the current position of the particle and the updated position of the optimal rock-breaking efficiency of the group. In other words, the particle constructs the optimal shortest path according to the current position and the position of the updated optimal rock-breaking efficiency. Therefore, the direction from the current position of the particle to the updated optimal rock-breaking efficiency is the optimal direction.
步骤S173,按照所调整的寻优方向调整粒子在寻优空间中的位置,直至达到迭代结束条件。Step S173, adjust the position of the particle in the optimization space according to the adjusted optimization direction until the iteration end condition is reached.
其中,所进行的调整粒子的寻优方向,即更新粒子的速度。在粒子群算法中,粒子的速度更新公式为:Among them, the optimization direction of the adjusted particle is to update the speed of the particle. In particle swarm optimization, the particle velocity update formula is:
为第k次迭代粒子i在寻优空间中第d维的速度分量;ω为惯性权重,非负数;c1,c2为加速度常数;r1,r2为两个随机数,取值范围为[0,1];pbesti,d为粒子i所存储个体最优破岩效率所在位置的第d维分量;gbestd为粒子所存储的群体最优破岩效率所在位置的第d维分量。 is the velocity component of the k-th iteration particle i in the d-th dimension in the optimization space; ω is the inertia weight, non-negative; c 1 , c 2 are the acceleration constants; r 1 , r 2 are two random numbers, the value range is [0,1]; pbest i,d is the d-th dimension component of the location where the individual optimal rock-breaking efficiency is stored by particle i; gbest d is the d-th dimension component of the location where the group optimal rock-breaking efficiency is stored by the particle i .
粒子的位置更新公式为:The particle's position update formula is:
为第k次迭代粒子i的位置矢量的第d维分量。 is the d-dimensional component of the position vector of particle i in the k-th iteration.
从而,寻优空间中的粒子按照上述公式进行速度和位置的更新,在位置更新后,重复执行上述计算所更新位置所对应的破岩效率,以及调整寻优方向以及更新粒子的位置的过程,直至达到预设的迭代结束条件。其中,粒子所进行的每一次速度和位置的更新,即视为一次迭代。Therefore, the particles in the optimization space are updated with the speed and position according to the above formula. After the position is updated, the rock-breaking efficiency corresponding to the updated position is repeatedly executed, and the process of adjusting the optimization direction and updating the position of the particle is repeated. until the preset iteration end condition is reached. Among them, each speed and position update performed by the particle is regarded as an iteration.
步骤S174,在达到迭代结束条件时,将群体最优破岩效率所在位置确定为最优破岩效率所在的位置。In step S174, when the iteration end condition is reached, the position where the group optimal rock breaking efficiency is located is determined as the position where the optimal rock breaking efficiency is located.
在达到迭代结束条件时,将所存储的群体最优破岩效率所在位置即确定为寻优空间中最优破岩效率所在的位置。迭代结束条件例如预设的最大迭代次数,则在迭代的次数达到最大迭代次数时,则视为达到迭代结束条件;又例如,迭代结束条件为连续N次迭代中群体历史最优位置保持不变,则在连续进行N次迭代中,粒子群的群体历史最优位置为寻优空间中的同一点,则视为达到迭代结束条件。当然,以上仅仅是对迭代结束条件的示例性举例,在具体实施例中,迭代结束条件还可以是其他所设定的条件。When the iteration end condition is reached, the location of the stored optimal rock-breaking efficiency of the group is determined as the location of the optimal rock-breaking efficiency in the optimization space. The iteration end condition is such as the preset maximum number of iterations, when the number of iterations reaches the maximum number of iterations, the iteration end condition is deemed to be reached; for another example, the iteration end condition is that the historical optimal position of the group remains unchanged in N consecutive iterations , then in the continuous N iterations, the group history optimal position of the particle swarm is the same point in the optimization space, which is regarded as reaching the iteration end condition. Of course, the above is only an exemplary example of the iteration end condition, and in a specific embodiment, the iteration end condition may also be other set conditions.
步骤S190,根据所确定的位置获得最优破岩效率所对应的工程数据。Step S190, obtaining engineering data corresponding to the optimal rock breaking efficiency according to the determined position.
如上所描述,寻优空间中,每一点对应为工程数据范围内的一工程数据取值。从而,根据所确定的位置即可获得最优破岩效率所对应的工程数据。从而便于新井作业现场,根据所获得的工程数据进行新井的作业,例如按照所对应的钻压施加钻井压力,按照对应的排量、对应的顶驱转速进行钻井作业。As described above, in the optimization space, each point corresponds to an engineering data value within the engineering data range. Therefore, the engineering data corresponding to the optimal rock breaking efficiency can be obtained according to the determined position. Therefore, it is convenient for the new well operation site to carry out the new well operation according to the obtained engineering data, for example, applying the drilling pressure according to the corresponding WOB, and carrying out the drilling operation according to the corresponding displacement and corresponding top drive rotation speed.
在钻井作业中,为了保证破岩效率,需要进行钻井过程中工程数据中工程参数的优化,而现有技术中,一般通过经验丰富的工程师根据工作经验来优化工程参数从而最大化破岩效率,一方面,工程参数的优化基于经验丰富的工程师,对工程师的要求和依赖性很高;另一方面,在钻井过程中,钻井条件在实时变化,(例如钻井深度不同,则钻井的地质数据也不同,那么对应的最优破岩效率所对应的工程数据也可能不同),而基于工程师根据工作经验所进行的工程参数的优化,效率较低,并不能适用于实时变化的钻井过程中的工程参数优化。而通过本公开的技术方案,则可以解决工程参数优化对工程师的依赖,而且可以根据实时的钻井条件进行工程参数优化,具有高效性和实时性。In drilling operations, in order to ensure the rock-breaking efficiency, it is necessary to optimize the engineering parameters in the engineering data during the drilling process. In the prior art, the engineering parameters are generally optimized by experienced engineers based on their work experience to maximize the rock-breaking efficiency. On the one hand, the optimization of engineering parameters is based on experienced engineers, which has high requirements and dependence on engineers; on the other hand, during the drilling process, the drilling conditions are changing in real time, (for example, the drilling depth is different, the geological data of the drilling also The engineering data corresponding to the optimal rock breaking efficiency may also be different), and the optimization of engineering parameters based on the engineer’s work experience has low efficiency and is not suitable for real-time changes in the drilling process. Parameter optimization. With the technical solution of the present disclosure, the dependence of engineering parameter optimization on engineers can be solved, and engineering parameter optimization can be performed according to real-time drilling conditions, with high efficiency and real-time performance.
在一实施例中,如图3所示,步骤S150之前,方法还包括:In one embodiment, as shown in FIG. 3, before step S150, the method further includes:
步骤S210,获取在钻井作业中所采集的若干钻井作业数据以及钻井作业数据所对应实际破岩效率,钻井作业数据包括所进行钻井作业过程中的地质数据、工具数据、泥浆数据以及工程数据。In step S210, several drilling operation data collected during the drilling operation and the actual rock breaking efficiency corresponding to the drilling operation data are obtained. The drilling operation data includes geological data, tool data, mud data and engineering data during the drilling operation.
步骤S230,对钻井作业数据以及所对应实际破岩效率进行预处理。Step S230, preprocessing the drilling operation data and the corresponding actual rock breaking efficiency.
在一实施例中,如图4所示,步骤S230包括:In one embodiment, as shown in FIG. 4 , step S230 includes:
步骤S231,对每一钻井作业数据中的地质数据、工具数据、泥浆数据和工程数据进行归一化处理。Step S231, normalize the geological data, tool data, mud data and engineering data in each drilling operation data.
其中,所进行的归一化处理,是根据所采集的钻井作业数据中的各个参数值,计算得到各个参数的平均值和标准差,从而,根据公式Among them, the normalization process performed is to calculate the average value and standard deviation of each parameter according to the value of each parameter in the collected drilling operation data. Therefore, according to the formula
进行各个参数值的变换,其中,表示参数X的平均值,σ表示参数X的标准差,从而,通过上述变换,将参数X变换为X′,实现了参数X的归一化。Transform each parameter value, where, represents the average value of the parameter X, and σ represents the standard deviation of the parameter X. Therefore, through the above transformation, the parameter X is transformed into X', and the normalization of the parameter X is realized.
其中,参数例如地质数据中的中子孔隙度,电阻率等。值得一提的是,所进行的归一化处理,是将钻井作业数据中的地质数据、工具数据、泥浆数据以及工程数据中的每一参数均按照上述公式进行归一化处理。Among them, parameters such as neutron porosity, resistivity, etc. in geological data. It is worth mentioning that in the normalization process, each parameter in the geological data, tool data, mud data and engineering data in the drilling operation data is normalized according to the above formula.
在一实施例中,在步骤S231之前,对所采集的钻井作业数据进行清洗和映射。其中,所进行的清洗是指将钻井作业数据中的异常数据或者错误数据除去,和/或将缺失的数据补齐,从而,使得所构建的大数据模型是基于完整和真实的数据构建得到,以保证大数据模型的有效性。In one embodiment, before step S231, the collected drilling operation data is cleaned and mapped. Wherein, the cleaning refers to removing abnormal data or erroneous data in the drilling operation data, and/or filling up the missing data, so that the constructed big data model is constructed based on complete and real data, To ensure the validity of the big data model.
其中所进行的映射是指将钻井作业数据中的定性(文本)参数映射为定量(数字)参数。例如将上文提到的套管方式映射为0,将裸眼方式映射为1,从而,通过所进行的映射,实现了文本参数的定量化,并用于构建大数据模型。The mapping performed therein refers to mapping qualitative (text) parameters in drilling operation data to quantitative (numeric) parameters. For example, the casing method mentioned above is mapped to 0, and the naked-eye method is mapped to 1, so that through the mapping, the quantification of text parameters is realized and used to build a big data model.
步骤S232,根据归一化处理之后的每一钻井作业数据以及所对应实际破岩效率,计算得到两不同类型参数的相关系数。Step S232, according to the normalized data of each drilling operation and the corresponding actual rock breaking efficiency, the correlation coefficients of the two different types of parameters are calculated and obtained.
其中所进行的相关系数计算,即计算钻井作业数据中地质数据的各参数、泥浆数据中的各参数、工具数据中的各参数、工程数据中的各参数以及破岩效率这一参数中,彼此两不同参数之间的相关系数。The calculation of the correlation coefficient, that is, the calculation of the parameters of the geological data in the drilling operation data, the parameters of the mud data, the parameters of the tool data, the parameters of the engineering data and the parameter of the rock-breaking efficiency, are relative to each other. Correlation coefficient between two different parameters.
相关系数的计算公式为:The formula for calculating the correlation coefficient is:
其中Cov(X,Y)为参数X和参数Y的协方差,σx为参数X的方差,σy为参数Y的方差,从而根据上述公式计算得到参数X和参数Y的相关系数。所计算得到的相关系数的范围为[0,1],0表示不相关,1表示完全线性相关。where Cov(X, Y) is the covariance of parameter X and parameter Y, σ x is the variance of parameter X, and σ y is the variance of parameter Y, so the correlation coefficient between parameter X and parameter Y is calculated according to the above formula. The range of the calculated correlation coefficient is [0,1], 0 means no correlation, 1 means perfect linear correlation.
从而,根据所计算得到的相关系数来确定两参数之间的相关性大小。Therefore, the magnitude of the correlation between the two parameters is determined according to the calculated correlation coefficient.
步骤S231,根据所计算得到的相关系数除去钻井作业数据中与破岩效率相关性低的数据,和处理钻井作业数据中相关性高的两两数据,获得用于构建大数据模型的钻井作业数据。Step S231, according to the calculated correlation coefficient, remove the data with low correlation with the rock breaking efficiency in the drilling operation data, and process the paired data with high correlation in the drilling operation data, and obtain the drilling operation data for building the big data model. .
其中,相关性高低的判断基于所计算得到的相关系数来进行,具体而言,为相关性高和相关性低分别设定对应的阈值,例如为相关性高设定的阈值为A:即在相关系数超过阈值A则视为两参数的相关性高;又例如,为相关性低设定的阈值为B:即在相关系数低于阈值B则视为两参数的相关性低。Wherein, the judgment of high or low correlation is performed based on the calculated correlation coefficient. Specifically, corresponding thresholds are respectively set for high correlation and low correlation. For example, the threshold set for high correlation is A: that is, in When the correlation coefficient exceeds the threshold A, the correlation between the two parameters is considered to be high; for another example, the threshold set for the low correlation is B: that is, when the correlation coefficient is lower than the threshold B, the correlation between the two parameters is considered to be low.
进而,将钻井作业数据中与破岩效率相关性低的数据除去。而对于钻井作业数据中相关性高的两两数据,则两两数据中的一数据可以用另一数据的关系表达式来表示,从而,可以除去该两两数据中的其中一数据,而根据另一数据来进行迭代训练。Furthermore, the data with low correlation with the rock-breaking efficiency in the drilling operation data is removed. For pairs of data with high correlation in drilling operation data, one data in the pair of data can be represented by the relational expression of the other data, so that one of the pair of data can be removed, and according to Another data for iterative training.
步骤S250,通过预处理后的钻井作业数据,以所对应实际破岩效率为目标进行迭代训练,构建得到大数据模型。Step S250 , iterative training is performed with the corresponding actual rock breaking efficiency as the target through the preprocessed drilling operation data, and a big data model is constructed and obtained.
其中所进行的迭代训练,即通过预处理后的钻井作业数据构建模型的损失函数,并通过求解相应的损失函数调整模型的参数来构建得到大数据模型。其中损失函数即是刻画模型所预测得到的预测值与钻井作业数据所对应实际值之间差值的函数。In the iterative training, the loss function of the model is constructed through the preprocessed drilling operation data, and the big data model is constructed by adjusting the parameters of the model by solving the corresponding loss function. The loss function is a function that describes the difference between the predicted value predicted by the model and the actual value corresponding to the drilling data.
在一实施例中,如图5所示,步骤S250包括:In one embodiment, as shown in FIG. 5 , step S250 includes:
步骤S251,根据预处理后的钻井作业数据在预构建模型中进行破岩效率预测,得到所对应的预测破岩效率。Step S251 , predicting the rock-breaking efficiency in the pre-built model according to the pre-processed drilling operation data, to obtain the corresponding predicted rock-breaking efficiency.
其中预构建的模型可以是通过Boosting、神经网络等构建的模型。通过所预构建的模型来根据每一与处理之后的钻井作业数据进行破岩效率的预测,得到对应的预测破岩效率,即上文提到的预测值。对应的,钻井作业数据所对应的实际破岩效率即为实际值。The pre-built model may be a model constructed by boosting, neural network, or the like. The pre-built model is used to predict the rock-breaking efficiency according to each and processed drilling operation data, so as to obtain the corresponding predicted rock-breaking efficiency, that is, the predicted value mentioned above. Correspondingly, the actual rock breaking efficiency corresponding to the drilling operation data is the actual value.
步骤S252,根据所预测得到的预测破岩效率和所对应实际破岩效率调整预构建模型的权重参数,以使所对应预测破岩效率与所对应实际破岩效率的距离最小。Step S252: Adjust the weight parameters of the pre-built model according to the predicted predicted rock breaking efficiency and the corresponding actual rock breaking efficiency, so as to minimize the distance between the corresponding predicted rock breaking efficiency and the corresponding actual rock breaking efficiency.
步骤S253,将调整权重参数之后的预构建模型作为大数据模型。Step S253, the pre-built model after adjusting the weight parameters is used as the big data model.
其中可以通过预测破岩效率与实际破岩效率之间的距离可以通过欧式距离等来进行表示,在此不进行具体限定。The distance between the predicted rock-breaking efficiency and the actual rock-breaking efficiency can be represented by Euclidean distance, etc., which is not specifically limited here.
从而,通过所采集的钻井作业数据以及对应的实际破岩效率即构建得到用于进行破岩效率预测的大数据模型。Therefore, a big data model for predicting rock-breaking efficiency is constructed through the collected drilling operation data and the corresponding actual rock-breaking efficiency.
在一实施例中,步骤S130之前,方法还包括:In one embodiment, before step S130, the method further includes:
根据所配置GPU的数量为预设数量的粒子分配对应的GPU,通过所配置的GPU并行进行各粒子破岩效率的预测和/或寻优方向的调整。According to the number of configured GPUs, the corresponding GPUs are allocated to the preset number of particles, and the prediction of the rock-breaking efficiency of each particle and/or the adjustment of the optimization direction is performed in parallel by the configured GPUs.
从而,对于寻优空间中的粒子,由所分配的GPU开设线程进行粒子所对应破岩效率的预测和寻优方向的调整,从而,实现了多GPU并行,缩短了运行时间,进一步提高了在钻井作业现场获得最优破岩效率所对应工程数据的速率,满足钻井作业现场的实时性要求。其中所进行的分配例如是基于GPU的计算能力来进行分配,在此不进行具体限定。Therefore, for the particles in the optimization space, the allocated GPU opens threads to predict the rock-breaking efficiency corresponding to the particles and adjust the optimization direction, thereby realizing multi-GPU parallelism, shortening the running time, and further improving the performance of the particle. The rate at which the engineering data corresponding to the optimal rock breaking efficiency is obtained at the drilling site, which meets the real-time requirements of the drilling site. The allocation performed therein is, for example, based on the computing capability of the GPU, which is not specifically limited herein.
下述为本公开装置实施例,可以用于执行本公开上述服务器200执行的在钻井现场作业中优化工程参数的方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开在钻井现场作业中优化工程参数的方法实施例。The following is the embodiment of the apparatus of the present disclosure, which can be used to execute the embodiment of the method for optimizing engineering parameters in drilling site operations performed by the server 200 of the present disclosure. For details not disclosed in the device embodiments of the present disclosure, please refer to the method embodiments of the present disclosure for optimizing engineering parameters during drilling site operations.
图9是根据一示例性实施例示出的一种在钻井现场作业中优化工程参数的装置的框图,该在钻井现场作业中优化工程参数的装置可以配置于图2所示服务器200中,以上任一所示的在钻井现场作业中优化工程参数的方法的全部或者部分步骤。如图9所示,该装置包括但不限于:数据获取模块110、初始化模块130、预测模块150、调整模块170以及工程数据获取模块190。其中,FIG. 9 is a block diagram of an apparatus for optimizing engineering parameters in drilling site operations according to an exemplary embodiment. The apparatus for optimizing engineering parameters in drilling site operations may be configured in the server 200 shown in FIG. 2 , and any of the above All or part of the steps of an illustrated method for optimizing engineering parameters during drilling site operations. As shown in FIG. 9 , the apparatus includes, but is not limited to, a data acquisition module 110 , an initialization module 130 , a prediction module 150 , an adjustment module 170 and an engineering data acquisition module 190 . in,
数据获取模块110,用于获取新井作业的地质数据、工具数据、泥浆数据以及为进行新井的作业而设定的工程数据范围。The data acquisition module 110 is used for acquiring geological data, tool data, mud data of the new well operation and the range of engineering data set for the new well operation.
初始化模块130,该模块与数据获取模块110相连,用于在根据工程数据范围所构建得到的寻优空间中,为预设数量的粒子随机初始化位置,寻优空间中的每一点对应为工程数据范围内的一工程数据取值。The initialization module 130, which is connected to the data acquisition module 110, is used to randomly initialize positions for a preset number of particles in the optimization space constructed according to the engineering data range, and each point in the optimization space corresponds to engineering data A project data value within the range.
预测模块150,该模块与初始化模块130相连,用于根据每一粒子在寻优空间中的位置,将地质数据、工具数据、泥浆数据以及所对应的工程数据取值作为所构建大数据模型的输入,预测得到粒子所在位置所对应的破岩效率。The prediction module 150, which is connected with the initialization module 130, is used for taking geological data, tool data, mud data and corresponding engineering data values as the values of the constructed big data model according to the position of each particle in the optimization space. Input, predict the rock breaking efficiency corresponding to the particle position.
调整模块170,该模块与预测模块150相连,用于根据所预测得到的破岩效率,调整所对应粒子在寻优空间中的寻优方向,以确定最优破岩效率所在的位置。The adjustment module 170, which is connected to the prediction module 150, is used for adjusting the optimization direction of the corresponding particle in the optimization space according to the predicted rock-breaking efficiency, so as to determine the position where the optimal rock-breaking efficiency is located.
工程数据获取模块190,该模块与调整模块170相连,用于根据所确定的位置获得最优破岩效率所对应的工程数据。The engineering data acquisition module 190, which is connected to the adjustment module 170, is used for obtaining engineering data corresponding to the optimal rock breaking efficiency according to the determined position.
上述装置中各个模块的功能和作用的实现过程具体详见上述在钻井现场作业中优化工程参数的方法中对应步骤的实现过程,在此不再赘述。For details of the realization process of the functions and functions of each module in the above-mentioned device, please refer to the realization process of the corresponding steps in the above-mentioned method for optimizing engineering parameters during drilling site operations, and will not be repeated here.
可以理解,这些模块可以通过硬件、软件、或二者结合来实现。当以硬件方式实现时,这些模块可以实施为一个或多个硬件模块,例如一个或多个专用集成电路。当以软件方式实现时,这些模块可以实施为在一个或多个处理器上执行的一个或多个计算机程序,例如图2的中央处理器270所执行的存储在存储器250中的程序。It can be understood that these modules can be implemented by hardware, software, or a combination of the two. When implemented in hardware, these modules may be implemented as one or more hardware modules, such as one or more application specific integrated circuits. When implemented in software, these modules may be implemented as one or more computer programs executed on one or more processors, such as programs stored in memory 250 executed by central processing unit 270 of FIG. 2 .
在一实施例中,在钻井现场作业中优化工程参数的装置还包括:In one embodiment, the device for optimizing engineering parameters during drilling site operations further includes:
钻井作业数据获取模块,用于获取在钻井作业中所采集的若干钻井作业数据以及钻井作业数据所对应实际破岩效率,钻井作业数据包括所进行钻井作业过程中的地质数据、工具数据、泥浆数据以及工程数据。The drilling operation data acquisition module is used to obtain several drilling operation data collected during the drilling operation and the actual rock breaking efficiency corresponding to the drilling operation data. The drilling operation data includes the geological data, tool data and mud data during the drilling operation. and engineering data.
预处理模块,用于对钻井作业数据以及所对应实际破岩效率进行预处理。The preprocessing module is used to preprocess the drilling operation data and the corresponding actual rock breaking efficiency.
迭代训练模块,用于通过预处理后的钻井作业数据,以所对应实际破岩效率为目标进行迭代训练,构建得到大数据模型。The iterative training module is used to perform iterative training with the corresponding actual rock breaking efficiency as the target through the preprocessed drilling operation data to construct a big data model.
在一实施例中,预处理模块包括:In one embodiment, the preprocessing module includes:
归一化单元,用于对每一钻井作业数据中的地质数据、工具数据、泥浆数据和工程数据进行归一化处理。The normalization unit is used for normalizing the geological data, tool data, mud data and engineering data in each drilling operation data.
相关系数计算单元,用于根据归一化处理之后的每一钻井作业数据以及所对应实际破岩效率,计算得到两不同类型参数的相关系数。The correlation coefficient calculation unit is used for calculating the correlation coefficients of two different types of parameters according to the normalized data of each drilling operation and the corresponding actual rock breaking efficiency.
数据去除单元,用于根据所计算得到的相关系数除去钻井作业数据中与破岩效率相关性低的数据,和处理钻井作业数据中相关性高的两两数据,获得用于构建大数据模型的钻井作业数据。The data removal unit is used to remove the data with low correlation with the rock breaking efficiency in the drilling operation data according to the calculated correlation coefficient, and process the paired data with high correlation in the drilling operation data, and obtain the data used for building the big data model. Drilling operation data.
在一实施例中,迭代训练模块包括:In one embodiment, the iterative training module includes:
预测单元,用于根据预处理后的钻井作业数据在预构建模型中进行破岩效率预测,得到所对应的预测破岩效率。The prediction unit is used to predict the rock-breaking efficiency in the pre-built model according to the pre-processed drilling operation data, and obtain the corresponding predicted rock-breaking efficiency.
权重参数调整单元,用于根据所预测得到的预测破岩效率和所对应实际破岩效率调整预构建模型的权重参数,以使所对应预测破岩效率与所对应实际破岩效率的距离最小。The weight parameter adjustment unit is used to adjust the weight parameters of the pre-built model according to the predicted predicted rock breaking efficiency and the corresponding actual rock breaking efficiency, so as to minimize the distance between the corresponding predicted rock breaking efficiency and the corresponding actual rock breaking efficiency.
大数据模型构建单元,用于将调整权重参数之后的预构建模型作为大数据模型。The big data model building unit is used to use the pre-built model after adjusting the weight parameters as the big data model.
在一实施例中,在钻井现场作业中优化工程参数的装置还包括:In one embodiment, the device for optimizing engineering parameters during drilling site operations further includes:
GPU分配模块,用于根据所配置GPU的数量为预设数量的粒子分配对应的GPU,通过所配置的GPU并行进行各粒子破岩效率的预测和/或寻优方向的调整。The GPU allocation module is configured to allocate a corresponding GPU to a preset number of particles according to the number of configured GPUs, and perform prediction of rock-breaking efficiency of each particle and/or adjustment of the optimization direction in parallel through the configured GPU.
在一实施例中,初始化模块包括:In one embodiment, the initialization module includes:
寻优空间构建单元,用于根据工程数据范围中顶压的范围、排量的范围和顶驱转速的范围构建得到寻优空间,寻优空间中每一点的坐标指示了所对应的顶压、排量和顶驱转速。The optimization space construction unit is used to construct the optimization space according to the range of the top pressure, the range of displacement and the range of the top drive speed in the engineering data range. The coordinates of each point in the optimization space indicate the corresponding top pressure, displacement and top drive speed.
初始化位置确定单元,用于将预设数量的粒子随机布置于寻优空间中,获得每一粒子初始化所确定的位置。The initialization position determination unit is used for randomly arranging a preset number of particles in the optimization space to obtain the position determined by the initialization of each particle.
在一实施例中,调整模块包括:In one embodiment, the adjustment module includes:
更新单元,用于根据所预测得到的破岩效率,更新粒子的个体最优破岩效率所在位置和更新群体最优破岩效率所在位置。The updating unit is used to update the location of the individual optimal rock-breaking efficiency of the particles and the location of the optimal rock-breaking efficiency of the group according to the predicted rock-breaking efficiency.
寻优方向调整单元,用于根据个体历史最优位置和群体历史最优位置调整粒子在寻优空间中的寻优方向。The optimization direction adjustment unit is used to adjust the optimization direction of the particles in the optimization space according to the historical optimal position of the individual and the historical optimal position of the group.
移动单元,用于按照所调整的寻优方向调整粒子在寻优空间中的位置,直至达到迭代结束条件。The moving unit is used to adjust the position of the particle in the optimization space according to the adjusted optimization direction until the iteration end condition is reached.
位置确定单元,用于在达到迭代结束条件时,将群体最优破岩效率所在位置确定为最优破岩效率所在的位置。The location determination unit is used to determine the location where the optimal rock-breaking efficiency of the group is located as the location where the optimal rock-breaking efficiency is located when the iteration end condition is reached.
在一实施例中,更新单元包括:In one embodiment, the update unit includes:
获取单元,用于获取所每一粒子所存储的个体最优破岩效率和群体最优破岩效率。The obtaining unit is used to obtain the individual optimal rock-breaking efficiency and the group optimal rock-breaking efficiency stored by each particle.
个体最优破岩效率调整单元,用于若所预测得到的破岩效率大于粒子的个体最优破岩效率,则将粒子的个体最优破岩效率所在位置调整为所预测得到的破岩效率所在位置。The individual optimal rock-breaking efficiency adjustment unit is used to adjust the position of the particle's individual optimal rock-breaking efficiency to the predicted rock-breaking efficiency if the predicted rock-breaking efficiency is greater than the particle's individual optimal rock-breaking efficiency. location.
群体最优破岩效率调整单元,用于若更新后每个粒子的个体最优破岩效率中最大的个体最优破岩效率大于群体最优破岩效率,则将群体最优破岩效率所在位置调整为最大的个体最优破岩效率所在位置。The group optimal rock-breaking efficiency adjustment unit is used to adjust the location of the group optimal rock-breaking efficiency if the largest individual optimal rock-breaking efficiency of each particle after the update is greater than the group optimal rock-breaking efficiency The position is adjusted to the position where the maximum individual optimal rock breaking efficiency is located.
上述装置中各个模块的功能和作用的实现过程具体详见上述在钻井现场作业中优化工程参数的方法中对应步骤的实现过程,在此不再赘述。For details of the realization process of the functions and functions of each module in the above-mentioned device, please refer to the realization process of the corresponding steps in the above-mentioned method for optimizing engineering parameters during drilling site operations, and will not be repeated here.
可选的,本公开还提供一种机器设备,该机器设备可以用于执行以上方法实施例中任一所示的在钻井现场作业中优化工程参数的方法的全部或者部分步骤。如图10所示,机器设备包括:Optionally, the present disclosure further provides a machine device, which can be used to perform all or part of the steps of the method for optimizing engineering parameters in drilling site operations shown in any of the above method embodiments. As shown in Figure 10, the machine equipment includes:
处理器1001;及processor 1001; and
存储器1002,存储器1002上存储有计算机可读指令,计算机可读指令被处理器1001执行时实现以上方法实施中任一项的方法。The memory 1002 has computer-readable instructions stored on the memory 1002, and when the computer-readable instructions are executed by the processor 1001, any one of the above method implementations is implemented.
其中,可执行指令被处理器1001执行时实现以上任一实施例中的方法。其中可执行指令比如是计算机可读指令,在处理器1001执行时,处理器通过与存储器之间所连接的通信线/总线1003读取存储于存储器中的计算机可读指令。The method in any of the above embodiments is implemented when the executable instruction is executed by the processor 1001 . The executable instructions are, for example, computer-readable instructions. When the processor 1001 executes the instructions, the processor reads the computer-readable instructions stored in the memory through a communication line/bus 1003 connected to the memory.
该实施例中的处理器执行操作的具体方式已经在有关该在钻井现场作业中优化工程参数的方法的实施例中进行了详细描述,此处将不做详细阐述说明。The specific manner in which the processor in this embodiment performs operations has been described in detail in the embodiment related to the method for optimizing engineering parameters in drilling site operations, and will not be described in detail here.
在示例性实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上任一方法实施例中的方法。其中计算机可读存储介质例如包括计算机程序的存储器250,上述指令可由服务器200的中央处理器270执行以实现上述的方法。In an exemplary embodiment, a computer-readable storage medium is also provided, on which a computer program is stored, and when the computer program is executed by a processor, implements the method in any of the above method embodiments. The computer-readable storage medium includes, for example, the memory 250 of the computer program, and the above-mentioned instructions can be executed by the central processing unit 270 of the server 200 to implement the above-mentioned method.
该实施例中的处理器执行操作的具体方式已经在有关该在钻井现场作业中优化工程参数的方法的实施例中执行了详细描述,此处将不做详细阐述说明。The specific manner in which the processor in this embodiment performs operations has been described in detail in the embodiment related to the method for optimizing engineering parameters in drilling site operations, and will not be described in detail here.
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围执行各种修改和改变。本发明的范围仅由所附的权利要求来限制。It should be understood that the present invention is not limited to the precise structures described above and illustrated in the accompanying drawings and that various modifications and changes may be made without departing from its scope. The scope of the present invention is limited only by the appended claims.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810933617 | 2018-08-16 | ||
CN2018109336177 | 2018-08-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109902360A true CN109902360A (en) | 2019-06-18 |
CN109902360B CN109902360B (en) | 2022-12-09 |
Family
ID=66944556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910105090.3A Active CN109902360B (en) | 2018-08-16 | 2019-02-01 | Method, device and mechanical equipment for optimizing engineering parameters in drilling field operation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109902360B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110533224A (en) * | 2019-08-06 | 2019-12-03 | 山东科技大学 | A kind of oil shale connecting exploratory bore-hole position preferred method |
CN110778307A (en) * | 2019-10-24 | 2020-02-11 | 西南石油大学 | Drill jamming early warning and type diagnosis method |
CN113279747A (en) * | 2021-05-18 | 2021-08-20 | 中国地质大学(武汉) | System and method for allocating drilling mud formula and performance parameters |
CN113468793A (en) * | 2021-07-21 | 2021-10-01 | 中海石油(中国)有限公司 | Cluster well platform position optimization method, system and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1341803A (en) * | 2000-08-28 | 2002-03-27 | 霍利贝顿能源服务公司 | Method for predicting drilling system performance for given formation and its system |
US20030015351A1 (en) * | 1996-03-25 | 2003-01-23 | Halliburton Energy Services, Inc. | Method and system for predicting performance of a drilling system of a given formation |
US20140116776A1 (en) * | 2012-10-31 | 2014-05-01 | Resource Energy Solutions Inc. | Methods and systems for improved drilling operations using real-time and historical drilling data |
CN106150485A (en) * | 2015-04-08 | 2016-11-23 | 中国石油化工股份有限公司 | A kind of drilling well leakage prognoses system based on numeral rock mass |
CN106294900A (en) * | 2015-05-26 | 2017-01-04 | 中国石油化工股份有限公司 | A kind of structure and methods for using them of the digital rock mass for drilling well |
-
2019
- 2019-02-01 CN CN201910105090.3A patent/CN109902360B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030015351A1 (en) * | 1996-03-25 | 2003-01-23 | Halliburton Energy Services, Inc. | Method and system for predicting performance of a drilling system of a given formation |
CN1341803A (en) * | 2000-08-28 | 2002-03-27 | 霍利贝顿能源服务公司 | Method for predicting drilling system performance for given formation and its system |
US20140116776A1 (en) * | 2012-10-31 | 2014-05-01 | Resource Energy Solutions Inc. | Methods and systems for improved drilling operations using real-time and historical drilling data |
CN106150485A (en) * | 2015-04-08 | 2016-11-23 | 中国石油化工股份有限公司 | A kind of drilling well leakage prognoses system based on numeral rock mass |
CN106294900A (en) * | 2015-05-26 | 2017-01-04 | 中国石油化工股份有限公司 | A kind of structure and methods for using them of the digital rock mass for drilling well |
Non-Patent Citations (2)
Title |
---|
吴宝玉等: "随钻测井数据实时采集与远程传输系统", 《测井技术》 * |
张太俊等: "基于异步粒子群优化算法的边坡工程岩体力学参数反演", 《三峡大学学报(自然科学版)》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110533224A (en) * | 2019-08-06 | 2019-12-03 | 山东科技大学 | A kind of oil shale connecting exploratory bore-hole position preferred method |
CN110778307A (en) * | 2019-10-24 | 2020-02-11 | 西南石油大学 | Drill jamming early warning and type diagnosis method |
CN113279747A (en) * | 2021-05-18 | 2021-08-20 | 中国地质大学(武汉) | System and method for allocating drilling mud formula and performance parameters |
CN113468793A (en) * | 2021-07-21 | 2021-10-01 | 中海石油(中国)有限公司 | Cluster well platform position optimization method, system and storage medium |
CN113468793B (en) * | 2021-07-21 | 2024-05-24 | 中海石油(中国)有限公司 | Cluster well platform position optimization method, system and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN109902360B (en) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11814931B2 (en) | Machine-learning for sedimentary facies prediction | |
RU2616053C1 (en) | Optimized drill string rotation during directional drilling in the sliding mode | |
CN109902360A (en) | Method, device and machine equipment for optimizing engineering parameters in drilling site operations | |
CN113689055B (en) | Oil-gas drilling machinery drilling speed prediction and optimization method based on Bayesian optimization | |
RU2633006C1 (en) | Automation of drilling with use of optimal control based on stochastic theory | |
US11715034B2 (en) | Training of machine learning algorithms for generating a reservoir digital twin | |
CA2880497C (en) | Methods and systems related to hydrocarbon recovery strategy development | |
US11846748B2 (en) | Deep learning seismic attribute fault predictions | |
US12125141B2 (en) | Generation of a virtual three-dimensional model of a hydrocarbon reservoir | |
US20240035369A1 (en) | Automatic interpretation of drilling dynamics data | |
NO20161688A1 (en) | Improving well survey performance | |
CN109973072A (en) | A friction prediction method and device | |
CN109542884B (en) | Method and system for optimizing rock breaking efficiency by adopting big data coupling parameters | |
CN111767674A (en) | A logging lithology identification method based on active domain adaptation | |
US20240110472A1 (en) | Optimal drilling and fracturing sequences for placing numerous horizontal wells in tight reservoirs | |
US12044117B2 (en) | Methods for estimating downhole weight on bit and rate of penetration using acceleration measurements | |
US20240102371A1 (en) | Estimating productivity and estimated ultimate recovery (eur) of unconventional wells through spatial-performance relationship using machine learning | |
US20220259966A1 (en) | Intelligent rig state detection and uncertainty analysis on real-time drilling parameters | |
US20220275714A1 (en) | A hybrid deep physics neural network for physics based simulations | |
CN118152937B (en) | Lithology recognition model training method and device, electronic equipment and storage medium | |
US20240302563A1 (en) | Using machine learning to predict aquifers from groundwater chemistry data | |
CN118551180B (en) | Horizontal well annulus cuttings concentration prediction method and device and storage medium | |
US20230401365A1 (en) | Determining cell properties for a grid generated from a grid-less model of a reservoir of an oilfield | |
WO2025038251A1 (en) | Predicting estimated ultimate recovery by well in unconventional reservoirs from reservoir rock & fluid, wellbore geometry, and completion properties | |
WO2024206522A1 (en) | Autonomous design and placement of hydrocarbon wells in numerical reservoir simulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |