[go: up one dir, main page]

CN109886133A - 一种基于光学遥感图像的船只检测方法及系统 - Google Patents

一种基于光学遥感图像的船只检测方法及系统 Download PDF

Info

Publication number
CN109886133A
CN109886133A CN201910071510.0A CN201910071510A CN109886133A CN 109886133 A CN109886133 A CN 109886133A CN 201910071510 A CN201910071510 A CN 201910071510A CN 109886133 A CN109886133 A CN 109886133A
Authority
CN
China
Prior art keywords
image
image subblock
ship
subblock
remote sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910071510.0A
Other languages
English (en)
Other versions
CN109886133B (zh
Inventor
赵鹏
韩传钊
徐其志
张宇喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Remote Sensing and Digital Earth of CAS
Original Assignee
Institute of Remote Sensing and Digital Earth of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Remote Sensing and Digital Earth of CAS filed Critical Institute of Remote Sensing and Digital Earth of CAS
Priority to CN201910071510.0A priority Critical patent/CN109886133B/zh
Publication of CN109886133A publication Critical patent/CN109886133A/zh
Application granted granted Critical
Publication of CN109886133B publication Critical patent/CN109886133B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种利用光学遥感图像进行船只检测的方法及系统,该方法包括如下步骤:将光学遥感图像划分为一系列的图像子块;获取图像子块的信息熵以及灰度直方图的波峰数量;根据图像子块的信息熵及直方图波峰数量,确定图像子块内异常像素点集合;确定疑似船只目标的像素点;计算图像子块内疑似目标的面积,根据面积大小确认船只目标。所述检测方法具有场景复杂度描述准确、漏检率低、计算复杂度低、实时性好等优点。

Description

一种基于光学遥感图像的船只检测方法及系统
技术领域
本发明涉及光学遥感图像处理技术,尤其涉及一种基于光学遥感图像的船只检测方法及系统。
背景技术
为有效监测本国领海区域内及附近的舰船,维护航道及海防安全提供信息保障,同时监督海洋专属经济区,监测海洋环境,打击非法捕捞、走私和偷渡,为维护海洋权益提供有效信息支撑,很多国家都已经使用遥感图像进行船只自动检测。相对于SAR图像,基于光学遥感图像的舰船目标检测与识别研究起步较晚,但由于光学遥感图像具有图像直观易理解、空间分辨率高的特点,并且在光照和晴朗天气条件下,图像内容丰富、目标结构特征明显,使其在海域舰船侦察,尤其是舰船识别方面具有更大的优势,因此正成为各国研究的重点。
目前,关于遥感图像船只目标检测已经进行了非常多的研究工作,主要包括基于模板匹配、基于机器学习、基于统计特征三个类别。其中,由于同一船只在不同分辨率遥感图像中差异很大,而在同一遥感图像中不同类型船只差异更大,因此基于模板匹配的船只检测方法对遥感图像分辨率变化以及船只类型差异的适应性较差。基于机器学习的方法由于高质量标注样本依然不足,且不能有效结合船只辨识的经验知识,因此在复杂场景下船只检测的准确性依然不足。基于统计特征的船只检测方法主要将舰只视为海面异常目标或显著目标,但是当前“异常”或“显著”的判定与目标所处的场景相关,当前普遍采用的方法是将海面离散划分为几类场景,因此其不能连续地描述海面场景,导致海面“异常”判定不准确,从而产生大量漏检与虚警。
中国专利文献CN107862262A公开了一种适用于高空侦察的快速可见光图像舰船检测方法,其首先利用小面核显著性滤波的提取感兴趣区域,并基于Otsu自动阈值分割与显著区域判别确认候选目标区域,然后根据舰船特征表达提取目标特征,最后基于舰船类目标知识描述约束进行无监督目标判别。尽管该方法能够有效克服复杂云杂波和海杂波造成的外界环境干扰,但由于该方法需要进行卷积运算、梯度计算等复杂运算,导致对实施该方法设备的计算资源需求较高,因此并不适合星载计算平台。
中国专利文献CN107992818A公开了一种光学遥感图像海面船只目标的检测方法,用以解决现有检测方法算法过于复杂、光学遥感图像处理和检测难度偏大导致船舶检测虚警率和漏检率高等问题,其利用haar-like特征进行海上船舶检测,首先利用多源遥感影像构建船只组建样本库,然后对样本进行旋转,对RGB三谱段遥感图像进行谱段运算的预处理,并训练基于haar-like特征的Adaboost分类器实现船舶粗检测,最后对船舶区进行分割处理,通过判断目标几何特征排除海浪、云雾以获取船舶目标信息。然而,该方法需要组建大量样本库,并且检测效果对样本质量依赖性较强。
发明内容
为解决上述问题,本发明提供了一种基于光学遥感图像的船只检测方法及系统,通过将光学遥感图像划分为一系列子块,并利用图像子块的灰度直方图描述海面场景,从而实现了在不同场景下,利用光学遥感图像对船只的准确检测。
为实现上述的发明目的,本发明提供的技术方案为:
一种利用光学遥感图像进行船只检测的方法,包括如下步骤:
将光学遥感图像划分为一系列的图像子块;
获取图像子块的信息熵以及灰度直方图的波峰数量;
根据图像子块的信息熵及直方图波峰数量,确定图像子块内异常像素点集合;
确定疑似船只目标的像素点;
计算图像子块内疑似目标的面积,根据面积大小确认船只目标。
进一步地,将光学遥感图像划分为一系列图像子块的步骤中包括将图像子块中像素点的取值进行量化的步骤。
进一步地,通过对图像子块的灰度直方图进行统计,获取图像子块的信息熵以及灰度直方图的波峰数量。
进一步地,在统计波峰数量之前,对各图像子块的直方图进行平滑滤波。
进一步地,所述图像子块内异常像素点集合其中,Iij表示该图像子块第i行第j列的像素点的像素值,p(Iij)表示该图像子块内像素点取值为Iij的概率,Hk表示该图像子块的信息熵Hk,Wk表示波峰数量,α为系数。
进一步地,通过将面积小于第一数量像素以及面积大于第二数量像素的疑似目标排除,确认船只目标。
进一步地,所述第二数量的取值随着光学遥感图像的空间分辨率的增加而减小。
本发明还提供了一种利用光学遥感图像进行船只检测的系统,包括:
图像分割模块,用于将输入的光学遥感图像划分为一系列的图像子块;
灰度直方图信息统计模块,用于对图像子块的灰度直方图进行统计,获取图像子块的信息熵以及灰度直方图的波峰数量;
异常像素点检测模块,用于根据图像子块的信息熵及直方图波峰数量,确定图像子块内异常像素点集合;
目标确定模块,用于对图像子块的异常像素点进行圆周滤波操作,确定疑似船只目标的像素点,并计算图像子块内疑似目标的面积,根据面积大小确认船只目标。
进一步地,该系统还包括平滑滤波器,在统计波峰数量之前,该平滑滤波器对各图像子块的直方图进行平滑滤波。
由于采用上述方案,本发明具有如下技术效果:
(1)采用图像子块的信息熵和波段数量感知海面背景的复杂度,场景复杂度描述准确。
(2)根据场景的复杂度,利用异常检测和圆周滤波筛选船只目标,漏检率低。
(3)计算复杂度低,实时性好,可适用于星载计算平台。
附图说明
图1为根据本发明实施例的光学遥感图像船只检测方法工作流程图;
图2为根据本发明实施例的光学遥感图像船只检测系统组成示意图;
图3为采用本发明在不同场景下进行船只检测的实验结果。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。
如图1所示,针对包含舰船目标的光学遥感图像,本发明通过如下方法对船只目标进行检测:
步骤1:将光学遥感图像划分为一系列的图像子块;
由于一景标准光学遥感图像的尺寸一般大于10000×10000像素,而图中不同区域的场景往往有较大的差异。因此,本发明首先将原始光学遥感图像划分为K个M×M像素大小的图像子块。考虑到场景具有局部性的特点,经大量实验统计,M取值优选512。
然后,将图像子块中像素点的取值进行量化,例如量化至8比特。具体方法如下:对于第k(其中,k=1,2,……K)个图像子块,假设其最大像素值为a,最小像素值为b,则按下式将第i行、第j列像素点的像素值Iij量化至8比特
步骤2:对图像子块的灰度直方图进行统计,获取图像子块的信息熵以及灰度直方图的波峰数量;
统计第k个图像子块的灰度直方图,并按公式(2)计算图像子块的信息熵Hk
在公式(2)中,Pt是指第k个8比特量化图像子块中,像素点取值为t的概率。Hk取值越大,表明图像场景越复杂,此时对图像进行异常检测难度越大。
一般而言,图像灰度直方图的波峰数量Wk与图像中地物类型数量具有一一对应的关系。波峰数量Wk取值越大,表明图像中地物类型越多,场景越复杂,此时对图像进行异常检测难度越大。因此,本发明还通过统计灰度直方图中的波峰来获取地物类型数据。
同时,由于图像子块的直方图可能会含有许多细小的“毛刺”,因此在统计第k个图像子块的灰度直方图的波峰数量Wk之前,本发明还通过对各图像子块的直方图进行平滑滤波来消除图像子块直方图中的“毛刺”,然后再统计其中的波峰数量Wk
步骤3:根据图像子块的信息熵及直方图波峰数量,确定图像子块内异常像素点集合P;
根据第k个图像子块的信息熵及直方图波峰数量,按公式(3)确定第k个图像子块内异常像素点集合P;
在公式(3)中,i和j为第k个图像子块内像素点的行号与列号,(i,j)表示第i行第j列的像素点,Iij表示第i行第j列的像素点的像素值,p(Iij)表示第k个图像子块内像素点取值为Iij的概率。Hk取值越大,越大,图像子块中提取的异常像素点越多;另一方面,Wk取值越大,越大,图像子块中提取的异常像素点越多。经大量实验分析,α取值优选为10-3
步骤4:对图像子块的异常像素点进行圆周滤波操作,确定疑似船只目标的像素点;
对第k个图像子块的异常像素点,按公式(4)进行圆周滤波操作:
在公式(4)中,fl表示第k个图像子块中,以像素点(i,j)为中心、以r为半径的圆周上逆时针方向像素点l的像素值,N表示半径为r的圆周上像素点的总数。
其中,本发明将圆周滤波f(x,y)大于δ1的像素点视为疑似船只目标的像素点。
步骤5:计算图像子块内疑似目标的面积,根据面积大小确认船只目标。
计算图像子块内疑似目标的面积S,排除面积小于δ2个像素和面积大于δ3个像素的疑似目标,得到检测的船只目标。
在所述步骤(5)中,综合考虑船只目标检测的检测率与虚警率,δ2取值优选20,δ3取值优选15000/d2,其中d为光学遥感图像的空间分辨率。
本发明进一步还提供了一种光学遥感图像船只检测系统。如图2所示,该系统包括:
图像分割模块100,用于将输入的光学遥感图像划分为一系列的图像子块。
由于标准光学遥感图像中不同区域的场景往往有较大的差异。因此,本发明首先将原始光学遥感图像划分为多个预定像素大小的图像子块,然后将图像子块中像素点的取值进行量化。
灰度直方图信息统计模块200,用于对图像子块的灰度直方图进行统计,获取图像子块的信息熵以及灰度直方图的波峰数量。
异常像素点检测模块300,用于根据图像子块的信息熵及直方图波峰数量,确定图像子块内异常像素点集合。
目标确定模块400,用于对图像子块的异常像素点进行圆周滤波操作,确定疑似船只目标的像素点,并计算图像子块内疑似目标的面积,根据面积大小确认船只目标。
进一步地,该系统还包括平滑滤波器201,在统计波峰数量之前,该平滑滤波器对各图像子块的直方图进行平滑滤波,以消除图像子块直方图中的“毛刺”。
采用本发明提供的光学遥感图像船只检测方法及系统针对多种场景下的光学遥感图像进行实验。如图3(a)-(d)所示,实验结果表明,本发明可以针对近岸干扰、碎云干扰、船只高反、薄云雾遮挡等多种场景,对船只目标实现准确检测。
尽管上述具体实施方式主要是为提高光学遥感图像中船只检测的场景适应性和参数适应性而提出的,然而本领域技术人员容易理解然,本发明所描述的船只检测方法及系统也适用于其它成像设备,如数码相机所拍摄图像的船只检测操作,所取得的有益效果也是相似的。
以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。

Claims (9)

1.一种利用光学遥感图像进行船只检测的方法,包括如下步骤:
将光学遥感图像划分为一系列的图像子块;
获取图像子块的信息熵以及灰度直方图的波峰数量;
根据图像子块的信息熵及直方图波峰数量,确定图像子块内异常像素点集合;
确定疑似船只目标的像素点;
计算图像子块内疑似目标的面积,根据面积大小确认船只目标。
2.根据权利要求1所述的船只检测方法,其特征在于:将光学遥感图像划分为一系列图像子块的步骤中包括将图像子块中像素点的取值进行量化。
3.根据权利要求1所述的船只检测方法,其特征在于:通过对图像子块的灰度直方图进行统计,获取图像子块的信息熵以及灰度直方图的波峰数量。
4.根据权利要求3所述的船只检测方法,其特征在于:在统计波峰数量之前,对各图像子块的直方图进行平滑滤波。
5.根据权利要求1所述的船只检测方法,其特征在于:所述图像子块内异常像素点集合其中,Iij表示该图像子块第i行第j列的像素点的像素值,p(Iij)表示该图像子块内像素点取值为Iij的概率,Hk表示该图像子块的信息熵Hk,Wk表示波峰数量,α为系数。
6.根据权利要求1所述的船只检测方法,其特征在于:通过将面积小于第一数量像素以及面积大于第二数量像素的疑似目标排除,确认船只目标。
7.根据权利要求6所述的船只检测方法,其特征在于:所述第二数量的取值随着光学遥感图像的空间分辨率的增加而减小。
8.一种利用光学遥感图像进行船只检测的系统,包括:
图像分割模块,用于将输入的光学遥感图像划分为一系列的图像子块;
灰度直方图信息统计模块,用于对图像子块的灰度直方图进行统计,获取图像子块的信息熵以及灰度直方图的波峰数量;
异常像素点检测模块,用于根据图像子块的信息熵及直方图波峰数量,确定图像子块内异常像素点集合;
目标确定模块,用于对图像子块的异常像素点进行圆周滤波操作,确定疑似船只目标的像素点,并计算图像子块内疑似目标的面积,根据面积大小确认船只目标。
9.根据权利要求8所述的船只检测系统,其特征在于:还包括平滑滤波器,在统计波峰数量之前,该平滑滤波器对各图像子块的直方图进行平滑滤波。
CN201910071510.0A 2019-01-25 2019-01-25 一种基于光学遥感图像的船只检测方法及系统 Expired - Fee Related CN109886133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910071510.0A CN109886133B (zh) 2019-01-25 2019-01-25 一种基于光学遥感图像的船只检测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910071510.0A CN109886133B (zh) 2019-01-25 2019-01-25 一种基于光学遥感图像的船只检测方法及系统

Publications (2)

Publication Number Publication Date
CN109886133A true CN109886133A (zh) 2019-06-14
CN109886133B CN109886133B (zh) 2020-11-03

Family

ID=66926861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910071510.0A Expired - Fee Related CN109886133B (zh) 2019-01-25 2019-01-25 一种基于光学遥感图像的船只检测方法及系统

Country Status (1)

Country Link
CN (1) CN109886133B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192059A (zh) * 2021-05-24 2021-07-30 北京市遥感信息研究所 一种红外遥感图像在轨舰船检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727657A (zh) * 2008-10-31 2010-06-09 李德毅 一种基于云模型的图像分割方法
US7840066B1 (en) * 2005-11-15 2010-11-23 University Of Tennessee Research Foundation Method of enhancing a digital image by gray-level grouping
CN103198332A (zh) * 2012-12-14 2013-07-10 华南理工大学 一种实时鲁棒的远红外车载行人检测方法
US8625921B1 (en) * 2008-09-26 2014-01-07 Google Inc. Method for image processing using local statistics convolution
CN104951765A (zh) * 2015-06-18 2015-09-30 北京航空航天大学 基于形状先验信息和视觉对比度的遥感图像目标分割方法
CN106373125A (zh) * 2016-09-30 2017-02-01 杭州电子科技大学 一种基于信息熵的雪花噪声检测方法
CN109146853A (zh) * 2018-07-31 2019-01-04 贵州大学 基于his不同光学特性的桥梁麻面缺陷检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840066B1 (en) * 2005-11-15 2010-11-23 University Of Tennessee Research Foundation Method of enhancing a digital image by gray-level grouping
US8625921B1 (en) * 2008-09-26 2014-01-07 Google Inc. Method for image processing using local statistics convolution
CN101727657A (zh) * 2008-10-31 2010-06-09 李德毅 一种基于云模型的图像分割方法
CN103198332A (zh) * 2012-12-14 2013-07-10 华南理工大学 一种实时鲁棒的远红外车载行人检测方法
CN104951765A (zh) * 2015-06-18 2015-09-30 北京航空航天大学 基于形状先验信息和视觉对比度的遥感图像目标分割方法
CN106373125A (zh) * 2016-09-30 2017-02-01 杭州电子科技大学 一种基于信息熵的雪花噪声检测方法
CN109146853A (zh) * 2018-07-31 2019-01-04 贵州大学 基于his不同光学特性的桥梁麻面缺陷检测方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANMIN ZHU等: "An improved FCM algorithm for ripe fruit image segmentation", 《2013 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION》 *
MADHUMITA BHOWMIK等: "Shannon Entropy Based Fuzzy Distance Norm for Pixel Classification in Remote Sensing Imagery", 《3RD INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY》 *
吴宪君等: "灰度直方图结合信息熵对图像检测的研究", 《消费电子》 *
周晓明等: "一种基于改进 FCM 的自动图像分割算法", 《华南理工大学学报》 *
李晓兵: "结合频谱与空间信息的边缘提取算法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
王佳等: "边缘检测中局部区域的动态阈值选取方法", 《计算机应用研究》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192059A (zh) * 2021-05-24 2021-07-30 北京市遥感信息研究所 一种红外遥感图像在轨舰船检测方法

Also Published As

Publication number Publication date
CN109886133B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
Chen et al. Ship detection from coastal surveillance videos via an ensemble Canny-Gaussian-morphology framework
CN104217215B (zh) 一种水面有雾图像和清晰图像的分类识别方法
CN110414334B (zh) 一种基于无人机巡视的智能水质识别方法
CN107527009B (zh) 一种基于yolo目标检测的遗留物检测方法
CN109427055B (zh) 基于视觉注意机制和信息熵的遥感图像海面舰船检测方法
US9881212B2 (en) Infrared image based early detection of oil spills in water
CN101214851B (zh) 船舶行驶智能型全天候主动安全预警系统及其预警方法
CN109308447A (zh) 在电力远程监控中自动提取设备运行参数和运行状态的方法
CN108806334A (zh) 一种基于图像的智能船舶身份识别方法
CN105427342B (zh) 一种水下小目标声呐图像目标检测跟踪方法和系统
CN108229342B (zh) 一种海面舰船目标自动检测方法
CN115841488B (zh) 一种基于计算机视觉的pcb板的检孔方法
CN116758045B (zh) 一种半导体发光二极管的表面缺陷检测方法及系统
CN109308448A (zh) 一种采用图像处理技术来防止变配电误操作的方法
Rabee et al. License plate detection and recognition in complex scenes using mathematical morphology and support vector machines
CN113591592B (zh) 水上目标识别方法、装置、终端设备及存储介质
CN103810487A (zh) 一种海洋航拍图像的目标检测与识别方法及系统
CN110516565A (zh) 一种基于Zernike和SVM的海面船只识别方法
Solberg et al. Algorithms for oil spill detection in Radarsat and ENVISAT SAR images
CN112200101B (zh) 基于人工智能的面向海事业务的视频监控与分析方法
CN109886133A (zh) 一种基于光学遥感图像的船只检测方法及系统
Bloisi et al. Integrated visual information for maritime surveillance
CN117789051A (zh) 一种遥感图像船舶识别系统
CN117690086A (zh) 一种基于5g和ai技术的防汛闸门识别及控制的方法和系统
CN111222470A (zh) 基于多元高斯分布与PCANet的可见光遥感图像舰船检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201103

Termination date: 20210125