CN109883073B - Quasi-optical microcavity structure solar spectrum selective absorption coating and preparation method thereof - Google Patents
Quasi-optical microcavity structure solar spectrum selective absorption coating and preparation method thereof Download PDFInfo
- Publication number
- CN109883073B CN109883073B CN201910188508.1A CN201910188508A CN109883073B CN 109883073 B CN109883073 B CN 109883073B CN 201910188508 A CN201910188508 A CN 201910188508A CN 109883073 B CN109883073 B CN 109883073B
- Authority
- CN
- China
- Prior art keywords
- optical
- cermet
- sio
- quasi
- reflection layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 62
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 61
- 239000011248 coating agent Substances 0.000 title claims abstract description 56
- 238000001228 spectrum Methods 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 38
- 230000003287 optical effect Effects 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 27
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 9
- 239000010935 stainless steel Substances 0.000 claims abstract description 9
- 239000006096 absorbing agent Substances 0.000 claims abstract description 8
- 239000011195 cermet Substances 0.000 claims description 35
- 238000000151 deposition Methods 0.000 claims description 14
- 230000008021 deposition Effects 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 238000004544 sputter deposition Methods 0.000 claims description 14
- 229910052681 coesite Inorganic materials 0.000 claims description 11
- 229910052906 cristobalite Inorganic materials 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims description 11
- 229910052682 stishovite Inorganic materials 0.000 claims description 11
- 229910052905 tridymite Inorganic materials 0.000 claims description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 6
- 239000012300 argon atmosphere Substances 0.000 claims description 5
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000001552 radio frequency sputter deposition Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 9
- 230000003595 spectral effect Effects 0.000 abstract description 6
- 239000003989 dielectric material Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 42
- 238000006243 chemical reaction Methods 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- 230000031700 light absorption Effects 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 230000005457 Black-body radiation Effects 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Laminated Bodies (AREA)
Abstract
本发明属于材料制备技术领域,提供了一种高温稳定的准光学微腔结构太阳光谱选择性吸收涂层及其制备方法。所述涂层由下而上依次是金属红外反射层、准光学微腔吸收体、光学减反层部分三部分,所述涂层材料含有金属W,电介质Al2O3和SiO2,衬底为机械抛光的不锈钢304,易于制备获得。相对于已知涂层具体以下优点:(1)太阳吸收率高;(2)高温稳定性好;(3)光谱吸收范围易于调节,易于产业化应用。
The invention belongs to the technical field of material preparation, and provides a high temperature stable quasi-optical microcavity structure solar spectrum selective absorption coating and a preparation method thereof. The coating is composed of three parts from bottom to top: a metal infrared reflection layer, a quasi-optical microcavity absorber, and an optical antireflection layer. The coating material contains metal W, dielectrics Al 2 O 3 and SiO 2 , and a substrate. It is a mechanically polished stainless steel 304, which is easy to prepare. Compared with the known coatings, it has the following advantages: (1) high solar absorption rate; (2) good high temperature stability; (3) easy adjustment of the spectral absorption range and easy industrial application.
Description
技术领域technical field
本发明属于材料制备技术领域,提供了一种高温稳定的准光学微腔结构太阳光谱选择性吸收涂层及其制备方法。The invention belongs to the technical field of material preparation, and provides a high temperature stable quasi-optical microcavity structure solar spectrum selective absorption coating and a preparation method thereof.
背景技术Background technique
长期以来,能源问题都尤为重要,太阳能作为传统能源的替代能源之一,其具有清洁无污染、储量大等优点。最常见的太阳能利用技术可大致分为光热和光伏两种。其中,光热技术具有能源利用率高、成本低、设备简单等诸多优势。太阳能光热转换技术以热能的形式对太阳能进行吸收利用被广泛应用在太阳能热水器、太阳冷却系统和集中式太阳能发电系统(CSP)中。太阳能的光热技术不仅是太阳能技术的另一种利用方 式,更是弥补了光伏发电的固有缺陷,适用于现今已有的能源建设体系,是一种行之有效的新能源应用策略。在光热转换系统中,核心部位之一为太阳能选择性吸收涂层,具有对太阳光较高的吸收率(α),同时保持尽可能低的热发射率(ε),其作用是对太阳光进行吸收并转化为热能用于加热液体,使其形成高温蒸汽驱动电机发电,其性能的好坏直接决定了光热转换系统性能的优异。For a long time, energy issues have been particularly important. As one of the alternative energy sources for traditional energy, solar energy has the advantages of cleanliness, no pollution, and large reserves. The most common solar energy utilization technologies can be roughly divided into two categories: photothermal and photovoltaics. Among them, photothermal technology has many advantages such as high energy utilization rate, low cost, and simple equipment. Solar thermal conversion technology absorbs and utilizes solar energy in the form of thermal energy and is widely used in solar water heaters, solar cooling systems and concentrated solar power generation systems (CSP). Photothermal technology of solar energy is not only another utilization method of solar energy technology, but also makes up for the inherent defects of photovoltaic power generation. It is suitable for the existing energy construction system and is an effective new energy application strategy. In the light-to-heat conversion system, one of the core parts is the solar selective absorption coating, which has a high absorption rate (α) of sunlight while maintaining the lowest thermal emissivity (ε) The light is absorbed and converted into heat energy for heating the liquid to form a high-temperature steam to drive the motor to generate electricity. The quality of its performance directly determines the excellent performance of the light-to-heat conversion system.
太阳能选择性吸收涂层太阳能选择性吸收涂层可分为以下六大类:1)本征吸收型涂层;2) 多层膜型吸收涂层;3)金属-半导体串联型吸收涂层;4)表面织构型吸收涂层;5)选择性透射和类黑体吸收型涂层;6)金属陶瓷型吸收涂层。近年来,由于多层膜型选择性吸收涂层和金属陶瓷型选择性吸收涂层性能优异而被更加广泛的研究。Solar selective absorption coating Solar selective absorption coating can be divided into the following six categories: 1) intrinsic absorption type coating; 2) multilayer film type absorption coating; 3) metal-semiconductor tandem type absorption coating; 4) Surface texture absorption coating; 5) Selective transmission and blackbody-like absorption coating; 6) Cermet type absorption coating. In recent years, due to the excellent properties of multilayer membrane-type selective absorption coatings and cermet-type selective absorption coatings, they have been more widely studied.
太阳能的光热利用主要任务是提高其光热转换效率和热稳定 性,而这两个性能指标直接由太阳光选择性吸收涂层的太阳光吸收率α、热发射率ε以及其稳定性决定。因此,太阳能光热利用技术主要研究集中在如何提高太阳光吸收率α、如何降低热发射率ε以及如何提高其高温稳定性。The main task of photothermal utilization of solar energy is to improve its photothermal conversion efficiency and thermal stability, and these two performance indicators are directly determined by the solar light absorption rate α, thermal emissivity ε and stability of the solar selective absorption coating. . Therefore, the research on solar thermal utilization technology mainly focuses on how to improve the solar absorption rate α, how to reduce the thermal emissivity ε and how to improve its high temperature stability.
目前,太阳能光热转换技术的主要应用包括:太阳能热水器、干燥器、温室与太阳房、太阳灶、采暖和制冷、海水淡化装置、太阳能热发电装置和高温太阳炉等。其中太阳能热水器是太阳能热利用中应用最广泛、产业化发展最迅速的领域。At present, the main applications of solar thermal conversion technology include: solar water heaters, dryers, greenhouses and solar houses, solar cookers, heating and cooling, seawater desalination devices, solar thermal power generation devices and high-temperature solar furnaces. Among them, solar water heaters are the most widely used and rapidly industrialized fields of solar thermal utilization.
太阳能光热转换技术主要应用于中低温领域(<400℃),与相对成熟的低温吸收涂层技术相比,研发中高温选择性吸收涂层面临着更大的挑战,如涂层在高温下循环使用后光学性能变差,光热转换效率变低等。解决这些问题,需要对材料、结构以及制备工艺进行更深入、系统地研究和分析。Solar photothermal conversion technology is mainly used in the field of medium and low temperature (<400 °C). Compared with the relatively mature low temperature absorption coating technology, the development of medium and high temperature selective absorption coatings faces greater challenges. After recycling, the optical performance becomes poor, and the light-to-heat conversion efficiency becomes low. To solve these problems, more in-depth and systematic research and analysis of materials, structures and fabrication processes are required.
如已经报导的专利CN102954611A、CN102653151A、CN102286720A、CN106167892A、CN103572233A等均研究了双层金属陶瓷结构的选择性吸收涂层,其缺点在于:随温度的升高,涂层中金属原子的扩散会对涂层的光学性能产生影响,造成吸收率下降、发射率升高。也就是存在高温稳定性等问题。For example, the reported patents CN102954611A, CN102653151A, CN102286720A, CN106167892A, CN103572233A, etc. have all studied the selective absorption coating of double-layer cermet structure. The disadvantage is that with the increase of temperature, the diffusion of metal atoms in the coating will affect the coating The optical properties of the layer are affected, resulting in a decrease in absorptivity and an increase in emissivity. That is, there are problems such as high temperature stability.
因此如何提高吸收涂层的吸收率,降低涂层的发射率,并使涂层具有良好的耐高温和耐候性能,是选择性吸收涂层制备的考虑方向。Therefore, how to improve the absorptivity of the absorbing coating, reduce the emissivity of the coating, and make the coating have good high temperature resistance and weather resistance is the consideration for the preparation of the selective absorbing coating.
已有技术存在的主要问题包括:The main problems of the existing technology include:
(1)研究单一,主要集中在多层膜型和金属陶瓷型吸收涂层;(1) The research is single, mainly focusing on multi-layer film type and cermet type absorbing coatings;
(2)热稳定性有待提升;(2) Thermal stability needs to be improved;
(3)光谱选择性调节难。(3) It is difficult to adjust the spectral selectivity.
发明内容SUMMARY OF THE INVENTION
鉴于现有技术存在的问 题,本发明提供了一种高温稳定的准光学微腔结构太阳光谱选择性吸收涂层及其制备方法。In view of the problems existing in the prior art, the present invention provides a high temperature stable quasi-optical microcavity structure solar spectrum selective absorption coating and a preparation method thereof.
本发明提供的一种高温稳定的准光学微腔结构太阳光谱选择性吸收涂层,可在高温环境下稳定工作,工作温度(600℃),太阳光吸收率可达~96%,热发射率5%,光热转换效率可达~95%左右,并且易于调控吸收光谱。The invention provides a high temperature stable quasi-optical microcavity structure solar spectrum selective absorption coating, which can work stably in a high temperature environment. 5%, the photothermal conversion efficiency can reach ~95%, and the absorption spectrum is easy to control.
具体的,本发明通过以下技术方案来实现,Specifically, the present invention is achieved through the following technical solutions:
一种高温稳定的准光学微腔结构太阳光谱选择性吸收涂层,包括三部分:由下而上依次是金属红外反射层、准光学微腔吸收体、光学减反层,A high-temperature stable quasi-optical microcavity structure solar spectrum selective absorption coating, comprising three parts: from bottom to top, a metal infrared reflection layer, a quasi-optical microcavity absorber, and an optical antireflection layer,
其中,准光学微腔吸收体由金属陶瓷1-金属-金属陶瓷2结构构成,Among them, the quasi-optical microcavity absorber is composed of a cermet 1-metal-cermet 2 structure,
所述金属为金属W,金属陶瓷为W-SiO2金属陶瓷,光学减反层的电介质Al2O3和SiO2。The metal is metal W, the cermet is W-SiO 2 cermet, and the dielectrics of the optical antireflection layer are Al 2 O 3 and SiO 2 .
其中,金属W具有高的熔点,同时在红外区反射率高,适合作为底层红外减反层。通过大量的实验研究发现,本发明采用金属陶瓷-金属-金属陶瓷结构结合金属陶瓷的吸收以及膜层间的相互作用,可以对光进行大范围的吸收,具有高的太阳光吸收。同时,电介质Al2O3和SiO2层与空气的光学常数匹配较好,在顶层作为减反层设计可以减小光的反射。这样的材料层选择,可以进一步优化太阳光吸收。Among them, metal W has a high melting point and a high reflectivity in the infrared region, and is suitable as a bottom infrared antireflection layer. Through a large number of experimental studies, it is found that the invention adopts the cermet-metal-cermet structure combined with the absorption of the cermet and the interaction between the film layers, which can absorb light in a wide range and has high solar light absorption. At the same time, the dielectric Al 2 O 3 and SiO 2 layers are well matched with the optical constants of air, and the design of the antireflection layer on the top layer can reduce the reflection of light. Such material layer selection can further optimize solar light absorption.
作为本发明的一种优选技术方案,本发明通过大量实验,利用单层膜的光学常数进行拟合优化设计,得到膜层结构厚度:W红外反射层约为50-150nm,W-SiO2金属陶瓷1约为30-60nm,中间金属W层约为3-15nm,W-SiO2金属陶瓷2约为45-65nm,Al2O3光学减反层1约为10-30nm, SiO2光学减反层2厚度约为45-70nm。As a preferred technical solution of the present invention, the present invention uses the optical constant of the single-layer film to perform fitting and optimization design through a large number of experiments, and obtains the thickness of the film layer structure: W infrared reflection layer is about 50-150nm, W-SiO 2 metal The ceramic 1 is about 30-60nm, the intermediate metal W layer is about 3-15nm, the W- SiO2 cermet 2 is about 45-65nm, the Al2O3 optical anti-reflection layer 1 is about 10-30nm, and the SiO2 optical anti-reflection layer is about 10-30nm. The thickness of the reverse layer 2 is about 45-70 nm.
前述各材料层的厚度的选择是通过大量实验优化得出的,其他未选择前述相应厚度的组合的吸收率不能得到提升。The selection of the thicknesses of the aforementioned material layers is optimized through a large number of experiments, and the absorption rates of other combinations without the aforementioned corresponding thicknesses cannot be improved.
作为本发明的一种优选技术方案,金属陶瓷成分体积比(W:SiO2)为1:5到2:3。As a preferred technical solution of the present invention, the volume ratio (W:SiO 2 ) of the cermet components is 1:5 to 2:3.
前述材料成分体积比选择的依据主要是根据单层膜的光学常数决定,形成的涂层具有好的光学性能就需要膜层之间具有好的光学常数匹配。并且,如果成分体积比选择不恰当,同样吸收会变差。The basis for the selection of the volume ratio of the aforementioned material components is mainly determined according to the optical constant of the single-layer film. The formed coating has good optical properties, and requires good optical constant matching between the film layers. Also, if the volume ratio of the components is not selected properly, the absorption will also be poor.
本发明进一步提供了一种制备前述一种高温稳定的准光学微腔结构太阳光谱选择性吸收涂层的制备方法,包括:The present invention further provides a preparation method for preparing the aforesaid high temperature stable quasi-optical microcavity structure solar spectrum selective absorption coating, comprising:
采用机械抛光的不锈 钢304作为衬底,利用高真空多靶磁控溅射系统对该吸收涂层进行由下而上沉积,其中,金属W采用的是直流溅射沉积,功率密度为2.00-2.50(W cm-2),Al2O3和SiO2采用的是射频溅射,功率密度为3.00-4.00(W cm-2),W-SiO2金属陶瓷依次是直流和射频共溅射沉积,其溅射功率密度分别为0.50-1.00(W cm-2)和3.50-4.50(W cm-2)。Using mechanically polished stainless steel 304 as the substrate, the absorption coating is deposited from the bottom up by a high vacuum multi-target magnetron sputtering system, wherein the metal W is deposited by DC sputtering, and the power density is 2.00-2.50 (W cm -2 ), Al 2 O 3 and SiO 2 were deposited by radio frequency sputtering with a power density of 3.00-4.00 (W cm -2 ), W-SiO 2 cermets were deposited by direct current and radio frequency co-sputtering in sequence, The sputtering power densities are 0.50-1.00 (W cm -2 ) and 3.50-4.50 (W cm -2 ), respectively.
前述制备方法的工艺参数的选择主要是依据单层膜沉积时采用的沉积功率以及相应材料沉积速率,结合单层膜的光学常数确定。工艺参数不同,相应的膜层结构和成分比都会有相应的变化。该工作的大致步骤就是先通过选用不同的工艺参数(沉积功率)沉积单层膜,再通过光学常数确定最佳的工艺参数进行膜层沉积。The selection of the process parameters of the aforementioned preparation method is mainly determined according to the deposition power used in the deposition of the monolayer film and the deposition rate of the corresponding material, combined with the optical constant of the monolayer film. Depending on the process parameters, the corresponding film structure and composition ratio will change accordingly. The rough steps of this work are to first deposit a single-layer film by selecting different process parameters (deposition power), and then determine the optimal process parameters by optical constants for film deposition.
作为本发明的一种优选技术方案,所述制备方法中金属陶瓷成分体积占比(W:SiO2)为1: 5到2:3。相应体积的W:SiO2是通过磁控溅射系统,两靶同时溅射沉积形成。As a preferred technical solution of the present invention, in the preparation method, the volume ratio (W:SiO 2 ) of the cermet components is 1:5 to 2:3. The corresponding volume of W: SiO2 was formed by the magnetron sputtering system, and the two targets were sputtered simultaneously.
作为本发明的一种优选技术方 案,所述制备方法具体制备过程:As a kind of preferred technical scheme of the present invention, the concrete preparation process of described preparation method:
1)机械抛光的不锈钢先后用丙酮和无水乙醇进行擦洗干净,进行基片固定;1) The mechanically polished stainless steel was scrubbed with acetone and anhydrous ethanol successively, and the substrate was fixed;
2)抽真空,本底真空小于~4×10-4Pa;2) Vacuuming, the background vacuum is less than ~4×10 -4 Pa;
3)对基片进行偏压清洗,氩气环境,气压为0.6-0.8Pa左右,清洗时间3-5min;3) Carry out bias cleaning on the substrate, in an argon atmosphere, the air pressure is about 0.6-0.8Pa, and the cleaning time is 3-5min;
4)开始溅射,在氩气环境下,气压为0.3-0.5Pa左右,依次溅射红外金属W反射层,QOM 准光学微腔吸收层,和光学减反层;4) Start sputtering, in an argon environment, the pressure is about 0.3-0.5Pa, sputter the infrared metal W reflection layer, the QOM quasi-optical microcavity absorption layer, and the optical antireflection layer in turn;
5)沉积完成后,在真空腔内放置20-25min以上,取样。5) After the deposition is completed, place it in a vacuum chamber for more than 20-25 minutes and take samples.
前述制备方法的工艺参数的选择主要是依据单层膜沉积时采用的沉积功率以及相应材料沉积速率,结合单层膜的光学常数确定的最佳工艺参数。The selection of the process parameters of the aforementioned preparation method is mainly based on the optimal process parameters determined by the deposition power and the corresponding material deposition rate used in the deposition of the monolayer film, combined with the optical constant of the monolayer film.
本发明提供的高温稳定的准光学微腔太阳光谱选择性吸收涂层,具有以下优点:The high temperature stable quasi-optical microcavity solar spectrum selective absorption coating provided by the present invention has the following advantages:
(1)太阳吸收率高,可达~96%;(1) The solar absorption rate is high, up to ~96%;
(2)高温稳定性好,在高温600℃真空环境下稳定250h性能没有变坏趋势;(2) Good high temperature stability, stable performance for 250h in a high temperature 600 ℃ vacuum environment has no tendency to deteriorate;
(3)光谱吸收范围易于调节,基于准光学微腔的选择性吸收涂层,可以根据调节金属成分占比、金属陶瓷厚度以及中中间金属层的厚度进行方便的调节。(3) The spectral absorption range is easy to adjust. Based on the selective absorption coating of the quasi-optical microcavity, it can be conveniently adjusted according to the proportion of metal components, the thickness of the cermet and the thickness of the intermediate metal layer.
附图说明Description of drawings
图1,本发明高温稳定的W-SiO2准光学微腔光谱选择性吸收涂层结构示意图及反射光谱图。FIG. 1 is a schematic structural diagram and a reflection spectrum diagram of the W-SiO 2 quasi-optical microcavity spectrum selective absorption coating of the present invention.
具体地,图1(a)高温稳定的W-SiO2准光学微腔光谱选择性吸收涂层结构示意图,1(b)吸收涂层在真空环境600℃下退火前后的反射光谱,1(c)结构为SS(衬底)\W\W-SiO2\Al2O3\SiO2样品S1的反射光谱,1(d)为SS(衬底)\W-SiO2\W\W-SiO2样品S2的反射光谱。Specifically, Fig. 1(a) Schematic diagram of the structure of the high-temperature stable W-SiO quasi - optical microcavity spectrally selective absorption coating, 1(b) reflection spectra of the absorption coating before and after annealing at 600 °C in a vacuum environment, 1(c) ) structure is SS(substrate)\W\W-SiO 2 \Al 2 O 3 \SiO 2 The reflection spectrum of sample S1, 1(d) is SS(substrate)\W-SiO 2 \W\W-SiO 2 Reflection spectrum of sample S2.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步详细的描述,但发明的实施方式不限于此。The present invention will be described in further detail below with reference to the embodiments and the accompanying drawings, but the embodiments of the invention are not limited thereto.
实施例1QOM准光学微腔基选择性吸收涂层Example 1 QOM quasi-optical microcavity-based selective absorption coating
一种高温稳定的准光学微腔结构太阳光谱选择性吸收涂层,包括三部分:由下而上依次是金属红外反射层、准光学微腔吸收体、光学减反层,参见1(a)所示,A high-temperature stable quasi-optical microcavity structure solar spectrum selective absorption coating, including three parts: from bottom to top, a metal infrared reflection layer, a quasi-optical microcavity absorber, and an optical antireflection layer, see 1(a) shown,
其中,准光学微腔吸收体由金属陶瓷1-金属-金属陶瓷2结构构成,Among them, the quasi-optical microcavity absorber is composed of a cermet 1-metal-cermet 2 structure,
所述金属为金属W,金属陶瓷为W- SiO2 金属陶瓷,光学减反层的电介质Al2O3和SiO2。The metal is metal W, the cermet is W-SiO 2 cermet, and the dielectrics of the optical antireflection layer are Al 2 O 3 and SiO 2 .
其中,W红外反射层约为50-150nm,W-SiO2金属陶瓷1约为30-60nm,中间金属W层约为 3-15nm,W-SiO2金属陶瓷2约为45-65nm,Al2O3光学减反层1约为10-30nm,SiO2光学减反层2 厚度约为45-70nm。金属陶瓷成分体积占比(W:SiO2)约为1:3。Among them, the W infrared reflection layer is about 50-150nm, the W- SiO2 cermet 1 is about 30-60nm, the intermediate metal W layer is about 3-15nm, the W- SiO2 cermet 2 is about 45-65nm, and the Al2 The thickness of the O 3 optical anti-reflection layer 1 is about 10-30 nm, and the thickness of the SiO 2 optical anti-reflection layer 2 is about 45-70 nm. The volume ratio of the cermet composition (W:SiO 2 ) is about 1:3.
制备方法包 括:选择机械抛光的不锈钢304为衬底,利用高真空多靶磁控溅射系统对该吸收涂层进行沉积,其中金属W采用的是直流溅射沉积,功率密度为2.00-2.50(Wcm-2),Al2O3和SiO2采用的是射频溅射,功率密度为3.00-4.00(W cm-2),W-SiO2金属陶瓷是直流和射频共溅射沉积,其溅射功率密度分别为0.50-1.00(W cm-2)和3.50-4.50(W cm-2)。The preparation method includes: selecting mechanically polished stainless steel 304 as a substrate, and using a high-vacuum multi-target magnetron sputtering system to deposit the absorption coating, wherein the metal W adopts DC sputtering deposition, and the power density is 2.00-2.50 ( Wcm -2 ), Al 2 O 3 and SiO 2 were sputtered by radio frequency with a power density of 3.00-4.00 (W cm -2 ), W-SiO 2 cermet was deposited by co-sputtering of direct current and radio frequency, and its sputtering The power densities were 0.50-1.00 (W cm -2 ) and 3.50-4.50 (W cm -2 ), respectively.
具体制备工艺参数:Specific preparation process parameters:
所采用靶材的性能参数:各靶的纯度分别为W(99.95%),SiO2(99.99%)和Al2O3(99.99%)。 W,SiO2和Al2O3各靶尺寸分别为Φ72.6mm×5mm,Φ50.8mm×4mm,Φ50.8mm×4mm。不锈钢基底的尺寸为20×20mm2。The performance parameters of the used targets: the purity of each target is W (99.95%), SiO 2 (99.99%) and Al 2 O 3 (99.99%). The sizes of W, SiO 2 and Al 2 O 3 targets are Φ72.6mm×5mm, Φ50.8mm×4mm, Φ50.8mm×4mm, respectively. The dimensions of the stainless steel base are 20×20 mm 2 .
具体制备过程:Specific preparation process:
1)机械抛光的不锈钢先后用丙酮和无水乙醇进行擦洗干净,进行基片固定。1) The mechanically polished stainless steel was scrubbed with acetone and anhydrous ethanol successively, and the substrate was fixed.
2)抽真空,本底真空小于~4×10-4Pa。2) Evacuate, and the background vacuum is less than ~4×10 -4 Pa.
3)对基片进行偏压清洗,氩气环境,气压为0.6-0.8Pa左右,清洗时间3-5min。3) Carry out bias cleaning on the substrate, in an argon atmosphere, the air pressure is about 0.6-0.8Pa, and the cleaning time is 3-5min.
4)开始溅射,在氩气环境下,气压为0.3-0.5Pa左右,依次溅射红外金属W反射层,QOM 准光学微腔吸收层,和光学减反层。4) Start sputtering. In an argon atmosphere, the pressure is about 0.3-0.5Pa, and the infrared metal W reflection layer, the QOM quasi-optical microcavity absorption layer, and the optical antireflection layer are sequentially sputtered.
5)沉积完成后,在真空腔内放置20-25min以上,取样。5) After the deposition is completed, place it in a vacuum chamber for more than 20-25 minutes and take samples.
参见图示,图1(b)所示为所制备涂层的反射光谱图,实线的为沉积的W-SiO2准光学微腔光谱选择性吸收涂层没有退火前测量的反射谱图,虚线曲线为600℃退火250h后测量的反射谱图。Referring to the figure, Fig. 1(b) shows the reflection spectrum of the prepared coating, the solid line is the reflection spectrum of the deposited W-SiO quasi - optical microcavity spectrally selective absorption coating without annealing measured before, The dotted curve is the reflectance spectrum measured after annealing at 600 °C for 250 h.
对比实施例1Comparative Example 1
S1为SS(衬底)\W\W-SiO2\Al2O3\SiO2结构的吸收涂层,金属陶瓷成分与W-SiO2准光学微腔光谱选择性吸收涂层相同,各层的厚度分别为W红外反射层约为50-150nm,W-SiO2金属陶瓷 90-100nm,Al2O3光学减反层1约为12-17nm,SiO2光学减反层2厚度约为58-62nm。S1 is the absorption coating of SS(substrate)\W\W - SiO 2 \Al 2 O 3 \SiO 2 structure. The thickness of W infrared reflection layer is about 50-150nm, W- SiO2 cermet 90-100nm , Al2O3 optical anti-reflection layer 1 is about 12-17nm, SiO2 optical anti-reflection layer 2 thickness is about 58 -62nm.
对比实施例2Comparative Example 2
S2为SS\W-SiO2\W\W-SiO2结构的吸收涂层,与W-SiO2准光学微腔光谱选择性吸收涂层相比,没有顶层光学减反层,各层的厚度分别:W红外反射层约为100-150nm,W- SiO2金属陶瓷1 约为30-60nm,中间金属W层约为2-20nm,W-SiO2金属陶瓷2约为40-65nm。S2 is the absorption coating of SS\W-SiO 2 \W\W-SiO 2 structure. Compared with the W-SiO 2 quasi-optical microcavity spectral selective absorption coating, there is no top optical anti-reflection layer, and the thickness of each layer is Respectively: the W infrared reflection layer is about 100-150nm, the W- SiO2 cermet 1 is about 30-60nm, the intermediate metal W layer is about 2-20nm, and the W- SiO2 cermet 2 is about 40-65nm.
其中,S1,S2样品衬底都为机械抛光的不锈钢304,溅射沉积条件与QOM准光学微腔基选择性吸收涂层一致。Among them, the S1 and S2 sample substrates are all mechanically polished stainless steel 304, and the sputtering deposition conditions are consistent with the QOM quasi-optical microcavity-based selective absorption coating.
并且,参照图 示,1(c)结构为SS\W\W-SiO2\Al2O3\SiO2样品S1的反射光谱,1(d)为SS\W-SiO2\W\W-SiO2样品S2的反射光谱。And, referring to the figure, 1(c) is the reflection spectrum of SS\W\W-SiO 2 \Al 2 O 3 \SiO 2 sample S1, 1(d) is SS\W-SiO 2 \W\W- Reflection spectrum of SiO sample S2 .
实施例2性能检测对比Embodiment 2 Performance testing comparison
在只考虑正入射的条件下,吸收率的计算公式可以简化为:Under the condition that only normal incidence is considered, the calculation formula of absorptivity can be simplified as:
其中,λ为波长;I为标准太阳光谱(AM 1.5);Rλ为对应波长的发射光谱。Rλ可由紫外-可见-近红外分光光度计和傅里叶变换红外光谱仪测量所得。同样,只考虑正入射的条件下,热发射率计算公式可以简化为如下公式:Among them, λ is the wavelength; I is the standard solar spectrum (AM 1.5); R λ is the emission spectrum of the corresponding wavelength. R λ can be measured by UV-Vis-NIR spectrophotometer and Fourier transform infrared spectrometer. Similarly, under the condition of only normal incidence, the calculation formula of thermal emissivity can be simplified to the following formula:
其中,Mλ是对应波长下的黑体辐射强度。where M λ is the blackbody radiation intensity at the corresponding wavelength.
然后根据吸收率α和热发射率ε来计算太阳光谱选择性吸收涂层的光热转换效率。光热转换效率ηThermal遵从下列公式:Then the light-to-heat conversion efficiency of the solar spectrum selective absorption coating was calculated according to the absorptivity α and the thermal emissivity ε. The photothermal conversion efficiency η Thermal follows the following formula:
其中,σ斯特藩-玻尔兹曼常数;T涂层表面的温度;C聚焦倍数,其意义是聚焦前后太阳光所辐射面积之比。如果考虑利用卡诺热机将热能二次转化,系统的整体效率遵从如下公式:Among them, σ Stefan-Boltzmann constant; T coating surface temperature; C focusing multiple, its meaning is the ratio of the area irradiated by sunlight before and after focusing. If considering the use of Carnot heat engine to convert heat energy twice, the overall efficiency of the system follows the following formula:
其中,ηTotal为二次转换后总的效率;T1为环境温度。Among them, η Total is the total efficiency after the secondary conversion; T 1 is the ambient temperature.
根据以上公式,高温稳定W-SiO2准光学微腔光谱选择性吸收涂层实施例相关性能计算结果如表1所示:According to the above formula, the relevant performance calculation results of the high temperature stable W-SiO 2 quasi-optical microcavity spectral selective absorption coating embodiment are shown in Table 1:
表1,W-SiO2准光学微腔光谱选择性吸收涂层不同退火情况下的吸收率,热发射率,光热转换效率以及系统总效率Table 1. Absorptivity, thermal emissivity, photothermal conversion efficiency and total system efficiency of W-SiO quasi - optical microcavity spectrally selective absorption coatings under different annealing conditions
准光学微腔选择性吸收涂层吸收为~0.96,在82℃下热发射率为~0.18。表明该选择性吸收涂层吸收性能优异。同时在高温600℃,1000倍聚焦环境下工作,其光热转换效率可达~0.95,二次转换总效率可达0.65左右。The quasi-optical microcavity selective absorption coating has an absorption of ∼0.96 and a thermal emissivity of ∼0.18 at 82 °C. It shows that the selective absorption coating has excellent absorption performance. At the same time, when working at a high temperature of 600 ° C and a 1000 times focusing environment, the photothermal conversion efficiency can reach ~0.95, and the total secondary conversion efficiency can reach about 0.65.
涂层在600℃空气中退火250小时后,太阳光吸收率改变非常小(0.004),在600℃工作温度下工作光热转换效率可达0.95左右,二次转换总效率可达0.65左右。说明本发明制备得到的准光学微腔结构光谱选择性吸收涂层具有高温稳定性好,太阳光吸收率高等优势。After the coating is annealed in the air at 600℃ for 250 hours, the change of the solar light absorption rate is very small (0.004), the working photothermal conversion efficiency can reach about 0.95 at the working temperature of 600℃, and the total secondary conversion efficiency can reach about 0.65. It shows that the spectral selective absorption coating of the quasi-optical microcavity structure prepared by the invention has the advantages of good high temperature stability and high solar light absorption rate.
通过S1的比较可以看出,在相同情况下,QOM准光学微腔基选择性吸收涂层的吸收大于金属陶瓷型选择性吸收涂层,可达0.96。与S2样品比较,在光学减反层存在的情况下,太阳光反射会减小,有利于涂层的太阳光吸收。It can be seen from the comparison of S1 that under the same conditions, the absorption of the QOM quasi-optical microcavity-based selective absorption coating is greater than that of the cermet-based selective absorption coating, up to 0.96. Compared with the S2 sample, in the presence of the optical anti-reflection layer, the reflection of sunlight will be reduced, which is beneficial to the absorption of sunlight by the coating.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910188508.1A CN109883073B (en) | 2019-03-13 | 2019-03-13 | Quasi-optical microcavity structure solar spectrum selective absorption coating and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910188508.1A CN109883073B (en) | 2019-03-13 | 2019-03-13 | Quasi-optical microcavity structure solar spectrum selective absorption coating and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109883073A CN109883073A (en) | 2019-06-14 |
CN109883073B true CN109883073B (en) | 2020-09-25 |
Family
ID=66932041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910188508.1A Active CN109883073B (en) | 2019-03-13 | 2019-03-13 | Quasi-optical microcavity structure solar spectrum selective absorption coating and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109883073B (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100457973C (en) * | 2005-10-14 | 2009-02-04 | 财团法人工业技术研究院 | solar selective absorption film |
CN102653151B (en) * | 2012-05-23 | 2015-02-11 | 皇明太阳能股份有限公司 | Solar selective absorption coating |
CN103162452B (en) * | 2013-03-05 | 2015-04-15 | 日出东方太阳能股份有限公司 | Inoxidizability solar spectrum selective absorbing coating and preparation method thereof |
WO2016069174A1 (en) * | 2014-10-29 | 2016-05-06 | University Of Houston System | Enhanced thermal stability on multi-metal filled cermet based spectrally selective solar absorbers |
CN104930735A (en) * | 2015-03-24 | 2015-09-23 | 江苏奥蓝工程玻璃有限公司 | Solar absorbing film and preparation method thereof |
US10533777B2 (en) * | 2015-06-19 | 2020-01-14 | University Of Houston System | Selective solar absorbers with tuned oxygen deficiency and methods of fabrication thereof |
CN106468483A (en) * | 2015-08-17 | 2017-03-01 | 北京有色金属研究总院 | A kind of new stacked structure photothermal deformation coating |
CN106167892B (en) * | 2016-08-15 | 2018-12-18 | 中国科学院宁波材料技术与工程研究所 | A kind of bimetallic/ceramic composite film and preparation method thereof |
-
2019
- 2019-03-13 CN CN201910188508.1A patent/CN109883073B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109883073A (en) | 2019-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cao et al. | A review of cermet-based spectrally selective solar absorbers | |
CN201218622Y (en) | A solar selective absorbing coating | |
CN204345956U (en) | The continuously adjustable coating for selective absorption of sunlight spectrum of a kind of ABSORPTION EDGE | |
CN105299935B (en) | A kind of coating for selective absorption of sunlight spectrum and preparation method thereof and heat collector | |
CN103032978B (en) | Selective absorbing coating for fresnel solar thermal power generation and preparation method of selective absorbing coating | |
CN104976803A (en) | Solar spectrum selective absorbing coating and preparation method thereof | |
CN105222381B (en) | A kind of double absorption layer coating for selective absorption of sunlight spectrum and preparation method thereof | |
CN102501459B (en) | Preparation method of medium-and-high-temperature solar selective absorption coating | |
CN103625032A (en) | Medium-high temperature solar photothermal selective-absorbing coat | |
CN102277555A (en) | TiN and AlN combined high-temperature solar selectively absorbing coating with double-ceramic structure and preparation method thereof | |
CN102328476B (en) | High-temperature solar energy selective absorption coating comprising TiO2 and Al2O3 double ceramic structures and preparation method thereof | |
CN105970175B (en) | A kind of titanium carbide-titanium carbide zirconium high temperature solar energy selective absorption coating and preparation method thereof | |
CN204535163U (en) | A kind of coating for selective absorption of sunlight spectrum and heat collector | |
CN204478557U (en) | A kind of double absorption layer coating for selective absorption of sunlight spectrum | |
CN109338295B (en) | Hafnium diboride-hafnium dioxide based high-temperature solar energy absorption coating and preparation method thereof | |
CN109457219B (en) | A medium and low temperature solar spectrum selective absorption coating and preparation method thereof | |
CN109883073B (en) | Quasi-optical microcavity structure solar spectrum selective absorption coating and preparation method thereof | |
CN105276846B (en) | Coating for selective absorption of sunlight spectrum that ABSORPTION EDGE is continuously adjusted and preparation method thereof | |
CN106086882A (en) | A kind of titanium carbide tungsten carbide purple solar selectively absorbing coating and preparation method thereof | |
CN102650474A (en) | High-temperature selective solar energy-absorbing coating with Cr2O3-Al2O3 dual-ceramic structure and preparation method thereof | |
CN109972111A (en) | A kind of highly doped MoOx-based photothermal conversion coating and preparation method thereof | |
CN106568207B (en) | High temperature coating for selective absorption of sunlight spectrum and preparation method thereof | |
CN116123741A (en) | A solar spectrum selective absorption coating for trough thermal power generation high temperature vacuum heat collection tube and its preparation method | |
CN114032503A (en) | Solar control film and preparation method thereof | |
CN102734966A (en) | Tank type solar intermediate temperature selective absorption coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |