CN109873113B - Lithium battery structure and lithium battery negative electrode foil - Google Patents
Lithium battery structure and lithium battery negative electrode foil Download PDFInfo
- Publication number
- CN109873113B CN109873113B CN201711257290.8A CN201711257290A CN109873113B CN 109873113 B CN109873113 B CN 109873113B CN 201711257290 A CN201711257290 A CN 201711257290A CN 109873113 B CN109873113 B CN 109873113B
- Authority
- CN
- China
- Prior art keywords
- material layer
- structures
- particle
- lithium battery
- impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
本发明公开一种锂电池结构及其锂电池负电极箔。锂电池负电极箔包括一基底材料层、一第一材料层以及一第二材料层。第一材料层形成在基底材料层上。第二材料层包括多个形成在第一材料层的内部的颗粒结构群组。每一个颗粒结构群组包括多个彼此相连的颗粒结构。第一材料层与第二材料层两者中的其中一个是由无杂质的100%纯硅材料所形成,并且第一材料层与第二材料层两者中的另外一个是由无杂质的100%纯碳材料所形成。借此,本发明能够通过多个彼此相连的颗粒结构的使用,以提升锂电池结构与锂电池负电极箔的结构强度与离子传输效率。
The present invention discloses a lithium battery structure and a lithium battery negative electrode foil thereof. The lithium battery negative electrode foil comprises a base material layer, a first material layer and a second material layer. The first material layer is formed on the base material layer. The second material layer comprises a plurality of particle structure groups formed inside the first material layer. Each particle structure group comprises a plurality of particle structures connected to each other. One of the first material layer and the second material layer is formed of 100% pure silicon material without impurities, and the other of the first material layer and the second material layer is formed of 100% pure carbon material without impurities. Thus, the present invention can improve the structural strength and ion transmission efficiency of the lithium battery structure and the lithium battery negative electrode foil by using a plurality of particle structures connected to each other.
Description
技术领域technical field
本发明涉及一种电池结构及其电极箔,特别是涉及一种锂电池结构及其锂电池负电极箔。The present invention relates to a battery structure and its electrode foil, in particular to a lithium battery structure and its negative electrode foil for the lithium battery.
背景技术Background technique
现今的可携式电子产品,如数字相机、手机、笔记本电脑等都需要备配轻量化的电池。在各式电池中,可重复充电的锂电池的单位重量所能提供的电量比传统电池(如铅蓄电池、镍氢电池、镍锌电池、镍镉电池)高出三倍,并且锂电池也有可快速充电的优点。然而,现有技术中的锂电池仍然具有可改善空间,尤其是锂电池所使用的负电极箔。Today's portable electronic products, such as digital cameras, mobile phones, notebook computers, etc., all need to be equipped with lightweight batteries. Among all kinds of batteries, the unit weight of rechargeable lithium batteries can provide three times more power than traditional batteries (such as lead-acid batteries, nickel-hydrogen batteries, nickel-zinc batteries, nickel-cadmium batteries), and lithium batteries also have rechargeable batteries. Advantages of fast charging. However, the lithium battery in the prior art still has room for improvement, especially the negative electrode foil used in the lithium battery.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于,针对现有技术的不足提供一种锂电池结构及其锂电池负电极箔。The technical problem to be solved by the present invention is to provide a lithium battery structure and a lithium battery negative electrode foil in view of the deficiencies of the prior art.
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种锂电池负电极箔,其包括:一基底材料层、一第一材料层以及一第二材料层。所述第一材料层形成在所述基底材料层上。所述第二材料层包括多个形成在所述第一材料层的内部的颗粒结构群组,每一个所述颗粒结构群组包括多个彼此相连的颗粒结构。其中,所述第一材料层与所述第二材料层两者中的其中一个是由无杂质的100%纯硅材料所形成,且所述第一材料层与所述第二材料层两者中的另外一个是由无杂质的100%纯碳材料所形成。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a negative electrode foil for a lithium battery, which includes: a base material layer, a first material layer and a second material layer. The first material layer is formed on the base material layer. The second material layer includes a plurality of particle structure groups formed inside the first material layer, and each of the particle structure groups includes a plurality of particle structures connected to each other. Wherein, one of the first material layer and the second material layer is formed of impurity-free 100% pure silicon material, and both the first material layer and the second material layer are The other one is formed from impurity-free 100% pure carbon material.
为了解决上述的技术问题,本发明所采用的另外一技术方案是,提供一种锂电池结构,所述锂电池结构为一使用一锂电池负电极箔的圆筒型锂电池、方型锂电池、钮扣型锂电池或者薄膜型锂电池,其特征在于,所述锂电池负电极箔包括:一基底材料层、一第一材料层以及一第二材料层。所述第一材料层形成在所述基底材料层上。所述第二材料层包括多个形成在所述第一材料层的内部的颗粒结构群组,每一个所述颗粒结构群组包括多个彼此相连的颗粒结构。其中,所述第一材料层与所述第二材料层两者中的其中一个是由无杂质的100%纯硅材料所形成,且所述第一材料层与所述第二材料层两者中的另外一个是由无杂质的100%纯碳材料所形成。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a lithium battery structure, the lithium battery structure is a cylindrical lithium battery, a square lithium battery using a negative electrode foil of a lithium battery , A button-type lithium battery or a thin-film lithium battery, wherein the negative electrode foil of the lithium battery comprises: a base material layer, a first material layer and a second material layer. The first material layer is formed on the base material layer. The second material layer includes a plurality of particle structure groups formed inside the first material layer, and each of the particle structure groups includes a plurality of particle structures connected to each other. Wherein, one of the first material layer and the second material layer is formed of impurity-free 100% pure silicon material, and both the first material layer and the second material layer are The other one is formed from impurity-free 100% pure carbon material.
更进一步地,基底材料层为Cu材料层或Al材料层,且所述第一材料层与所述第二材料层是同时在真空环境下通过共蒸镀或者共溅镀的加工方式所形成。Further, the base material layer is a Cu material layer or an Al material layer, and the first material layer and the second material layer are simultaneously formed by co-evaporation or co-sputtering in a vacuum environment.
更进一步地,当所述第一材料层是由无杂质的100%纯硅材料所形成,且所述第二材料层是由无杂质的100%纯碳材料所形成时,所述100%纯碳材料能被制作成多个所述颗粒结构,而所述100%纯硅材料能做为多个所述颗粒结构的包覆材料。Further, when the first material layer is formed of impurity-free 100% pure silicon material, and the second material layer is formed of impurity-free 100% pure carbon material, the 100% pure The carbon material can be fabricated into a plurality of the granular structures, and the 100% pure silicon material can be used as a coating material for the granular structures.
更进一步地,当所述第二材料层是由无杂质的100%纯硅材料所形成,且所述第一材料层是由无杂质的100%纯碳材料所形成时,所述100%纯硅材料能被制作成多个所述颗粒结构,而所述100%纯碳材料能做为多个所述颗粒结构的包覆材料。Further, when the second material layer is formed of impurity-free 100% pure silicon material, and the first material layer is formed of impurity-free 100% pure carbon material, the 100% pure The silicon material can be fabricated into a plurality of the granular structures, and the 100% pure carbon material can be used as a coating material for the granular structures.
更进一步地,在每一个所述颗粒结构群组中,每一个颗粒结构连接于相邻近的一个或多个所述颗粒结构,以形成一连续性堆叠结构,所述锂电池负电极箔的结构强度与离子传输效率能通过所述连续性堆叠结构而得到提升。Further, in each of the particle structure groups, each particle structure is connected to one or more adjacent particle structures to form a continuous stack structure, and the negative electrode foil of the lithium battery is Structural strength and ion transport efficiency can be improved by the continuous stack structure.
更进一步地,所述颗粒结构群组的多个颗粒结构中的至少一个接触所述基底材料层,且所述颗粒结构群组的多个颗粒结构中的至少另一个接触到所述第一材料层的外表面而从所述第一材料层的外表面裸露。Still further, at least one of the plurality of particle structures of the group of particle structures contacts the base material layer, and at least another one of the plurality of particle structures of the group of particle structures contacts the first material The outer surface of the layer is exposed from the outer surface of the first material layer.
更进一步地,所述颗粒结构群组的多个颗粒结构中的至少一个接触所述基底材料层,且所述颗粒结构群组的多个颗粒结构与所述第一材料层的外表面彼此分离而不接触。Still further, at least one of the plurality of particle structures of the group of particle structures contacts the base material layer, and the plurality of particle structures of the group of particle structures and the outer surface of the first material layer are separated from each other without contact.
更进一步地,所述颗粒结构群组的多个颗粒结构与所述基底材料层彼此分离而不接触,且所述颗粒结构群组的多个颗粒结构中的至少一个接触到所述第一材料层的外表面而从所述第一材料层的外表面裸露。Still further, the plurality of particle structures of the group of particle structures and the base material layer are separated from each other without contacting each other, and at least one of the plurality of particle structures of the group of particle structures is in contact with the first material The outer surface of the layer is exposed from the outer surface of the first material layer.
更进一步地,所述颗粒结构群组的多个颗粒结构与所述基底材料层彼此分离而不接触,且所述颗粒结构群组的多个颗粒结构与所述第一材料层的外表面彼此分离而不接触。Further, the plurality of particle structures of the particle structure group and the base material layer are separated from each other without contacting each other, and the plurality of particle structures of the particle structure group and the outer surface of the first material layer are each other Separate without touching.
本发明的其中一有益效果在于,本发明所提供的锂电池结构及其锂电池负电极箔,其能通过“所述第二材料层包括多个形成在所述第一材料层的内部的颗粒结构群组,每一个所述颗粒结构群组包括多个彼此相连的颗粒结构”以及“所述第一材料层与所述第二材料层两者中的其中一个是由无杂质的100%纯硅材料所形成,且所述第一材料层与所述第二材料层两者中的另外一个是由无杂质的100%纯碳材料所形成”的技术方案,以提升所述锂电池负电极箔的结构强度与离子传输效率。One of the beneficial effects of the present invention is that, in the lithium battery structure and its negative electrode foil for the lithium battery provided by the present invention, the second material layer includes a plurality of particles formed inside the first material layer. structure groups, each said particle structure group comprising a plurality of particle structures connected to each other" and "one of said first material layer and said second material layer is made of 100% pure formed of silicon material, and the other one of the first material layer and the second material layer is formed of impurity-free 100% pure carbon material" to improve the negative electrode of the lithium battery Structural strength and ion transport efficiency of foils.
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。For further understanding of the features and technical content of the present invention, please refer to the following detailed description and accompanying drawings of the present invention. However, the accompanying drawings are only for reference and description, not for limiting the present invention.
附图说明Description of drawings
图1为本发明第一实施例的锂电池负电极箔的示意图。FIG. 1 is a schematic diagram of a negative electrode foil of a lithium battery according to a first embodiment of the present invention.
图2为本发明第一实施例的锂电池负电极箔的放大示意图。FIG. 2 is an enlarged schematic view of the negative electrode foil of the lithium battery according to the first embodiment of the present invention.
图3为本发明第二实施例的锂电池负电极箔的放大示意图。FIG. 3 is an enlarged schematic view of the negative electrode foil of the lithium battery according to the second embodiment of the present invention.
图4为本发明第三实施例的锂电池负电极箔的放大示意图。FIG. 4 is an enlarged schematic view of the negative electrode foil of the lithium battery according to the third embodiment of the present invention.
图5为本发明第四实施例的锂电池负电极箔的放大示意图。5 is an enlarged schematic view of a negative electrode foil for a lithium battery according to a fourth embodiment of the present invention.
图6为本发明第五实施例的第一种锂电池结构的示意图。FIG. 6 is a schematic diagram of the structure of the first lithium battery according to the fifth embodiment of the present invention.
图7为本发明第五实施例的第二种锂电池结构的示意图。FIG. 7 is a schematic diagram of the structure of a second lithium battery according to the fifth embodiment of the present invention.
图8为本发明第五实施例的第三种锂电池结构的示意图。FIG. 8 is a schematic diagram of a third lithium battery structure according to the fifth embodiment of the present invention.
图9为本发明第五实施例的第四种锂电池结构的示意图。FIG. 9 is a schematic diagram of a fourth lithium battery structure according to the fifth embodiment of the present invention.
具体实施方式Detailed ways
以下是通过特定的具体实施例来说明本发明所公开有关“锂电池结构及其锂电池负电极箔”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。The following are specific examples to illustrate the embodiments of the “lithium battery structure and its negative electrode foil for lithium batteries” disclosed in the present invention. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to the actual size, and are stated in advance. The following embodiments will further describe the related technical contents of the present invention in detail, but the disclosed contents are not intended to limit the protection scope of the present invention.
应理解,虽然本文中可能使用术语第一、第二、第三等来描述各种组件或者信号,但这些组件或者信号不应受这些术语的限制。这些术语主要是用以区分一组件与另一组件,或者一信号与另一信号。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。It will be understood that, although the terms first, second, third, etc. may be used herein to describe various components or signals, these components or signals should not be limited by these terms. These terms are primarily used to distinguish one component from another component, or one signal from another. In addition, the term "or", as used herein, should include any one or a combination of more of the associated listed items, as the case may be.
第一实施例first embodiment
请参阅图1与图2所示,图1为本发明第一实施例的锂电池负电极箔的示意图。图2为本发明第一实施例的锂电池负电极箔的放大示意图。本发明第一实施例提供一种锂电池负电极箔F,其包括:一基底材料层1、一第一材料层2以及一第二材料层3。Please refer to FIG. 1 and FIG. 2 . FIG. 1 is a schematic diagram of a negative electrode foil for a lithium battery according to a first embodiment of the present invention. FIG. 2 is an enlarged schematic view of the negative electrode foil of the lithium battery according to the first embodiment of the present invention. The first embodiment of the present invention provides a negative electrode foil F for a lithium battery, which includes: a base material layer 1 , a
更进一步来说,配合图1与图2所示,第一材料层2形成在基底材料层1上,第二材料层3包括多个形成在第一材料层2的内部的颗粒结构群组30,并且每一个颗粒结构群组30包括多个彼此相连的颗粒结构300。举例来说,基底材料层1可为Cu材料层、Al材料层或者任何的导电材料层,并且第一材料层2与第二材料层3可以是同时在真空环境下通过共蒸镀(co-evaporating)或者共溅镀(co-sputtering)的加工方式所形成。然而,本发明不以上述所举的例子为限。比如说,第一材料层2与第二材料层3可以是同时在真空环境下通过依序蒸镀(sequential evaporation)的加工方式所形成。Furthermore, as shown in FIG. 1 and FIG. 2 , the
更进一步来说,如图1所示,第一材料层2与第二材料层3两者中的其中一个是由无杂质的100%纯硅材料所形成,并且第一材料层2与第二材料层3两者中的另外一个是由无杂质的100%纯碳材料所形成。也就是说,依据不同的需求,第一材料层2可以是由无杂质的100%纯硅材料所形成,或者是由无杂质的100%纯碳材料所形成,并且第二材料层3也可以是由无杂质的100%纯硅材料所形成,或者是由无杂质的100%纯碳材料所形成,但是用来制作第一材料层2与第二材料层3的材料必需是两种相异的材料。Furthermore, as shown in FIG. 1 , one of the
举例来说,配合图1与图2所示,当第一材料层2是由无杂质的100%纯硅材料所形成,且第二材料层3是由无杂质的100%纯碳材料所形成时,100%纯碳材料就能被制作成多个颗粒结构300,而100%纯硅材料就能做为多个颗粒结构300的包覆材料。然而,本发明不以上述所举的例子为限。For example, as shown in FIG. 1 and FIG. 2 , when the
举例来说,配合图1与图2所示,当第二材料层3是由无杂质的100%纯硅材料所形成,且第一材料层2是由无杂质的100%纯碳材料所形成时,100%纯硅材料就能被制作成多个颗粒结构300,而100%纯碳材料就能做为多个颗粒结构300的包覆材料。然而,本发明不以上述所举的例子为限。For example, as shown in FIG. 1 and FIG. 2 , when the
值得注意的是,如图2所示,颗粒结构群组30的多个颗粒结构300中的至少一个(例如最底端的颗粒结构300)会接触基底材料层1,并且颗粒结构群组30的多个颗粒结构300中的至少另一个(例如最顶端的颗粒结构300)会接触到第一材料层2的外表面200而从第一材料层2的外表面200裸露。It is worth noting that, as shown in FIG. 2 , at least one of the plurality of
借此,如图2所示,在每一个颗粒结构群组30中,每一个颗粒结构300连接于相邻近的一个或多个颗粒结构300(也就是说,每一个颗粒结构300至少会连接于一颗粒结构300,不会有落单而独立的情况发生),以形成一连续性堆叠结构S,所以锂电池负电极箔F的结构强度与离子传输效率就能通过连续性堆叠结构S的使用而有效得到提升,当然也能够提升离子的存放空间。Therefore, as shown in FIG. 2 , in each
第二实施例Second Embodiment
请参阅图3所示,图3为本发明第二实施例的锂电池负电极箔的放大示意图。本发明第二实施例提供一种锂电池负电极箔F,其包括:一基底材料层1、一第一材料层2以及一第二材料层3。由图3与图2的比较可知,本发明第二实施例与第一实施例最大的差别在于:在第二实施例中,颗粒结构群组30的多个颗粒结构300中的至少一个(例如最底端的颗粒结构300)会接触基底材料层1,并且颗粒结构群组30的多个颗粒结构300与第一材料层2的外表面200会彼此分离而不接触。Please refer to FIG. 3 , which is an enlarged schematic view of the negative electrode foil of the lithium battery according to the second embodiment of the present invention. The second embodiment of the present invention provides a negative electrode foil F for a lithium battery, which includes: a base material layer 1 , a
借此,如图3所示,在每一个颗粒结构群组30中,每一个颗粒结构300连接于相邻近的一个或多个颗粒结构300(也就是说,每一个颗粒结构300至少会连接于一颗粒结构300,不会有落单而独立的情况发生),以形成一连续性堆叠结构S,所以锂电池负电极箔F的结构强度与离子传输效率就能通过连续性堆叠结构S的使用而有效得到提升,当然也能够提升离子的存放空间。Therefore, as shown in FIG. 3 , in each
第三实施例Third Embodiment
请参阅图4所示,图4为本发明第三实施例的锂电池负电极箔的放大示意图。本发明第三实施例提供一种锂电池负电极箔F,其包括:一基底材料层1、一第一材料层2以及一第二材料层3。由图4与图2的比较可知,本发明第三实施例与第一实施例最大的差别在于:在第三实施例中,颗粒结构群组30的多个颗粒结构300与基底材料层1会彼此分离而不接触,并且颗粒结构群组30的多个颗粒结构300中的至少一个(例如最顶端的颗粒结构300)会接触到第一材料层2的外表面200而从第一材料层2的外表面200裸露。Please refer to FIG. 4 , which is an enlarged schematic view of a negative electrode foil for a lithium battery according to a third embodiment of the present invention. The third embodiment of the present invention provides a negative electrode foil F for a lithium battery, which includes: a base material layer 1 , a
借此,如图4所示,在每一个颗粒结构群组30中,每一个颗粒结构300连接于相邻近的一个或多个颗粒结构300(也就是说,每一个颗粒结构300至少会连接于一颗粒结构300,不会有落单而独立的情况发生),以形成一连续性堆叠结构S,所以锂电池负电极箔F的结构强度与离子传输效率就能通过连续性堆叠结构S的使用而有效得到提升,当然也能够提升离子的存放空间。Therefore, as shown in FIG. 4 , in each
第四实施例Fourth Embodiment
请参阅图5所示,图5为本发明第四实施例的锂电池负电极箔的放大示意图。本发明第四实施例提供一种锂电池负电极箔F,其包括:一基底材料层1、一第一材料层2以及一第二材料层3。由图5与图2的比较可知,本发明第四实施例与第一实施例最大的差别在于:在第四实施例中,颗粒结构群组30的多个颗粒结构300与基底材料层1会彼此分离而不接触,并且颗粒结构群组30的多个颗粒结构300与第一材料层2的外表面200会彼此分离而不接触。Please refer to FIG. 5 , which is an enlarged schematic view of a negative electrode foil for a lithium battery according to a fourth embodiment of the present invention. The fourth embodiment of the present invention provides a negative electrode foil F for a lithium battery, which includes: a base material layer 1 , a
借此,如图5所示,在每一个颗粒结构群组30中,每一个颗粒结构300连接于相邻近的一个或多个颗粒结构300(也就是说,每一个颗粒结构300至少会连接于一颗粒结构300,不会有落单而独立的情况发生),以形成一连续性堆叠结构S,所以锂电池负电极箔F的结构强度与离子传输效率就能通过连续性堆叠结构S的使用而有效得到提升,当然也能够提升离子的存放空间。Thereby, as shown in FIG. 5 , in each
第五实施例Fifth Embodiment
请参阅图6至图9所示,图6为本发明第五实施例的第一种锂电池结构的示意图。图7为本发明第五实施例的第二种锂电池结构的示意图。图8为本发明第五实施例的第三种锂电池结构的示意图。图9为本发明第五实施例的第四种锂电池结构的示意图。本发明第五实施例提供一种锂电池结构,锂电池结构可为一使用一锂电池负电极箔F的圆筒型锂电池B1(如图6所示)、方型锂电池B2(如图7所示)、钮扣型锂电池B3(如图8所示)或者薄膜型锂电池B4(如图9所示),并且锂电池负电极箔F可以使用第一实施例至第四实施例之中的任何一种。Please refer to FIGS. 6 to 9 . FIG. 6 is a schematic diagram of the structure of the first lithium battery according to the fifth embodiment of the present invention. FIG. 7 is a schematic diagram of the structure of a second lithium battery according to the fifth embodiment of the present invention. FIG. 8 is a schematic diagram of a third lithium battery structure according to the fifth embodiment of the present invention. FIG. 9 is a schematic diagram of a fourth lithium battery structure according to the fifth embodiment of the present invention. The fifth embodiment of the present invention provides a lithium battery structure. The lithium battery structure can be a cylindrical lithium battery B1 (as shown in FIG. 6 ) and a square lithium battery B2 (as shown in FIG. 6 ) using a lithium battery negative electrode foil F. 7), a button-type lithium battery B3 (as shown in FIG. 8), or a thin-film lithium battery B4 (as shown in FIG. 9), and the lithium battery negative electrode foil F can use the first to fourth embodiments any of them.
借此,由于锂电池负电极箔F的结构强度、离子传输效率以及离子的存放空间能通过连续性堆叠结构S的使用而有效得到提升,所以锂电池结构的结构强度、锂离子(lithiumion)的传输效率以及锂离子的存放空间就能通过锂电池负电极箔F的使用而有效得到提升。Thereby, since the structural strength, ion transmission efficiency and ion storage space of the negative electrode foil F of the lithium battery can be effectively improved by using the continuous stack structure S, the structural strength of the lithium battery structure, the lithium ion (lithiumion) The transmission efficiency and the storage space of lithium ions can be effectively improved by using the negative electrode foil F of the lithium battery.
实施例的有益效果Beneficial Effects of Embodiments
本发明的其中一有益效果在于,本发明所提供的锂电池结构及其锂电池负电极箔F,其能通过“第二材料层3包括多个形成在第一材料层2的内部的颗粒结构群组30,且每一个颗粒结构群组30包括多个彼此相连的颗粒结构300”以及“第一材料层2与第二材料层3两者中的其中一个是由无杂质的100%纯硅材料所形成,且第一材料层2与第二材料层3两者中的另外一个是由无杂质的100%纯碳材料所形成”的技术方案,以提升锂电池负电极箔F的结构强度与离子传输效率。也就是说,本发明能够通过多个彼此相连的颗粒结构的使用,以提升锂电池结构与锂电池负电极箔F的结构强度与离子传输效率。One of the beneficial effects of the present invention is that the lithium battery structure and the lithium battery negative electrode foil F provided by the present invention can pass through the “
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求书的保护范围,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求书的保护范围内。The content disclosed above is only a preferred feasible embodiment of the present invention, and is not intended to limit the protection scope of the claims of the present invention. Therefore, any equivalent technical changes made by using the contents of the description and the accompanying drawings of the present invention are included in the present invention. within the scope of protection of the claims of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711257290.8A CN109873113B (en) | 2017-12-04 | 2017-12-04 | Lithium battery structure and lithium battery negative electrode foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711257290.8A CN109873113B (en) | 2017-12-04 | 2017-12-04 | Lithium battery structure and lithium battery negative electrode foil |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109873113A CN109873113A (en) | 2019-06-11 |
CN109873113B true CN109873113B (en) | 2020-12-04 |
Family
ID=66915060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711257290.8A Expired - Fee Related CN109873113B (en) | 2017-12-04 | 2017-12-04 | Lithium battery structure and lithium battery negative electrode foil |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109873113B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101908617A (en) * | 2009-06-05 | 2010-12-08 | 株式会社神户制钢所 | Negative electrode material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery |
CN103718347A (en) * | 2012-06-13 | 2014-04-09 | 株式会社三五 | Negative electrode for lithium secondary batteries and method for producing same |
US9172088B2 (en) * | 2010-05-24 | 2015-10-27 | Amprius, Inc. | Multidimensional electrochemically active structures for battery electrodes |
CN107093700A (en) * | 2012-10-12 | 2017-08-25 | 宾夕法尼亚州研究基金会 | The synthesis of the interconnection Si C composites of micron-scale |
-
2017
- 2017-12-04 CN CN201711257290.8A patent/CN109873113B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101908617A (en) * | 2009-06-05 | 2010-12-08 | 株式会社神户制钢所 | Negative electrode material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery |
US9172088B2 (en) * | 2010-05-24 | 2015-10-27 | Amprius, Inc. | Multidimensional electrochemically active structures for battery electrodes |
CN103718347A (en) * | 2012-06-13 | 2014-04-09 | 株式会社三五 | Negative electrode for lithium secondary batteries and method for producing same |
CN107093700A (en) * | 2012-10-12 | 2017-08-25 | 宾夕法尼亚州研究基金会 | The synthesis of the interconnection Si C composites of micron-scale |
Also Published As
Publication number | Publication date |
---|---|
CN109873113A (en) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8951675B2 (en) | Graphene current collectors in batteries for portable electronic devices | |
CN110350241A (en) | Solid electrolyte laminated body and the all-solid-state battery for using it | |
JP2015513190A (en) | Electrode assembly, battery cell and device including the same | |
WO2008099508A1 (en) | Lithium ion secondary battery and process for manufacturing the same | |
WO2020105439A1 (en) | Lithium secondary battery and manufacturing method thereof | |
KR101741412B1 (en) | Current collector for secondary battery, electrode for secondary battery and secondary battery using the same | |
WO2023024838A1 (en) | Electrochemical device and electronic device | |
CN114830383A (en) | Nonaqueous electrolyte secondary battery, collector, and method for manufacturing nonaqueous electrolyte secondary battery | |
JP4381176B2 (en) | Thin film solid secondary battery | |
CN107078289B (en) | Electrode, method for manufacturing same, electrode manufactured by the method, and secondary battery including the electrode | |
WO2020105431A1 (en) | Sodium secondary battery and manufacturing method thereof | |
CN109873113B (en) | Lithium battery structure and lithium battery negative electrode foil | |
CN209169236U (en) | A New Type of Laminated Cylindrical Battery | |
EP2051316A1 (en) | Fabricating method of electrode adhesive bicell | |
TWI661599B (en) | Lithium battery and negative electrode foil thereof | |
CN102610847B (en) | Battery cell and manufacturing method thereof | |
JP5454459B2 (en) | Non-aqueous electrolyte battery | |
CN108346773A (en) | Battery core pole piece structure | |
CN111095610B (en) | Electrode and secondary battery | |
US20170155142A1 (en) | Composite lithium secondary battery | |
US20130143099A1 (en) | Lithium ion battery | |
US20190363395A1 (en) | Thin film solid-state secondary battery | |
CN110858666B (en) | Method for manufacturing laminated battery | |
US11721803B2 (en) | Solid-state battery | |
US20190363365A1 (en) | Solid-state battery structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201204 |
|
CF01 | Termination of patent right due to non-payment of annual fee |