CN109870153B - Magnetometer orthogonality calibration test method and calibration test device - Google Patents
Magnetometer orthogonality calibration test method and calibration test device Download PDFInfo
- Publication number
- CN109870153B CN109870153B CN201910241470.XA CN201910241470A CN109870153B CN 109870153 B CN109870153 B CN 109870153B CN 201910241470 A CN201910241470 A CN 201910241470A CN 109870153 B CN109870153 B CN 109870153B
- Authority
- CN
- China
- Prior art keywords
- turntable
- magnetic field
- magnetometer
- calibration
- alternating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 45
- 238000010998 test method Methods 0.000 title claims abstract description 12
- 230000005291 magnetic effect Effects 0.000 claims abstract description 172
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims description 8
- 230000008030 elimination Effects 0.000 claims description 7
- 238000003379 elimination reaction Methods 0.000 claims description 7
- 230000007613 environmental effect Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005358 geomagnetic field Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
技术领域technical field
本发明涉及三轴磁强计的标定领域,具体涉及一种磁强计正交性标定测试方法及标定测试装置。The invention relates to the field of calibration of a three-axis magnetometer, in particular to a calibration test method and calibration test device for the orthogonality of a magnetometer.
背景技术Background technique
由于三轴磁强计的制造误差和装配误差,以及外界铁磁物体对磁场的干扰,其测量地磁场的精度较低。磁强计的误差来源于环境干扰和磁强计的自身误差。环境干扰包括硬磁干扰和软磁干扰,磁强计自身的主要误差包括零偏误差、标度因子误差、非正交误差、安装对准误差。这些误差严重影响磁强计应用于航向确定和姿态测量的精度,需要进行标定,得到误差系数,进而补偿磁强计原始输出。Due to the manufacturing error and assembly error of the three-axis magnetometer, as well as the interference of the external ferromagnetic object to the magnetic field, the accuracy of the measurement of the geomagnetic field is low. The error of the magnetometer comes from the environmental interference and the error of the magnetometer itself. Environmental interference includes hard magnetic interference and soft magnetic interference. The main errors of the magnetometer itself include zero bias error, scale factor error, non-orthogonal error, and installation alignment error. These errors seriously affect the accuracy of the magnetometer used in heading determination and attitude measurement. It needs to be calibrated to obtain the error coefficient and then compensate the original output of the magnetometer.
目前标定方法有很多,主要包括:At present, there are many calibration methods, mainly including:
1.磁强计在水平面内转动一周,利用磁强计输出的最大值和最小值完成2轴磁强计的标度因子误差和零偏误差的标定。但是,此方法只能完成2轴的磁强计标定,且只能标定部分误差项,精度低。1. The magnetometer rotates once in the horizontal plane, and the maximum and minimum output values of the magnetometer are used to complete the calibration of the scale factor error and zero bias error of the 2-axis magnetometer. However, this method can only complete the 2-axis magnetometer calibration, and can only calibrate part of the error terms, and the accuracy is low.
2.通过三维空间内旋转磁强计的椭球拟合标定方法,其无法标定由软磁干扰、非正交误差、安装误差造成的旋转误差项,补偿效果有限,且通过最小二乘法的椭球拟合过程计算量大。2. Through the ellipsoid fitting calibration method of the rotating magnetometer in three-dimensional space, it cannot calibrate the rotation error term caused by soft magnetic interference, non-orthogonal error, and installation error, and the compensation effect is limited. The ball fitting process is computationally expensive.
3.利用高精度无磁转台确定方向,并通过更高精度的磁强计获取磁场数据,通过实验确定误差系数,其校正精度高,但对设备要求高,且操作复杂。3. Use a high-precision non-magnetic turntable to determine the direction, and obtain the magnetic field data through a higher-precision magnetometer, and determine the error coefficient through experiments. The correction accuracy is high, but the equipment requirements are high and the operation is complicated.
4.将磁强计固定在正方体内,通过12个不同的摆放方位,对磁强计的误差系数进行求解。然而此方法对12个摆放朝向的准确度要求高,且依赖的数据点较少,在随机噪声较大时,容易产生较大的标定误差。4. Fix the magnetometer in the cube, and solve the error coefficient of the magnetometer through 12 different placement orientations. However, this method has high requirements on the accuracy of the 12 orientations, and relies on fewer data points. When the random noise is large, it is easy to generate a large calibration error.
总的来说,目前相关的标定方法具有设备要求高、操作复杂、计算复杂、只完成部分误差项的标定或者只适用于2轴磁强计的标定等缺点。In general, the current related calibration methods have disadvantages such as high equipment requirements, complicated operations, complicated calculations, only complete calibration of some error terms, or only suitable for calibration of 2-axis magnetometers.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术中磁强计尤其是三轴磁强计标定方法所存在的不足及缺陷,本发明提供了一种磁强计交流正交性标定测试方法及标定测试装置。In order to overcome the deficiencies and defects of the magnetometer, especially the three-axis magnetometer calibration method in the prior art, the present invention provides a magnetometer AC orthogonality calibration test method and calibration test device.
根据本发明的实施例,提供了一种磁强计交流正交性标定测试方法,包括:According to an embodiment of the present invention, a magnetometer AC orthogonality calibration test method is provided, including:
将所述磁强计放置在标定设备中,所述磁强计位于所述标定设备的交流磁场的均匀区域,所述交流磁场中任意一点的总的磁场强度B2与三个磁场分量的关系如方程式(1)所示: The magnetometer is placed in the calibration device, the magnetometer is located in a uniform area of the AC magnetic field of the calibration device, and the relationship between the total magnetic field strength B at any point in the AC magnetic field and the three magnetic field components As shown in equation (1):
在所述交流磁场中转动所述磁强计,所述磁强计在所述交流磁场中转动多个不同的方位,分别在每个方位上测量所述交流磁场的三个磁场分量,由于所述磁强计的三轴的不正交性,所述交流磁场的三个磁场分量的测量值B'x、B'y、B'z分别如方程式(2)-(3)所示:The magnetometer is rotated in the AC magnetic field, the magnetometer is rotated in a plurality of different orientations in the AC magnetic field, and the three magnetic field components of the AC magnetic field are measured in each orientation respectively. The non-orthogonality of the three axes of the magnetometer, the measured values B' x , B' y , and B' z of the three magnetic field components of the alternating magnetic field are respectively shown in equations (2)-(3):
B'x=Sx+Bx+x0 (2),B' x =S x +B x +x 0 (2),
B'y=Sy(Bycos(ρ)+Bxsin(ρ))+y0 (3),B' y =S y (B y cos(ρ)+B x sin(ρ))+y 0 (3),
根据所述磁强计测得的所述交流磁场的所述三个磁场分量B'x、B'y、B'z的多组测量值,获得系数Sx、Sy、Sz、x0、y0、z0、ρ、及λ; Coefficients S x , S y , S z , x 0 are obtained according to multiple sets of measurement values of the three magnetic field components B' x , B' y , B' z of the alternating magnetic field measured by the magnetometer , y 0 , z 0 , ρ, and λ;
在记录时间内记录所述磁强计在每个所述方位上探测的所述交流磁场的输出数据,采用线圈给定的所述交流磁场的磁场模量对所述磁强计的交流正交性进行标定测试;The output data of the AC magnetic field detected by the magnetometer in each of the azimuths are recorded during the recording time, and the AC quadrature of the magnetometer is applied to the magnetic field modulus of the AC magnetic field given by the coil. performance calibration test;
其中,Sx、Sy、Sz是所述磁场的三个所述磁场分量的标度因子误差;where S x , S y , S z are the scale factor errors of the three magnetic field components of the magnetic field;
x0、y0、z0是所述交流磁场的零点;x 0 , y 0 , z 0 are the zero points of the alternating magnetic field;
ρ表示测量值B'y在y方向上的偏离角;表示测量值B'z在z方向上的偏离角;λ表示测量值Bz在x方向上的偏离角。ρ represents the deviation angle of the measured value B'y in the y direction; represents the deviation angle of the measured value B'z in the z direction; λ represents the deviation angle of the measurement value B z in the x direction.
可选地,根据所述方程式(2)-(4),获得系数Sx、Sy、Sz、x0、y0、z0、ρ、及λ还包括如下步骤:Optionally, according to the equations (2)-(4), the coefficients S x , S y , S z , x 0 , y 0 , z 0 , ρ, and λ also includes the following steps:
将所述方程式(2)-(4)联立得到Bx、By、Bz,代入所述方程式(1)得到如下方程式(5): Combine the equations (2)-(4) to obtain B x , By , and B z , and substitute into the equation (1) to obtain the following equation (5):
其中,系数A1、B1、C1、D1、E1、F1、G1、H1、I1及J1是Sx、Sy、Sz、x0、y0、z0、ρ、及λ的函数,通过多组所述测量值B'x、B'y、B'z,采用最小二乘法拟合出所述系数A1、B1、C1、D1、E1、F1、G1、H1、I1及J1。Among them, coefficients A1, B1, C1, D1, E1, F1, G1, H1, I1 and J1 are S x , S y , S z , x 0 , y 0 , z 0 , ρ, and the function of λ , the coefficients A1 , B1 , C1, D1, E1, F1, G1, H1, I1 and J1.
可选地,所述交流磁场的幅值范围介于0nT~100000nT,频率介于0.0001Hz~100kHz。Optionally, the amplitude of the alternating current magnetic field ranges from 0 nT to 100,000 nT, and the frequency ranges from 0.0001 Hz to 100 kHz.
可选地,所述磁强计在所述交流磁场中转动至少9个不同的所述方位,所述记录时间不少于1min。Optionally, the magnetometer rotates in at least 9 different directions in the alternating magnetic field, and the recording time is not less than 1 min.
可选地,将所述磁强计放置在所述标定设备中之后,还包括对所述磁强计进行预热的步骤,其中所述磁强计的预热时间不少于15min。Optionally, after the magnetometer is placed in the calibration device, the step of preheating the magnetometer is further included, wherein the preheating time of the magnetometer is not less than 15 minutes.
可选地,所述交流磁场的输出数据包括磁场峰峰值或者功率谱值。Optionally, the output data of the AC magnetic field includes a peak-to-peak value of the magnetic field or a power spectrum value.
可选地,所述标定设备包括三轴磁场线圈、磁场干扰消除系统以及三路恒流电源,所述磁场干扰消除系统包括三轴补偿线圈、光泵磁力仪以及干扰磁场补偿控制系统,Optionally, the calibration device includes a three-axis magnetic field coil, a magnetic field interference elimination system and a three-way constant current power supply, and the magnetic field interference elimination system includes a three-axis compensation coil, an optical pump magnetometer, and an interference magnetic field compensation control system,
将所述磁强计放置在所述标定设备中之后,向所述三轴磁场线圈施加电流形成所述交流磁场,同时所述磁场干扰消除系统工作,消除环境磁场对所述磁场的干扰。After the magnetometer is placed in the calibration device, a current is applied to the three-axis magnetic field coil to form the alternating magnetic field, and the magnetic field interference cancellation system works to eliminate the interference of the environmental magnetic field on the magnetic field.
可选地,在将所述磁强计放置在所述标定设备之前,还包括将所述磁强计固定在无磁三轴转台上,所述无磁三轴转台放置于所述三轴磁场线圈中。Optionally, before placing the magnetometer on the calibration device, it also includes fixing the magnetometer on a non-magnetic three-axis turntable, and the non-magnetic three-axis turntable is placed on the three-axis magnetic field. in the coil.
可选地,所述无磁三轴转台包括:Optionally, the non-magnetic three-axis turntable includes:
水平设置的转盘α;Horizontally set turntable α;
位于所述转盘α的上方,同样水平设置的转盘γ;以及Above the turntable α, the turntable γ also arranged horizontally; and
垂直于所述转盘α及所述转盘γ设置的转盘β;a turntable β arranged perpendicular to the turntable α and the turntable γ;
其中,所述转盘α及所述转盘γ相互平行地间隔设置,所述转盘β包括至少一对相对设置的转盘,所述转盘β的中心设置在所述转盘γ的边缘外侧并且所述转盘β支撑所述转盘γ,所述转盘α的边缘与所述转盘β的边缘连接以支撑所述转盘β。The turntable α and the turntable γ are arranged parallel to each other and spaced apart, the turntable β includes at least a pair of oppositely arranged turntables, the center of the turntable β is set outside the edge of the turntable γ, and the turntable β The turntable γ is supported, and the edge of the turntable α is connected with the edge of the turntable β to support the turntable β.
可选地,所述无磁三轴转台还包括支撑架,所述支撑架包括支撑面以及用于固定并支撑所述支撑面的支撑柱,所述转盘α可转动地设置在所述支撑架的所述支撑面上。Optionally, the non-magnetic three-axis turntable further includes a support frame, the support frame includes a support surface and a support column for fixing and supporting the support surface, and the turntable α is rotatably arranged on the support frame. on the support surface.
可选地,所述磁强计固定在所述转盘γ的中心位置,所述磁强计的中心与所述转盘γ的中心重合并且随所述转盘γ的转动而转动。Optionally, the magnetometer is fixed at the center of the turntable γ, and the center of the magnetometer coincides with the center of the turntable γ and rotates with the rotation of the turntable γ.
根据本发明的另一实施例,提供了一种磁强计交流正交性标定测试装置,包括:According to another embodiment of the present invention, a magnetometer AC orthogonality calibration test device is provided, including:
标定设备,用于产生交流磁场;Calibration equipment for generating alternating magnetic fields;
无磁三轴转台,用于固定所述磁强计,将固定有所述磁强计的无磁三轴转台放置在所述交流磁场的均匀区域,所述无磁三轴转台带动所述磁强计在所述交流磁场中转动多个不同的方位;The non-magnetic three-axis turntable is used to fix the magnetometer, and the non-magnetic three-axis turntable fixed with the magnetometer is placed in the uniform area of the AC magnetic field, and the non-magnetic three-axis turntable drives the magnetic the strength meter rotates in a plurality of different orientations in the alternating magnetic field;
数据处理单元,与所述磁强计电连接,用于在记录时间内接收所述磁强计的在每个所述方位上探测的所述交流磁场的输出数据,并对所述输出数据进行分析处理。A data processing unit, electrically connected with the magnetometer, is used for receiving the output data of the AC magnetic field detected by the magnetometer in each of the azimuths within the recording time, and performing the output data on the output data. Analytical processing.
可选地,所述标定设备产生的所述交流磁场的幅值范围介于0nT~100000nT,频率介于0.0001Hz~100k Hz。Optionally, the amplitude of the AC magnetic field generated by the calibration device ranges from 0 nT to 100,000 nT, and the frequency ranges from 0.0001 Hz to 100 kHz.
可选地,所述标定设备包括所述标定设备包括三轴磁场线圈、磁场干扰消除系统以及三路恒流电源,Optionally, the calibration device includes that the calibration device includes a three-axis magnetic field coil, a magnetic field interference elimination system, and a three-way constant current power supply,
其中,向所述三轴磁场线圈施加电流以形成所述交流磁场;wherein, applying a current to the three-axis magnetic field coil to form the alternating magnetic field;
所述磁场干扰消除系统包括三轴补偿线圈、光泵磁力仪以及干扰磁场补偿控制系统,所述磁场干扰消除系统用于消除环境磁场对所述磁场的干扰。The magnetic field interference elimination system includes a three-axis compensation coil, an optical pump magnetometer, and an interference magnetic field compensation control system, and the magnetic field interference elimination system is used to eliminate the interference of the environmental magnetic field on the magnetic field.
可选地,所述无磁三轴转台包括:Optionally, the non-magnetic three-axis turntable includes:
水平设置的转盘α;Horizontally set turntable α;
位于所述转盘α的上方,同样水平设置的转盘γ;以及Above the turntable α, the turntable γ also arranged horizontally; and
垂直于所述转盘α及所述转盘γ设置的转盘β;a turntable β arranged perpendicular to the turntable α and the turntable γ;
其中,所述转盘α及所述转盘γ相互平行地间隔设置,所述转盘β包括至少一对相对设置的转盘,所述转盘β的中心设置在所述转盘γ的边缘外侧并且所述转盘β支撑所述转盘γ,所述转盘α的边缘与所述转盘β的边缘连接以支撑所述转盘β。The turntable α and the turntable γ are arranged parallel to each other and spaced apart, the turntable β includes at least a pair of oppositely arranged turntables, the center of the turntable β is set outside the edge of the turntable γ, and the turntable β The turntable γ is supported, and the edge of the turntable α is connected with the edge of the turntable β to support the turntable β.
可选地,所述无磁三轴转台还包括支撑部,所述支撑部包括支撑面以及用于固定并支撑所述支撑面的支撑柱,所述转盘α可转动地设置在所述支撑架的所述支撑面上。Optionally, the non-magnetic three-axis turntable further includes a support portion, the support portion includes a support surface and a support column for fixing and supporting the support surface, and the turntable α is rotatably arranged on the support frame. on the support surface.
可选地,所述磁强计固定在所述转盘γ的中心位置可随所述转盘γ的转动而转动。Optionally, the magnetometer is fixed at the center position of the turntable γ and can rotate with the rotation of the turntable γ.
如上所述,本发明的磁强计交流正交性标定测试方法及标定测试装置具有如下技术效果:As mentioned above, the magnetometer AC orthogonality calibration test method and calibration test device of the present invention have the following technical effects:
本申请的方法及装置能够标定测试磁强计的交流正交性,填补了磁强计,尤其是三轴磁强计交流标定测试领域的空白。本发明对磁强计交流正交性的标定测试,标定测试结果准确。The method and device of the present application can calibrate and test the AC orthogonality of a magnetometer, which fills the gap in the field of AC calibration and testing of magnetometers, especially three-axis magnetometers. The invention performs the calibration test of the alternating current orthogonality of the magnetometer, and the calibration test result is accurate.
本发明的标定测试装置的操作简单、计算方便,能够完成全部误差项的标定。The calibration testing device of the invention is simple in operation and convenient in calculation, and can complete the calibration of all error terms.
附图说明Description of drawings
通过参考附图会更加清楚地理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:The features and advantages of the present invention will be more clearly understood by reference to the accompanying drawings, which are schematic and should not be construed as limiting the invention in any way, in which:
图1显示为实施例一提供的磁强计正交性标定测试方法的流程图。FIG. 1 shows a flow chart of a method for calibrating and testing the orthogonality of a magnetometer according to the first embodiment.
图2显示为图1所示方法中标定设备的装置示意图。FIG. 2 is a schematic diagram of the apparatus of the calibration apparatus in the method shown in FIG. 1 .
图3显示为图1所示方法中标定设备的原理示意图。FIG. 3 is a schematic diagram showing the principle of the calibration device in the method shown in FIG. 1 .
图4显示为图1所示方法中的无磁三轴转台示意图。FIG. 4 is a schematic diagram of the non-magnetic three-axis turntable in the method shown in FIG. 1 .
图5显示为磁强计的三个轴不正交时与坐标轴的夹角示意图。FIG. 5 shows a schematic diagram of the included angle between the three axes of the magnetometer and the coordinate axis when the three axes are not orthogonal.
附图标记reference number
10 磁强计10 Magnetometer
20 无磁三轴转台20 Non-magnetic three-axis turntable
201 转盘γ201 Turntable¶
202 转盘β202 Turntable β
203 转盘α203 Turntable Alpha
204 支撑面204 Support surface
205 支撑柱205 Support column
30 标定设备30 Calibration equipment
301 三轴磁场线圈301 three-axis magnetic field coil
302 屏蔽壳302 shield shell
303 容纳腔室303 accommodating chamber
304 固定部304 Fixed part
305 三轴补偿线圈A305 Three-axis compensation coil A
306 三轴补偿线圈B306 Three-axis compensation coil B
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
实施例一Example 1
本实施例提供一种磁强计正交性标定测试方法,如图1所示,该方法包括以下步骤:This embodiment provides a magnetometer orthogonality calibration test method, as shown in FIG. 1 , the method includes the following steps:
将磁强计放置在标定设备中,所述磁强计位于所述标定设备的交流磁场的均匀区域;placing a magnetometer in a calibration device, the magnetometer being located in a uniform region of the AC magnetic field of the calibration device;
在实施例的优选实施例中,将磁强计放置在标定设备中之后,还可以首先对磁强计进行预热的步骤,例如,可以对所述磁强计预热至少15min。经过该预热过程,一方面,磁强计的自身温度,例如其探头,的温度趋于平衡;另一方面,磁强计中的各电子学器件,例如探头等,的电子学性能在这一过程中能够趋于稳定,使得整个磁强计的性能处于稳定状态。由此也能够避免因温度或者磁强计性能不稳定带来的标定误差,从而提高磁强计正交性标定的精确度。In a preferred embodiment of the embodiment, after the magnetometer is placed in the calibration device, a step of preheating the magnetometer may be performed first, for example, the magnetometer may be preheated for at least 15 minutes. After the preheating process, on the one hand, the temperature of the magnetometer itself, such as its probe, tends to balance; on the other hand, the electronic performance of each electronic device in the magnetometer, such as the probe, is It can be stabilized in a process, so that the performance of the whole magnetometer is in a stable state. In this way, calibration errors caused by unstable temperature or magnetometer performance can also be avoided, thereby improving the accuracy of the orthogonality calibration of the magnetometer.
如图2所示,磁强计10位于标定设备30中,具体地,位于标定设备30的容纳腔室303中。在本实施例的优选实施例中,将磁强计10放置于标定设备之前,首先将磁强计固定在图4所示的无磁三轴转台20上,然后将无磁三轴转台20连同固定在其上的磁强计10放置于标定设备30的容纳腔室303中。As shown in FIG. 2 , the
在本实施例的优选实施例中,如图3所示,所述标定设备30包括磁场干扰消除系统以及三轴磁场线圈301,其中所述磁场干扰消除系统包括第一三轴补偿线圈305及第二三轴补偿线圈306、光泵磁力仪以及干扰磁场补偿控制系统(未示出),所述磁场干扰消除系统用于消除环境磁场对所述标定设备30产生的交流磁场的干扰。所述标定设备30的三轴磁场线圈301用于产生交流磁场,在本实施例的优选实施例中,产生的交流磁场的幅值范围介于0nT~100000nT,频率介于0.0001Hz~100k Hz。在更优选的实施例中,交流磁场的幅值为50nT,频率为1Hz。In a preferred embodiment of this embodiment, as shown in FIG. 3 , the
在所述交流磁场的均匀区域的任意一点出,磁场的总磁场强度B2与三个磁场分量的关系如方程式(1)所示:At any point in the uniform region of the alternating magnetic field, the relationship between the total magnetic field strength B 2 of the magnetic field and the three magnetic field components is shown in equation (1):
另外,在本实施例的另一优选实施例中,如图2所示,所述标定设备30还包括屏蔽壳302,该屏蔽壳302也能够起到消除环境磁场干扰的作用。标定设备30还包括固定部304,该固定部304使整个标定设备30处于稳固状态,不会出现机械振动或移动,以免影响标定结果。In addition, in another preferred embodiment of this embodiment, as shown in FIG. 2 , the
在所述交流磁场中转动所述磁强计,所述磁强计在所述交流磁场中转动多个不同的方位;rotating the magnetometer in the alternating magnetic field, the magnetometer rotating in a plurality of different orientations in the alternating magnetic field;
在本实施例的优选实施例中,至少转动磁强计9个不同的方位,例如:在本实施例的优选实施例中,磁强计固定在无磁三轴转台20上。如图4所示,无磁三轴转台20包括水平设置的转盘α203;位于所述转盘α203的上方,同样水平设置的转盘γ201;以及垂直于所述转盘α203及所述转盘γ201设置的转盘β202。在本实施例的优选实施例中,所述转盘α203及所述转盘γ201相互平行地间隔设置。转盘β202包括至少一对相对设置的转盘,例如图3所示的一对相对设置的转盘β202。并且所述转盘β202的中心设置在所述转盘γ201的边缘外侧,所述转盘β202支撑所述转盘γ。所述转盘α的边缘与所述转盘β的边缘连接以支撑所述转盘β。In the preferred embodiment of this embodiment, the magnetometer is rotated in at least 9 different directions. For example, in the preferred embodiment of this embodiment, the magnetometer is fixed on the non-magnetic three-
在本实施例的另一优选实施例中,磁强计10固定在转盘γ201的中心位置,并且磁强计10的中心与转盘γ201的中心重合设置。进行磁强计10标定测试时,对所述无磁三轴转台20施加驱动力,使无磁三轴转台20的转盘α203、转盘β202及转盘γ20转动,由此带动固定在转盘γ201上的磁强计10转动。根据标定测试的需要,至少转动9个不同的方向。例如,使所述转盘α203在水平面内转动,转盘β202相对转盘α203不转动,而是由转盘α203带动也在水平面内转动转动,转盘γ201自身不想对转盘α203或转盘β202转动,而是由转盘β202的转动带动,在水平面内转动,由此可以根据需要将所述磁强计转动不同的俯仰角度。另外,使转盘α203静止,转盘β202相对所述转盘α203在垂直面内转动,从而带动转盘γ201连同固定在其上磁强计10在垂直面内转动,从而将磁强计转动不同的横滚角度。In another preferred embodiment of this embodiment, the
在本实施例的一优选实施例中,对所述磁强计进行下表1所示的转动:In a preferred embodiment of this embodiment, the magnetometer is rotated as shown in Table 1 below:
表1磁强计的转动方向Table 1 Rotation direction of magnetometer
如表1所示,磁强计至少在半球体内转动多个不同的角度,由此增加磁强计的输出数据,增加标定测试的精确度。As shown in Table 1, the magnetometer rotates at least within the hemisphere by several different angles, thereby increasing the output data of the magnetometer and increasing the accuracy of the calibration test.
在预定时间内记录所述磁强计在每个所述方位上探测的所述交流磁场的输出数据,采用线圈给定的所述交流磁场的磁场模量对所述磁强计的交流正交性进行标定测试;在本实施例的优选实施例中,所述交流磁场的输出数据包括输出磁场峰峰值或者功率谱值。Record the output data of the AC magnetic field detected by the magnetometer in each of the azimuths within a predetermined time, and use the magnetic field modulus of the AC magnetic field given by the coil to the AC quadrature of the magnetometer In a preferred embodiment of this embodiment, the output data of the AC magnetic field includes the peak-to-peak value of the output magnetic field or the power spectrum value.
由于所述磁强计的三轴的不正交性,磁强计10的三个轴与坐标轴之间存在夹角,如图5所示,ρ表示测量值B'y在y方向上的偏离角;表示测量值B'z在z方向上的偏离角;λ表示测量值Bz在x方向上的偏离角。Due to the non-orthogonality of the three axes of the magnetometer, there is an included angle between the three axes of the
所述交流磁场的三个磁场分量的测量值分别如方程式(2)-(3)所示:The measured values of the three magnetic field components of the AC magnetic field are respectively shown in equations (2)-(3):
B'x=Sx+Bx+x0 (2);B' x =S x +B x +x 0 (2);
B'y=Sy(Bycos(ρ)+Bxsin(ρ))+y0 (3);B' y =S y (B y cos(ρ)+B x sin(ρ))+y 0 (3);
将所述方程式(2)-(4)联立得到Bx、By、Bz。代入所述方程式(1)得到如下方程式(5):Combining the equations (2)-(4) yields B x , By , B z . Substituting into the equation (1) yields the following equation (5):
其中,系数A1、B1、C1、D1、E1、F1、G1、H1、I1及J1是Sx、Sy、Sz、x0、y0、z0、ρ、及λ的函数,通过多组所述测量值B'x、B'y、B'z,采用最小二乘法拟合出所述系数A1、B1、C1、D1、E1、F1、G1、H1、I1及J1。Among them, coefficients A1, B1, C1, D1, E1, F1, G1, H1, I1 and J1 are S x , S y , S z , x 0 , y 0 , z 0 , ρ, and the function of λ , the coefficients A1 , B1 , C1, D1, E1, F1, G1, H1, I1 and J1.
然后求解所述方程式(2)-(4),得出系数Sx、Sy、Sz、x0、y0、z0、ρ、及λ;Said equations (2)-(4) are then solved to yield coefficients S x , S y , S z , x 0 , y 0 , z 0 , ρ, and λ;
其中,Sx、Sy、Sz是所述磁场的三个所述磁场分量的标度因子误差;where S x , S y , S z are the scale factor errors of the three magnetic field components of the magnetic field;
x0、y0、z0是所述交流磁场的零点。x 0 , y 0 , z 0 are the zero points of the alternating magnetic field.
在本实施例的优选实施例中,每个方位的记录时间不少于1min,这样可以更加准确地记录磁强计10的输出数据,减小磁强计标定测试的误差。In a preferred embodiment of this embodiment, the recording time of each azimuth is not less than 1 min, so that the output data of the
实施例二Embodiment 2
本实施例提供一种磁强计正交性标定测试装置,该装置包括:This embodiment provides a magnetometer orthogonality calibration test device, the device includes:
标定设备,用于产生交流磁场;Calibration equipment for generating alternating magnetic fields;
无磁三轴转台,用于固定待标定测试的磁强计,将所述磁强计置于在所述交流磁场的均匀区域,所述无磁三轴转台带动所述磁强计在所述交流磁场中转动多个不同的方位;The non-magnetic three-axis turntable is used to fix the magnetometer to be calibrated and tested, and the magnetometer is placed in the uniform area of the AC magnetic field, and the non-magnetic three-axis turntable drives the magnetometer in the Rotate in multiple different directions in the AC magnetic field;
数据处理单元,与所述磁强计10电连接,用于在记录时间内接收所述磁强计的在每个所述方位上探测的所述交流磁场的输出数据,并对所述输出数据进行分析处理。例如,数据处理单元可以根据磁强计的输出数据进行实施例一所述的运算,得到各系数。A data processing unit, electrically connected to the
如图3所示,标定设备30包括磁场干扰消除系统以及三轴磁场线圈301,其中所述磁场干扰消除系统包括第一三轴补偿线圈A 305及第二三轴补偿线圈B 306、光泵磁力仪以及干扰磁场补偿控制系统(未示出),所述磁场干扰消除系统用于消除环境磁场对所述标定设备产生的交流磁场的干扰。三轴磁场线圈301用于产生交流磁场,在本实施例的优选实施例中,产生的交流磁场的幅值范围介于0nT~100000nT,频率介于0.0001Hz~100k Hz。在更优选的实施例中,交流磁场的幅值为50nT,频率为1Hz。As shown in FIG. 3 , the
如图4所示,无磁三轴转台20包括水平设置的转盘α203;位于所述转盘α203的上方,同样水平设置的转盘γ201;以及垂直于所述转盘α203及所述转盘γ201设置的转盘β202。在本实施例的优选实施例中,所述转盘α203及所述转盘γ201相互平行地间隔设置。转盘β202包括至少一对相对设置的转盘,例如图3所示的一对相对设置的转盘β202。并且所述转盘β202的中心设置在所述转盘γ201的边缘外侧,所述转盘β202支撑所述转盘γ。所述转盘α的边缘与所述转盘β的边缘连接以支撑所述转盘β。As shown in FIG. 4 , the non-magnetic three-
在本实施例的另一优选实施例中,磁强计10固定在转盘γ201的中心位置,并且磁强计10的中心与转盘γ201的中心重合设置。进行磁强计10标定测试时,对所述无磁三轴转台20施加驱动力,使无磁三轴转台20转动,其转盘α203、转盘β202及转盘γ20同时转动,由此带动固定在转盘γ201上的磁强计10转动。根据标定测试的需要,无磁三轴转台20至少能够转动9个不同的方向。In another preferred embodiment of this embodiment, the
在本实施例的一优选实施例中,同样对所述磁强计进行实施例一中表1所示的转动。如表1所示,磁强计至少在半球体内转动多个不同的角度,由此增加磁强计的输出数据,增加标定测试的精确度。In a preferred embodiment of this embodiment, the magnetometer is also rotated as shown in Table 1 in the first embodiment. As shown in Table 1, the magnetometer rotates at least within the hemisphere by several different angles, thereby increasing the output data of the magnetometer and increasing the accuracy of the calibration test.
上述实施例的磁强计交流正交性标定测试方法及标定测试装置具有如下技术效果:The magnetometer AC orthogonality calibration test method and calibration test device of the above-mentioned embodiments have the following technical effects:
本申请的方法及装置能够标定测试磁强计的交流正交性,填补了磁强计,尤其是三轴磁强计交流标定测试领域的空白。本发明对磁强计交流正交性的标定测试,标定测试结果准确,The method and device of the present application can calibrate and test the AC orthogonality of a magnetometer, which fills the gap in the field of AC calibration and testing of magnetometers, especially three-axis magnetometers. The invention calibrates and tests the AC orthogonality of the magnetometer, and the calibration and test results are accurate.
本发明的标定测试装置的操作简单、计算方便,能够完成全部误差项的标定。The calibration testing device of the invention is simple in operation and convenient in calculation, and can complete the calibration of all error terms.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明,本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。The above-mentioned embodiments are only illustrative of the principles and effects of the present invention, but are not intended to limit the present invention. Those skilled in the art can make various modifications and variations without departing from the spirit and scope of the present invention. Such modifications and modifications are within the scope defined by the appended claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910241470.XA CN109870153B (en) | 2019-03-28 | 2019-03-28 | Magnetometer orthogonality calibration test method and calibration test device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910241470.XA CN109870153B (en) | 2019-03-28 | 2019-03-28 | Magnetometer orthogonality calibration test method and calibration test device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109870153A CN109870153A (en) | 2019-06-11 |
CN109870153B true CN109870153B (en) | 2020-07-31 |
Family
ID=66921479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910241470.XA Active CN109870153B (en) | 2019-03-28 | 2019-03-28 | Magnetometer orthogonality calibration test method and calibration test device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109870153B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102115246B1 (en) | 2020-02-04 | 2020-05-26 | (주)프리뉴 | Drone calibration system and method |
CN111239667B (en) * | 2020-03-16 | 2021-07-30 | 吉林大学 | A Unified Calibration Method for Magnetic Gradient Tensors of Different Orders |
CN111413651B (en) * | 2020-03-30 | 2021-04-13 | 中国科学院上海微系统与信息技术研究所 | A compensation method, device, system and storage medium for total magnetic field |
CN114089244B (en) * | 2021-11-04 | 2024-06-11 | 哈尔滨工程大学 | Two-step calibration method of strapdown triaxial magnetometer |
CN115267634A (en) * | 2022-05-12 | 2022-11-01 | 中科飞特(山东)科技有限公司 | A three-axis magnetometer orthogonality calibration test device and test method |
CN115200610A (en) * | 2022-07-15 | 2022-10-18 | 大连理工大学 | Simple AMU magnetic calibration device and method without turntable |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101251584A (en) * | 2008-04-09 | 2008-08-27 | 武汉大学 | Three-axis magnetometer calibration method and three-axis magnetic gradiometer calibration method |
CN103412268A (en) * | 2013-08-07 | 2013-11-27 | 北京航空航天大学 | Single-beam unshielded atom magnetometer and detection method thereof |
CN104569884A (en) * | 2013-10-18 | 2015-04-29 | 中国科学院上海微系统与信息技术研究所 | Calibration device and method for SQUID (Superconducting Quantum Interference Device) triaxial magnetometers |
CN105891755A (en) * | 2016-02-25 | 2016-08-24 | 吉林大学 | Aircraft hanging-type fluxgate magnetic gradient tensor instrument correction method |
CN106353824A (en) * | 2016-09-29 | 2017-01-25 | 吉林大学 | System correction and magnetic interference compensation and fusion method for airborne fluxgate magnetic gradient tensiometer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102313543B (en) * | 2011-07-11 | 2013-07-17 | 上海大学 | Magnetic azimuth measuring system based on giant magneto-resistance sensor, measurement method and perpendicular compensation method |
WO2016022192A1 (en) * | 2014-08-08 | 2016-02-11 | Halliburton Energy Services, Inc. | Calibration of sensitivity and axial orthogonality for magnetometers |
CN104931028B (en) * | 2015-06-30 | 2017-03-01 | 北京联合大学 | A kind of three axle magneto-electronic compass error compensation methods based on deep learning |
US10845432B2 (en) * | 2016-06-30 | 2020-11-24 | The Charles Stark Draper Laboratory, Inc. | Calibration and monitoring for 3-axis magnetometer arrays of arbitrary geometry |
-
2019
- 2019-03-28 CN CN201910241470.XA patent/CN109870153B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101251584A (en) * | 2008-04-09 | 2008-08-27 | 武汉大学 | Three-axis magnetometer calibration method and three-axis magnetic gradiometer calibration method |
CN103412268A (en) * | 2013-08-07 | 2013-11-27 | 北京航空航天大学 | Single-beam unshielded atom magnetometer and detection method thereof |
CN104569884A (en) * | 2013-10-18 | 2015-04-29 | 中国科学院上海微系统与信息技术研究所 | Calibration device and method for SQUID (Superconducting Quantum Interference Device) triaxial magnetometers |
CN105891755A (en) * | 2016-02-25 | 2016-08-24 | 吉林大学 | Aircraft hanging-type fluxgate magnetic gradient tensor instrument correction method |
CN106353824A (en) * | 2016-09-29 | 2017-01-25 | 吉林大学 | System correction and magnetic interference compensation and fusion method for airborne fluxgate magnetic gradient tensiometer |
Also Published As
Publication number | Publication date |
---|---|
CN109870153A (en) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109870153B (en) | Magnetometer orthogonality calibration test method and calibration test device | |
US10948278B2 (en) | Calibrating a magnetic sensor | |
US11994410B2 (en) | Calibration and verification system and method for directional sensor | |
CN110849403B (en) | Calibration method of directional sensor | |
CN112130217B (en) | Electrical detection system and method for angle between geometric axis and magnetic axis of coil vector magnetometer | |
CN109870662A (en) | Method and device for calibrating measuring range and linearity of AC magnetometer | |
CN109633491B (en) | Calibration device and calibration method for installation error of full tensor magnetic gradient measurement system | |
CN109633490B (en) | Calibration method of full-tensor magnetic gradient measurement assembly | |
CN110118948A (en) | A kind of the resultant field measurement method and device of based superconductive quantum inteferometer | |
JP2005061969A (en) | Azimuthal angle measuring instrument and azimuthal angle measuring method | |
US4972593A (en) | Method and apparatus for measuring the undistorted magnetic field of the earth | |
CN103235278A (en) | Method for measuring orthogonality among three magnetic axes of magnetometer | |
CN114660512A (en) | Magnetic anomaly detection method, medium and equipment based on diamond NV color center probe | |
CN116736208B (en) | Method for checking orthogonality of triaxial fluxgate magnetometer probe | |
CN102621506B (en) | Total field magnetometer 4-direction determining method and device for magnetic parameters of rock and ore samples | |
JP2012237682A (en) | Multi-axis sensor output correction device and multi-axis sensor output correction method | |
CN114779144B (en) | Method, chip and device for measuring mounting matrix of three-axis magnetometer | |
CN112130229A (en) | A system and method for electrical detection of out-of-levelness error of a coil vector magnetometer | |
CN114779134B (en) | Method and system for calibrating magnetic moment of magnetic torquer | |
de Mirandés et al. | Alignment procedure used in the BIPM watt balance | |
Rott et al. | Orientation of a Vector Magnetometer Optically Referenced to an External Coordinate System | |
CN117031373B (en) | Multi-magnetic-axis consistency calibration method for fluxgate magnetometer | |
CN103885008B (en) | Magnetic force measuring method | |
CN113820751A (en) | Method, device and storage device for mechanical drift correction of dIdD magnetometer platform | |
JPH06265611A (en) | Magnetic field measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |