CN109828574A - A kind of barrier-avoiding method and electronic equipment - Google Patents
A kind of barrier-avoiding method and electronic equipment Download PDFInfo
- Publication number
- CN109828574A CN109828574A CN201910132049.5A CN201910132049A CN109828574A CN 109828574 A CN109828574 A CN 109828574A CN 201910132049 A CN201910132049 A CN 201910132049A CN 109828574 A CN109828574 A CN 109828574A
- Authority
- CN
- China
- Prior art keywords
- obstacle avoidance
- robot
- area
- determined
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 84
- 238000006073 displacement reaction Methods 0.000 claims description 25
- 230000001133 acceleration Effects 0.000 claims description 12
- 238000012545 processing Methods 0.000 abstract description 7
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 238000003860 storage Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Manipulator (AREA)
Abstract
本发明实施例涉及人工智能领域,公开了一种避障方法及避障装置。本发明中,该避障方法包括:根据与障碍物之间的距离,确定所进入的避障区域的类型;根据机器人当前的运动速度,确定机器人的运动方式;根据机器人的运动方式以及避障区域的类型,确定机器人的避障方式;根据确定的避障方式进行避障。通过避障区域的类型和机器人的运动方式,确定机器人在不同的避障区域中能够采用不同的避障方式,使用不同的避障方式进行避障,使避障处理更加灵活,保证机器人可以避开障碍物,从而提高了机器人的安全性,减少紧急停车的次数,进而减少因紧急停车而造成对重载机器人的车轮的磨损以及对重载机器人的电机的损害。
Embodiments of the invention relate to the field of artificial intelligence, and disclose an obstacle avoidance method and an obstacle avoidance device. In the present invention, the obstacle avoidance method includes: determining the type of the obstacle avoidance area entered according to the distance from the obstacle; determining the movement mode of the robot according to the current movement speed of the robot; according to the movement mode of the robot and the obstacle avoidance The type of the area determines the obstacle avoidance method of the robot; the obstacle avoidance method is performed according to the determined obstacle avoidance method. According to the type of obstacle avoidance area and the movement method of the robot, it is determined that the robot can adopt different obstacle avoidance methods in different obstacle avoidance areas, and use different obstacle avoidance methods to avoid obstacles, which makes the obstacle avoidance processing more flexible and ensures that the robot can avoid obstacles. Open obstacles, thereby improving the safety of the robot, reducing the number of emergency stops, thereby reducing the wear of the wheels of the heavy-duty robot and the damage to the motor of the heavy-duty robot caused by emergency stops.
Description
技术领域technical field
本发明实施例涉及人工智能领域,特别涉及一种避障方法及电子设备。The embodiments of the present invention relate to the field of artificial intelligence, and in particular, to an obstacle avoidance method and an electronic device.
背景技术Background technique
目前,自主移动机器人在行驶过程中通常会遇到障碍物,障碍物可分为动态障碍物(如行人、其他移动机器人)和静态障碍物(机器人工作区域的物体)。如果机器人安全避障策略不当,就有可能与这些障碍物发生碰撞导致安全事故。因此需要一个安全合理的避障方法,以提高自动驾驶机器人的安全性,同时保证机器人平稳减速停车以保护驱动电机。通常的做法是在机器人周围布置安装多个超声波传感器,若在机器人周围的一定范围以内,检测到障碍物后立即控制机器人的线速度下降为零,同时把制动装置打开。At present, autonomous mobile robots usually encounter obstacles during driving, and obstacles can be divided into dynamic obstacles (such as pedestrians, other mobile robots) and static obstacles (objects in the robot's working area). If the safety obstacle avoidance strategy of the robot is improper, it may collide with these obstacles and cause safety accidents. Therefore, a safe and reasonable obstacle avoidance method is needed to improve the safety of the autonomous driving robot, and at the same time ensure that the robot decelerates and stops smoothly to protect the drive motor. The usual practice is to arrange and install multiple ultrasonic sensors around the robot. If it is within a certain range around the robot, the linear speed of the robot is controlled to drop to zero immediately after detecting the obstacle, and the braking device is turned on at the same time.
发明人发现现有技术中至少存在如下问题:上述制动方式只适用于轻载机器人,若在重载小车机器人上使用这种制动方式,由于重载小车机器人惯性较大,紧急停车时,易对驱动电机造成损害并且使机器人的车轮受到磨损。The inventor found that there are at least the following problems in the prior art: the above-mentioned braking method is only suitable for light-load robots. It is easy to cause damage to the drive motor and wear the wheels of the robot.
发明内容SUMMARY OF THE INVENTION
本发明实施方式的目的在于提供一种避障方法及电子设备,通过不同的避障方式,使避障处理更加灵活更加柔性,保证重载机器人可以避开障碍物,从而提高了机器人的安全性,减少紧急停车的次数,进而减少因紧急停车而造成对重载机器人的车轮的磨损、以及对重载机器人的电机的损害。The purpose of the embodiments of the present invention is to provide an obstacle avoidance method and an electronic device. Through different obstacle avoidance methods, the obstacle avoidance process is more flexible and flexible, so as to ensure that the heavy-duty robot can avoid obstacles, thereby improving the safety of the robot. , reducing the number of emergency stops, thereby reducing the wear of the wheels of the heavy-duty robot and the damage to the motor of the heavy-duty robot caused by the emergency stop.
为解决上述技术问题,本发明的实施方式提供了一种避障方法,包括以下步骤:根据与障碍物之间的距离,确定所进入的避障区域的类型;根据机器人当前的运动速度,确定机器人的运动方式;根据机器人的运动方式以及避障区域的类型,确定机器人的避障方式;根据确定的避障方式进行避障。In order to solve the above technical problem, an embodiment of the present invention provides an obstacle avoidance method, which includes the following steps: determining the type of the obstacle avoidance area entered according to the distance from the obstacle; The movement mode of the robot; according to the movement mode of the robot and the type of obstacle avoidance area, determine the obstacle avoidance method of the robot; avoid obstacles according to the determined obstacle avoidance method.
本发明的实施方式还提供了一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述避障方法。Embodiments of the present invention also provide an electronic device, comprising: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions executable by the at least one processor, and the instructions are executed by at least one processor. A processor executes to enable at least one processor to execute the obstacle avoidance method described above.
本发明实施方式相对于现有技术而言,通过避障区域的类型和机器人的运动方式,确定机器人在不同的避障区域中能够采用不同的避障方式,使用不同的避障方式进行避障,使避障处理更加灵活,保证重载机器人可以避开障碍物,从而提高了机器人的安全性,减少紧急停车的次数,进而减少因紧急停车而造成对重载机器人的车轮的磨损、以及对重载机器人的电机的损害。Compared with the prior art, the embodiment of the present invention determines that the robot can adopt different obstacle avoidance methods in different obstacle avoidance areas according to the type of obstacle avoidance area and the movement mode of the robot, and uses different obstacle avoidance methods to avoid obstacles. , making obstacle avoidance processing more flexible, ensuring that the heavy-duty robot can avoid obstacles, thereby improving the safety of the robot, reducing the number of emergency stops, thereby reducing the wear and tear of the wheels of the heavy-duty robot caused by emergency stops, and Damage to the motors of overloaded robots.
另外,避障区域的类型,包括:减速区,紧急减速区和紧急制动区;根据与障碍物之间的距离,确定所进入的避障区域的类型,包括:若确定与障碍物之间的距离大于第二预设阀值,且,小于第一预设阀值,则确定所进入的避障区域的类型为减速区;若确定距离大于第三预设阀值,且,小于第二预设阀值,则确定所进入的避障区域的类型为紧急减速区;若确定距离小于第三预设阀值,则确定所进入的避障区域的类型为紧急制动区;其中,第一预设阀值大于第二预设阀值,第二预设阀值大于第三预设阀值。In addition, the type of obstacle avoidance area, including: deceleration area, emergency deceleration area and emergency braking area; according to the distance from the obstacle, determine the type of obstacle avoidance area entered, including: if it is determined to be between the obstacle and the obstacle If the distance is greater than the second preset threshold and less than the first preset threshold, the type of the obstacle avoidance area entered is determined to be a deceleration area; if it is determined that the distance is greater than the third preset threshold and less than the second If the preset threshold value is set, the type of the obstacle avoidance area entered is determined as the emergency deceleration area; if the determined distance is less than the third preset threshold value, the type of the entered obstacle avoidance area is determined as the emergency braking area; A preset threshold value is greater than the second preset threshold value, and the second preset threshold value is greater than the third preset threshold value.
该方式中,根据与障碍物之间的距离,与避障区域的类型所对应的各个区域的预设阀值进行比较,根据该比较结果,具体确定机器人进入到了哪个避障区域,在不同的避障区域内使用不同的避障方式进行避障,保证机器人能够柔性化的避开障碍物,使机器人能够平稳减速以避开障碍物,或,平稳减速后停车制动以避开障碍物,防止重载机器人由于惯性较大,在紧急停车时对重载机器人的车轮造成磨损。In this method, the distance from the obstacle is compared with the preset threshold value of each area corresponding to the type of obstacle avoidance area, and according to the comparison result, it is specifically determined which obstacle avoidance area the robot has entered. In the obstacle avoidance area, different obstacle avoidance methods are used to avoid obstacles to ensure that the robot can avoid obstacles flexibly, so that the robot can smoothly decelerate to avoid obstacles, or, after smooth deceleration, stop and brake to avoid obstacles, Prevent the heavy-duty robot from wearing the wheels of the heavy-duty robot during emergency stop due to its large inertia.
另外,运动速度包括:线速度,和/或,角速度;根据机器人当前的运动速度,确定机器人的运动方式,包括:若确定机器人当前的线速度大于第四预设阀值,且,确定机器人当前的角速度小于第五预设阀值,则确定机器人的运动方式为按照线速度进行直线运动;否则,确定机器人的运动方式为按照线速度和角速度进行曲线运动。In addition, the movement speed includes: linear speed, and/or angular speed; according to the current movement speed of the robot, determining the movement mode of the robot, including: if it is determined that the current linear speed of the robot is greater than the fourth preset threshold, and, determining the current robot current The angular velocity of the robot is less than the fifth preset threshold, then it is determined that the movement mode of the robot is linear movement according to the linear velocity; otherwise, the movement mode of the robot is determined to be curvilinear movement according to the linear velocity and angular velocity.
另外,确定机器人的运动方式为按照线速度和角速度进行曲线运动,包括:若确定线速度不大于第四预设阀值,则确定机器人的运动方式为按照角速度和线速度进行无位移的曲线运动;若确定线速度大于第四预设阀值,且,角速度不小于第五预设阀值,则确定机器人的运动方式为按照线速度和角速度进行有位移的曲线运动。In addition, determining that the movement mode of the robot is to perform curvilinear motion according to the linear velocity and the angular velocity includes: if it is determined that the linear velocity is not greater than the fourth preset threshold, then determining that the movement mode of the robot is to perform the curvilinear motion without displacement according to the angular velocity and the linear velocity ; If it is determined that the linear velocity is greater than the fourth preset threshold, and the angular velocity is not less than the fifth preset threshold, then determine that the robot moves in a curved motion with displacement according to the linear velocity and the angular velocity.
另外,根据机器人的运动方式以及避障区域的类型,确定机器人的避障方式,包括:若确定机器人的运动方式为直线运动,则保持角速度不变,根据避障区域的类型和线速度,调整机器人的线速度,使用调整后的线速度进行避障;若确定机器人的运动方式为无位移的曲线运动,则保持线速度不变,根据避障区域的类型和角速度,调整机器人的角速度,使用调整后的角速度进行避障;若确定机器人的运动方式为有位移的曲线运动,则根据避障区域的类型、线速度和角速度,调整机器人的线速度和角速度,使用调整后的线速度和调整后的角速度进行避障。In addition, determine the obstacle avoidance method of the robot according to the movement method of the robot and the type of obstacle avoidance area, including: if the movement method of the robot is determined to be linear motion, keep the angular velocity unchanged, and adjust the obstacle avoidance area type and linear velocity according to the type of obstacle avoidance area. The linear speed of the robot, use the adjusted linear speed for obstacle avoidance; if the movement mode of the robot is determined to be a curve motion without displacement, keep the linear speed unchanged, adjust the angular speed of the robot according to the type and angular speed of the obstacle avoidance area, use The adjusted angular velocity is used for obstacle avoidance; if the movement mode of the robot is determined to be a curved movement with displacement, adjust the linear velocity and angular velocity of the robot according to the type, linear velocity and angular velocity of the obstacle avoidance area, and use the adjusted linear velocity and adjustment The rear angular velocity is used to avoid obstacles.
该方式中,通过机器人不同的运动方式、避障区域的类型和运动速度,获得不同的避障方式,采用不同的避障方式,使机器人能够以调整后的运动速度平稳的躲避障碍物,避免因重载机器人的惯性较大,在紧急降速时造成对机器人的车轮磨损。In this method, different obstacle avoidance methods are obtained through different movement methods of the robot, types of obstacle avoidance areas and movement speeds, and different obstacle avoidance methods are adopted, so that the robot can smoothly avoid obstacles at the adjusted movement speed and avoid obstacles. Due to the large inertia of the heavy-duty robot, the wheels of the robot are worn during emergency deceleration.
另外,根据避障区域的类型和线速度,调整机器人的线速度,包括:若确定所进入的避障区域的类型为减速区,则根据减速区对应的第一避障系数与线速度,调整机器人的线速度;若确定所进入的避障区域的类型为紧急减速区,则根据紧急减速区对应的第二避障系数与线速度,调整机器人的线速度,其中,第二避障系数大于第一避障系数,第二避障系数与机器人的运动加速度成正比;若确定所进入的避障区域的类型为紧急制动区,则紧急制动,将线速度降为零。In addition, adjust the linear speed of the robot according to the type and linear speed of the obstacle avoidance area, including: if it is determined that the type of the obstacle avoidance area entered is a deceleration area, then adjust the linear speed according to the first obstacle avoidance coefficient and the linear speed corresponding to the deceleration area. The linear speed of the robot; if it is determined that the type of obstacle avoidance area entered is an emergency deceleration area, the linear speed of the robot is adjusted according to the second obstacle avoidance coefficient and linear speed corresponding to the emergency deceleration area, where the second obstacle avoidance coefficient is greater than The first obstacle avoidance coefficient and the second obstacle avoidance coefficient are proportional to the motion acceleration of the robot; if it is determined that the type of obstacle avoidance area entered is an emergency braking area, emergency braking is performed to reduce the linear velocity to zero.
该方式中,通过机器人的线速度和确定所进入的避障区域的类型,获得调整后的线速度,使用该调整后的线速度及时躲避障碍物,保证机器人能够平稳地降低线速度,进而避开障碍物。In this method, the adjusted linear speed is obtained through the linear speed of the robot and the type of obstacle avoidance area it enters, and the adjusted linear speed is used to avoid obstacles in time to ensure that the robot can smoothly reduce the linear speed, thereby avoiding obstacles. Open obstacles.
另外,根据避障区域的类型和角速度,调整机器人的角速度,包括:若确定所进入的避障区域的类型为减速区,则根据第一避障系数与角速度,调整机器人的角速度;若确定所进入的避障区域的类型为紧急减速区,则根据第二避障系数与角速度,调整机器人的角速度,其中,第二避障系数大于第一避障系数,第二避障系数与机器人的运动加速度成正比;若确定所进入的避障区域的类型为紧急制动区,则紧急制动,将角速度降为零。In addition, adjusting the angular velocity of the robot according to the type and angular velocity of the obstacle avoidance area includes: if it is determined that the type of the obstacle avoidance area entered is a deceleration area, then adjusting the angular velocity of the robot according to the first obstacle avoidance coefficient and the angular velocity; If the type of obstacle avoidance area entered is an emergency deceleration area, the angular velocity of the robot is adjusted according to the second obstacle avoidance coefficient and the angular velocity, where the second obstacle avoidance coefficient is greater than the first obstacle avoidance coefficient, and the second obstacle avoidance coefficient is related to the motion of the robot. Acceleration is proportional; if it is determined that the type of obstacle avoidance area entered is an emergency braking area, emergency braking will be performed to reduce the angular velocity to zero.
该方式中,通过机器人的角速度和确定所进入的避障区域的类型,获得调整后的角速度,保证机器人能够以调整后的角速度平稳的躲避障碍物,避免因重载机器人的惯性较大,在紧急降速时造成对机器人的车轮磨损。In this method, the adjusted angular velocity is obtained by determining the angular velocity of the robot and the type of obstacle avoidance area it enters, so as to ensure that the robot can stably avoid obstacles at the adjusted angular velocity, and avoid the large inertia of the overloaded robot. Causes wheel wear to the robot during sudden deceleration.
另外,根据避障区域的类型、线速度和角速度,调整机器人的线速度和角速度,包括:若确定所进入的避障区域的类型为减速区,则根据第一避障系数、角速度和线速度,调整机器人的角速度和线速度;若确定所进入的避障区域的类型为紧急减速区,则根据第二避障系数、角速度和线速度,调整机器人的角速度和线速度,其中,第二避障系数大于第一避障系数,第二避障系数与机器人的运动加速度成正比;若确定所进入的避障区域的类型为紧急制动区,则紧急制动,将机器人的角速度和线速度降为零。In addition, adjust the linear speed and angular speed of the robot according to the type, linear speed and angular speed of the obstacle avoidance area, including: if it is determined that the type of the obstacle avoidance area entered is a deceleration area, then according to the first obstacle avoidance coefficient, angular speed and linear speed , adjust the angular velocity and linear velocity of the robot; if it is determined that the type of obstacle avoidance area entered is an emergency deceleration area, then adjust the angular velocity and linear velocity of the robot according to the second obstacle avoidance coefficient, angular velocity and linear velocity. The obstacle coefficient is greater than the first obstacle avoidance coefficient, and the second obstacle avoidance coefficient is proportional to the motion acceleration of the robot; if it is determined that the type of the obstacle avoidance area entered is the emergency braking area, the down to zero.
另外,减速区对应的第一避障系数为根据距离和第一预设阀值确定,紧急减速区对应的第二避障系数为根据机器人的运动加速度,或,距离与第二预设阀值确定。In addition, the first obstacle avoidance coefficient corresponding to the deceleration zone is determined according to the distance and the first preset threshold, and the second obstacle avoidance coefficient corresponding to the emergency deceleration zone is determined according to the motion acceleration of the robot, or, the distance and the second preset threshold Sure.
附图说明Description of drawings
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。One or more embodiments are exemplified by the pictures in the corresponding drawings, and these exemplifications do not constitute limitations of the embodiments, and elements with the same reference numerals in the drawings are denoted as similar elements, Unless otherwise stated, the figures in the accompanying drawings do not constitute a scale limitation.
图1是根据本发明第一实施方式中的避障方法流程方框图;FIG. 1 is a block diagram of a flow chart of an obstacle avoidance method according to a first embodiment of the present invention;
图2是根据本发明第二实施方式中的避障方法流程方框图;FIG. 2 is a block diagram showing a flow chart of an obstacle avoidance method according to a second embodiment of the present invention;
图3是根据本发明第三实施方式中的避障装置方框图;3 is a block diagram of an obstacle avoidance device according to a third embodiment of the present invention;
图4是根据本发明第四实施方式中的电子设备方框图。FIG. 4 is a block diagram of an electronic device in a fourth embodiment according to the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。In order to make the objectives, technical solutions and advantages of the embodiments of the present invention clearer, the various embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, those of ordinary skill in the art can appreciate that, in the various embodiments of the present invention, many technical details are set forth in order for the reader to better understand the present application. However, even without these technical details and various changes and modifications based on the following embodiments, the technical solutions claimed in the present application can be realized.
本发明的第一实施方式涉及一种避障方法。用于使避障处理更加灵活,保证机器人可以避开障碍物,从而提高机器人的安全性,减少紧急停车的次数,进而减少因紧急停车而造成对重载机器人的车轮的磨损以及对重载机器人的电机的损害。A first embodiment of the present invention relates to an obstacle avoidance method. It is used to make obstacle avoidance processing more flexible and ensure that the robot can avoid obstacles, thereby improving the safety of the robot, reducing the number of emergency stops, thereby reducing the wear of the wheels of the heavy-duty robot and the damage to the heavy-duty robot caused by emergency stops. damage to the motor.
下面对本实施方式中的避障方法的实现细节进行具体的说明,以下内容仅为方便理解本方案的实现细节,并非实施本方案的必须。The implementation details of the obstacle avoidance method in this embodiment will be specifically described below. The following content is only for the convenience of understanding the implementation details of this solution, and is not necessary for implementing this solution.
图1所示为本实施方式中的避障方法的流程图,该方法可应用于机器人。该方法可包括如下步骤。FIG. 1 shows a flowchart of an obstacle avoidance method in this embodiment, and the method can be applied to a robot. The method may include the following steps.
在步骤101中,根据与障碍物之间的距离,确定所进入的避障区域的类型。In step 101, the type of the entered obstacle avoidance area is determined according to the distance from the obstacle.
其中,避障区域的类型,包括:减速区,紧急减速区和紧急制动区。Among them, the types of obstacle avoidance areas include: deceleration area, emergency deceleration area and emergency braking area.
具体地,若确定与障碍物之间的距离大于第二预设阀值,且,小于第一预设阀值,则确定所进入的避障区域的类型为减速区;若确定距离大于第三预设阀值,且,小于第二预设阀值,则确定所进入的避障区域的类型为紧急减速区;若确定距离小于第三预设阀值,则确定所进入的避障区域的类型为紧急制动区;其中,第一预设阀值大于第二预设阀值,第二预设阀值大于第三预设阀值。Specifically, if it is determined that the distance from the obstacle is greater than the second preset threshold and smaller than the first preset threshold, the type of the obstacle avoidance area entered is determined to be a deceleration area; if the determined distance is greater than the third preset threshold If the preset threshold value is smaller than the second preset threshold value, it is determined that the type of the entered obstacle avoidance area is the emergency deceleration area; if the determined distance is less than the third preset threshold value, the type of the entered obstacle avoidance area is determined to be The type is emergency braking area; wherein, the first preset threshold value is greater than the second preset threshold value, and the second preset threshold value is greater than the third preset threshold value.
需要说明的是,减速区、紧急减速区和紧急制动区是对机器人前方平面区域的一种几何划分:其中,与机器人之间的距离最远的区域为减速区,其次为紧急减速区,与机器人之间的距离最近的区域为紧急制动区。机器人避障的过程中,传感器检测到的机器人与障碍物之间的距离阀值分为第一预设阀值、第二预设阀值和第三预设阀值,其中,第三预设阀值是障碍物突然出现在机器人行驶方向的最短可容忍的距离。It should be noted that the deceleration area, the emergency deceleration area and the emergency braking area are a geometric division of the plane area in front of the robot: the area with the farthest distance from the robot is the deceleration area, followed by the emergency deceleration area, The area closest to the robot is the emergency braking area. During the obstacle avoidance process of the robot, the distance threshold between the robot and the obstacle detected by the sensor is divided into a first preset threshold, a second preset threshold and a third preset threshold, wherein the third preset threshold The threshold is the shortest tolerable distance that an obstacle suddenly appears in the direction of the robot's travel.
在步骤102中,根据机器人当前的运动速度,确定机器人的运动方式。In step 102, the movement mode of the robot is determined according to the current movement speed of the robot.
其中,运动速度包括:线速度,和/或,角速度。Wherein, the movement speed includes: linear speed, and/or angular speed.
具体地,若确定机器人当前的线速度大于第四预设阀值,且,确定机器人当前的角速度小于第五预设阀值,则确定机器人的运动方式为按照线速度进行直线运动;否则,确定机器人的运动方式为按照线速度和角速度进行曲线运动。Specifically, if it is determined that the current linear velocity of the robot is greater than the fourth preset threshold, and it is determined that the current angular velocity of the robot is less than the fifth preset threshold, it is determined that the movement mode of the robot is linear motion according to the linear velocity; otherwise, determine The movement mode of the robot is to perform curvilinear movement according to the linear velocity and the angular velocity.
需要说明的是,该运动速度包括线速度和角速度,或,只包括线速度,或,只包括角速度。例如,机器人在k时刻的运动速度为[Vk,Wk],其中Vk表示机器人在k时刻的线速度,Wk表示机器人在k时刻的角速度,若确定机器人的线速度Vk大于第四预设阀值Vt,并且,机器人的角速度Wk小于第五预设阀值Wt,其中,第五预设阀值Wt为大于零的数,则确定机器人的运动方式为按照线速度Vk进行直线运动,或,根据线速度Vk和角速度Wk做近似直线运动,因此时的角速度Wk很小但不是零,主要是通过调整线速度Vk以避开障碍物;否则,确定机器人的运动方式为按照线速度Vk和角速度Wk进行曲线运动。It should be noted that the movement speed includes linear velocity and angular velocity, or, only includes linear velocity, or, only includes angular velocity. For example, the motion speed of the robot at time k is [V k , W k ], where V k represents the linear speed of the robot at time k, and W k represents the angular speed of the robot at time k. If it is determined that the linear speed of the robot V k is greater than the th Four preset threshold values V t , and the angular velocity W k of the robot is smaller than the fifth preset threshold value W t , where the fifth preset threshold value W t is a number greater than zero, then it is determined that the robot moves according to the line The velocity V k performs linear motion, or, according to the linear velocity V k and the angular velocity W k , the approximate linear motion is performed, so the angular velocity W k is small but not zero, mainly by adjusting the linear velocity V k to avoid obstacles; otherwise , it is determined that the motion mode of the robot is to perform curvilinear motion according to the linear velocity V k and the angular velocity W k .
其中,曲线运动分为有位移的曲线运动和无位移的曲线运动,具体的区分方式如下:若确定线速度不大于第四预设阀值,则确定机器人的运动方式为按照角速度进行无位移的曲线运动;若确定线速度大于第四预设阀值,且,角速度不小于第五预设阀值,则确定机器人的运动方式为按照线速度和角速度进行有位移的曲线运动。Among them, the curvilinear motion is divided into the curvilinear motion with displacement and the curvilinear motion without displacement. The specific way of distinguishing is as follows: if it is determined that the linear speed is not greater than the fourth preset threshold, the motion mode of the robot is determined to be the motion mode of the robot without displacement according to the angular velocity. Curved motion; if it is determined that the linear velocity is greater than the fourth preset threshold, and the angular velocity is not less than the fifth preset threshold, then determine that the robot moves in a curved motion with displacement according to the linear velocity and the angular velocity.
例如:机器人在k时刻进行运动时,当第五预设阀值Wt为大于零的数时,若确定机器人的线速度Vk不大于第四预设阀值Vt,且,角速度Wk大于第五预设阀值Wt,则确定机器人的运动方式为按照角速度Wk进行无位移的曲线运动,其中的无位移的曲线运动,可以是机器人进行曲率较大的曲线运动,也可以是机器人在进行原地旋转运动。当第五预设阀值Wt为小于零的整数时,若确定机器人的线速度Vk不大于第四预设阀值Vt,且,角速度Wt小于第五预设阀值Wt,则确定机器人的运动方式为按照角速度Wk进行无位移的曲线运动,其中的无位移的曲线运动,可以是机器人进行曲率较大的曲线运动,也可以是机器人在进行原地旋转运动。若确定线速度Vk大于第四预设阀值Vt,且,角速度Wk不小于第五预设阀值Wt,其中,第五预设阀值Wt为不等于零的整数,则确定机器人的运动方式为按照线速度Vk和角速度Wk进行有位移的曲线运动,其中的有位移的曲线运动,是指机器人进行曲率较小的曲线运动。For example: when the robot is moving at time k, when the fifth preset threshold W t is a number greater than zero, if it is determined that the linear velocity V k of the robot is not greater than the fourth preset threshold V t , and the angular velocity W k is greater than the fifth preset threshold W t , it is determined that the movement mode of the robot is to perform a curve movement without displacement according to the angular velocity W k , and the curve movement without displacement may be a curve movement of the robot with a large curvature, or it may be The robot is performing a rotating motion in place. When the fifth preset threshold W t is an integer less than zero, if it is determined that the linear velocity V k of the robot is not greater than the fourth preset threshold V t , and the angular velocity W t is less than the fifth preset threshold W t , Then it is determined that the movement mode of the robot is a curve movement without displacement according to the angular velocity W k , and the curve movement without displacement can be a curve movement with a large curvature of the robot, or a rotation movement of the robot in situ. If it is determined that the linear velocity V k is greater than the fourth preset threshold V t , and the angular velocity W k is not less than the fifth preset threshold W t , where the fifth preset threshold W t is an integer not equal to zero, then determine The movement mode of the robot is to perform a curvilinear motion with displacement according to the linear velocity V k and the angular velocity W k , wherein the curvilinear motion with displacement means that the robot performs a curvilinear motion with a small curvature.
在步骤103中,根据机器人的运动方式以及避障区域的类型,确定机器人的避障方式。In step 103, an obstacle avoidance mode of the robot is determined according to the movement mode of the robot and the type of the obstacle avoidance area.
在一个具体实现中,机器人的运动方式包括:直线运动、无位移的曲线运动和有位移的曲线运动;所进入的避障区域的类型有减速区、紧急减速区和紧急制动区,针对一种运动方式和所进入的避障区域的类型,来具体确定机器人的调整后的运动速度,进而具体确定机器人的避障方式。例如:机器人在k时刻进行运动时,根据机器人的运动速度[Vk,Wk],能够获得调整后的、使机器人安全行驶的运动速度:[Vsafety_k,Wsafety_k]。若确定机器人的运动方式为直线运动,则保持角速度不变,即Wsafety_k=Wk,使用调整后的线速度Vsafety_k进行避障。若确定机器人的运动方式为无位移的曲线运动,则保持线速度不变,即Vsafety_k=Vk,使用调整后的角速度Wsafety_k进行避障。若确定机器人的运动方式为有位移的曲线运动,则使用调整后的线速度Vsafety_k和调整后的角速度Wsafety_k进行避障。In a specific implementation, the motion modes of the robot include: linear motion, curvilinear motion without displacement, and curvilinear motion with displacement; the types of obstacle avoidance areas entered include deceleration area, emergency deceleration area and emergency braking area. The movement method and the type of obstacle avoidance area entered are used to specifically determine the adjusted movement speed of the robot, and then the obstacle avoidance method of the robot. For example, when the robot is moving at time k, according to the moving speed of the robot [V k , W k ], the adjusted moving speed that enables the robot to run safely can be obtained: [V safety_k , W safety_k ]. If it is determined that the motion mode of the robot is linear motion, keep the angular velocity unchanged, that is, W safety_k =W k , and use the adjusted linear velocity V safety_k to avoid obstacles. If it is determined that the movement mode of the robot is a curve movement without displacement, keep the linear velocity unchanged, that is, V safety_k =V k , and use the adjusted angular velocity W safety_k to avoid obstacles. If it is determined that the movement mode of the robot is a curved movement with displacement, the adjusted linear velocity V safety_k and the adjusted angular velocity W safety_k are used to avoid obstacles.
在步骤104中,根据确定的避障方式进行避障。In step 104, obstacle avoidance is performed according to the determined obstacle avoidance method.
需要说明的是,在机器人的机身上,分三层八个方位均装有超声波传感器,总共24个超声波传感器,机器人在行驶过程中,根据各层超声波传感器均能检测到障碍物,各个超声波传感器均需要在下位机处理器中计算出机器人与障碍物之间距离,通过串口将数据上报至上位机处理器,该上位机处理器将三个层次的超声波传感器处理后的数据压缩成一层,结合八个方位中的数据,获取到机器人在八个方位中与障碍物之间的距离,其中,每一个方位的数据代表在该方位上,超声波传感器所获得的数据中的数值最小的一个。并且,在机器人的前方中间位置装有激光雷达传感器,该激光雷达传感器的安装高度是根据机器人的工作环境而合理选择的;其中,激光雷达传感器连续遍历多条激光束,获得各个激光束之间的夹角,计算获得与障碍物之间的距离和方位。机器人的控制系统根据以上超声波传感器和激光传感器所测量获得的数据,获得最小的一个调整后的运动速度,并将该调整后的运动速度下发至下位机处理器,用以控制机器人进行避障,例如,在k时刻,该调整后的运动速度为[Vsafety_k,Wsafety_k]。It should be noted that on the body of the robot, ultrasonic sensors are installed in three layers and eight directions, with a total of 24 ultrasonic sensors. During the driving process of the robot, according to the ultrasonic sensors of each layer, obstacles can be detected, and each ultrasonic sensor can detect obstacles. All sensors need to calculate the distance between the robot and the obstacle in the lower computer processor, and report the data to the upper computer processor through the serial port. The upper computer processor compresses the data processed by the three levels of ultrasonic sensors into one layer. Combining the data in the eight orientations, the distance between the robot and the obstacle in the eight orientations is obtained, wherein the data of each orientation represents the smallest value among the data obtained by the ultrasonic sensor in the orientation. In addition, a lidar sensor is installed in the front and middle position of the robot, and the installation height of the lidar sensor is reasonably selected according to the working environment of the robot; among them, the lidar sensor continuously traverses multiple laser beams to obtain the distance between each laser beam. The included angle is calculated to obtain the distance and azimuth from the obstacle. The control system of the robot obtains the smallest adjusted movement speed according to the data measured by the above ultrasonic sensors and laser sensors, and sends the adjusted movement speed to the lower computer processor to control the robot to avoid obstacles , for example, at time k, the adjusted motion speed is [V safety_k , W safety_k ].
在本实施方式中,通过避障区域的类型和机器人的运动方式,确定机器人在不同的避障区域中能够采用不同的避障方式,使用不同的避障方式进行避障,使避障处理更加灵活,保证机器人在遇到障碍物时能够平稳减速停车,或,平稳减速到较低的安全速度缓慢通行,使重载机器人能够柔性化的避开障碍物,减少紧急停车的次数,进而减少因紧急停车而造成对重载机器人的车轮的磨损以及对重载机器人的电机的损害。In this embodiment, it is determined that the robot can adopt different obstacle avoidance methods in different obstacle avoidance areas according to the type of obstacle avoidance area and the movement mode of the robot, and uses different obstacle avoidance methods to avoid obstacles, so that the obstacle avoidance processing is more efficient. Flexibility to ensure that the robot can smoothly decelerate and stop when encountering an obstacle, or, smoothly decelerate to a lower safe speed and pass slowly, so that the heavy-duty robot can flexibly avoid obstacles, reduce the number of emergency stops, and thus reduce the number of accidents caused by The wear of the wheel of the heavy-duty robot and the damage to the motor of the heavy-duty robot caused by the emergency stop.
本发明的第二实施方式涉及一种避障方法。第二实施方式与第一实施方式大致相同,主要区别之处在于:根据机器人的不同的运动方式和所进入的避障区域的类型所对应的不同的避障系数,确定机器人的避障方式。A second embodiment of the present invention relates to an obstacle avoidance method. The second embodiment is roughly the same as the first embodiment, the main difference is that the robot's obstacle avoidance method is determined according to different motion modes of the robot and different obstacle avoidance coefficients corresponding to the type of obstacle avoidance area entered.
本实施方式中的避障方法的流程图如图2所示,该方法可包括如下步骤。The flowchart of the obstacle avoidance method in this embodiment is shown in FIG. 2 , and the method may include the following steps.
在步骤201中,若确定机器人的运动方式为直线运动,则保持角速度不变,根据避障区域的类型和线速度,调整机器人的线速度,使用调整后的线速度进行避障。In step 201, if the movement mode of the robot is determined to be linear motion, the angular velocity is kept unchanged, the linear velocity of the robot is adjusted according to the type and linear velocity of the obstacle avoidance area, and the adjusted linear velocity is used to avoid obstacles.
其中,若确定所进入的避障区域的类型为减速区,则根据减速区对应的第一避障系数与线速度,调整机器人的线速度;若确定所进入的避障区域的类型为紧急减速区,则根据紧急减速区对应的第二避障系数与线速度,调整机器人的线速度,其中,第二避障系数大于第一避障系数,第二避障系数与机器人的运动加速度成正比;若确定所进入的避障区域的类型为紧急制动区,则紧急制动,将线速度降为零。Among them, if it is determined that the type of obstacle avoidance area entered is a deceleration area, the linear speed of the robot is adjusted according to the first obstacle avoidance coefficient and linear speed corresponding to the deceleration area; if it is determined that the type of obstacle avoidance area entered is emergency deceleration area, adjust the linear speed of the robot according to the second obstacle avoidance coefficient and the linear speed corresponding to the emergency deceleration area, wherein the second obstacle avoidance coefficient is greater than the first obstacle avoidance coefficient, and the second obstacle avoidance coefficient is proportional to the motion acceleration of the robot ; If it is determined that the type of obstacle avoidance area entered is an emergency braking area, emergency braking will be performed to reduce the linear speed to zero.
需要说明的是,减速区对应的第一避障系数为根据距离和第一预设阀值确定,紧急减速区对应的第二避障系数为根据机器人的运动加速度,或,距离与第二预设阀值确定。It should be noted that the first obstacle avoidance coefficient corresponding to the deceleration zone is determined according to the distance and the first preset threshold, and the second obstacle avoidance coefficient corresponding to the emergency deceleration zone is determined according to the motion acceleration of the robot, or the distance and the second preset threshold. Set the threshold value to be determined.
在一个具体实现中,第一避障系数M1=(dis_obs/dis_th_1)2,第二避障系数M2=(dis_obs/dis_th_2)3,其中,dis_obs为在行驶方向上机器人与障碍物之间的距离,dis_th_1为第一预设阀值,dis_th_2为第二预设阀值。In a specific implementation, the first obstacle avoidance coefficient M 1 =(dis_obs/dis_th_1) 2 , the second obstacle avoidance coefficient M 2 =(dis_obs/dis_th_2) 3 , where dis_obs is the distance between the robot and the obstacle in the driving direction distance, dis_th_1 is the first preset threshold, and dis_th_2 is the second preset threshold.
在一个具体实现中,机器人在k时刻的运动速度为[Vk,Wk],当机器人进行直线运动时,在减速至停车过程中,角速度Wk大小保持不变,即Wsafety_k=Wk。若确定所进入的避障区域的类型为减速区,则机器人使用调整后的线速度Vsafety_k=M1*Vk进行减速行驶,进而避开障碍物;若确定所进入的避障区域的类型为紧急减速区,则机器人使用调整后的线速度Vsafety_k=M2*Vk进行紧急减速,进而避开障碍物;若确定所进入的避障区域的类型为紧急制动区,则机器人使用调整后的线速度Vsafety_k=0,进行紧急制动,进而避开障碍物。In a specific implementation, the movement speed of the robot at time k is [V k , W k ]. When the robot moves in a straight line, the angular velocity W k remains unchanged during the process of deceleration to stop, that is, W safety_k =W k . If the type of the entered obstacle avoidance area is determined to be the deceleration area, the robot will use the adjusted linear velocity V safety_k =M 1 *V k to decelerate and then avoid the obstacle; if the type of the entered obstacle avoidance area is determined If it is an emergency deceleration area, the robot uses the adjusted linear velocity V safety_k =M 2 *V k to perform emergency deceleration to avoid obstacles; if it is determined that the type of obstacle avoidance area entered is an emergency braking area, the robot uses With the adjusted linear velocity V safety_k =0, emergency braking is performed to avoid obstacles.
在步骤202中,若确定机器人的运动方式为无位移的曲线运动,则保持线速度不变,根据避障区域的类型和角速度,调整机器人的角速度,使用调整后的角速度进行避障。In step 202, if the movement mode of the robot is determined to be a curve movement without displacement, the linear velocity is kept constant, the angular velocity of the robot is adjusted according to the type and angular velocity of the obstacle avoidance area, and the adjusted angular velocity is used to avoid obstacles.
其中,若确定所进入的避障区域的类型为减速区,则根据第一避障系数与角速度,调整机器人的角速度;若确定所进入的避障区域的类型为紧急减速区,则根据第二避障系数与角速度,调整机器人的角速度,其中,第二避障系数大于第一避障系数,第二避障系数与机器人的运动加速度成正比;若确定所进入的避障区域的类型为紧急制动区,则紧急制动,将角速度降为零。Among them, if it is determined that the type of the entered obstacle avoidance area is a deceleration area, the angular velocity of the robot is adjusted according to the first obstacle avoidance coefficient and angular velocity; if it is determined that the type of the entered obstacle avoidance area is an emergency deceleration area, the second Obstacle avoidance coefficient and angular velocity, adjust the angular velocity of the robot, where the second obstacle avoidance coefficient is greater than the first obstacle avoidance coefficient, and the second obstacle avoidance coefficient is proportional to the motion acceleration of the robot; if it is determined that the type of obstacle avoidance area entered is emergency In the braking zone, emergency braking will reduce the angular velocity to zero.
在一个具体实现中,机器人在k时刻的运动速度为[Vk,Wk],当机器人进行无位移的曲线运动时,在减速至停车过程中,线速度Vk大小保持不变,即Vsafety_k=Vk。若确定所进入的避障区域的类型为减速区,则机器人使用调整后的角速度为Wsafety_k=M1*Wk进行减速行驶,进而避开障碍物;若确定所进入的避障区域的类型为紧急减速区,则机器人使用调整后的角速度Wsafety_k=M2*Wk进行紧急减速,进而避开障碍物;若确定所进入的避障区域的类型为紧急制动区,则机器人使用调整后的角速度Wsafety_k=0,进行紧急制动,进而避开障碍物。In a specific implementation, the motion speed of the robot at time k is [V k , W k ]. When the robot performs a curve motion without displacement, the linear speed V k remains unchanged during the deceleration to stop process, that is, V safety_k = V k . If it is determined that the type of obstacle avoidance area entered is a deceleration area, the robot uses the adjusted angular velocity as W safety_k =M 1 *W k to decelerate and then avoid obstacles; if the type of obstacle avoidance area entered is determined In the emergency deceleration area, the robot uses the adjusted angular velocity W safety_k =M 2 *W k to perform emergency deceleration, and then avoids obstacles; if it is determined that the type of obstacle avoidance area entered is an emergency braking area, the robot uses the adjusted After the angular velocity W safety_k =0, emergency braking is performed to avoid obstacles.
在步骤203中,若确定机器人的运动方式为有位移的曲线运动,则根据避障区域的类型、线速度和角速度,调整机器人的线速度和角速度,使用调整后的线速度和调整后的角速度进行避障。In step 203, if it is determined that the movement mode of the robot is a curved movement with displacement, adjust the linear velocity and angular velocity of the robot according to the type, linear velocity and angular velocity of the obstacle avoidance area, and use the adjusted linear velocity and adjusted angular velocity Do obstacle avoidance.
其中,若确定所进入的避障区域的类型为减速区,则根据第一避障系数、角速度和线速度,调整机器人的角速度和线速度;若确定所进入的避障区域的类型为紧急减速区,则根据第二避障系数、角速度和线速度,调整机器人的角速度和线速度,其中,第二避障系数大于第一避障系数,第二避障系数与机器人的运动加速度成正比;若确定所进入的避障区域的类型为紧急制动区,则紧急制动,将机器人的角速度和线速度降为零。Among them, if it is determined that the type of obstacle avoidance area entered is a deceleration area, the angular velocity and linear velocity of the robot are adjusted according to the first obstacle avoidance coefficient, angular velocity and linear velocity; if it is determined that the type of obstacle avoidance area entered is emergency deceleration area, adjust the angular velocity and linear velocity of the robot according to the second obstacle avoidance coefficient, angular velocity and linear velocity, wherein the second obstacle avoidance coefficient is greater than the first obstacle avoidance coefficient, and the second obstacle avoidance coefficient is proportional to the motion acceleration of the robot; If it is determined that the type of obstacle avoidance area entered is an emergency braking area, emergency braking is performed to reduce the angular velocity and linear velocity of the robot to zero.
在一个具体实现中,机器人在k时刻的运动速度为[Vk,Wk],当机器人进行有位移的曲线运动时,若确定所进入的避障区域的类型为减速区,则机器人使用调整后的角速度为Wsafety_k=M1*Wk,和调整后的线速度Vsafety_k=M1*Vk进行减速行驶,进而避开障碍物;若确定所进入的避障区域的类型为紧急减速区,则机器人使用调整后的角速度Wsafety_k=M2*Wk,和调整后的线速度Vsafety_k=M2*Vk进行紧急减速,进而避开障碍物;若确定所进入的避障区域的类型为紧急制动区,则机器人使用调整后的角速度Wsafety_k=0,线速度Vsafety_k=0进行紧急制动,进而避开障碍物。In a specific implementation, the motion speed of the robot at time k is [V k , W k ]. When the robot performs a curved motion with displacement, if it is determined that the type of obstacle avoidance area it enters is a deceleration area, the robot uses the adjustment The rear angular velocity is W safety_k =M 1 *W k , and the adjusted linear velocity V safety_k =M 1 *V k is used to decelerate to avoid obstacles; if it is determined that the type of obstacle avoidance area entered is emergency deceleration area, the robot uses the adjusted angular velocity W safety_k =M 2 *W k and the adjusted linear velocity V safety_k =M 2 *V k to perform emergency deceleration, and then avoid obstacles; if the entered obstacle avoidance area is determined The type of is an emergency braking area, then the robot uses the adjusted angular velocity W safety_k =0, linear velocity V safety_k =0 to perform emergency braking, and then avoid obstacles.
在本实施方式中,通过机器人不同的运动方式、避障区域的类型和运动速度,获得不同的避障方式,采用不同的避障方式,使机器人能够以调整后的运动速度平稳的躲避障碍物,增加了机器人的避障方式的可选择性,避免因重载机器人的惯性较大,在紧急降速时造成对机器人的车轮磨损。In this embodiment, different obstacle avoidance methods are obtained through different movement modes of the robot, types of obstacle avoidance areas and movement speeds, and different obstacle avoidance methods are adopted, so that the robot can stably avoid obstacles at the adjusted movement speed. , which increases the selectivity of the robot's obstacle avoidance method, and avoids the wheel wear of the robot during emergency deceleration due to the large inertia of the heavy-load robot.
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。The steps of the above various methods are divided only for the purpose of describing clearly. During implementation, they can be combined into one step or some steps can be split and decomposed into multiple steps. As long as the same logical relationship is included, they are all within the protection scope of this patent. ;Adding insignificant modifications to the algorithm or process or introducing insignificant designs, but not changing the core design of the algorithm and process are all within the scope of protection of this patent.
本发明的第三实施方式涉及一种避障装置,该装置的具体实施可参见第一实施方式的相关描述,重复之处不再赘述。值得说明的是,本实施方式中的装置的具体实施也可参见第二实施方式的相关描述,但不局限于以上两个实施例,其他未说明的实施例也在本装置的保护范围之内。The third embodiment of the present invention relates to an obstacle avoidance device. For the specific implementation of the device, reference may be made to the relevant description of the first embodiment, and repeated descriptions will not be repeated. It is worth noting that the specific implementation of the device in this embodiment can also refer to the relevant description of the second embodiment, but is not limited to the above two embodiments, and other unexplained embodiments are also within the protection scope of the device .
如图3所示,该装置主要包括:确定避障区域类型模块301,确定运动方式模块302,确定避障方式模块303和避障模块304;确定避障区域类型模块301用于根据与障碍物之间的距离,确定所进入的避障区域的类型;确定运动方式模块302用于根据机器人当前的运动速度,确定机器人的运动方式;确定避障方式模块303用于根据机器人的运动方式以及避障区域的类型,确定机器人的避障方式;避障模块304用于根据确定的避障方式进行避障。As shown in FIG. 3 , the device mainly includes: a module 301 for determining the type of obstacle avoidance area, a module 302 for determining a movement mode, a module 303 for determining an obstacle avoidance mode, and a module 304 for avoiding obstacles; the module 301 for determining the type of obstacle avoidance area is used to The distance between them determines the type of obstacle avoidance area entered; the motion mode determination module 302 is used to determine the motion mode of the robot according to the current motion speed of the robot; the obstacle avoidance mode module 303 is used to determine the motion mode of the robot and avoid The type of the obstacle area is used to determine the obstacle avoidance method of the robot; the obstacle avoidance module 304 is used to avoid the obstacle according to the determined obstacle avoidance method.
不难发现,本实施方式为与第一或第二实施方式相对应的装置实施例,本实施方式可与第一或第二实施方式互相配合实施。第一或第二实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第一或第二实施方式中。It is not difficult to find that this embodiment is a device example corresponding to the first or second embodiment, and this embodiment can be implemented in cooperation with the first or second embodiment. The relevant technical details mentioned in the first or second embodiment are still valid in this embodiment, and are not repeated here in order to reduce repetition. Correspondingly, the relevant technical details mentioned in this embodiment can also be applied to the first or second embodiment.
值得一提的是,本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本发明的创新部分,本实施方式中并没有将与解决本发明所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。It is worth mentioning that each module involved in this embodiment is a logical module. In practical applications, a logical unit may be a physical unit, a part of a physical unit, or multiple physical units. A composite implementation of the unit. In addition, in order to highlight the innovative part of the present invention, this embodiment does not introduce units that are not closely related to solving the technical problem proposed by the present invention, but this does not mean that there are no other units in this embodiment.
本申请第四实施方式提供了一种电子设备,该设备具体结构如图4所示。包括至少一个处理器401;以及,与至少一个处理器401通信连接的存储器402。其中,存储器402存储有可被至少一个处理器401执行的指令,指令被至少一个处理器401执行,以使至少一个处理器401能够执行第一实施方式所描述的避障方法。The fourth embodiment of the present application provides an electronic device, and the specific structure of the device is shown in FIG. 4 . Including at least one processor 401; and, a memory 402 in communication with the at least one processor 401. The memory 402 stores instructions executable by the at least one processor 401, and the instructions are executed by the at least one processor 401, so that the at least one processor 401 can execute the obstacle avoidance method described in the first embodiment.
本实施方式中,处理器401以中央处理器(Central Processing Unit,CPU)为例,存储器402以可读写存储器(Random Access Memory,RAM)为例。处理器401、存储器402可以通过总线或者其他方式连接,图4中以通过总线连接为例。存储器402作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中实现避障方法的程序就存储于存储器402中。处理器401通过运行存储在存储器402中的非易失性软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述避障方法。In this embodiment, the processor 401 is a central processing unit (Central Processing Unit, CPU) as an example, and the memory 402 is a Random Access Memory (Random Access Memory, RAM) as an example. The processor 401 and the memory 402 may be connected through a bus or in other ways, and the connection through a bus is taken as an example in FIG. 4 . The memory 402, as a non-volatile computer-readable storage medium, can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as the program implementing the obstacle avoidance method in the embodiment of the present application. in memory 402. The processor 401 executes various functional applications and data processing of the device by running the non-volatile software programs, instructions and modules stored in the memory 402, that is, the above obstacle avoidance method is implemented.
存储器402可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储选项列表等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器402可选包括相对于处理器401远程设置的存储器,这些远程存储器可以通过网络连接至外接设备。The memory 402 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required by at least one function; the storage data area may store an option list and the like. Additionally, the memory may include high speed random access memory, and may also include nonvolatile memory, such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device. In some embodiments, memory 402 may optionally include memory located remotely relative to processor 401, which may be connected to external devices via a network.
一个或者多个程序模块存储在存储器402中,当被一个或者多个处理器401执行时,执行上述任意方法实施例中的避障方法。One or more program modules are stored in the memory 402, and when executed by the one or more processors 401, execute the obstacle avoidance method in any of the above method embodiments.
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果,未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。The above product can execute the methods provided by the embodiments of the present application, and have functional modules and beneficial effects corresponding to the execution methods. For technical details not described in detail in the present embodiments, reference may be made to the methods provided by the embodiments of the present application.
本申请的第五实施方式涉及一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,该计算机程序被处理器执行时能够实现本申请任意方法实施例中涉及的避障方法。The fifth embodiment of the present application relates to a computer-readable storage medium, where a computer program is stored, and when the computer program is executed by a processor, the obstacle avoidance method involved in any method embodiment of the present application can be implemented .
本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。Those skilled in the art can understand that all or part of the steps in the method of the above embodiments can be completed by instructing the relevant hardware through a program, and the program is stored in a storage medium and includes several instructions to make a device (which may be a A single-chip microcomputer, a chip, etc.) or a processor (processor) executes all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, removable hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。Those skilled in the art can understand that the above-mentioned embodiments are specific examples for realizing the present invention, and in practical applications, various changes in form and details can be made without departing from the spirit and the spirit of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910132049.5A CN109828574B (en) | 2019-02-22 | 2019-02-22 | Obstacle avoidance method and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910132049.5A CN109828574B (en) | 2019-02-22 | 2019-02-22 | Obstacle avoidance method and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109828574A true CN109828574A (en) | 2019-05-31 |
CN109828574B CN109828574B (en) | 2022-05-03 |
Family
ID=66863937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910132049.5A Expired - Fee Related CN109828574B (en) | 2019-02-22 | 2019-02-22 | Obstacle avoidance method and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109828574B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110737274A (en) * | 2019-11-01 | 2020-01-31 | 牧星机器人(江苏)有限公司 | AGV obstacle avoidance method and system, AGV and storage medium |
CN110852244A (en) * | 2019-11-06 | 2020-02-28 | 深圳创维数字技术有限公司 | Vehicle control method, device and computer readable storage medium |
CN111625000A (en) * | 2020-05-28 | 2020-09-04 | 北京海益同展信息科技有限公司 | Robot, and obstacle avoidance method and device for robot |
CN111890359A (en) * | 2020-07-01 | 2020-11-06 | 深圳市越疆科技有限公司 | Robot obstacle avoidance method, robotic arm robot and storage medium |
CN111923038A (en) * | 2020-07-01 | 2020-11-13 | 深圳市越疆科技有限公司 | Mechanical arm type robot, obstacle avoidance method of robot and storage medium |
CN111930127A (en) * | 2020-09-02 | 2020-11-13 | 广州赛特智能科技有限公司 | Robot obstacle identification and obstacle avoidance method |
CN112015178A (en) * | 2020-08-20 | 2020-12-01 | 中国第一汽车股份有限公司 | Control method, device, equipment and storage medium |
CN112068548A (en) * | 2020-08-07 | 2020-12-11 | 北京航空航天大学 | Special scene-oriented unmanned vehicle path planning method in 5G environment |
WO2021027378A1 (en) * | 2019-08-09 | 2021-02-18 | 珠海格力智能装备有限公司 | Adaptive obstacle avoidance method, robot and computer readable storage medium |
CN112783171A (en) * | 2020-12-31 | 2021-05-11 | 上海擎朗智能科技有限公司 | Robot operation control method and device, electronic equipment and storage medium |
CN113031581A (en) * | 2019-12-25 | 2021-06-25 | 北京极智嘉科技股份有限公司 | Robot, method for controlling travel of robot, electronic device, and storage medium |
CN114200945A (en) * | 2021-12-13 | 2022-03-18 | 哈尔滨工业大学芜湖机器人产业技术研究院 | A safety control method for a mobile robot |
CN114667494A (en) * | 2019-11-13 | 2022-06-24 | 欧姆龙株式会社 | Robot control model learning method, robot control model learning device, robot control model learning program, robot control method, robot control device, robot control program, and robot |
CN114683273A (en) * | 2020-12-31 | 2022-07-01 | 美的集团(上海)有限公司 | Robot halt control method and device, robot and storage medium |
CN119223293A (en) * | 2024-12-02 | 2024-12-31 | 中科源码(成都)服务机器人研究院有限公司 | A mobile robot collision detection method |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1075992A2 (en) * | 1999-08-09 | 2001-02-14 | Toyota Jidosha Kabushiki Kaisha | Vehicle stability control apparatus having obstacle detector and automatic brake-application device |
CN102846273A (en) * | 2011-06-28 | 2013-01-02 | 三星电子株式会社 | Robot cleaner and control method thereof |
KR20130057571A (en) * | 2011-11-24 | 2013-06-03 | 현대자동차주식회사 | Movement obstacle avoidance method of autonomous vehicle |
CN103335658A (en) * | 2013-06-19 | 2013-10-02 | 华南农业大学 | Autonomous vehicle obstacle avoidance method based on arc path |
CN103529450A (en) * | 2013-10-21 | 2014-01-22 | 深圳市米克力美科技有限公司 | Barrier detection method and device thereof for automatic guided vehicle |
US20140095009A1 (en) * | 2011-05-31 | 2014-04-03 | Hitachi, Ltd | Autonomous movement system |
CN104210629A (en) * | 2014-09-28 | 2014-12-17 | 江苏华宏实业集团有限公司 | Underwater barrier block avoiding method |
EP2857918A1 (en) * | 2012-05-28 | 2015-04-08 | Murata Machinery, Ltd. | Travelling vehicle system and method for controlling travel of travelling vehicle in curved section |
US9047771B1 (en) * | 2014-03-07 | 2015-06-02 | The Boeing Company | Systems and methods for ground collision avoidance |
CN105372664A (en) * | 2015-07-14 | 2016-03-02 | 南京航空航天大学 | Distributed ultrasonic obstacle avoidance system and obstacle avoidance method thereof |
CN205251976U (en) * | 2015-10-26 | 2016-05-25 | 众德迪克科技(北京)有限公司 | Keep away barrier and lead blind robot |
CN105629989A (en) * | 2015-12-28 | 2016-06-01 | 电子科技大学 | Obstacle region division method based on minimum enclosing circle and maximum inscribed circle |
CN106022274A (en) * | 2016-05-24 | 2016-10-12 | 零度智控(北京)智能科技有限公司 | Obstacle avoiding method, obstacle avoiding device and unmanned machine |
CN106200645A (en) * | 2016-08-24 | 2016-12-07 | 北京小米移动软件有限公司 | Autonomous robot, control device and control method |
JP2017068439A (en) * | 2015-09-29 | 2017-04-06 | シャープ株式会社 | Autonomous traveling system |
US20170183004A1 (en) * | 2015-12-18 | 2017-06-29 | GM Global Technology Operations LLC | Driver assistance system and methods for collision avoidance |
CN107024210A (en) * | 2017-03-09 | 2017-08-08 | 深圳市朗空亿科科技有限公司 | A kind of Indoor Robot barrier-avoiding method, device and navigation system |
US20170368686A1 (en) * | 2016-06-28 | 2017-12-28 | Qihan Technology Co., Ltd. | Method and device for automatic obstacle avoidance of robot |
US20170369054A1 (en) * | 2016-06-24 | 2017-12-28 | Toyota Jidosha Kabushiki Kaisha | Collision avoidance apparatus |
WO2018018597A1 (en) * | 2016-07-29 | 2018-02-01 | 深圳市赛亿科技开发有限公司 | Robot capable of automatically detecting and avoiding obstacle, system, and method |
WO2018018596A1 (en) * | 2016-07-29 | 2018-02-01 | 深圳市赛亿科技开发有限公司 | Robot capable of automatically detecting and avoiding obstacle |
CN108628317A (en) * | 2018-06-27 | 2018-10-09 | 深兰科技(上海)有限公司 | The automatic delivery method of the automatic dispenser of article and article |
CN108664020A (en) * | 2018-04-11 | 2018-10-16 | 上海大学 | A kind of unmanned boat dynamic obstacle avoidance algorithm based on Speed Obstacles method and dynamic window method |
CN109034682A (en) * | 2018-06-27 | 2018-12-18 | 深兰科技(上海)有限公司 | Allocator, device and storage medium based on Intelligent cargo cabinet and dispensing machine people |
CN109240313A (en) * | 2018-11-26 | 2019-01-18 | 智久(厦门)机器人科技有限公司上海分公司 | Barrier-avoiding method, the apparatus and system of unmanned fork truck |
-
2019
- 2019-02-22 CN CN201910132049.5A patent/CN109828574B/en not_active Expired - Fee Related
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1075992A2 (en) * | 1999-08-09 | 2001-02-14 | Toyota Jidosha Kabushiki Kaisha | Vehicle stability control apparatus having obstacle detector and automatic brake-application device |
US20140095009A1 (en) * | 2011-05-31 | 2014-04-03 | Hitachi, Ltd | Autonomous movement system |
CN102846273A (en) * | 2011-06-28 | 2013-01-02 | 三星电子株式会社 | Robot cleaner and control method thereof |
KR20130057571A (en) * | 2011-11-24 | 2013-06-03 | 현대자동차주식회사 | Movement obstacle avoidance method of autonomous vehicle |
EP2857918A1 (en) * | 2012-05-28 | 2015-04-08 | Murata Machinery, Ltd. | Travelling vehicle system and method for controlling travel of travelling vehicle in curved section |
CN103335658A (en) * | 2013-06-19 | 2013-10-02 | 华南农业大学 | Autonomous vehicle obstacle avoidance method based on arc path |
CN103529450A (en) * | 2013-10-21 | 2014-01-22 | 深圳市米克力美科技有限公司 | Barrier detection method and device thereof for automatic guided vehicle |
US9047771B1 (en) * | 2014-03-07 | 2015-06-02 | The Boeing Company | Systems and methods for ground collision avoidance |
CN104210629A (en) * | 2014-09-28 | 2014-12-17 | 江苏华宏实业集团有限公司 | Underwater barrier block avoiding method |
CN105372664A (en) * | 2015-07-14 | 2016-03-02 | 南京航空航天大学 | Distributed ultrasonic obstacle avoidance system and obstacle avoidance method thereof |
JP2017068439A (en) * | 2015-09-29 | 2017-04-06 | シャープ株式会社 | Autonomous traveling system |
CN205251976U (en) * | 2015-10-26 | 2016-05-25 | 众德迪克科技(北京)有限公司 | Keep away barrier and lead blind robot |
US20170183004A1 (en) * | 2015-12-18 | 2017-06-29 | GM Global Technology Operations LLC | Driver assistance system and methods for collision avoidance |
CN105629989A (en) * | 2015-12-28 | 2016-06-01 | 电子科技大学 | Obstacle region division method based on minimum enclosing circle and maximum inscribed circle |
CN106022274A (en) * | 2016-05-24 | 2016-10-12 | 零度智控(北京)智能科技有限公司 | Obstacle avoiding method, obstacle avoiding device and unmanned machine |
US20170369054A1 (en) * | 2016-06-24 | 2017-12-28 | Toyota Jidosha Kabushiki Kaisha | Collision avoidance apparatus |
US20170368686A1 (en) * | 2016-06-28 | 2017-12-28 | Qihan Technology Co., Ltd. | Method and device for automatic obstacle avoidance of robot |
WO2018018597A1 (en) * | 2016-07-29 | 2018-02-01 | 深圳市赛亿科技开发有限公司 | Robot capable of automatically detecting and avoiding obstacle, system, and method |
WO2018018596A1 (en) * | 2016-07-29 | 2018-02-01 | 深圳市赛亿科技开发有限公司 | Robot capable of automatically detecting and avoiding obstacle |
CN106200645A (en) * | 2016-08-24 | 2016-12-07 | 北京小米移动软件有限公司 | Autonomous robot, control device and control method |
CN107024210A (en) * | 2017-03-09 | 2017-08-08 | 深圳市朗空亿科科技有限公司 | A kind of Indoor Robot barrier-avoiding method, device and navigation system |
CN108664020A (en) * | 2018-04-11 | 2018-10-16 | 上海大学 | A kind of unmanned boat dynamic obstacle avoidance algorithm based on Speed Obstacles method and dynamic window method |
CN108628317A (en) * | 2018-06-27 | 2018-10-09 | 深兰科技(上海)有限公司 | The automatic delivery method of the automatic dispenser of article and article |
CN109034682A (en) * | 2018-06-27 | 2018-12-18 | 深兰科技(上海)有限公司 | Allocator, device and storage medium based on Intelligent cargo cabinet and dispensing machine people |
CN109240313A (en) * | 2018-11-26 | 2019-01-18 | 智久(厦门)机器人科技有限公司上海分公司 | Barrier-avoiding method, the apparatus and system of unmanned fork truck |
Non-Patent Citations (4)
Title |
---|
SHOTA TAKADA 等: "The Effectiveness of Forward Obstacles Collision Warning System Based on Deceleration for Collision Avoidance", 《IET INTELLIGENT TRANSPORT SYSTEMS》 * |
YANG YU-RONG 等: "Obstacle-avoidance Strategy for Small Scale Unmanned Helicopter", 《PROCEEDINGS OF 2016 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE》 * |
崔保成: "差动式移动机器人轨迹控制和避障方法的研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
毛宇峰 等: "速度矢量坐标系下水下机器人动态避障方法", 《哈尔滨工程大学学报》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021027378A1 (en) * | 2019-08-09 | 2021-02-18 | 珠海格力智能装备有限公司 | Adaptive obstacle avoidance method, robot and computer readable storage medium |
CN110737274B (en) * | 2019-11-01 | 2022-07-15 | 牧星机器人(江苏)有限公司 | AGV obstacle avoidance method and system, AGV and storage medium |
CN110737274A (en) * | 2019-11-01 | 2020-01-31 | 牧星机器人(江苏)有限公司 | AGV obstacle avoidance method and system, AGV and storage medium |
CN110852244A (en) * | 2019-11-06 | 2020-02-28 | 深圳创维数字技术有限公司 | Vehicle control method, device and computer readable storage medium |
CN114667494A (en) * | 2019-11-13 | 2022-06-24 | 欧姆龙株式会社 | Robot control model learning method, robot control model learning device, robot control model learning program, robot control method, robot control device, robot control program, and robot |
CN113031581A (en) * | 2019-12-25 | 2021-06-25 | 北京极智嘉科技股份有限公司 | Robot, method for controlling travel of robot, electronic device, and storage medium |
CN111625000A (en) * | 2020-05-28 | 2020-09-04 | 北京海益同展信息科技有限公司 | Robot, and obstacle avoidance method and device for robot |
CN111625000B (en) * | 2020-05-28 | 2023-12-05 | 京东科技信息技术有限公司 | Robot, obstacle avoidance method and device for robot |
CN111890359A (en) * | 2020-07-01 | 2020-11-06 | 深圳市越疆科技有限公司 | Robot obstacle avoidance method, robotic arm robot and storage medium |
CN111923038A (en) * | 2020-07-01 | 2020-11-13 | 深圳市越疆科技有限公司 | Mechanical arm type robot, obstacle avoidance method of robot and storage medium |
CN111890359B (en) * | 2020-07-01 | 2022-04-15 | 深圳市越疆科技有限公司 | Robot obstacle avoidance method, mechanical arm type robot and storage medium |
CN112068548A (en) * | 2020-08-07 | 2020-12-11 | 北京航空航天大学 | Special scene-oriented unmanned vehicle path planning method in 5G environment |
CN112068548B (en) * | 2020-08-07 | 2022-06-07 | 北京航空航天大学 | Special scene-oriented unmanned vehicle path planning method in 5G environment |
CN112015178A (en) * | 2020-08-20 | 2020-12-01 | 中国第一汽车股份有限公司 | Control method, device, equipment and storage medium |
CN111930127A (en) * | 2020-09-02 | 2020-11-13 | 广州赛特智能科技有限公司 | Robot obstacle identification and obstacle avoidance method |
CN114683273A (en) * | 2020-12-31 | 2022-07-01 | 美的集团(上海)有限公司 | Robot halt control method and device, robot and storage medium |
CN112783171A (en) * | 2020-12-31 | 2021-05-11 | 上海擎朗智能科技有限公司 | Robot operation control method and device, electronic equipment and storage medium |
CN114683273B (en) * | 2020-12-31 | 2024-05-24 | 美的集团(上海)有限公司 | Robot shutdown control method and device, robot and storage medium |
CN114200945A (en) * | 2021-12-13 | 2022-03-18 | 哈尔滨工业大学芜湖机器人产业技术研究院 | A safety control method for a mobile robot |
CN114200945B (en) * | 2021-12-13 | 2024-04-02 | 长三角哈特机器人产业技术研究院 | Safety control method of mobile robot |
CN119223293A (en) * | 2024-12-02 | 2024-12-31 | 中科源码(成都)服务机器人研究院有限公司 | A mobile robot collision detection method |
Also Published As
Publication number | Publication date |
---|---|
CN109828574B (en) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109828574B (en) | Obstacle avoidance method and electronic equipment | |
CN107145147B (en) | Vehicle low-speed automatic driving collision avoidance method and system | |
KR101846072B1 (en) | Automatic driving vehicle system | |
JP6226896B2 (en) | A method for minimizing brake intervention based on collision certainty | |
US7792624B2 (en) | Cruise control system | |
JP2018203032A (en) | Automated driving system | |
US20150239472A1 (en) | Vehicle-installed obstacle detection apparatus having function for judging motion condition of detected object | |
CN112639849A (en) | Route selection method and route selection device | |
JP2010501413A (en) | Method for calculating anti-collision trajectory for driving a vehicle | |
CN111650945B (en) | Dynamic obstacle anticollision method | |
JP7613862B2 (en) | Vehicle control device and control method | |
EP3509051A1 (en) | Vehicle travel control method and vehicle travel control device | |
KR20200053612A (en) | Robot driving prediction and control method | |
JP2021075186A (en) | Vehicle control system | |
JP2022024323A (en) | Collision avoidance support device | |
JP2011006007A (en) | Tracking control device and tracking control method | |
CN114620064A (en) | Vehicle control system, autonomous driving vehicle, and vehicle control method | |
JP2007253746A (en) | Avoidance operation calculating device, avoidance controller, vehicle provided with each device, avoidance operation calculating method, and avoidance control method | |
US10386849B2 (en) | ECU, autonomous vehicle including ECU, and method of recognizing nearby vehicle for the same | |
AU2022200113A1 (en) | Proactive lane change for autonomous vehicles | |
CN112859871B (en) | Dynamic obstacle avoidance control method based on model prediction | |
EP3684658A1 (en) | Method of detecting and correcting the failure of automatic braking system | |
GB2523096A (en) | Apparatus and method for use in a vehicle | |
US20230126540A1 (en) | Systems and methods for handling cut-in traffic for autonomous driving | |
US11945443B2 (en) | Systems and methods for traction detection and control in a self-driving vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220315 Address after: Room 6227, No. 999, Changning District, Shanghai 200050 Applicant after: Shenlan robot (Shanghai) Co.,Ltd. Address before: Unit 1001, 369 Weining Road, Changning District, Shanghai, 200336 (9th floor of actual floor) Applicant before: DEEPBLUE TECHNOLOGY (SHANGHAI) Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221031 Address after: 476000 shop 301, office building, northeast corner, intersection of Bayi Road and Pingyuan Road, Liangyuan District, Shangqiu City, Henan Province Patentee after: Shenlan robot industry development (Henan) Co.,Ltd. Address before: Room 6227, No. 999, Changning District, Shanghai 200050 Patentee before: Shenlan robot (Shanghai) Co.,Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220503 |