CN109818008B - Modular equipment for fuel cell systems - Google Patents
Modular equipment for fuel cell systems Download PDFInfo
- Publication number
- CN109818008B CN109818008B CN201711248714.4A CN201711248714A CN109818008B CN 109818008 B CN109818008 B CN 109818008B CN 201711248714 A CN201711248714 A CN 201711248714A CN 109818008 B CN109818008 B CN 109818008B
- Authority
- CN
- China
- Prior art keywords
- fuel
- chamber
- reformer
- burner
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种燃料电池(Fuel cell)技术,且特别是有关于一种燃料电池系统的模块化设备。The present invention relates to a fuel cell technology, and in particular to a modular device for a fuel cell system.
背景技术Background technique
燃料电池是继水力、火力、核能发电技术后的第四类新型发电技术,主要通过氧或其他氧化剂进行氧化还原反应,把燃料中的化学能转换成电能的发电装置。最常见的燃料为氢,其他燃料来源来自于任何的能分解出氢气的碳氢化合物,例如天然气、醇类和甲烷等。由于不受卡诺循环的限制,燃料电池的理论效率达80%以上,实际效率可达50%~60%。Fuel cell is the fourth type of new power generation technology after hydropower, thermal power and nuclear power generation technology. It mainly conducts redox reaction with oxygen or other oxidants to convert chemical energy in fuel into electrical energy. The most common fuel is hydrogen, other fuel sources come from any hydrocarbon that can decompose hydrogen, such as natural gas, alcohols, and methane. Since it is not limited by the Carnot cycle, the theoretical efficiency of the fuel cell is over 80%, and the actual efficiency can reach 50% to 60%.
固态氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)是一种利用固态陶瓷材料做为电解质的燃料电池技术。整个系统的运转温度介在800℃~1000℃之间,属于高温型燃料电池,因此具有很好的燃料选择的灵活性,可选择的燃料包括甲烷、天然气、城市煤气、生物质、柴油以及其它碳氢化合物。当碳氢化合物燃料送入系统时,会先对其进料进行重整处理,产生氢气、一氧化碳、二氧化碳和水蒸气的重整混合气,其中的氢气与阴极侧的氧气发生电化学反应产生电能。因此具有高效率、适用燃料多样化与不需使用贵金属做催化剂等优点,同时运转时的高温也可应用于增加发电效率或热源供应,具有极高的余热价值。Solid oxide fuel cell (Solid Oxide Fuel Cell, SOFC) is a kind of fuel cell technology using solid ceramic material as electrolyte. The operating temperature of the entire system is between 800°C and 1000°C, which is a high-temperature fuel cell, so it has good flexibility in fuel selection. The optional fuels include methane, natural gas, city gas, biomass, diesel and other carbons. hydrogen compound. When the hydrocarbon fuel is fed into the system, the feed will be reformed to produce a reformed mixture of hydrogen, carbon monoxide, carbon dioxide and water vapor, in which the hydrogen reacts electrochemically with the oxygen on the cathode side to generate electricity . Therefore, it has the advantages of high efficiency, diverse applicable fuels, and no need to use precious metals as catalysts. At the same time, the high temperature during operation can also be used to increase power generation efficiency or heat source supply, with extremely high waste heat value.
然而,由于固态氧化物燃料电池系统运转温度极高,在高温环境条件下需依赖电子式气体加热器来供应,但加热器属于高耗能装置,因此以此种方式来提供电池运转热源会降低系统效率。其次,因固态氧化物燃料电池系统复杂,组件间连接许多管路,容易造成管路的热损降低系统效率。再者,系统运转时产生的高温余热若无有效再利用,会平白增加耗能而不利于环保。However, due to the extremely high operating temperature of the solid oxide fuel cell system, it needs to rely on an electronic gas heater for supply under high temperature environmental conditions, but the heater is a high energy consumption device, so providing the battery operating heat source in this way will reduce system efficiency. Secondly, due to the complexity of the solid oxide fuel cell system, many pipelines are connected between components, which is easy to cause heat loss of pipelines and reduce system efficiency. Furthermore, if the high-temperature waste heat generated during the operation of the system is not effectively reused, it will increase energy consumption and be unfavorable for environmental protection.
发明内容SUMMARY OF THE INVENTION
本发明提供一种燃料电池系统的模块化设备,可使设备内部温度分布均匀,并能有效控制重整器与热交换器的热源,进而确保电池堆(stack)温度,可减少电池堆热循环(Thermal cycle)次数,达到系统简化、安全、稳定与高效率的功效。The present invention provides a modular device for a fuel cell system, which can make the temperature distribution inside the device uniform, and can effectively control the heat source of the reformer and the heat exchanger, thereby ensuring the temperature of the stack and reducing the thermal cycle of the stack. (Thermal cycle) times to achieve system simplification, safety, stability and high efficiency.
本发明的燃料电池系统的模块化设备设置于腔体内,所述燃料电池系统的模块化设备包括启动燃烧器、重整器(reformer)、后燃器以及热交换器。启动燃烧器、重整器、后燃器与热交换器均设置于腔体内。重整器环绕启动燃烧器,后燃器则设置于启动燃烧器上方并环绕重整器。至于热交换器则环绕所述后燃器与所述重整器。The modular equipment of the fuel cell system of the present invention is disposed in the cavity, and the modular equipment of the fuel cell system includes a start-up burner, a reformer, an afterburner, and a heat exchanger. The start-up burner, the reformer, the afterburner and the heat exchanger are all arranged in the cavity. The reformer surrounds the start-up burner, and the afterburner is positioned above the start-up burner and surrounds the reformer. As for the heat exchanger, it surrounds the afterburner and the reformer.
基于上述,本发明通过模块化设计,使启动燃烧器、重整器、后燃器与热交换器均设置于单一腔体内,因此无需使用高耗能的组件与装置,即可达到降低热损失、有效利用高温余热与实时控温等功效。Based on the above, the present invention adopts a modular design, so that the start-up burner, the reformer, the afterburner and the heat exchanger are all arranged in a single cavity, so that the heat loss can be reduced without using high-energy-consuming components and devices. , Effective use of high temperature waste heat and real-time temperature control and other functions.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.
附图说明Description of drawings
图1是依照本发明的实施例的一种燃料电池系统的模块化设备的示意图。FIG. 1 is a schematic diagram of a modular apparatus of a fuel cell system according to an embodiment of the present invention.
图2是依照本发明的实施例的一种启动燃烧器的立体示意图。2 is a schematic perspective view of a start-up burner according to an embodiment of the present invention.
图3是依照本发明的实施例的一种重整器的立体示意图。3 is a schematic perspective view of a reformer according to an embodiment of the present invention.
图4A是依照本发明的实施例的一种后燃器的立体示意图。4A is a schematic perspective view of an afterburner according to an embodiment of the present invention.
图4B是图4A的后燃器中的燃料分散室的俯视图。4B is a top view of a fuel dispersion chamber in the afterburner of FIG. 4A.
图5是依照本发明的实施例的一种热交换器的立体示意图。5 is a schematic perspective view of a heat exchanger according to an embodiment of the present invention.
其中,附图标记为:Among them, the reference numerals are:
100:腔体 102:启动燃烧器100: Chamber 102: Start the burner
102a:内管 102b:外管102a:
104:重整器 104a、104b、106a:管路104: Reformer 104a, 104b, 106a: Pipelines
104c:重整气排放管 106:后燃器104c: Reformed gas discharge pipe 106: Afterburner
108:热交换器 108a:冷空气进入口108:
108b:热空气输出口 110:电池堆108b: hot air outlet 110: battery stack
200:燃烧室 202:第一燃料输入管200: Combustion chamber 202: First fuel feed pipe
204:第一空气输入管 206:第一尾气排放管204: The first air input pipe 206: The first exhaust pipe
208:气体分散盖 300:蒸气产生室208: Gas Dispersion Cover 300: Vapor Generation Chamber
302:水输入管 304:重整器燃料混合室302: Water inlet pipe 304: Reformer fuel mixing chamber
306:蒸气输入管 308:重整气混合室306: Steam input pipe 308: Reformed gas mixing chamber
310:重整室 312:第二燃料输入管310: Reforming chamber 312: Second fuel inlet pipe
314:重整气排放管 400:混合燃烧室314: Reformed gas discharge pipe 400: Mixing combustion chamber
402:燃料分散室 404:第三燃料输入管402: Fuel dispersion chamber 404: Third fuel inlet pipe
406:第二空气输入管 408:第二尾气排放管406: The second air input pipe 408: The second exhaust pipe
410:燃料输出孔 412:调节燃料输入管410: Fuel output hole 412: Adjustment fuel input pipe
414:高温燃料414: High temperature fuel
具体实施方式Detailed ways
请参考以下实施例及随附图式,以便更充分地了解本发明,但是本发明仍可以通过多种不同形式来实践,且不应将其解释为限于本文所述的实施例。而在图式中,为求明确起见对于各构件以及其相对尺寸可能未按实际比例绘制。Reference is made to the following examples and accompanying drawings for a more complete understanding of the present invention, which may be practiced in many different forms and should not be construed as limited to the embodiments described herein. In the drawings, various components and their relative sizes may not be drawn to actual scale for clarity.
图1是依照本发明的一实施例的一种燃料电池系统的模块化设备的示意图。FIG. 1 is a schematic diagram of a modular apparatus of a fuel cell system according to an embodiment of the present invention.
请参照图1,本实施例的燃料电池系统的模块化设备设置于腔体100内,所述燃料电池系统的模块化设备包括启动燃烧器102、重整器104、后燃器106以及热交换器108,且于图1所示的所有组件皆为示意图,其详细构造将于下文记载。上述启动燃烧器102、重整器104、后燃器106与热交换器108均设置于单一腔体100内,且重整器104环绕启动燃烧器102,而后燃器106是位于启动燃烧器102之上并环绕重整器104。也就是说,后燃器106是环绕着重整器104的上部,用以提供热交换与蒸气产生预热。至于热交换器108则环绕后燃器106与重整器104,且于图1中是以数个圆代表盘管式结构的剖面。Referring to FIG. 1 , the modular equipment of the fuel cell system of this embodiment is disposed in the
在图1中,启动燃烧器102为内小外大的圆锥状结构,但本发明并不限于此,启动燃烧器102也可为直筒状结构。由于燃烧时需送入燃料与空气,因此在启动燃烧器102底部可设有内外管形式的输入管路,如送入燃料的内管102a与送入空气的外管102b。围绕启动燃烧器102的重整器104是用来提供电池堆110阳极所需的反应燃料(如氢气),所以会有供给燃料的管路104a与供给室温水的管路104b,而经由重整器104的重整气可由重整气排放管104c输出。后燃器106的作用是回收电池堆110阳极与阴极高温尾气混合后再燃烧产生热源,提供重整器104以及热交换器108的热量来源,所以后燃器106是环绕着重整器104,且有与电池堆110阳极与阴极高温尾气相连的管路106a。至于热交换器108则是盘管式结构,沿腔体100的内围环绕,且热交换器108具有冷空气进入口108a以及热空气输出口108b,以便利用启动燃烧器102或后燃器106所产生的高温热气,使冷空气转变为热空气,输出供电池堆110阴极作为反应燃料。In FIG. 1 , the start-
以下将针对燃料电池系统的模块化设备内部的各个组件作详细描述,但本发明并不限于此。The individual components inside the modular device of the fuel cell system will be described in detail below, but the present invention is not limited thereto.
图2是依照本发明的实施例的一种启动燃烧器的立体示意图。2 is a schematic perspective view of a start-up burner according to an embodiment of the present invention.
请参照图2,启动燃烧器102为系统常温启动时,用以提供重整器(未绘示)与热交换器(未绘示)的预热热量来源。启动燃烧器102可包括燃烧室200、第一燃料输入管202、第一空气输入管204以及第一尾气排放管206。第一空气输入管204设置于燃烧室200的底部,第一燃料输入管202位于第一空气输入管204内,且第一尾气排放管206设置于燃烧室200的上部。Referring to FIG. 2 , the start-up
在本实施例中,启动燃烧器102还可包括气体分散盖208,安装在第一空气输入管204的尾部,主要提供气体可均匀向四周分散的功能。因此,当空气经由第一空气输入管204送入燃烧室200时会通过气体分散盖208,导致空气的进气方向垂直或接近垂直于第一燃料输入管202的延伸方向,进气后空气会沿圆锥状结构的燃烧室200内壁环绕前进向上,因此会形成一道涡旋导引气流,将前述分散后的燃料一同引导至燃烧室200进行燃烧反应,而使用过的高温气体最后则经由第一尾气排放管206集中排放。由于燃烧室200举例为内小外大的圆锥状结构,因此能增加流体运动进而提升热传效能。此外,可通过调控燃料与空气的进料比例,依据使用需求来调整燃烧后供给的热量。In this embodiment, the start-up
图3是依照本发明的实施例的一种重整器的立体示意图。3 is a schematic perspective view of a reformer according to an embodiment of the present invention.
请参照图3,重整器104包括蒸气产生室300、水输入管302、重整器燃料混合室304、蒸气输入管306、重整气混合室308、重整室310、第二燃料输入管312以及重整气排放管314,其中数个重整室310连接重整器燃料混合室304与重整气混合室308。重整室310结构可为底盘状多直管式(或单螺旋管式),各重整室310内填充有重整触媒,能通过启动燃烧器(图2)或后燃器(未绘示)所产生的热量,经由管壁热传给内部流动的燃料与高温蒸气,而进行重整反应产生富氢重整气。3, the
至于蒸气产生室300是设置于启动燃烧器(图2)上方与重整气混合室308下方,水输入管302则自底部延伸连结至蒸气产生室300,且水输入管302的结构还可选择为底盘状多直管式(或单螺旋管式),使启动燃烧器(图2)或后燃器(未绘示)所产生的热量,经由水输入管302管壁热传给内部流动的室温水进行预热与蒸气的产生。至于重整器燃料混合室304是类似环状的腔室,以便围绕启动燃烧器(图2)的底部。为达到更佳的预热与蒸气产生效果,蒸气产生室300例如圆槽状结构,功能为混合预热水,因此室温水经由水输入管302流入蒸气产生室300后,会产生蒸气并经由蒸气输入管306流入重整器燃料混合室304,而与连接重整器燃料混合室304的第二燃料输入管312送入的燃料互相混合,用以供应燃料与高温蒸气至上述重整室310。最后,重整室310内产生的重整气将汇流至重整气混合区308(例如圆槽状结构),并统一集中至重整气排放管314流出至电池堆阳极侧入口(未绘示)。The
图4A是依照本发明的实施例的一种后燃器的立体示意图。4A is a schematic perspective view of an afterburner according to an embodiment of the present invention.
请参照图4A,后燃器106是用以回收电池堆阳极与阴极(未绘示)高温尾气混合再燃烧产生热源,提供作为重整器104(含蒸气产生器)与热交换器(未绘示)的高温段区间的热量来源。后燃器106包括混合燃烧室400、燃料分散室402、第三燃料输入管404、第二空气输入管406以及第二尾气排放管408。燃料分散室402设置于混合燃烧室400内并具有多个燃料输出孔410,使得高温燃料(如电池堆阳极与阴极的高温尾气)沿第三燃料输入管404进入燃料分散室402(如环状结构)的顶面后,从设置于环状结构的四周的燃料输出孔410均匀向四周分散,以提升燃烧效率。第二空气输入管406连接混合燃烧室400的侧面。第二尾气排放管408连接至混合燃烧室400的底面。Referring to FIG. 4A , the
在本实施例中,后燃器106还可包括调节燃料输入管412,与第三燃料输入管404相连通。而且,为达到后燃器106具有温度调节的功能,调节燃料输入管412可与用来输入调节用空气的第二空气输入管406设置于燃料分散室402的对向侧,通过这两个流路的进料配比,调整空燃比达到热量调整的目的。In this embodiment, the
当空气如图4B所示,由混合燃烧室400侧边的第二空气输入管406导入,会沿混合燃烧室400的内壁环绕前进,形成一道涡旋导引气流,引导沿第三燃料输入管404进入燃料分散室402而经分散后的高温燃料414进入混合燃烧室400进行燃烧反应产生高温热量,提供其他组件预热。When the air is introduced from the second
在一实施例中,上述图4A的后燃器106的第二尾气排放管408可与上述图2的启动燃烧器102的第一尾气排放管206相连通,用以集中排放尾气。In one embodiment, the second exhaust
图5是依照本发明的实施例的一种热交换器的立体示意图。5 is a schematic perspective view of a heat exchanger according to an embodiment of the present invention.
请参照图5,热交换器108是用以利用启动燃烧器(图2)和后燃器(图4A)所产生的高温热气,通过管材作为热传导介质,形成如同热交换器功能,提供作为蒸气产生或空气预热的用途。因此热交换器108可为盘管式结构,以环绕后燃器(图4A)与启动燃烧器(图2)以外的重整器(图3),热交换器108具有冷空气进入口108a以及热空气输出口108b。冷空气进入口108a可设置于腔体(图1的100)的底部、热空气输出口108b可设置于腔体(图1的100)的顶部。Please refer to FIG. 5 , the
以下列举实验来验证本发明的功效,但本发明并不侷限于以下的内容。The following experiments are presented to verify the efficacy of the present invention, but the present invention is not limited to the following contents.
表1为本发明与现有设备所进行的模拟比较,结果显示如下。Table 1 is the simulation comparison performed by the present invention and the existing equipment, and the results are shown as follows.
表1Table 1
从表1可得到本发明的设计不受环境与外接管路的影响,故明显降低热损失,有效利用高温废热提供系统的燃料电池的周边组件(BOP)热源。It can be seen from Table 1 that the design of the present invention is not affected by the environment and external pipelines, so the heat loss is significantly reduced, and the high temperature waste heat is effectively used to provide the heat source of the peripheral components (BOP) of the fuel cell of the system.
〈模拟实验例〉<Simulation example>
模拟一个高度为40cm、半径为10cm的圆柱空间,并且模拟一个如图2的启动燃烧器,其高度为35cm、底部圆柱高5cm、直径为4cm、圆锥角度为10度。Simulate a cylindrical space with a height of 40cm and a radius of 10cm, and simulate a start-up burner as shown in Figure 2, with a height of 35cm, a bottom cylinder of 5cm, a diameter of 4cm, and a cone angle of 10 degrees.
〈模拟比较例〉<Simulation comparison example>
模拟如模拟实验例的圆柱空间,并且模拟一个圆柱型的启动燃烧器,其高度为35cm、半径为5cm。A cylindrical space was simulated as in the simulated experimental example, and a cylindrical start-up burner with a height of 35 cm and a radius of 5 cm was simulated.
将启动燃烧器与重整器间的热流场域简化为上述模拟的圆柱空间,热能通过外壁面与重整器进行热交换。热传优化评估指标:提高场域的平均温度。The heat flow field between the start-up burner and the reformer is simplified to the cylindrical space of the above simulation, and the heat energy is exchanged with the reformer through the outer wall. Heat Transfer Optimization Evaluation Metrics: Increase the average temperature of the field.
结果模拟实验例得到圆锥状结构的启动燃烧器比模拟比较例的圆柱型结构还提高6.05%的场域的平均温度,且努塞尔数(Nusselt number)提高7.83%,具有优异的热传效果。Results Compared with the cylindrical structure of the simulated comparative example, the start-up burner with the conical structure of the simulated experimental example can increase the average temperature of the field by 6.05%, and the Nusselt number (Nusselt number) is increased by 7.83%, which has an excellent heat transfer effect. .
综上所述,本发明整合重整器、启动燃烧器、后燃器与热交换器于同一腔体内,此结构设计具有启动燃烧器以及后燃器,所以可使腔体内部温度分布均匀,并可通过分开的空气输入管控制空燃比,以调整设备内的温度。而且本发明无需使用高耗能的组件与装置,即可达到降低热损失、有效利用高温余热与实时控温等功效,因此能达到系统简化、安全、稳定与高效率的目的。To sum up, the present invention integrates the reformer, the start-up burner, the afterburner and the heat exchanger in the same cavity, and this structural design has the start-up burner and the afterburner, so that the temperature distribution inside the cavity can be uniform, The air-fuel ratio can be controlled through a separate air input pipe to adjust the temperature in the equipment. Moreover, the present invention can achieve the effects of reducing heat loss, effectively utilizing high-temperature waste heat, and real-time temperature control without using high-energy-consuming components and devices, thereby achieving the goals of system simplification, safety, stability and high efficiency.
虽然本发明已以实施例公开如上,但具体实施例并不用于限定本发明,任何本技术领域中技术人员,在不脱离本发明的构思和范围内,可作一些改进和完善,故本发明的保护范围以权利要求书为准。Although the present invention has been disclosed as above with embodiments, the specific embodiments are not intended to limit the present invention. Any person skilled in the art can make some improvements and perfections without departing from the concept and scope of the present invention. Therefore, the present invention The scope of protection is subject to the claims.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106140049A TWI658639B (en) | 2017-11-20 | 2017-11-20 | Modular apparatus of fuel cell system |
TW106140049 | 2017-11-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109818008A CN109818008A (en) | 2019-05-28 |
CN109818008B true CN109818008B (en) | 2020-11-24 |
Family
ID=66601382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711248714.4A Active CN109818008B (en) | 2017-11-20 | 2017-12-01 | Modular equipment for fuel cell systems |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109818008B (en) |
TW (1) | TWI658639B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114151791B (en) * | 2020-09-08 | 2023-11-03 | 国家能源投资集团有限责任公司 | Power generation system and start-stop combustion device thereof |
TWI759922B (en) | 2020-10-23 | 2022-04-01 | 財團法人工業技術研究院 | Burning nozzle with burning-reforming function |
CN118572147B (en) * | 2024-07-29 | 2025-03-28 | 武汉船用电力推进装置研究所(中国船舶集团有限公司第七一二研究所) | Fuel cell reforming system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1310488A (en) * | 2000-01-25 | 2001-08-29 | 苏舍赫克希斯公司 | Fuel cell of liquid fuel |
CN1430303A (en) * | 2001-12-25 | 2003-07-16 | 松下电器产业株式会社 | Hydrogen generating device and fuel cell system containing it |
CN1791663A (en) * | 2003-04-04 | 2006-06-21 | 德士古发展公司 | Method and apparatus for rapid heating of fuel reforming reactants |
JP3839598B2 (en) * | 1998-10-29 | 2006-11-01 | 東京瓦斯株式会社 | Hydrogen production equipment |
JP2009078954A (en) * | 2007-09-27 | 2009-04-16 | Fuji Electric Holdings Co Ltd | Reforming apparatus |
CN102110832A (en) * | 2009-12-24 | 2011-06-29 | 三星Sdi株式会社 | Reformer with high durability |
CN102822086A (en) * | 2010-03-30 | 2012-12-12 | 吉坤日矿日石能源株式会社 | Hydrogen production apparatus and fuel cell system |
-
2017
- 2017-11-20 TW TW106140049A patent/TWI658639B/en active
- 2017-12-01 CN CN201711248714.4A patent/CN109818008B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3839598B2 (en) * | 1998-10-29 | 2006-11-01 | 東京瓦斯株式会社 | Hydrogen production equipment |
CN1310488A (en) * | 2000-01-25 | 2001-08-29 | 苏舍赫克希斯公司 | Fuel cell of liquid fuel |
CN1430303A (en) * | 2001-12-25 | 2003-07-16 | 松下电器产业株式会社 | Hydrogen generating device and fuel cell system containing it |
CN1791663A (en) * | 2003-04-04 | 2006-06-21 | 德士古发展公司 | Method and apparatus for rapid heating of fuel reforming reactants |
JP2009078954A (en) * | 2007-09-27 | 2009-04-16 | Fuji Electric Holdings Co Ltd | Reforming apparatus |
CN102110832A (en) * | 2009-12-24 | 2011-06-29 | 三星Sdi株式会社 | Reformer with high durability |
CN102822086A (en) * | 2010-03-30 | 2012-12-12 | 吉坤日矿日石能源株式会社 | Hydrogen production apparatus and fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
CN109818008A (en) | 2019-05-28 |
TW201924123A (en) | 2019-06-16 |
TWI658639B (en) | 2019-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5767650B2 (en) | Heat exchanger for high temperature fuel cells | |
CN104124462A (en) | Solid oxide fuel cell system for recycling of electric pile anode tail gas | |
CN109818008B (en) | Modular equipment for fuel cell systems | |
JP6280431B2 (en) | Fuel cell module | |
JP2017105695A (en) | Hydrogen generator and fuel cell system | |
US10651487B2 (en) | Modular apparatus of fuel cell system | |
CN206340608U (en) | A methanol-water reforming generator for hydrogen production | |
CN104112867B (en) | The reforming reaction device of a kind of SOFC system burning capacity cascade utilization and electricity generation system | |
US10593975B2 (en) | Catalytic burner arrangement | |
US20120167464A1 (en) | Plasma-assisted catalytic reforming apparatus and method | |
CN111649328A (en) | A kind of natural gas heating furnace system and method applied to molten carbonate fuel cell | |
JP2015022926A (en) | Fuel cell module | |
TWI626784B (en) | Gas fuel reformer and the integrated system for power generation | |
JP2017027937A (en) | Fuel cell module | |
CN102723514B (en) | Solid oxide fuel cells power generating system and methane vapor reforming unit thereof | |
JP7255161B2 (en) | FUEL CELL SYSTEM AND METHOD OF OPERATION OF FUEL CELL SYSTEM | |
CN113540503A (en) | A tubular SOFC self-heating system and working method | |
JPH07106881B2 (en) | Fuel cell reformer device | |
CN113108278B (en) | Burner, natural gas reformer and SOFC power generation system | |
US20030061764A1 (en) | Method and apparatus for steam reforming of hydrocarbons | |
KR101576713B1 (en) | Pre-mixed combustion burner for fuel cell | |
JP6175010B2 (en) | Fuel cell module | |
JPH11111321A (en) | Partial combustion reformer and high pressure fuel cell equipment equipped with the same | |
US20120141893A1 (en) | Stepped steam reformer | |
JP2017183250A (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |