[go: up one dir, main page]

CN109804479B - Hot carrier solar cell and method of forming the same - Google Patents

Hot carrier solar cell and method of forming the same Download PDF

Info

Publication number
CN109804479B
CN109804479B CN201780037453.3A CN201780037453A CN109804479B CN 109804479 B CN109804479 B CN 109804479B CN 201780037453 A CN201780037453 A CN 201780037453A CN 109804479 B CN109804479 B CN 109804479B
Authority
CN
China
Prior art keywords
hot
carrier
energy
nanocrystals
ncs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780037453.3A
Other languages
Chinese (zh)
Other versions
CN109804479A (en
Inventor
岑子健
李明杰
苏博高塔姆·玛瑟卡
N·马修斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanyang Technological University
Original Assignee
Nanyang Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanyang Technological University filed Critical Nanyang Technological University
Publication of CN109804479A publication Critical patent/CN109804479A/en
Application granted granted Critical
Publication of CN109804479B publication Critical patent/CN109804479B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

Various embodiments may provide a hot carrier solar cell. The solar cell may include a nanocrystal layer including or comprising one or more nanocrystals, each of the one or more nanocrystals including a halide perovskite material. The hot carrier solar cell may further include a first electrode in contact with the first side of the nanocrystal layer. The hot carrier solar cell may further include a second electrode in contact with a second side of the nanocrystal layer, wherein the second side is opposite the first side. The nanocrystal layer may have a thickness of less than 100 nm.

Description

热载流子太阳能电池及其形成方法Hot carrier solar cell and method of forming same

相关申请related application

本申请要求2016年7月27日提交的新加坡专利申请No.10201606182S的优先权,其内容通过引用整体并入本文。This application claims priority from Singapore Patent Application No. 10201606182S filed on 27 July 2016, the contents of which are hereby incorporated by reference in their entirety.

技术领域technical field

本公开的各个方面涉及热载流子太阳能电池。本公开的各个方面涉及热载流子太阳能电池的形成方法。Various aspects of the present disclosure relate to hot carrier solar cells. Various aspects of the disclosure relate to methods of forming hot carrier solar cells.

背景技术Background technique

当前所有太阳能电池普遍存在的一个特征是太阳光子(从紫外到红外波长)具有比半导体带隙更大的能量,可以产生具有超出带隙的过剩能量的自由载流子或激子;这些载流子或激子温度高于材料晶格温度,被称为“热载流子”或“热激子”。这种过剩的载流子能量是动力学自由能并且通过电子-声子散射将过剩的动能转换成热量快速地(在亚皮秒时间尺度内)损失。1961年,Shockley和Queisser(SQ)基于辐射复合是唯一的其他自由能量损失机制以及完全热载流子冷却的假设,计算了太阳能电池中太阳辐照度转换为电自由能的最大可能热力学效率。该计算得出理论最大热力学效率为31-33%,最佳带隙在约1.1eV和1.4eV之间。A feature common to all current solar cells is that solar photons (from ultraviolet to infrared wavelengths) have energies greater than the semiconductor bandgap and can generate free carriers or excitons with excess energy beyond the bandgap; these current carriers Carriers or excitons with a temperature higher than the material lattice temperature are called "hot carriers" or "hot excitons". This excess carrier energy is kinetic free energy and is rapidly (on sub-picosecond timescales) lost by converting the excess kinetic energy into heat through electron-phonon scattering. In 1961, Shockley and Queisser (SQ) calculated the maximum possible thermodynamic efficiency for conversion of solar irradiance to electrical free energy in solar cells based on the assumption that radiative recombination was the only other free energy loss mechanism and complete hot-carrier cooling. This calculation yields a theoretical maximum thermodynamic efficiency of 31–33%, with an optimal bandgap between about 1.1 eV and 1.4 eV.

1982年的热力学计算首先表明,如果在冷却到晶格温度之前利用热光生载流子的过剩能量,则转换效率可以达到66%,从而超过SQ限制并提高太阳能电池效率。一种方法是在载流子冷却之前将热载流子传输到具有适当功函数的载流子收集触点。这些电池被称为热载流子太阳能电池。因此,研究界正在不断寻找具有慢速热载流子冷却特性的合适的太阳能电池吸收材料。Thermodynamic calculations in 1982 first showed that if the excess energy of thermally photogenerated carriers is harnessed before cooling to the lattice temperature, the conversion efficiency can reach 66%, thereby surpassing the SQ limit and improving solar cell efficiency. One approach is to transport the hot carriers to a carrier-collecting contact with an appropriate work function before the carriers cool down. These cells are known as hot carrier solar cells. Therefore, the research community is continuously searching for suitable solar cell absorber materials with slow hot-carrier cooling properties.

在纳米技术的早期发展期间,最初认为通过声子瓶颈效应半导体纳米晶体(NC)中的量子限制可以减慢热载流子冷却过程。然而,进一步的研究显示,由于替代的快速弛豫路线可能超过声子瓶颈,因此在量子限制系统中实现慢速热载流子冷却仍然具有挑战性。因此,非常希望开发具有慢速热载流子冷却性能的新型材料。During the early development of nanotechnology, it was initially thought that quantum confinement in semiconductor nanocrystals (NCs) could slow down the hot-carrier cooling process through the phonon bottleneck effect. However, further investigations revealed that slow hot-carrier cooling in quantum-confined systems remains challenging due to alternative fast relaxation routes that may exceed the phonon bottleneck. Therefore, it is highly desirable to develop new materials with slow hot-carrier cooling properties.

发明内容Contents of the invention

各种实施例可以提供热载流子太阳能电池。该太阳能电池可以包括纳米晶体层,所述纳米晶体层包括或包含一种或多种纳米晶体,所述一种或多种纳米晶体中的每一种包括卤化物钙钛矿材料。该热载流子太阳能电池还可以包括与纳米晶体层的第一侧接触的第一电极。该热载流子太阳能电池还可以包括与纳米晶体层的第二侧接触的第二电极,其中所述第二侧与所述第一侧相对。纳米晶体层可具有小于100nm的厚度。Various embodiments may provide hot carrier solar cells. The solar cell may include a layer of nanocrystals comprising or comprising one or more nanocrystals, each of the one or more nanocrystals comprising a halide perovskite material. The hot carrier solar cell can also include a first electrode in contact with the first side of the nanocrystal layer. The hot carrier solar cell can also include a second electrode in contact with a second side of the nanocrystal layer, wherein the second side is opposite the first side. The nanocrystalline layer may have a thickness of less than 100 nm.

各种实施例可提供热载流子太阳能电池的形成方法。该方法可以包括提供或形成包括一种或多种纳米晶体(如本文所述)的纳米晶体层,所述一种或多种纳米晶体中的每一种包括卤化物钙钛矿材料。该方法还可以包括形成第一电极,使得第一电极与纳米晶体层的第一侧接触。该方法还可以包括形成第二电极,使得第二电极与纳米晶体层的第二侧接触,其中所述第二侧与所述第一侧相对。纳米晶体层可具有小于100nm的厚度。Various embodiments may provide methods of forming hot carrier solar cells. The method can include providing or forming a nanocrystal layer comprising one or more nanocrystals (as described herein), each of the one or more nanocrystals comprising a halide perovskite material. The method may also include forming the first electrode such that the first electrode is in contact with the first side of the nanocrystal layer. The method can also include forming a second electrode such that the second electrode is in contact with a second side of the nanocrystal layer, wherein the second side is opposite the first side. The nanocrystalline layer may have a thickness of less than 100 nm.

附图说明Description of drawings

结合非限制性实施例和附图并参考详细描述可以更好地理解本发明,其中:The invention may be better understood by reference to the detailed description taken in conjunction with the non-limiting examples and drawings in which:

图1示出了根据各种实施例的纳米晶体的一般图例。Figure 1 shows a general illustration of nanocrystals according to various embodiments.

图2示出了根据各种实施例的热载流子太阳能电池的一般图例。Figure 2 shows a general illustration of a hot carrier solar cell according to various embodiments.

图3示出了根据各种实施例的纳米晶体的形成方法的示意图。FIG. 3 shows a schematic diagram of a method of forming nanocrystals according to various embodiments.

图4示出了根据各种实施例的热载流子太阳能电池的形成方法的示意图。FIG. 4 shows a schematic diagram of a method of forming a hot carrier solar cell according to various embodiments.

图5示出了半导体纳米晶体中(a)带内俄歇能量传递,(b)声子瓶颈效应和(c)带间俄歇过程的热载流子冷却的示意图。Figure 5 shows a schematic diagram of (a) intra-band Auger energy transfer, (b) phonon bottleneck effect and (c) hot-carrier cooling of inter-band Auger process in semiconductor nanocrystals.

图6示出了根据各种实施例的具有相对(a)小尺寸,(c)中尺寸和(e)大尺寸的甲基胺溴化铅钙钛矿(MAPbBr3)纳米晶体(NC)的典型透射电子显微镜(TEM)图像,在其右边为相应的尺寸直方图(b,d,f)。尺寸分布可以用高斯分布建模。Figure 6 shows the structure of methylamine lead bromide perovskite (MAPbBr 3 ) nanocrystals (NCs) with relatively (a) small size, (c) medium size and (e) large size, according to various embodiments. Typical transmission electron microscope (TEM) image with corresponding size histograms (b,d,f) on the right. The size distribution can be modeled with a Gaussian distribution.

图7示出了甲基胺溴化铅(MAPbBr3)体块膜的(a)顶视图和(b)侧视图的扫描电子显微镜(SEM)图像。Figure 7 shows scanning electron microscope (SEM) images of (a) top view and (b) side view of a methylamine lead bromide ( MAPbBr3 ) bulk film.

图8示出了(a)光致发光(PL)强度(任意单位或a.u.)对波长(纳米或nm)的曲线图,表示分散在甲苯中的根据各种实施例的甲基胺溴化铅钙钛矿(MAPbBr3)纳米晶体(NC)以及体块膜对应物的光致发光(PL)光谱;(b)吸光度(任意单位或a.u.)对波长(纳米或nm)的曲线图,表示分散在甲苯中的根据各种实施例的甲基胺溴化铅钙钛矿(MAPbBr3)纳米晶体(NC)以及体块膜对应物的紫外-可见(UV-vis)吸收光谱;(c)1s激子能量E1s(电子伏或eV)对纳米晶体平均半径a(纳米或nm)的曲线图,表示根据各种实施例的甲基胺溴化铅钙钛矿(MAPbBr3)的1s激子的能量与半径的关系,以及(d)X射线衍射(XRD)强度(任意单位或a.u.)对角度2θ(以度为单位)的曲线图,表示根据各种实施例的三种不同尺寸的甲基胺溴化铅钙钛矿(MAPbBr3)纳米晶体(NC)的XRD图。Figure 8 shows (a) a graph of photoluminescence (PL) intensity (arbitrary units or au) versus wavelength (nanometers or nm) representing methylamine lead bromide dispersed in toluene according to various embodiments Photoluminescence (PL) spectra of perovskite (MAPbBr 3 ) nanocrystals (NCs) and their bulk film counterparts; (b) plot of absorbance (arbitrary units or au) versus wavelength (nanometers or nm), indicating dispersion Ultraviolet-visible (UV-vis) absorption spectra of methylamine lead bromide perovskite (MAPbBr 3 ) nanocrystals (NCs) and bulk film counterparts according to various examples in toluene; (c) 1s Graph of exciton energy E 1s (electron volts or eV) versus nanocrystal mean radius a (nanometers or nm) representing the 1s excitons of methylamine lead bromide perovskite (MAPbBr 3 ) according to various embodiments and (d) plots of X-ray diffraction (XRD) intensity (arbitrary units or au) versus angle 2θ (in degrees) for three different sizes of formazan according to various embodiments XRD patterns of amine lead bromide perovskite (MAPbBr 3 ) nanocrystals (NC).

图9A示出了在溶液中根据各种实施例的中尺寸甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)(半径~4-5nm)的伪彩色瞬态吸收(TA)图(上图,时间(皮秒或ps)与能量(电子伏或eV)的关系图)和归一化瞬态吸收(TA)光谱(下图,归一化透射率变化ΔT/T对能量(电子伏或eV)的曲线图),其中在低泵浦功率密度下(左图),最初每纳米晶体平均产生的电子-空穴对为<N0>~0.1(每纳米晶体体积的平均载流子密度n0avg~2.6×1017cm-3),在高泵浦功率密度下(右图)<N0>~2.5(n0avg~6.5×1018cm-3)。Figure 9A shows a false-color transient absorption (TA) map of medium-sized methylamine lead bromide perovskite nanocrystals ( MAPbBr3NC ) (radius ~4-5 nm) in solution according to various embodiments ( Upper panel, time (picosecond or ps) vs. energy (electron volts or eV) plot) and normalized transient absorption (TA) spectrum (lower panel, normalized transmittance change ΔT/T vs. energy (electron volts or eV) volts or eV), where at low pump power densities (left graph), the average electron-hole pairs generated per nanocrystal initially are <N 0 >~0.1 (average current-carrying per nanocrystal volume sub-density n 0avg ~2.6×10 17 cm -3 ), at high pump power density (right figure) <N 0 >~2.5 (n 0avg ~6.5×10 18 cm -3 ).

图9B示出了MAPbBr3体块膜的伪彩色表示(上图,时间(皮秒或ps)和归一化瞬态吸收(TA)光谱(下图,归一化透射率变化ΔT/T对能量(电子伏或eV)的曲线图)。在低泵浦功率密度下(左图),最初产生的载流子密度为n0~2.1×1017cm3,在高泵浦功率密度下(右图)n0~1.5×1019cm3Figure 9B shows a false-color representation of the bulk film of MAPbBr 3 (upper panel, time (picosecond or ps) and normalized transient absorption (TA) spectrum (lower panel, normalized transmittance change ΔT/T vs. Energy (electron volts or eV)). At low pump power density (left), the initial carrier density is n 0 ~ 2.1×10 17 cm 3 , and at high pump power density ( Right picture) n 0 ~ 1.5×10 19 cm 3 .

图10示出了时间(皮秒或ps)对能量(电子伏或eV)的曲线图,表示在溶液中根据各种实施例的(a)小尺寸和(b)大尺寸的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)伪彩色瞬态吸收(TA)光谱(以皮秒或ps为单位的时间对以电子伏或eV为单位的能量)。3.1eV光激发后,在低泵浦功率密度下(左图)最初每纳米晶体平均产生的电子-空穴对为<N0>~0.1,在高泵浦功率密度下(右图)<N0>~2.5。Figure 10 shows a graph of time (picoseconds or ps) versus energy (electron volts or eV) representing (a) small and (b) large size methylammonium bromide in solution according to various embodiments Pbbr perovskite nanocrystal (MAPbBr 3 NC) pseudocolor transient absorption (TA) spectra (time in picoseconds or ps versus energy in electron volts or eV). After 3.1eV photoexcitation, the initial average electron-hole pairs per nanocrystal are <N 0 >~0.1 at low pump power density (left figure), and <N at high pump power density (right figure) 0 > ~ 2.5.

图11示出了(a)归一化透射率变化ΔT/T对能量(电子伏或eV)的曲线图,表示在甲苯中根据各种实施例的中尺寸的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)在不同的短延迟时间下的归一化TA光谱,每纳米晶体平均产生的电子-空穴对<N0>~0.1(3.1eV光激发后);以及(b)(a)的未归一化瞬态吸收(TA)光谱。Figure 11 shows (a) a plot of normalized transmittance change ΔT/T versus energy (electron volts or eV) for meso-sized methylamine lead bromide calcium titanium in toluene according to various embodiments Normalized TA spectra of ore nanocrystals (MAPbBr 3 NC) at different short delay times, the average electron-hole pairs <N 0 >~0.1 generated per nanocrystal (after 3.1eV photoexcitation); and (b ) Unnormalized transient absorption (TA) spectrum of (a).

图12示出了载流子温度(开尔文或K)对时间(皮秒或ps)的曲线图,表示在各种泵浦功率密度下,根据各种实施例的中尺寸纳米晶体(NC)和体块膜的热载流子温度Tc的时间演变:初始光激发的热载流子密度n0(体块膜)和每NC平均产生的电子-空穴对<N0>,其中<N0>=Jσ,其中J是泵浦功率密度,σ是吸收截面。Figure 12 shows a graph of carrier temperature (Kelvin or K) versus time (picoseconds or ps), representing meso-sized nanocrystals (NC) and Time evolution of the hot-carrier temperature Tc of the bulk film: hot-carrier density n 0 for initial photoexcitation (bulk film) and electron-hole pairs <N 0 > averagely generated per NC, where <N 0 >=Jσ, where J is the pump power density, and σ is the absorption cross section.

图13示出了(a)光致发光(PL)强度(任意单位或a.u.)对时间(纳秒或ns)的曲线图,表示根据各种实施例的中尺寸甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)在3.1eV光激发下时间分辨光致发光(PL)的泵浦功率密度依赖;(b)瞬态光致发光(PL)强度(任意单位或a.u.)对泵浦强度的曲线图(微焦耳/平方厘米或μJ cm-2),表示根据各种实施例的三种不同尺寸的MAPbBr3NC在测量时间Δt=4ns下归一化PL强度对泵浦功率密度的关系图;以及(c)占据几率(百分比或%)对每个根据各种实施例的NC的电子-空穴(e-h)对的数量的曲线图。Figure 13 shows (a) a graph of photoluminescence (PL) intensity (arbitrary units or au) versus time (nanoseconds or ns) for mesoscale methylamine lead bromide perovskites according to various embodiments Pump power density dependence of time-resolved photoluminescence (PL) of ore nanocrystals (MAPbBr 3 NC) under 3.1eV light excitation; (b) transient photoluminescence (PL) intensity (arbitrary unit or au) on pump Graph of intensity (microjoules/cm2 or μJ cm −2 ) representing normalized PL intensity versus pump power density at measurement time Δt=4 ns for three different sizes of MAPbBr 3 NCs according to various embodiments and (c) a plot of the probability of occupancy (percentage or %) versus the number of electron-hole (eh) pairs per NC according to various embodiments.

图14示出的表格中,比较了根据各种实施例的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)、甲基胺溴化铅钙钛矿体块膜和文献中报道的其他材料的性质。In the table shown in Figure 14, the methylamine lead bromide perovskite nanocrystal (MAPbBr 3 NC) according to various embodiments, the methylamine lead bromide perovskite bulk film and the reported in the literature are compared. properties of other materials.

图15示出了根据各种实施例的三种不同尺寸的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)和体块膜在3.1eV光激发后的载流子温度(开尔文或K)对时间延迟(皮秒或ps)的曲线图,其中(a)在低泵浦功率密度下(相当于NC中<N0>~0.1,体块膜中n0~2.1×1017cm3),(b)在高泵浦功率密度下(相当于NC中<N0>~2.5,体块膜中n0~1.5×1019cm3)。15 shows the carrier temperature ( Kelvin or K) Graphs versus time delay (picoseconds or ps), where (a) at low pump power densities (equivalent to <N 0 > ~ 0.1 in NC, n 0 ~ 2.1×10 17 cm in bulk membranes 3 ), (b) under high pump power density (equivalent to <N 0 >~2.5 in NC, n 0 ~1.5×10 19 cm 3 in bulk membrane).

图16示出了归一化透射率变化ΔT/T对时间(皮秒或ps)的曲线图,表示在溶液中的甲基胺溴化铅(a)体块膜、(b)根据各种实施例的小尺寸纳米晶体(NC)、(c)根据各种实施例的中尺寸纳米晶体(NC)和(d)根据各种实施例的大尺寸纳米晶体(NC)分别在高泵浦功率密度和低泵浦功率密度下,在带边探测的归一化光致漂白动力学;以及(e)在溶液中的根据各种实施例的中尺寸纳米晶体(NC)与根据各种实施例的旋涂纳米晶体(NC)膜的瞬态吸收(TA)动力学比较;以及(f)在溶液中的根据各种实施例的小尺寸甲基胺溴化铅纳米晶体(NC)在带边探测的漂白动力学的泵浦功率密度依赖。Figure 16 shows a graph of normalized transmittance change ΔT/T versus time (picoseconds or ps) for methylamine lead bromide in solution (a) bulk film, (b) according to various Small-sized nanocrystals (NCs) of the embodiments, (c) medium-sized nanocrystals (NCs) according to various embodiments, and (d) large-sized nanocrystals (NCs) according to various embodiments, respectively, at high pump power Density and low pump power density, normalized photobleaching kinetics at band-edge detection; and (e) meso-sized nanocrystals (NC) in solution according to various embodiments and Transient absorption (TA) kinetics comparison of spin-coated nanocrystal (NC) films of Pump power density dependence of probed bleaching kinetics.

图17示出了(a)能量损失率(电子伏每皮秒eV ps-1)对载流子温度(开尔文或K)的曲线图,表示根据各种实施例的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)(其中<N0>~0.1)与甲基胺溴化铅钙钛矿(MAPbBr3)体块膜(其中n0~2.1×1017cm-3)的载流子温度Tc对热载流子的能量损失率的关系图;(b)归一化透射率变化ΔT/T对时间(皮秒或ps)的曲线图,表示根据各种实施例的胶体甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)和体块膜在低载流子密度下,带边探测的归一化漂白动力学;以及(c)上升时间(飞秒或fs)/限制能量(电子伏或eV)的曲线图,表示甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)(黑色实心方块),体块膜(浅色实心方块)(粒径由膜厚度表示)和硒化镉纳米晶体(CdSe NC)(实心圆)中带边漂白的上升时间的尺寸依赖,以及MAPbBr3NCs(空心方块)和CdSe NC(空心圆)中量子限制能量的尺寸依赖。Figure 17 shows (a) a plot of energy loss rate (electron volts per picosecond eV ps -1 ) versus carrier temperature (Kelvin or K) for methylamine lead calcium bromide according to various embodiments Titanium nanocrystal (MAPbBr 3 NC) (where <N 0 >~0.1) and methylamine lead bromide perovskite (MAPbBr 3 ) bulk film (where n 0 ~2.1×10 17 cm -3 ) supported Graph of carrier temperature Tc versus energy loss rate of hot carriers; (b) graph of normalized transmittance change ΔT/T versus time (picoseconds or ps), representing colloidal Normalized bleaching kinetics of band-edge probing of methylamine lead bromide perovskite nanocrystals (MAPbBr 3 NC) and bulk films at low carrier densities; and (c) rise time (femtosecond or fs )/confinement energy (electron volts or eV), representing methylamine lead bromide perovskite nanocrystals (MAPbBr 3 NC) (black solid squares), bulk films (light colored solid squares) (particle sizes given by The size dependence of the rise time of band-edge bleaching in cadmium selenide nanocrystals (CdSe NCs) (closed circles), and the quantum confinement energy in MAPbBr3 NCs (open squares) and CdSe NCs (open circles) rely.

图18示出了拉曼强度(任意单位或a.u.)对波数(每厘米或cm-1)的曲线图,表示根据各种实施例制备的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)在玻璃基板上滴涂的室温拉曼光谱。18 shows a graph of Raman intensity (arbitrary units or au) versus wavenumber (per centimeter or cm −1 ) for methylamine lead bromide perovskite nanocrystals (MAPbBr 3 ) prepared according to various embodiments. NC) Room temperature Raman spectra of drop-coating on glass substrates.

图19示出了(a)归一化透射率变化ΔT/T对时间(皮秒或ps)的曲线图,表示具有不同直径的胶体CdSe NC(在图例中示出)在低泵浦功率密度下带边探测的归一化漂白动力学;以及(b)时间(皮秒或ps)对能量的曲线图(电子伏或eV),表示低泵浦功率密度下最初产生<N0>~0.1(左),高泵浦功率密度下<N0>~2.5(右)。光激发能量为3.1eV。Figure 19 shows (a) a plot of normalized transmittance change ΔT/T versus time (picoseconds or ps) for colloidal CdSe NCs with different diameters (indicated in the legend) at low pump power densities Normalized bleaching kinetics for lower band edge detection; and (b) a plot of time (picoseconds or ps) versus energy (electron volts or eV) showing initial generation of <N 0 >∼0.1 at low pump power densities (left), <N 0 >~2.5 at high pump power density (right). The photoexcitation energy is 3.1 eV.

图20示出了(a)能量损失率(电子伏每皮秒或eV ps-1)对载流子温度(开尔文或K)的曲线图,表示根据各种实施例的甲基胺溴化铅钙钛矿纳米晶体MAPbBr3NC(<N0>~2.5)和MAPbBr3体块膜(n0~1.5×1019cm-3)的能量损失率与载流子温度Tc的关系;(b)寿命(皮秒或ps)对纳米晶体体积(立方纳米或nm3)的曲线图,说明根据各种实施例的钙钛矿纳米晶体(NC)体积与俄歇复合寿命和热载流子冷却时间的关系,和(c)归一化热载流子浓度nhot对时间(皮秒或ps)的曲线图,表示根据各种实施例在不同的泵浦功率密度下归一化的热载流子衰变。20 shows (a) a plot of energy loss rate (electron volts per picosecond or eV ps −1 ) versus carrier temperature (Kelvin or K) for methylamine lead bromide according to various embodiments. The relationship between energy loss rate and carrier temperature T c of perovskite nanocrystal MAPbBr 3 NC (<N 0 >~2.5) and MAPbBr 3 bulk film (n 0 ~1.5×10 19 cm -3 ); (b ) lifetime (picosecond or ps) versus nanocrystal volume (cubic nanometer or nm 3 ), illustrating perovskite nanocrystal (NC) volume versus Auger recombination lifetime and hot carrier cooling according to various embodiments Dependence of time, and (c) a plot of normalized hot carrier concentration nhot versus time (picoseconds or ps), showing the normalized heat load at different pump power densities according to various embodiments Flow decay.

图21是能量损失率(电子伏每皮秒或eV ps-1)对载流子温度(开尔文或K)的曲线图,表示甲基胺溴化铅(MAPbBr3)体块膜在低载流子密度和高载流子密度下的热载流子能量损失率与载流子温度Tc的关系。Figure 21 is a graph of energy loss rate (electron volts per picosecond or eV ps -1 ) versus carrier temperature (Kelvin or K) showing a bulk film of methylamine lead bromide (MAPbBr 3 ) at low current-carrying Carrier density and hot carrier energy loss rate at high carrier density as a function of carrier temperature Tc .

图22示出了光电子强度(每秒计数或cts/s)对能量(电子伏特或eV)的曲线图,表示在氧化铟锡(ITO)基板上的(a)1,2-乙二硫醇(EDT)处理的和(b)经后退火的EDT处理的根据各种实施例的甲基胺溴化铅(MAPbBr3)纳米晶体(NC)膜,以及(c)7-二苯基-1,10-菲咯啉(Bphen)膜的紫外光电子能谱(UPS)。Figure 22 shows a graph of photoelectron intensity (counts per second or cts/s) versus energy (electron volts or eV) representing (a) 1,2-ethanedithiol on an indium tin oxide (ITO) substrate (EDT) treated and (b) post-annealed EDT treated methylamine lead bromide (MAPbBr 3 ) nanocrystalline (NC) films according to various embodiments, and (c) 7-diphenyl-1 , Ultraviolet photoelectron spectroscopy (UPS) of 10-phenanthroline (Bphen) film.

图23A是平带能量图(垂直轴电子伏特或eV),以说明从根据各种实施例的钙钛矿纳米晶体到7-二苯基-1,10-菲咯啉(Bphen)的热电子提取与竞争的热电子冷却途径。23A is a flat-band energy diagram (vertical axis electron volts or eV) to illustrate thermal electron transfer from perovskite nanocrystals to 7-diphenyl-1,10-phenanthroline (Bphen) according to various embodiments Extraction and competition of thermionic cooling pathways.

图23B示出了根据各种实施例的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)膜的原子力显微镜(AFM)图像。Figure 23B shows an atomic force microscope (AFM) image of a 1,2-ethanedithiol (EDT)-treated nanocrystalline (NC) film according to various embodiments.

图23C是根据各种实施例的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)/7-二苯基-1,10-菲咯啉(Bphen)双层膜的扫描电子显微镜(SEM)图像。23C is a scanning electron scan of a 1,2-ethanedithiol (EDT)-treated nanocrystal (NC)/7-diphenyl-1,10-phenanthroline (Bphen) bilayer film according to various embodiments Microscope (SEM) images.

图23D是归一化透射率变化ΔT/T对能量(电子伏特或eV)的曲线图,表示根据各种实施例具有(连续线)/不具有(虚线)7-二苯基-1,10-菲咯啉(Bphen)的约35nm厚的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)膜在3.1eV光致激发之后(<N0>约0.1)的归一化瞬态吸收(TA)光谱。FIG. 23D is a graph of normalized transmittance change ΔT/T versus energy (electron volts or eV) with (continuous line)/without (dashed line) 7-diphenyl-1,10 according to various embodiments. -Normalization of about 35 nm thick 1,2-ethanedithiol (EDT)-treated nanocrystalline (NC) films of phenanthroline (Bphen) after 3.1 eV photoexcitation (<N 0 >about 0.1) Transient Absorption (TA) Spectroscopy.

图23E是根据各种实施例的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)膜和1,2-乙二硫醇(EDT)处理的纳米晶体(NC)膜/7-二苯基-1,10-菲咯啉(Bphen)双层膜在不同的泵浦功率密度下热载流子温度(开尔文或K)对延迟时间(皮秒或ps)的曲线图。23E is 1,2-ethanedithiol (EDT)-treated nanocrystal (NC) film and 1,2-ethanedithiol (EDT)-treated nanocrystal (NC) film/7 according to various embodiments - Plot of hot carrier temperature (Kelvin or K) versus delay time (picoseconds or ps) for biphenyl-1,10-phenanthroline (Bphen) bilayer films at different pump power densities.

图23F是提取效率ηhot(百分比或%)对热电子过剩能量(电子伏特或eV)的曲线图,表示根据各种实施例约35nm厚的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)/7-二苯基-1,10-菲咯啉(Bphen)双层膜中热电子提取效率的泵浦能量依赖。23F is a graph of extraction efficiency η hot (percentage or %) versus hot electron excess energy (electron volts or eV), showing the efficiency of about 35 nm thick 1,2-ethanedithiol (EDT) treatment according to various embodiments. Pump energy dependence of hot electron extraction efficiency in nanocrystalline (NC)/7-diphenyl-1,10-phenanthroline (Bphen) bilayers.

图23G是提取效率ηhot(百分比或%)对厚度(纳米或nm)的曲线图,表示根据各种实施例的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)/7-二苯基-1,10-菲咯啉(Bphen)双层膜和体块膜/7-二苯基-1,10-菲咯啉(Bphen)双层膜经3.1eV泵浦能量激发后热电子提取效率的钙钛矿膜厚度依赖。Figure 23G is a graph of extraction efficiency η hot (percentage or %) versus thickness (nanometers or nm) representing 1,2-ethanedithiol (EDT)-treated nanocrystals (NC)/7 according to various embodiments -Diphenyl-1,10-phenanthroline (Bphen) bilayer film and bulk film/7-diphenyl-1,10-phenanthroline (Bphen) bilayer film excited by 3.1eV pump energy Perovskite film thickness dependence of hot electron extraction efficiency.

图24(a)示出了透射率(任意单位或a.u.)对波数(每厘米或cm-1)的曲线图,表示根据各种实施例所制备的甲基胺溴化铅纳米晶体(MAPbBr3NCs)、1,2-乙二硫醇(EDT)处理的纳米晶体(EDT-NC)和70℃退火的1,2-乙二硫醇纳米晶体(Ann-EDT-NC)的衰减全反射-傅里叶变换红外(ATR-FTIR)光谱;以及光发射强度(任意单位或a.u.)对结合能(电子伏特或eV)的曲线图,表示根据各种实施例(b)未退火和(c)70℃后退火的1,2-乙二硫醇(EDT)处理的纳米晶体(EDT-NC)膜的硫(S)2p X射线光电子能谱(XPS)。Figure 24(a) shows a graph of transmittance (arbitrary units or au) versus wavenumber (per centimeter or cm -1 ) for methylamine lead bromide nanocrystals (MAPbBr 3 NCs), 1,2-ethanedithiol (EDT)-treated nanocrystals (EDT-NC) and 70°C annealed 1,2-ethanedithiol nanocrystals (Ann-EDT-NC) attenuated total reflection- Fourier transform infrared (ATR-FTIR) spectra; and plots of light emission intensity (arbitrary units or au) versus binding energy (electron volts or eV) representing (b) unannealed and (c) according to various embodiments Sulfur (S)2p X-ray photoelectron spectroscopy (XPS) of 1,2-ethanedithiol (EDT)-treated nanocrystal (EDT-NC) films annealed at 70 °C.

图25示出了(a)根据各种实施例的未处理的中尺寸甲基胺溴化铅纳米晶体(MAPbBr3NC)膜的原子力显微镜(AFM)图像,和(b)根据各种实施例的1,2-乙二硫醇处理的甲基胺溴化铅纳米晶体(EDT处理的MAPbBr3NC)代表性透射电子显微镜(TEM)图像。Figure 25 shows (a) atomic force microscopy (AFM) images of untreated medium-sized methylamine lead bromide nanocrystal (MAPbBr 3 NC) films according to various embodiments, and (b) Representative transmission electron microscope (TEM) image of 1,2-ethanedithiol-treated methylamine lead bromide nanocrystals (EDT-treated MAPbBr 3 NC).

图26示出了(a)根据各种实施例的中尺寸甲基胺溴化铅纳米晶体(MAPbBr3NC)膜,(b)根据各种实施例的1,2-乙二硫醇处理的纳米晶体(EDT处理的NC)膜,和(c)根据各种实施例的1,2-乙二硫醇处理的纳米晶体膜/7-二苯基-1,10-菲咯啉(EDT处理的NC膜/Bphen)双层膜在低泵浦功率密度下(左图,<N0>~0.1)和高泵浦功率密度下(右图,<N0>~2.5)的伪彩色瞬态吸收(TA)光谱。Figure 26 shows (a) medium-sized methylamine lead bromide nanocrystal (MAPbBr 3 NC) film according to various embodiments, (b) 1,2-ethanedithiol-treated Nanocrystalline (EDT-treated NC) films, and (c) 1,2-ethanedithiol-treated nanocrystalline films/7-diphenyl-1,10-phenanthroline (EDT-treated False-color transients of NC film/Bphen) bilayer film at low pump power density (left picture, <N 0 >~0.1) and high pump power density (right picture, <N 0 >~2.5) Absorption (TA) Spectrum.

图27示出了能量图(y轴:以电子伏特或eV为单位的能量),表示由紫外光电子能谱(UPS)和紫外-可见(UV-VIS)光谱测量确定的根据各种实施例非退火、退火的1,2-乙二硫醇-纳米晶体(EDT-NC)膜和7-二苯基-1,10-菲咯啉(Bphen)的平带能级对准,针对热电子提取的情况进行说明。Figure 27 shows an energy graph (y-axis: energy in electron volts or eV) representing the non-volatile energy in accordance with various embodiments determined from ultraviolet photoelectron spectroscopy (UPS) and ultraviolet-visible (UV-VIS) spectroscopy measurements. Flat-band level alignment of annealed, annealed 1,2-ethanedithiol-nanocrystal (EDT-NC) films and 7-diphenyl-1,10-phenanthroline (Bphen) for hot electron extraction The situation is described.

图28(a)示出了吸光度(任意单位或a.u)对波长(纳米或nm)的曲线图,表示在玻璃上的Bphen膜的线性吸收光谱;(b)归一化负透射率变化——ΔT/T对波长(纳米或nm)的曲线图,表示7-二苯基-1,10-菲咯啉(Bphen)(300nm泵浦强度为20μJ cm-2;400nm泵浦强度为40μJ cm-2)、根据各种实施例的钙钛矿纳米晶体(NC)(400nm泵浦强度为15μJ cm-2)和根据各种实施例的1,2-乙二硫醇纳米晶体/7-二苯基-1,10-菲咯啉(EDT-NC/Bphen)(400nm泵浦强度为15μJ cm-2)在激发后2ps的负瞬态吸收光谱;(c)时间(皮秒或ps)对波长(纳米或nm)的曲线图,表示根据各种实施例的1,2-乙二硫醇处理的纳米晶体/7-二苯基-1,10-菲咯啉(EDT-NC/Bphen)双层膜用泵浦强度为15μJ cm-2的400nm光激发的伪彩色瞬态吸收(TA)光谱;(d)归一化负透射率变化——ΔT/T对时间(皮秒或ps)的曲线图,用300nm光激发的Bphen,和根据各种实施例的1,2-乙二硫醇处理的纳米晶体/7-二苯基-1,10-菲咯啉(EDT-NC/Bphen)双层膜用400nm光泵浦,在1300nm下探测的归一化负瞬态吸收光谱。Figure 28(a) shows a graph of absorbance (arbitrary unit or au) versus wavelength (nanometer or nm) representing the linear absorption spectrum of a Bphen film on glass; (b) normalized negative transmittance change— A graph of ΔT/T versus wavelength (nanometer or nm) for 7-diphenyl-1,10-phenanthroline (Bphen) (300nm pump intensity is 20μJ cm -2 ; 400nm pump intensity is 40μJ cm - 2 ), perovskite nanocrystals (NC) (400nm pump intensity of 15 μJ cm −2 ) according to various embodiments and 1,2-ethanedithiol nanocrystals/7-diphenyl Negative transient absorption spectrum of 1,10-phenanthroline (EDT-NC/Bphen) (400nm pump intensity 15μJ cm -2 ) at 2ps after excitation; (c) time (picosecond or ps) versus wavelength (nano or nm) graph representing 1,2-ethanedithiol-treated nanocrystals/7-diphenyl-1,10-phenanthroline (EDT-NC/Bphen) bis Pseudocolor transient absorption (TA) spectra of the layer film excited by 400nm light with a pump intensity of 15μJ cm -2 ; (d) Normalized negative transmittance change——ΔT/T versus time (picosecond or ps) Graph, Bphen excited with 300 nm light, and 1,2-ethanedithiol-treated nanocrystals/7-diphenyl-1,10-phenanthroline (EDT-NC/Bphen) according to various examples Normalized negative transient absorption spectrum of a bilayer film pumped with 400 nm light and probed at 1300 nm.

图29是归一化透射率变化ΔT/T对时间(皮秒或ps)的曲线图,表示根据各种实施例的1,2-乙二硫醇处理的纳米晶体(EDT-NC)膜和根据各种实施例的1,2-乙二硫醇处理的纳米晶体/7-二苯基-1,10-菲咯啉(EDT-NC/Bphen)双层膜在(a)低泵浦功率密度下(<N0>~0.1)和(b)高泵浦功率密度下(<N0>~2.5)3.1eV光激发的归一化带边漂白动力学。29 is a graph of normalized transmittance change ΔT/T versus time (picoseconds or ps) for 1,2-ethanedithiol-treated nanocrystal (EDT-NC) films and 1,2-ethanedithiol-treated nanocrystal/7-diphenyl-1,10-phenanthroline (EDT-NC/Bphen) bilayers according to various embodiments at (a) low pump power Normalized band-edge bleaching kinetics for 3.1 eV photoexcitation at density (<N 0 >~0.1) and (b) high pump power density (<N 0 >~2.5).

图30A是归一化透射率变化ΔT/T对能量(电子伏特或eV)的曲线图,表示根据各种实施例退火的具有(连续线)和不具有(虚线)7-二苯基-1,10-菲咯啉(Bphen)提取层的1,2-乙二硫醇处理(EDT处理)中尺寸甲基胺溴化铅纳米晶体(MAPbBr3NC)膜在低泵浦功率密度下<N0>~0.1的归一化瞬态吸收光谱。30A is a graph of normalized transmittance change ΔT/T versus energy (electron volts or eV) showing 7-diphenyl-1 with (continuous line) and without (dashed line) annealed according to various embodiments. , 1,2-ethanedithiol-treated (EDT-treated) medium-sized methylamine lead bromide nanocrystal (MAPbBr 3 NC) films of 10-phenanthroline (Bphen)-extracted layer at low pump power densities <N 0 > ~ 0.1 normalized transient absorption spectrum.

图30B是载流子温度(开尔文或K)对时间(皮秒或ps)的曲线图,表示根据各种实施例的两个样本的提取热载流子温度对延迟时间的关系。30B is a graph of carrier temperature (Kelvin or K) versus time (picoseconds or ps) showing extracted hot carrier temperature versus delay time for two samples according to various embodiments.

图30C是归一化透射率变化ΔT/T对能量(电子伏特或eV)的曲线图,表示具有(连续线)和不具有(虚线)7-二苯基-1,10-菲咯啉(Bphen)提取层的甲基胺溴化铅(MAPbBr3)体块膜(~240nm厚)在低泵浦功率密度下2×1017cm-3的归一化瞬态吸收(TA)光谱。Figure 30C is a graph of normalized transmittance change ΔT/T versus energy (electron volts or eV) with (continuous line) and without (dashed line) 7-diphenyl-1,10-phenanthroline ( Normalized transient absorption (TA) spectrum of 2×10 17 cm -3 bulk film (~240nm thick) of methylamine lead bromide (MAPbBr 3 ) bulk film (~240nm thick) in Bphen) extraction layer at low pump power density.

图30D示出了根据各种实施例的两个样本的载流子温度(开尔文或K)对时间延迟(皮秒或ps)的曲线图。Figure 30D shows a graph of carrier temperature (Kelvin or K) versus time delay (picoseconds or ps) for two samples according to various embodiments.

图31示出了根据各种实施例的具有不同厚度的1,2-乙二硫醇处理的纳米晶体(EDT-NC膜)的横截面扫描电子显微镜(SEM)图像。31 shows cross-sectional scanning electron microscope (SEM) images of 1,2-ethanedithiol-treated nanocrystals (EDT-NC films) with different thicknesses, according to various embodiments.

具体实施方式Detailed ways

附图通过图示的方式示出了可以实践本发明的具体细节和实施例。下文通过参考附图,对这些实施例进行了详细描述,足以使本领域技术人员能够实施本发明。可以采用其他实施例,并且可以在不脱离本发明的范围的情况下进行结构、逻辑和电气改变。各种实施例不一定是相互排斥的,因为一些实施例可以与一个或多个其他实施例组合以形成新的实施例。The drawings show, by way of illustration, specific details and embodiments in which the invention may be practiced. The embodiments are described in detail below, by referring to the accompanying drawings, enough to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The various embodiments are not necessarily mutually exclusive, as some embodiments can be combined with one or more other embodiments to form new embodiments.

在一种方法或纳米晶体/太阳能电池/装置的背景下描述的实施例对于其他方法或纳米晶体/太阳能电池/装置类似地有效。类似地,在方法的背景下描述的实施例对纳米晶体/太阳能电池/装置类似地有效,反之亦然。Embodiments described in the context of one method or nanocrystal/solar cell/device are similarly valid for other methods or nanocrystals/solar cells/devices. Similarly, embodiments described in the context of a method are similarly valid for nanocrystals/solar cells/devices, and vice versa.

在实施例的背景下描述的特征可以相应地适用于其他实施例中的相同或相似的特征。即使未在这些其他实施例中明确描述,在实施例的背景下描述的特征也可以相应地适用于其他实施例。此外,如针对实施例的背景下的特征所描述的添加和/或组合和/或替代可以相应地适用于其他实施例中的相同或相似的特征。Features described in the context of an embodiment may correspondingly apply to the same or similar features in other embodiments. Even if not explicitly described in these other embodiments, features described in the context of an embodiment may apply to other embodiments accordingly. Furthermore, additions and/or combinations and/or substitutions as described for features in the context of an embodiment may correspondingly apply to identical or similar features in other embodiments.

关于在侧面或表面“上”形成的沉积材料使用的“上”一词可以在本文中用于表示沉积材料可以“直接地”形成,例如直接接触,在隐含的侧面或表面上。关于在侧面或表面“上”形成的沉积材料使用的“上”一词也可以在本文中用于表示沉积材料可以“间接地”形成在隐含的侧面或表面上,其中在隐含的侧面或表面与沉积材料之间布置一个或多个附加层。换句话说,在第二层“上”的第一层可以指第一层直接在第二层上,或者第一层和第二层由一个或多个中间层隔开。The term "on" as used with reference to deposited material formed "on" a side or surface may be used herein to indicate that the deposited material may be formed "directly", eg, in direct contact, on the implied side or surface. The term "on" as used with reference to deposited material formed "on" a side or surface may also be used herein to indicate that deposited material may be formed "indirectly" on an implied side or surface, where on the implied side Or one or more additional layers are arranged between the surface and the deposition material. In other words, a first layer "on" a second layer can mean that the first layer is directly on the second layer, or that the first and second layers are separated by one or more intervening layers.

在各种实施例的上下文中,关于特征或元件使用的冠词“一”,“一个”和“该”包括对一个或多个特征或元件的引用。The articles "a", "an" and "the" used with reference to a feature or element in the context of various embodiments include reference to one or more features or elements.

在各种实施例的上下文中,应用于数值的术语“约”或“近似”包括精确值和合理方差。In the context of the various embodiments, the term "about" or "approximately" as applied to a numerical value includes the exact value and a reasonable variance.

如本文所使用的,术语“和/或”包括一个或多个相关所列项目的任何和所有组合。As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

自2013年以来,有机-无机卤化铅钙钛矿半导体(例如MAPbX3,MA=CH3NH3,X=I、Br或Cl)已成为用于高性能和低成本太阳能电池的最有前景的材料家族之一。溶液处理的钙钛矿多晶薄膜已被用作太阳能电池器件中的光吸收层。目前据记载,在以MAPbX3作为吸收体的基于钙钛矿的太阳能电池的实验室中的效率可以是~20%。最近,对MAPbI3薄膜中慢速热载流子冷却和热声子瓶颈效应的观察表明,卤化铅钙钛矿可能是构建热载流子太阳能电池的极具前景的材料。Since 2013, organic-inorganic lead halide perovskite semiconductors (such as MAPbX 3 , MA=CH 3 NH 3 , X=I, Br, or Cl) have emerged as the most promising candidates for high-performance and low-cost solar cells. One of the material family. Solution-processed perovskite polycrystalline films have been used as light-absorbing layers in solar cell devices. It is currently documented that the efficiency in the laboratory of perovskite-based solar cells with MAPbX3 as absorber can be ~20%. Recently, observations of slow hot-carrier cooling and thermal phonon bottleneck effects in MAPbI thin films suggest that lead halide perovskites may be promising materials for constructing hot-carrier solar cells.

图1示出了根据各种实施例的纳米晶体100的一般图例。纳米晶体100可包括卤化物钙钛矿材料。Figure 1 shows a general illustration of a nanocrystal 100 according to various embodiments. Nanocrystal 100 may include a halide perovskite material.

纳米晶体的直径可以选自1nm至100nm的范围,例如4nm至14nm,或4nm至13nm。The diameter of the nanocrystals may be selected from the range of 1 nm to 100 nm, eg 4 nm to 14 nm, or 4 nm to 13 nm.

纳米晶体的半径可以是选自从0.5nm至50nm(例如从2nm至7nm)的任何一个值。The radius of the nanocrystals may be any value selected from 0.5 nm to 50 nm (eg, from 2 nm to 7 nm).

在当前上下文中,“从X至Y”或“X至Y的范围”表示该范围除了X和Y之间的所有值之外,还包括X和Y值。In the present context, "from X to Y" or "a range of X to Y" means that the range includes the X and Y values in addition to all values between X and Y.

各种实施例可以通过声子瓶颈效应或带间俄歇过程(也称为俄歇加热)来减缓热载流子冷却过程。各种实施例可以用于太阳能电池中,其可以通过从带隙以上的光子收集过剩能量来克服SQ限制,从而提高效率。Various embodiments may slow down the hot carrier cooling process through phonon bottleneck effects or inter-band Auger processes (also known as Auger heating). Various embodiments can be used in solar cells that can overcome the SQ limitation by harvesting excess energy from photons above the bandgap, thereby increasing efficiency.

先前已经对无机半导体纳米晶体(NC)作为减缓热载流子冷却过程的候选材料进行了研究。然而,这些无机半导体纳米晶体中的热载流子收获受到压倒其的声子瓶颈的高度竞争的弛豫路径(例如,带内俄歇过程、缺陷)的影响。例如,据Kilina等报道,由于俄歇过程和结构缺陷,声子瓶颈对硒化镉(CdSe)量子点的影响仍然难以捉摸(“量子Zeno效应使半导体量子点中的声子瓶颈合理化”,物理评论快报110,180404,第1-6页,2013)。Inorganic semiconductor nanocrystals (NCs) have been previously investigated as candidate materials for slowing down the hot-carrier cooling process. However, hot-carrier harvesting in these inorganic semiconductor nanocrystals is compromised by highly competing relaxation paths (eg, in-band Auger processes, defects) that overwhelm their phonon bottlenecks. For example, the effect of phonon bottlenecks on cadmium selenide (CdSe) quantum dots remains elusive due to Auger processes and structural defects, as reported by Kilina et al. (“Quantum Zeno effect rationalizes phonon bottlenecks in semiconductor quantum dots”, Phys. Review Letters 110, 180404, pp. 1-6, 2013).

本发明人惊奇地发现,胶体卤化物钙钛矿NC可能超越这些限制。与其体块膜对应物相比,卤化物钙钛矿NC可以表现出~2个数量级长的热载流子冷却时间和~4倍高的热载流子温度。令人惊讶的是,在低泵浦激发下,由声子瓶颈介导的热载流子冷却在较小的NC中可能更慢(与传统的NC相比,冷却时间随着尺寸减小而缩短)。在高泵浦功率密度下,俄歇加热可能主导热载流子冷却,其在较大的NC中较慢(迄今为止在常规NC中未观察到)。The present inventors have surprisingly found that colloidal halide perovskite NCs may transcend these limitations. Compared with their bulk film counterparts, halide perovskite NCs can exhibit ~2 orders of magnitude longer hot-carrier cooling time and ~4 times higher hot-carrier temperature. Surprisingly, at low pump excitations, hot-carrier cooling mediated by the phonon bottleneck may be slower in smaller NCs (compared to conventional NCs, cooling time decreases with size shorten). At high pump power densities, Auger heating may dominate hot-carrier cooling, which is slower in larger NCs (so far not observed in conventional NCs).

本发明人通过来自经表面处理的钙钛矿NC薄膜的能量选择性电子提取层证明了在1皮秒(ps)内有效的室温热电子提取(高达~83%)。这些见解可以可以用于极薄吸收器和/或聚光热载流子太阳能电池的新方法。The present inventors demonstrated efficient room-temperature hot electron extraction (up to ~83%) within 1 picosecond (ps) via an energy-selective electron extraction layer from a surface-treated perovskite NC thin film. These insights could lead to new approaches for extremely thin absorbers and/or concentrating hot-carrier solar cells.

卤化物钙钛矿材料可由通式AMX3表示,其中A可以是带一个正电的有机或无机正离子(例如有机基团或有机正离子或金属正离子或元素),或有机和/或无机正离子混合物。M可以是二价金属正离子或元素,X可以是卤素负离子或元素。实例可包括CH3NH3PbI3(MAPbI3)、CH3NH3PbBr3(MAPbBr3)、CH3NH3PbBr2I(MAPbBr2I)、CsSnI3、CsPbI3、NH2CH=NH2PbI3(FAPbI3)、FA1-yCsyPbI3或Csx(MA1-yFAy)1-xPb(I1-zBrz)3(其中x,y或z中的每一个都是0到1之间的数字)。MA可以指甲胺(CH3NH3),而FA可以指甲脒(NH2CH=NH2)。Halide perovskite materials can be represented by the general formula AMX 3 , where A can be an organic or inorganic cation (such as an organic radical or organic cation or metal cation or element) with one positive charge, or an organic and/or inorganic Positive ion mixture. M can be a divalent metal cation or an element, and X can be a halogen anion or an element. Examples may include CH 3 NH 3 PbI 3 (MAPbI 3 ), CH 3 NH 3 PbBr 3 (MAPbBr 3 ), CH 3 NH 3 PbBr 2 I (MAPbBr 2 I), CsSnI 3 , CsPbI 3 , NH 2 CH═NH 2 PbI 3 (FAPbI 3 ), FA 1-y Cs y PbI 3 or Cs x (MA 1-y FA y ) 1-x Pb(I 1-z Br z ) 3 (each of x, y or z are numbers between 0 and 1). MA can be formamide (CH 3 NH 3 ), and FA can be formamidine (NH 2 CH=NH 2 ).

在各种实施例中,二价正离子可以是Pb2+或Sn2+。换句话说,M可以是铅(Pb)或锡(Sn)。In various embodiments, the divalent positive ion may be Pb 2+ or Sn 2+ . In other words, M may be lead (Pb) or tin (Sn).

在各种实施例中,卤化物钙钛矿材料可包括一种或多种选自I-、Cl-和Br-的卤化物负离子。换句话说,X3可以是I3、Cl3、Br3或其组合(例如Cl2Br)。In various embodiments, the halide perovskite material may include one or more halide anions selected from I , Cl and Br . In other words, X 3 can be I 3 , Cl 3 , Br 3 or combinations thereof (eg, Cl 2 Br).

在各种实施例中,卤化物钙钛矿材料可包括有机铵正离子。有机铵正离子A可以选自铵正离子、羟铵正离子、甲铵正离子(MA+)、肼正离子、氮杂环丁烷正离子、甲脒正离子(FA+)、咪唑正离子、二甲铵正离子、乙铵正离子、苯乙基铵正离子、胍正离子及其组合。有机铵正离子可以是具有通式CnH2n+1NH3+的正离子,其中2<n<20。换句话说,A可以是CnH2n+1NH3。在各种实施例中,卤化物钙钛矿材料可包括金属正离子,例如铯离子(Cs+)。In various embodiments, the halide perovskite material can include organic ammonium cations. Organic ammonium cation A can be selected from ammonium cation, hydroxylammonium cation, methylammonium cation (MA + ), hydrazine cation, azetidine cation, formamidine cation (FA + ), imidazolium cation , dimethylammonium cation, ethylammonium cation, phenethylammonium cation, guanidinium cation, and combinations thereof. The organoammonium cation may be a cation with the general formula C n H 2n+1 NH 3+ , where 2<n<20. In other words, A may be C n H 2n+1 NH 3 . In various embodiments, the halide perovskite material may include metal cations, such as cesium ions (Cs + ).

纳米晶体100可以表现出任意至少0.5ps的热载流子冷却寿命,例如从0.5ps至40ps。热载流子冷却寿命可以定义为从脉冲激发直到热载流子冷却至600K的时间间隔。Nanocrystal 100 may exhibit a hot carrier cooling lifetime of anywhere from at least 0.5 ps, for example from 0.5 ps to 40 ps. The hot-carrier cooling lifetime can be defined as the time interval from pulse excitation until hot-carrier cooling to 600K.

图2示出了根据各种实施例的热载流子太阳能电池200的一般图例。太阳能电池200可以包括纳米晶体层202,其包括或包含一种或多种纳米晶体(如本文所述),所述一种或多种纳米晶体中的每一种包括卤化物钙钛矿材料。该热载流子太阳能电池200还可以包括与纳米晶体层202的第一侧接触的第一电极204。该热载流子太阳能电池200还可以包括与纳米晶体的第二侧接触的第二电极206,其中所述第二侧与所述第一侧相对。纳米晶体层202可具有小于100nm的厚度。FIG. 2 shows a general illustration of a hot carrier solar cell 200 according to various embodiments. Solar cell 200 may include nanocrystal layer 202 comprising or comprising one or more nanocrystals (as described herein), each of the one or more nanocrystals comprising a halide perovskite material. The hot carrier solar cell 200 can also include a first electrode 204 in contact with the first side of the nanocrystal layer 202 . The hot carrier solar cell 200 may also include a second electrode 206 in contact with a second side of the nanocrystal, wherein the second side is opposite the first side. Nanocrystal layer 202 may have a thickness of less than 100 nm.

换句话说,太阳能电池200可以包括纳米晶体层202,其包括一种或多种纳米晶体。层202可以夹在电极204,206中间。In other words, solar cell 200 may include nanocrystal layer 202 that includes one or more nanocrystals. Layer 202 may be sandwiched between electrodes 204,206.

纳米晶体层202也可称为吸收层或热载流子吸收体。在各种实施例中,层202的厚度可以小于热载流子扩散长度,使得在冷却之前可以通过电极204,206提取热载流子。Nanocrystal layer 202 may also be referred to as an absorber layer or a hot carrier absorber. In various embodiments, the thickness of layer 202 may be less than the hot carrier diffusion length such that hot carriers may be extracted through electrodes 204, 206 prior to cooling.

热载流子太阳能电池200可以接收入射光(来自太阳)并且可以被配置为基于来自入射光的太阳能产生电能。The hot carrier solar cell 200 may receive incident light (from the sun) and may be configured to generate electrical energy based on solar energy from the incident light.

在各种实施例中,热载流子太阳能电池200可以进一步包括将太阳能(来自太阳)引导到纳米晶体层202的光学装置。在各种实施例中,热载流子太阳能电池200可以是聚光热载流子太阳能电池。该光学装置可包括一个或多个光学元件以将太阳能引导到纳米晶体层202。该一个或多个光学元件可以是或可以包括光学透镜和/或镜子。在较高的泵浦功率密度下,随着光激发电荷载流子密度的增加,热载流子冷却可能变得更慢。在纳米晶体中1个电子-空穴对以上的泵浦功率密度(对应于约1018cm-3的有效体积载流子密度),热载流子冷却寿命可能超过30ps(与体块膜中的1.5ps相比),这可能是由于量子限制系统中的俄歇热效应。这些特征可有利地用于通过将光聚焦到光伏电池的某个点上而以更高功率密度操作的聚光太阳能电池。如后所示,与其他材料相比,钙钛矿NC的热载流子寿命在高泵浦功率密度下可能更长。这些特征可能有利于聚光热载流子太阳能电池的应用,其通过使用热载流子吸收体可以在更高的照度(大约或超过1000suns)下操作。In various embodiments, the hot carrier solar cell 200 may further include optics to direct solar energy (from the sun) to the nanocrystal layer 202 . In various embodiments, the hot carrier solar cell 200 may be a concentrating hot carrier solar cell. The optics may include one or more optical elements to direct solar energy to nanocrystal layer 202 . The one or more optical elements may be or may include optical lenses and/or mirrors. At higher pump power densities, hot carrier cooling may become slower as the photoexcited charge carrier density increases. At pump power densities above 1 electron-hole pair in nanocrystals (corresponding to an effective bulk carrier density of about 10 18 cm -3 ), the hot-carrier cooling lifetime may exceed 30 ps (comparable to that in bulk films 1.5ps compared to ), which may be due to the Auger heating effect in the quantum confined system. These features can be advantageously used in concentrating solar cells that operate at higher power densities by focusing light onto a certain point on the photovoltaic cell. As shown later, the hot-carrier lifetime of perovskite NCs may be longer at high pump power densities compared with other materials. These features may be beneficial for the application of concentrating hot-carrier solar cells, which can operate at higher illuminance (on the order of or beyond 1000 suns) by using hot-carrier absorbers.

在各种实施例中,热载流子太阳能电池200可以是单结太阳能电池。在各种替代实施例中,热载流子太阳能电池200可以是多结太阳能电池。In various embodiments, the hot carrier solar cell 200 may be a single junction solar cell. In various alternative embodiments, hot carrier solar cell 200 may be a multi-junction solar cell.

在各种实施例中,第一电极204可以是或可以包括热电子提取层。In various embodiments, the first electrode 204 may be or may include a hot electron extraction layer.

在各种实施例中,第一电极204可以是或可以包括n型层。n型层或热电子提取层可包括选自以下材料中的任意一种:氧化钛、氧化锌、苯基-C61-丁酸甲酯(PCBM)、4,7-二苯基-1,10-菲咯啉(Bphen)、聚(9-乙烯基咔唑)(PVK)、2-(4-联苯基)-5-苯基-1,3,4-恶二唑(PBD)、2,2',2”-(1,3,5-苯爪基)-三(1-苯基-1-H-苯并咪唑)(TPBI)、聚(9,9-二辛基芴)(F8)和浴铜灵(BCP)。In various embodiments, the first electrode 204 may be or may include an n-type layer. The n-type layer or hot electron extraction layer may comprise any one of the following materials: titanium oxide, zinc oxide, phenyl-C61-butyric acid methyl ester (PCBM), 4,7-diphenyl-1,10 -Phenanthroline (Bphen), poly(9-vinylcarbazole) (PVK), 2-(4-biphenyl)-5-phenyl-1,3,4-oxadiazole (PBD), 2 ,2',2"-(1,3,5-phenylpyrrole)-tris(1-phenyl-1-H-benzimidazole) (TPBI), poly(9,9-dioctylfluorene) ( F8) and bathocuprine (BCP).

在各种实施例中,第一电极204可以是能量选择性接触点,其允许具有等于或高于预定值的过剩能量的电子通过,并且还可以将具有低于预定值的过剩能量的电子反射回到纳米晶体层202。在当前背景下,过剩能量可以指超过纳米晶体层202的导带最小值的电子能量。过剩能量的预定值可以是选自从约0.1eV至2eV的范围内的任何值。In various embodiments, the first electrode 204 may be an energy selective contact that allows passage of electrons having an excess energy equal to or above a predetermined value and also reflects electrons having an excess energy below a predetermined value. Returning to nanocrystal layer 202 . In the present context, excess energy may refer to electron energy that exceeds the conduction band minimum of nanocrystal layer 202 . The predetermined value of excess energy may be any value selected from a range from about 0.1 eV to 2 eV.

在各种实施例中,第二电极206可以是或可以包括热空穴提取层。In various embodiments, the second electrode 206 may be or include a hot hole extraction layer.

在各种实施例中,第二电极206可以是或可以包括p型层。In various embodiments, the second electrode 206 may be or may include a p-type layer.

在各种实施例中,第二电极206可以是能量选择性接触点,其允许具有等于或高于预定值的过剩能量的空穴通过,并且还可以将具有低于预定值的过剩能量的空穴反射回到纳米晶体层202。在当前背景下,过剩能量可以指超过纳米晶体层202的价带最大值的空穴能量。过剩能量的预定值可以是选自从约0.1eV至2eV的范围内的任何值。在各种实施例中,第二电极206可包括分子半导体材料。p型层或热空穴提取层可包括选自以下材料中的任意一种:2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-OMeTAD)、聚(3-己基噻吩-2,5-叉基)(P3HT)、聚(3,4-亚乙二氧基噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)和聚(9,9-二辛基-芴-co-N-(4-丁基苯基)二苯胺(TFB)。In various embodiments, the second electrode 206 may be an energy-selective contact that allows holes with excess energy equal to or above a predetermined value to pass through, and also passes holes with excess energy below the predetermined value. The holes reflect back to the nanocrystal layer 202. In the present context, excess energy may refer to hole energy that exceeds the valence band maximum of nanocrystal layer 202 . The predetermined value of excess energy may be any value selected from a range from about 0.1 eV to 2 eV. In various embodiments, the second electrode 206 may include a molecular semiconductor material. The p-type layer or the hot hole extraction layer may comprise any one of the following materials: 2,2',7,7'-Tetrakis[N,N-bis(4-methoxyphenyl)amino]- 9,9'-spirobifluorene (spiro-OMeTAD), poly(3-hexylthiophene-2,5-ylidene) (P3HT), poly(3,4-ethylenedioxythiophene) polystyrenesulfonic acid salt (PEDOT:PSS) and poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)diphenylamine (TFB).

在各种实施例中,所述一种或多种纳米晶体表现出至少0.5ps的热载流子冷却寿命,例如30ps以上。所述一种或多种纳米晶体中的每一种的半径是选自从0.5nm至50nm范围内的任意值,例如从2nm至7nm范围内的任意值。In various embodiments, the one or more nanocrystals exhibit a hot carrier cooling lifetime of at least 0.5 ps, eg, greater than 30 ps. The radius of each of the one or more nanocrystals is selected from any value in the range from 0.5nm to 50nm, for example in the range from 2nm to 7nm.

在各种实施例中,卤化物钙钛矿材料可以是有机-无机卤化物钙钛矿材料,例如MAPbI3、MAPbBr3、MAPbBr2I、FAPbI3、FA1-yCsyPbI3或Csx(MA1-yFAy)1-xPb(I1-zBrz)3(其中x,y或z中的每一个可以是从0至1的范围中选择的任何值)。非限制性具体实例可包括CH3NH3PbI3、CH3NH3PbBr3、CH3NH3PbBr2I或NH2CH=NH2PbI3。在各种其他实施例中,卤化物钙钛矿材料可以是无机卤化物钙钛矿材料,例如CsSnI3或CsPbI3In various embodiments, the halide perovskite material may be an organic-inorganic halide perovskite material such as MAPbI 3 , MAPbBr 3 , MAPbBr 2 I, FAPbI 3 , FA 1-y Cs y PbI 3 , or Cs x (MA 1-y FA y ) 1-x Pb(I 1-z Br z ) 3 (where each of x, y or z can be any value selected from the range of 0 to 1). Non-limiting specific examples may include CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbBr 2 I or NH 2 CH═NH 2 PbI 3 . In various other embodiments, the halide perovskite material can be an inorganic halide perovskite material, such as CsSnI3 or CsPbI3 .

可能需要非常快速地提取热载流子以限制能量损失,其中竞争存在于提取速率和冷却速率之间,而不是复合速率。在各种实施例中,可以用1,2-乙二硫醇(EDT)处理所述一种或多种纳米晶体。Very rapid extraction of hot carriers may be required to limit energy loss, where competition exists between extraction rate and cooling rate, rather than recombination rate. In various embodiments, the one or more nanocrystals can be treated with 1,2-ethanedithiol (EDT).

本文证明了从1,2-乙二硫醇(EDT)处理的MAPbBr3NC(EDT-NC)到4,7-二苯基-1,10-菲咯啉(Bphen)的有效热载流子提取。可以选择Bphen作为热电子提取材料,因为该分子半导体具有高电子迁移率和比EDT处理的NC的导带最小值(CBM)更高的最低未占分子轨道(LUMO)。EDT处理可用于用硫醇盐代替存在于所制备的NC表面上的长且高度绝缘的油酸配体,以更有效地与Bphen在NC膜内电子偶联。Here we demonstrate efficient hot-carrier transfer from 1,2-ethanedithiol (EDT)-treated MAPbBr3 NCs (EDT-NC) to 4,7-diphenyl-1,10-phenanthroline (Bphen) extract. Bphen can be chosen as the hot electron extraction material because this molecular semiconductor has high electron mobility and a higher lowest unoccupied molecular orbital (LUMO) than the conduction band minimum (CBM) of EDT-treated NCs. EDT treatment can be used to replace the long and highly insulating oleic acid ligands present on the surface of the as-prepared NCs with thiolates for more efficient electronic coupling with Bphen within the NC membrane.

图3示出了根据各种实施例的纳米晶体的形成方法的示意图300。该方法可以包括:在302中,使用溶液法来形成包括卤化物钙钛矿材料的纳米晶体。FIG. 3 shows a schematic diagram 300 of a method of forming nanocrystals according to various embodiments. The method may include, at 302, using a solution method to form nanocrystals comprising a halide perovskite material.

纳米晶体的直径可以选自1nm至100nm的范围,例如4nm至14nm。The diameter of the nanocrystals may be selected from the range of 1 nm to 100 nm, eg 4 nm to 14 nm.

溶液法可包括将多种前驱体与溶剂混合以形成前驱体溶液。所述多种前驱体可包括有机卤化铵。溶液法可以进一步包括将一种或多种配体和/或一种或多种表面活性剂添加到前驱体溶液中。例如,甲基溴化铵(MABr,其中MA代表甲胺)可以与溴化铅(PbBr2)在二甲基甲酰胺(DMF)的溶剂中混合以形成初始前驱体溶液。可以将油胺(OAm)和油酸(OAc)添加到DMF溶剂中以形成最终前驱体溶液,用于形成甲基胺溴化铅钙钛矿纳米晶体。The solution method may include mixing various precursors with a solvent to form a precursor solution. The plurality of precursors may include organic ammonium halides. The solution method may further include adding one or more ligands and/or one or more surfactants to the precursor solution. For example, methylammonium bromide (MABr, where MA represents methylamine) can be mixed with lead bromide ( PbBr2 ) in a solvent of dimethylformamide (DMF) to form an initial precursor solution. Oleylamine (OAm) and oleic acid (OAc) can be added to the DMF solvent to form the final precursor solution for the formation of methylamine lead bromide perovskite nanocrystals.

溶液法可以进一步包括加热另外的溶剂。可以将另外的溶剂加热到预定温度,例如60℃。溶液法可另外包括在搅拌下将前驱体溶液与经加热的另外的溶剂混合以形成纳米晶体。另外的溶剂可以是甲苯。The solution method may further include heating an additional solvent. The additional solvent may be heated to a predetermined temperature, for example 60°C. The solution method may additionally include mixing the precursor solution with heated additional solvent with stirring to form nanocrystals. Another solvent may be toluene.

图4示出了根据各种实施例的热载流子太阳能电池的形成方法的示意图400。该方法可以包括:在402中,提供或形成包含一种或多种纳米晶体(如本文所述)的纳米晶体层,其中所述一种或多种纳米晶体中的每一种包括卤化物钙钛矿材料。该方法还可以包括:在404中,形成第一电极,使得第一电极与纳米晶体层的第一侧接触。该方法还可以包括:在406中,形成第二电极,使得第二电极与纳米晶体层的第二侧接触,其中所述第二侧与所述第一侧相对。纳米晶体层可具有小于100nm的厚度。FIG. 4 shows a schematic diagram 400 of a method of forming a hot carrier solar cell according to various embodiments. The method may include, at 402, providing or forming a nanocrystal layer comprising one or more nanocrystals (as described herein), wherein each of the one or more nanocrystals comprises a calcium halide Titanium material. The method may also include, at 404, forming a first electrode such that the first electrode is in contact with the first side of the nanocrystal layer. The method may also include, at 406, forming a second electrode such that the second electrode is in contact with a second side of the nanocrystal layer, wherein the second side is opposite the first side. The nanocrystalline layer may have a thickness of less than 100 nm.

换句话说,可以提供如本文所述的太阳能电池的形成方法。太阳能电池可包括电极和包含如本文所述的一种或多种纳米晶体的纳米晶体层。In other words, a method of forming a solar cell as described herein may be provided. A solar cell can include an electrode and a nanocrystal layer comprising one or more nanocrystals as described herein.

为避免疑义,图4中所示的方法步骤不一定按顺序依次进行。例如,在各种实施例中,可在形成纳米晶体层之前形成第一电极。For the avoidance of doubt, the method steps shown in Fig. 4 are not necessarily performed sequentially. For example, in various embodiments, the first electrode may be formed prior to forming the nanocrystal layer.

在各种实施例中,该方法可以进一步包括形成将太阳能引导至纳米晶体层的光学装置。光学装置可包括一个或多个将太阳能引导到纳米晶体层的光学元件。所述一个或多个光学元件可以是或可以包括光学透镜和/或镜子。In various embodiments, the method can further include forming an optical device that directs solar energy to the nanocrystal layer. The optical device may include one or more optical elements that direct solar energy to the nanocrystal layer. The one or more optical elements may be or may include optical lenses and/or mirrors.

在各种实施例中,第一电极204可以是或可以包括热电子提取层。In various embodiments, the first electrode 204 may be or may include a hot electron extraction layer.

在各种实施例中,第一电极204可以是或可以包括n型层。n型层或热电子提取层可以包括选自以下材料中的任意一种:氧化钛、氧化锌、苯基-C61-丁酸甲酯(PCBM)、4,7-二苯基-1,10-菲咯啉(Bphen)、聚(9-乙烯基咔唑)(PVK)、2-(4-联苯基)-5-苯基-1,3,4-恶二唑(PBD)、2,2',2”-(1,3,5-苯爪基)-三(1-苯基-1-H-苯并咪唑)(TPBI)、聚(9,9-二辛基芴)(F8)和浴铜灵(BCP)。In various embodiments, the first electrode 204 may be or may include an n-type layer. The n-type layer or hot electron extraction layer may comprise any one of the following materials: titanium oxide, zinc oxide, phenyl-C61-butyric acid methyl ester (PCBM), 4,7-diphenyl-1,10 -Phenanthroline (Bphen), poly(9-vinylcarbazole) (PVK), 2-(4-biphenyl)-5-phenyl-1,3,4-oxadiazole (PBD), 2 ,2',2"-(1,3,5-phenylpyrrole)-tris(1-phenyl-1-H-benzimidazole) (TPBI), poly(9,9-dioctylfluorene) ( F8) and bathocuprine (BCP).

在各种实施例中,第一电极204可以是能量选择性接触点,其允许具有等于或高于预定值的过剩能量的电子通过,并且还可以将具有低于预定值的过剩能量的电子反射回到纳米晶体层202。在当前背景下,过剩能量可以指超过纳米晶体层202的导带最小值的电子能量。过剩能量的预定值可以是选自从约0.1eV至2eV的范围内的任何值。In various embodiments, the first electrode 204 may be an energy selective contact that allows passage of electrons having an excess energy equal to or above a predetermined value and also reflects electrons having an excess energy below a predetermined value. Returning to nanocrystal layer 202 . In the present context, excess energy may refer to electron energy that exceeds the conduction band minimum of nanocrystal layer 202 . The predetermined value of excess energy may be any value selected from a range from about 0.1 eV to 2 eV.

在各种实施例中,第二电极206可以是或可以包括热空穴提取层。In various embodiments, the second electrode 206 may be or include a hot hole extraction layer.

在各种实施例中,第二电极206可以是或可以包括p型层。In various embodiments, the second electrode 206 may be or may include a p-type layer.

在各种实施例中,第二电极206可以是能量选择性接触点,其允许具有等于或高于预定值的过剩能量的空穴穿过,并且还可以将具有低于预定值的过剩能量的空穴反射回到纳米晶体层202。在当前背景下,过剩能量可以指超过纳米晶体层202的价带最大值的空穴能量。过剩能量的预定值可以是选自从约0.1eV至2eV的范围内的任何值。在各种实施例中,第二电极206可包括分子半导体材料。p型层或热空穴提取层可包括选自以下材料中的任意一种:2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-OMeTAD)、聚(3-己基噻吩-2,5-叉基)(P3HT)、聚(3,4-亚乙二氧基噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)和聚(9,9-二辛基-芴-co-N-(4-丁基苯基)二苯胺(TFB)。In various embodiments, the second electrode 206 may be an energy-selective contact that allows holes with excess energy equal to or above a predetermined value to pass through, and also passes holes with excess energy below the predetermined value. The holes are reflected back to the nanocrystal layer 202 . In the present context, excess energy may refer to hole energy that exceeds the valence band maximum of nanocrystal layer 202 . The predetermined value of excess energy may be any value selected from a range from about 0.1 eV to 2 eV. In various embodiments, the second electrode 206 may include a molecular semiconductor material. The p-type layer or the hot hole extraction layer may comprise any one of the following materials: 2,2',7,7'-Tetrakis[N,N-bis(4-methoxyphenyl)amino]- 9,9'-spirobifluorene (spiro-OMeTAD), poly(3-hexylthiophene-2,5-ylidene) (P3HT), poly(3,4-ethylenedioxythiophene) polystyrenesulfonic acid salt (PEDOT:PSS) and poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)diphenylamine (TFB).

在各种实施例中,所述一种或多种纳米晶体表现出至少0.5ps的热载流子冷却寿命,例如30ps以上。所述一种或多种纳米晶体中的每一种的半径是选自从0.5nm至50nm范围内的任何一个值,例如从2nm至7nm范围内的任何一个值。In various embodiments, the one or more nanocrystals exhibit a hot carrier cooling lifetime of at least 0.5 ps, eg, greater than 30 ps. The radius of each of the one or more nanocrystals is selected from any value in the range from 0.5nm to 50nm, such as any value in the range from 2nm to 7nm.

在各种实施例中,卤化物钙钛矿材料可以是有机-无机卤化物钙钛矿材料,例如MAPbI3、MAPbBr3、MAPbBr2I、FAPbI3、FA1-yCsyPbI3或Csx(MA1-yFAy)1-xPb(I1-zBrz)3(其中x,y或z中的每一个可以是从0至1的范围中选择的任何值)。非限制性具体实例可包括CH3NH3PbI3、CH3NH3PbBr3、CH3NH3PbBr2I或NH2CH=NH2PbI3。在各种其他实施例中,卤化物钙钛矿材料可以是无机卤化物钙钛矿材料,例如CsSnI3或CsPbI3In various embodiments, the halide perovskite material may be an organic-inorganic halide perovskite material such as MAPbI 3 , MAPbBr 3 , MAPbBr 2 I, FAPbI 3 , FA 1-y Cs y PbI 3 , or Cs x (MA 1-y FA y ) 1-x Pb(I 1-z Br z ) 3 (where each of x, y or z can be any value selected from the range of 0 to 1). Non-limiting specific examples may include CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbBr 2 I or NH 2 CH═NH 2 PbI 3 . In various other embodiments, the halide perovskite material can be an inorganic halide perovskite material, such as CsSnI3 or CsPbI3 .

各种实施例可以提供溶液处理的胶体MAPbBr3(甲基胺溴化铅)钙钛矿纳米晶体(NC),其是一种用于热载流子太阳能电池的非常有前景的吸收材料。热载流子冷却可能比钙钛矿体块膜明显更慢。在相当的光激发条件下,MAPbBr3NC中的热载流子冷却时间可以增加到30ps(或更高),这比其体块膜对应物慢约2个数量级。此外,在相当的光激发条件下,MAPbBr3NC的热载流子温度比其体块膜对应物大4倍。Various embodiments may provide solution-processed colloidal MAPbBr 3 (methylamine lead bromide) perovskite nanocrystals (NCs), a very promising absorber material for hot-carrier solar cells. Hot-carrier cooling may be significantly slower than bulk perovskite films. Under comparable photoexcitation conditions, the hot-carrier cooling time in MAPbBr3 NCs can be increased to 30 ps (or higher), which is about 2 orders of magnitude slower than its bulk film counterpart. Furthermore, the hot-carrier temperature of MAPbBr3 NCs is 4 times larger than that of their bulk film counterparts under comparable photoexcitation conditions.

控制热载流子冷却动力学可能是具有挑战性的,但对于改善许多半导体光子和电子器件的性能是至关重要的。在NC中,热载流子冷却时间/速率可取决于体积和载流子密度。因此,可以利用这些发现,通过调整NC尺寸和载流子注入密度来控制热载流子冷却。Controlling hot-carrier cooling dynamics can be challenging but is critical to improving the performance of many semiconductor photonic and electronic devices. In NCs, the hot carrier cooling time/rate can depend on volume and carrier density. Therefore, these findings can be exploited to control hot-carrier cooling by tuning the NC size and carrier injection density.

可以通过改变NC的尺寸来调节根据各种实施例的NC中的热载流子冷却。由于限制引起的声子瓶颈效应,较小尺寸的NC中的热载流子冷却速率可能较低。除MAPbBr3钙钛矿NC外,还有其他有机成分和/或金属元素替代的钙钛矿NC,如MAPbI3、MAPbBrxI1-x(x是Br/(Br+I)的比例,在合成过程中由前驱体中Br和I的含量决定)、CsSnI3、CsPbI3、FAPbI3。NC可以允许选择多种具有不同带隙的热载流子吸收体。此外,在表面化学处理之后,来自NC薄膜的热电子可以在~1ps内有效地注入(高达~83%)电子提取层。这些见解可以为热载流子和聚光钙钛矿NC光伏器件提供新的方法。Hot carrier cooling in NCs according to various embodiments can be tuned by varying the dimensions of the NCs. The hot-carrier cooling rate may be lower in smaller-sized NCs due to the confinement-induced phonon bottleneck effect. In addition to MAPbBr 3 perovskite NCs, there are perovskite NCs substituted by other organic components and/or metal elements, such as MAPbI 3 , MAPbBr x I 1-x (x is the ratio of Br/(Br+I), in The synthesis process is determined by the content of Br and I in the precursor), CsSnI 3 , CsPbI 3 , FAPbI 3 . NCs can allow the selection of a wide variety of hot-carrier absorbers with different bandgaps. Furthermore, hot electrons from NC films can be efficiently injected (up to ~83%) into the electron extraction layer within ~1 ps after surface chemical treatment. These insights can provide new approaches for hot-carrier and light-harvesting perovskite NC photovoltaic devices.

各种实施例可以涉及低温溶液处理的有机-无机钙钛矿纳米晶体的制备、慢速热载流子冷却的观察,和/或这些纳米晶体用于热载流子太阳能电池和聚光热载流子太阳能电池的潜在应用。与传统的热载流子太阳能电池系统相反,聚光热载流子太阳能电池可以使用聚焦透镜或曲面镜将太阳光聚焦在小的电池区域上300至1000倍。因此,聚光单元可以在比常规热载流子太阳能电池高得多的光产生电流密度下操作。较高的注入密度可以引起较高的热载流子温度和较长的热载流子寿命,这可以进一步提高热载流子太阳能电池的效率。Various embodiments may relate to the preparation of low-temperature solution-processed organic-inorganic perovskite nanocrystals, the observation of slow hot-carrier cooling, and/or the use of these nanocrystals in hot-carrier solar cells and concentrator thermal Potential applications of flowon solar cells. In contrast to conventional hot-carrier solar cell systems, concentrated hot-carrier solar cells can focus sunlight by a factor of 300 to 1000 on a small cell area using focusing lenses or curved mirrors. Thus, the concentrating cells can be operated at much higher light-generating current densities than conventional hot-carrier solar cells. Higher injection density can lead to higher hot-carrier temperature and longer hot-carrier lifetime, which can further improve the efficiency of hot-carrier solar cells.

可以使用在大气中的低温溶液处理方法来制备纳米晶体。相比之下,传统的硅基太阳能电池通常在高温下使用高真空生长技术生产,需要大量的基础设施投资。Nanocrystals can be prepared using low temperature solution processing methods in the atmosphere. In contrast, traditional silicon-based solar cells are typically produced at high temperatures using high-vacuum growth techniques, requiring large infrastructure investments.

热力学计算表明,如果在冷却至晶格温度之前利用热光生载流子的过剩能量,则单结太阳能电池转换效率在1-sun照射下可达到约66%。有效提取热载流子能量的关键是延迟热载流子冷却。人们普遍认为,能量和动量守恒以及多声子过程的不可能性将导致声子瓶颈,从而减缓半导体纳米级系统中的热载流子冷却。然而,进一步的研究表明,随着纳米级无机半导体的尺寸降低,冷却速率变得更快。Thermodynamic calculations show that the conversion efficiency of single-junction solar cells can reach about 66% under 1-sun irradiation if the excess energy of thermal photogenerated carriers is utilized before cooling to the lattice temperature. The key to efficiently extracting hot-carrier energy is to delay hot-carrier cooling. It is widely believed that the conservation of energy and momentum and the impossibility of multiphonon processes will lead to phonon bottlenecks that slow down hot-carrier cooling in semiconductor nanoscale systems. However, further research revealed that the cooling rate becomes faster as the size of the nanoscale inorganic semiconductor decreases.

在许多光子和电子设备中,热载流子冷却可能是关键的。对于与现有的硅基技术集成,可溶液处理材料比传统材料具有更大的多功能性。通过简单的旋涂、浸涂或滴涂,它可以应用于更广泛的器件设计和基板。Hot-carrier cooling can be critical in many photonic and electronic devices. For integration with existing silicon-based technologies, solution-processable materials offer greater versatility than conventional materials. It can be applied to a wider range of device designs and substrates by simple spin, dip or drop coating.

与使用昂贵的气相方法生产的传统硅薄膜相比,溶液处理的有机-无机钙钛矿纳米晶体可以为潜在的光伏应用提供简单且廉价的材料替代品。低温处理还可以使这些材料能够集成到柔性基板中。与用作太阳能电池中的吸收体的允许有效的热载流子提取的当前钙钛矿薄膜相比,钙钛矿NC可具有更慢的热载流子冷却。这些特征可能有利于实现热载流子太阳能电池。此外,如首先在钙钛矿NC中观察到的,还可以通过修改NC尺寸来调节热载流子冷却时间/速率。Compared to traditional silicon thin films produced using expensive gas-phase methods, solution-processed organic-inorganic perovskite nanocrystals could provide a simple and inexpensive material alternative for potential photovoltaic applications. Low-temperature processing could also enable the integration of these materials into flexible substrates. Perovskite NCs can have slower hot-carrier cooling than current perovskite films used as absorbers in solar cells that allow efficient hot-carrier extraction. These features may be beneficial for the realization of hot-carrier solar cells. Furthermore, as first observed in perovskite NCs, the hot-carrier cooling time/rate can also be tuned by modifying the NC size.

各种实施例可广泛用于光伏应用领域作为吸收材料,例如NC敏化纳米晶TiO2太阳能电池、聚光太阳能电池、NC导电聚合物混合太阳能电池、p-i-n结构太阳能电池和/或聚光太阳能电池。Various embodiments can be widely used in photovoltaic applications as absorber materials, such as NC-sensitized nanocrystalline TiO2 solar cells, concentrator solar cells, NC conductive polymer hybrid solar cells, pin-structured solar cells, and/or concentrator solar cells .

图5示出了半导体纳米晶体中俄歇过程的热载流子冷却的示意图500。在(a)中,通过带内俄歇型能量传递使热载流子冷却成为可能。热电子(点)可以通过俄歇型能量传递冷却到密集间隔的空穴态(例如CdSe NC),然后热空穴(圆圈)可以通过单个声子级联发射(箭头)快速弛豫;(b)示出了声子瓶颈效应引起具有离散能级的对称导带和价带中的慢速热载流子冷却,而(c)示出了通过带边载流子带间俄歇复合的热载流子再激发,也称为俄歇-加热。FIG. 5 shows a schematic diagram 500 of Auger process hot carrier cooling in semiconductor nanocrystals. In (a), hot-carrier cooling is made possible by in-band Auger-type energy transfer. Hot electrons (dots) can be cooled to densely spaced hole states (e.g., CdSe NCs) by Auger-type energy transfer, and then hot holes (circles) can be rapidly relaxed by single phonon cascade emission (arrows); (b ) shows the phonon bottleneck effect causing slow hot-carrier cooling in the symmetric conduction and valence bands with discrete energy levels, while (c) shows the thermal Carrier re-excitation, also known as Auger-heating.

替代的快速弛豫途径(例如,在图5中的带内俄歇型能量传递(图5中的(a))、原子波动和表面效应)在低载流子密度下抑制这种感知的声子瓶颈是非常有效的。Alternative fast relaxation pathways (e.g., in-band Auger-type energy transfer in Figure 5 (a in Figure 5), atomic fluctuations, and surface effects) suppress this perceived acoustic Sub-bottlenecks are very efficient.

降低的维数还在更高的载流子密度下产生竞争效应:带间俄歇复合。后一种俄歇再激发过程(也称为俄歇加热,如图5中的(c)所示)将使热载流子冷却过程减速。因此,纳米级无机半导体中的热载流子冷却被卷入不同机制的复杂的相互作用中。迄今为止,即使使用强量子限制的无机半导体纳米晶体,要实现慢速热载流子冷却仍然是极具挑战性的。尽管理论和材料合成方面取得了进展,但实际的热载流子胶体纳米晶体(NC)光伏仍然难以实现。尽管在强烈限制的PbSe量子点中最低激发能级(1Pe-1Se)发现了缓慢的带内热电子冷却,但是受限制的热电子必须与具有特别精心设计的外延生长多外层的空穴分离,以便减少上述竞争的弛豫途径。然而,多外层会使随后的电荷提取复杂化。因此,可能有必要设计能够同时满足慢速热载流子冷却和有效电荷提取两个标准的NC。The reduced dimensionality also creates a competing effect at higher carrier densities: interband Auger recombination. The latter Auger re-excitation process (also known as Auger heating, as shown in (c) in Fig. 5) will decelerate the hot-carrier cooling process. Thus, hot-carrier cooling in nanoscale inorganic semiconductors is involved in a complex interplay of different mechanisms. To date, slow hot-carrier cooling has been extremely challenging, even with strongly quantum-confined inorganic semiconductor nanocrystals. Despite advances in theory and materials synthesis, practical hot-carrier colloidal nanocrystal (NC) photovoltaics remain elusive. Although slow in-band hot electron cooling is found at the lowest excitation level (1P e −1S e ) in strongly confined PbSe quantum dots, the confined hot electrons must interact with holes with a particularly well-designed epitaxially grown multi-outer layer dissociated in order to reduce the aforementioned competing relaxation pathways. However, multiple outer layers complicate subsequent charge extraction. Therefore, it may be necessary to design NCs that can simultaneously meet the two criteria of slow hot-carrier cooling and efficient charge extraction.

有机-无机卤化铅钙钛矿半导体(例如MAPbX3,其中MA=CH3NH3,X=I、Br或Cl)最近已成为低成本高性能太阳能电池中的主要竞争者。最近在高载流子密度下对MAPbI3薄膜中的热声子瓶颈效应的观察表明,卤化铅钙钛矿也是开发热载流子太阳能电池的有前景的候选材料。模拟半导体纳米科学,一个有趣的问题是,卤化物钙钛矿中的热载流子冷却速率是否可以通过限制效应进一步调节。这里,使用室温瞬态吸收(TA)光谱比较不同尺寸(平均半径~2.5-5.6nm)的胶体MAPbBr3NC(图6)及其体块膜对应物(图7)中的热载流子冷却动力学和机制。Organic-inorganic lead halide perovskite semiconductors ( eg MAPbX3 , where MA= CH3NH3 , X=I, Br or Cl) have recently become the main contenders in low-cost high-performance solar cells. Recent observations of the thermophonon bottleneck effect in MAPbI thin films at high carrier densities suggest that lead halide perovskites are also promising candidates for the development of hot-carrier solar cells. Analogous to semiconductor nanoscience, an interesting question is whether the hot-carrier cooling rate in halide perovskites can be further tuned through confinement effects. Here, the hot-carrier cooling in colloidal MAPbBr3 NCs (Fig. 6) and their bulk film counterparts (Fig. 7) of different sizes (average radius ~2.5–5.6 nm) are compared using room temperature transient absorption (TA) spectroscopy. Kinetics and Mechanisms.

图6示出了根据各种实施例的具有相对(a)小尺寸,(c)中尺寸和(e)大尺寸的甲基胺溴化铅钙钛矿(MAPbBr3)纳米晶体(NC)的典型透射电子显微镜(TEM)图像,在其右边为相应的尺寸直方图(b,d,f)。尺寸分布可以用高斯分布建模。图7示出了甲基胺溴化铅(MAPbBr3)体块膜的(a)顶视图和(b)侧视图的扫描电子显微镜(SEM)图像。Figure 6 shows the structure of methylamine lead bromide perovskite (MAPbBr 3 ) nanocrystals (NCs) with relatively (a) small size, (c) medium size and (e) large size, according to various embodiments. Typical transmission electron microscope (TEM) image with corresponding size histograms (b,d,f) on the right. The size distribution can be modeled with a Gaussian distribution. Figure 7 shows scanning electron microscope (SEM) images of (a) top view and (b) side view of a methylamine lead bromide ( MAPbBr3 ) bulk film.

图8示出了(a)光致发光(PL)强度(任意单位或a.u.)对波长(纳米或nm)的曲线图,表示分散在甲苯中的根据各种实施例的甲基胺溴化铅钙钛矿(MAPbBr3)纳米晶体(NC)以及体块膜对应物的光致发光(PL)光谱;(b)吸光度(任意单位或a.u.)对波长(纳米或nm)的曲线图,表示分散在甲苯中的根据各种实施例的甲基胺溴化铅钙钛矿(MAPbBr3)纳米晶体(NC)以及体块膜对应物的紫外-可见(UV-vis)吸收光谱;(c)1s激子能量E1s(电子伏或eV)对纳米晶体平均半径a(纳米或nm)的曲线图,表示根据各种实施例的甲基胺溴化铅钙钛矿(MAPbBr3)的1s激子的能量与半径的关系,以及(d)X射线衍射(XRD)强度(任意单位或a.u.)对角度2θ(以度为单位)的曲线图,表示根据各种实施例的三种不同尺寸的甲基胺溴化铅钙钛矿(MAPbBr3)纳米晶体(NC)的XRD图。Figure 8 shows (a) a graph of photoluminescence (PL) intensity (arbitrary units or au) versus wavelength (nanometers or nm) representing methylamine lead bromide dispersed in toluene according to various embodiments Photoluminescence (PL) spectra of perovskite (MAPbBr 3 ) nanocrystals (NCs) and their bulk film counterparts; (b) plot of absorbance (arbitrary units or au) versus wavelength (nanometers or nm), indicating dispersion Ultraviolet-visible (UV-vis) absorption spectra of methylamine lead bromide perovskite (MAPbBr 3 ) nanocrystals (NCs) and bulk film counterparts according to various examples in toluene; (c) 1s Graph of exciton energy E 1s (electron volts or eV) versus nanocrystal mean radius a (nanometers or nm) representing the 1s excitons of methylamine lead bromide perovskite (MAPbBr 3 ) according to various embodiments and (d) plots of X-ray diffraction (XRD) intensity (arbitrary units or au) versus angle 2θ (in degrees) for three different sizes of formazan according to various embodiments XRD patterns of amine lead bromide perovskite (MAPbBr 3 ) nanocrystals (NC).

据报道,MAPbBr3的激子波尔半径aB为~2nm。鉴于NC的半径(从~2.5到5.6nm,参见图6中的尺寸分布直方图)大于aB,因此NC处于弱限制状态。因此,随着NC尺寸减小,NC的发射发生微小的蓝移(从525到517nm,图8(a))可能是由于弱限制效应。在弱限制中,NC的第一激子共振对NC半径a的关系可以写成:The exciton Bohr radius a B of MAPbBr3 is reported to be ∼2 nm. Given that the radius of the NCs (from ~2.5 to 5.6 nm, see the size distribution histogram in Fig. 6) is larger than aB , the NCs are weakly confinement. Therefore, the slight blue shift in the emission of NCs (from 525 to 517 nm, Fig. 8(a)) as the size of NCs decreases may be due to the weak confinement effect. In the weak confinement, the relationship of the first exciton resonance of the NC to the radius a of the NC can be written as:

Figure BDA0001906743920000201
Figure BDA0001906743920000201

其中Eg0是没有量子限制的带隙能量,而第二项代表限制能量,μ是电子-空穴减少质量,

Figure BDA0001906743920000211
Eb是激子结合能。使用上面的等式(1)和有效质量的报告值
Figure BDA0001906743920000212
可以合理地拟合NC的吸收边(参见图8(c)中的线)以产生带隙为Eg0~2.38eV,结合能为Eb~50meV,接近MAPbBr3NC的报告值。这些拟合结果进一步验证了根据各种实施例的钙钛矿NC中的弱限制。where E g0 is the bandgap energy without quantum confinement, while the second term represents the confinement energy, μ is the electron-hole reduction mass,
Figure BDA0001906743920000211
E b is the exciton binding energy. Using equation (1) above and the reported value of the effective mass
Figure BDA0001906743920000212
The absorption edge of the NC (see line in Fig. 8(c)) can be reasonably fitted to yield a bandgap of Eg0 ~2.38eV and a binding energy of Eb ~50meV, close to the reported values for MAPbBr3NC . These fitting results further validate the weak confinement in perovskite NCs according to various embodiments.

结果表明,弱限制的MAPbBr3NC(图8)是非常有前景的热载流子吸收体材料,因为它们具有更高的热载流子温度和更长的冷却时间(与在相当的光激发条件下的典型钙钛矿体块膜相比)。这可能归因于它们分别在低载流子密度下和高载流子密度下的固有声子瓶颈和俄歇热效应。重要的是,通过使用分子半导体作为能量选择性接触点,可以在室温下从MAPbBr3NC薄膜有效地提取热载流子。The results show that weakly confinement MAPbBr 3 NCs (Fig. 8) are very promising hot-carrier absorber materials due to their higher hot-carrier temperature and longer cooling time (compared to compared to typical perovskite bulk films under the same conditions). This may be attributed to their intrinsic phonon bottleneck and Auger heating effect at low and high carrier densities, respectively. Importantly, hot carriers can be efficiently extracted from MAPbBr3 NC thin films at room temperature by using molecular semiconductors as energy-selective contacts.

图9A示出了在溶液中根据各种实施例的中尺寸甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)(半径~4-5nm)的伪彩色瞬态吸收(TA)图(上图,时间(皮秒或ps)与能量(电子伏或eV)的关系图)和归一化瞬态吸收(TA)光谱(下图,归一化透射率变化ΔT/T对能量(电子伏或eV)的曲线图),其中在低泵浦功率密度下(左图),最初每纳米晶体平均产生的电子-空穴对为<N0>~0.1(每纳米晶体体积的平均载流子密度n0avg~2.6×1017cm-3),在高泵浦功率密度下(右图)<N0>~2.5(n0avg~6.5×1018cm-3)。图9B示出了MAPbBr3体块膜的伪彩色表示(上图,时间(皮秒或ps)和归一化瞬态吸收(TA)光谱(下图,归一化透射率变化ΔT/T对能量(电子伏或eV)的曲线图)。在低泵浦功率密度下(左图),最初产生的载流子密度为n0~2.1×1017cm3,在高泵浦功率密度下(右图)n0~1.5×1019cm3Figure 9A shows a false-color transient absorption (TA) map of medium-sized methylamine lead bromide perovskite nanocrystals ( MAPbBr3NC ) (radius ~4-5 nm) in solution according to various embodiments ( Upper panel, time (picosecond or ps) vs. energy (electron volts or eV) plot) and normalized transient absorption (TA) spectrum (lower panel, normalized transmittance change ΔT/T vs. energy (electron volts or eV) volts or eV), where at low pump power densities (left graph), the average electron-hole pairs generated per nanocrystal initially are <N 0 >~0.1 (average current-carrying per nanocrystal volume sub-density n 0avg ~2.6×10 17 cm -3 ), at high pump power density (right figure) <N 0 >~2.5 (n 0avg ~6.5×10 18 cm -3 ). Figure 9B shows a false-color representation of the bulk film of MAPbBr 3 (upper panel, time (picosecond or ps) and normalized transient absorption (TA) spectrum (lower panel, normalized transmittance change ΔT/T vs. Energy (electron volts or eV)). At low pump power density (left), the initial carrier density is n 0 ~ 2.1×10 17 cm 3 , and at high pump power density ( Right picture) n 0 ~ 1.5×10 19 cm 3 .

图9A-B示出了分别在低泵浦功率密度和高泵浦功率密度下,中尺寸MAPbBr3NC(半径~4.5nm)与MAPbBr3体块膜的伪彩色TA图和TA光谱比较。对于这两种类型的样品,由于状态填充效应,曲线图/光谱显示在带隙附近具有高能带尾的突出的光漂白(PB)峰。在小尺寸和尺寸NC中也观察到类似的结果。Figures 9A-B show false-color TA plots and TA spectral comparisons of medium-sized MAPbBr3 NCs (radius ~4.5nm) and MAPbBr3 bulk films at low and high pump power densities, respectively. For both types of samples, the plots/spectra show prominent photobleaching (PB) peaks with high energy band tails near the band gap due to state filling effects. Similar results were also observed in small and large NCs.

图10示出了时间(皮秒或ps)对能量(电子伏或eV)的曲线图,表示在溶液中根据各种实施例的(a)小尺寸和(b)大尺寸的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)伪彩色瞬态吸收(TA)光谱(以皮秒或ps为单位的时间对以电子伏或eV为单位的能量)。3.1eV光激发后,在低泵浦功率密度下(左图)最初每纳米晶体平均产生的电子-空穴对为<N0>~0.1,在高泵浦功率密度下(右图)<N0>~2.5。Figure 10 shows a graph of time (picoseconds or ps) versus energy (electron volts or eV) representing (a) small and (b) large size methylammonium bromide in solution according to various embodiments Pbbr perovskite nanocrystal (MAPbBr 3 NC) pseudocolor transient absorption (TA) spectra (time in picoseconds or ps versus energy in electron volts or eV). After 3.1eV photoexcitation, the initial average electron-hole pairs per nanocrystal are <N 0 >~0.1 at low pump power density (left figure), and <N at high pump power density (right figure) 0 > ~ 2.5.

对于体块膜样品,PB峰的高能带尾源自初始非平衡载流子通过以载流子温度Tc为特征的弹性散射(包括在低泵浦功率密度下的电子-空穴散射和在高泵浦能量密度下的载流子-载流子散射)快速分布到费米-狄拉克分布中。因此可以通过将TA光谱的高能带尾与简单的麦克斯韦-玻尔兹曼函数exp(Ef-E/κBTc)的拟合来提取Tc,其中κB是玻尔兹曼常数,Ef是准费米能量。For bulk film samples, the high-energy band tail of the PB peak originates from the initial nonequilibrium carrier through elastic scattering characterized by the carrier temperature Tc (including electron-hole scattering at low pump power density and at Carrier-carrier scattering at high pump energy densities) quickly distributes into the Fermi-Dirac distribution. T c can thus be extracted by fitting the high-energy band tail of the TA spectrum to the simple Maxwell-Boltzmann function exp(E f -E/κ B T c ), where κ B is the Boltzmann constant, Ef is the quasi-Fermi energy.

对于NC,在热能kBT>>能级间距ΔE的情况下,离散能级可近似地视为连续。与具有强限制的常规半导体NC相比,钙钛矿NC可能处于弱限制状态,其能量水平间隔更紧密。因此,在单个点的微观图像中,我们期望在低泵浦功率密度下(即每个NC具有一对以下的电子-空穴对)的有效电子-空穴散射(由于在受限条件下增强的库仑相互作用)以及在高泵浦功率密度下的载流子-载流子散射可以使快速非热能量分布在150fs内演变成类费米-狄拉克分布。在宏观图中,TA光谱可以从NC的集合中收集,其尺寸分布可能导致不均匀的宽化(即来自单个NC的重叠TA光谱)。所有这些特性正确地导致NC集合的连续TA光谱类似于本体材料的TA光谱。因此,NC的TA光谱的高能带尾也可以通过麦克斯韦-玻尔兹曼分布来描述。在图11中示出了高能带尾和未归一化TA光谱的代表性拟合。图11示出了(a)归一化透射率变化ΔT/T对能量(电子伏或eV)的曲线图,表示在甲苯中根据各种实施例的中尺寸的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)在不同的短延迟时间下的归一化TA光谱,每纳米晶体平均产生的电子-空穴对<N0>~0.1(3.1eV光激发后);以及(b)(a)的未归一化瞬态吸收(TA)光谱。(a)中的实心黑线使用麦克斯韦-玻尔兹曼分布函数拟合高能带尾。For NC, in the case of thermal energy k B T >> energy level spacing ΔE, discrete energy levels can be approximately regarded as continuous. Compared with conventional semiconducting NCs with strong confinement, perovskite NCs may be in a weakly confinement state with more closely spaced energy levels. Therefore, in the microscopic image of a single point, we expect efficient electron-hole scattering (due to the enhanced Coulomb interaction) and carrier-carrier scattering at high pump power densities can make the fast athermal energy distribution evolve into a Fermi-Dirac-like distribution within 150 fs. In macroscopic maps, TA spectra can be collected from collections of NCs whose size distribution can lead to inhomogeneous broadening (i.e., overlapping TA spectra from individual NCs). All these properties correctly lead to continuous TA spectra of NC ensembles similar to those of bulk materials. Therefore, the high-energy band tail of the TA spectrum of NC can also be described by the Maxwell-Boltzmann distribution. A representative fit of the high-energy band tail and unnormalized TA spectra is shown in Fig. 11. Figure 11 shows (a) a plot of normalized transmittance change ΔT/T versus energy (electron volts or eV) for meso-sized methylamine lead bromide calcium titanium in toluene according to various embodiments Normalized TA spectra of ore nanocrystals (MAPbBr 3 NC) at different short delay times, the average electron-hole pairs <N 0 >~0.1 generated per nanocrystal (after 3.1eV photoexcitation); and (b ) Unnormalized transient absorption (TA) spectrum of (a). The solid black line in (a) fits the high-energy band tail using the Maxwell-Boltzmann distribution function.

从伪彩色TA曲线和光谱中可以明显看出,对于NC而言,PB峰的高能带尾(从指数衰减区域开始的光谱中的扭结开始,参见图11)比体块膜持续长得多,表明载流子温度较高,热载流子冷却较慢。It is evident from the false-color TA curves and spectra that for NCs the high-energy band tail of the PB peak (starting from a kink in the spectrum starting from the exponentially decaying region, see Fig. 11) persists much longer than the bulk film, It shows that the carrier temperature is higher and the hot carrier cooling is slower.

卤化物钙钛矿的TA光谱的分析和解释在文献中有详细记载。MAPbBr3钙钛矿(块状和纳米晶体)的TA光谱与先前的研究相似。由于在带边处载流子的状态填充,由基态漂白(GSB)引起正的TA峰值(~2.3eV,如图11中所示)。在GSB峰的高能量侧,第一个斜率(即更接近GSB峰值的斜率)取决于影响其宽度和形状的基态跃迁;而高能带尾的第二平缓的坡度(例如,在图11中从~2.5eV开始)是由热载流子分布产生的。该高能侧的负部分(光致吸收)是由折射率的虚部的光致变化引起的。而GSB低能量侧的负部分归因于带隙重整化。The analysis and interpretation of the TA spectra of halide perovskites are well documented in the literature. The TA spectra of MAPbBr3 perovskites (both bulk and nanocrystalline) are similar to previous studies. The positive TA peak (~2.3eV, as shown in Figure 11) is caused by ground state bleaching (GSB) due to the state filling of carriers at the band edge. On the high-energy side of the GSB peak, the first slope (i.e., the slope closer to the GSB peak) is determined by ground-state transitions that affect its width and shape; while the second, gentler slope of the high-energy band tail (e.g., from ~2.5eV start) is generated by hot carrier distribution. The negative part of this high energy side (photoinduced absorption) is caused by the photoinduced change of the imaginary part of the refractive index. Whereas the negative part at the low energy side of the GSB is attributed to the bandgap renormalization.

通过使用麦克斯韦-玻尔兹曼函数拟合TA光谱的高能带尾来提取热载流子温度Tc。当载流子的能量和费米能级之间的差与κBT相比较大时(即E-EfBT),费米-狄拉克分布函数可以用指数近似描述,即麦克斯韦-玻尔兹曼分布:The hot-carrier temperature T c was extracted by fitting the high-energy band tail of the TA spectrum using a Maxwell-Boltzmann function. When the difference between the energy of the carriers and the Fermi level is large compared to κ B T (ie, EE f > κ B T), the Fermi-Dirac distribution function can be described by an exponential approximation, that is, Maxwell-Bo Altzmann distribution:

Figure BDA0001906743920000231
Figure BDA0001906743920000231

用麦克斯韦-玻尔兹曼分布逼近费米-狄拉克分布热载流子能量>>Ef是提取热载流子温度Tc的有效且普遍接受的实践。对于固有(未处理)钙钛矿NC和体块膜,费米能级可位于价带和导带边之间(低于紫外光电子能谱(UPS)数据的导带最小值~0.4eV(见下文))。因此,产生的热载流子可能远离费米能量(~1eV以上)。尽管在强烈的光激发下费米能级可能略微向带边移动(~0.1eV),但能量差仍可能非常大(即E-Ef>>κBT(在室温下~25meV)。因此,可以使用麦克斯韦-玻尔兹曼分布拟合TA光谱的高能带尾以提取TcApproximating the Fermi-Dirac distribution of hot-carrier energies >> Ef with the Maxwell-Boltzmann distribution is an efficient and generally accepted practice for extracting the hot-carrier temperature Tc . For intrinsic (untreated) perovskite NCs and bulk films, the Fermi level can be located between the valence and conduction band edges (~0.4eV below the conduction band minimum of ultraviolet photoelectron spectroscopy (UPS) data (see below)). Therefore, hot carriers generated may be far away from the Fermi energy (above ~1 eV). Although the Fermi level may shift slightly towards the band edge (~0.1eV) under intense photoexcitation, the energy difference can still be very large (i.e. EE f >>κ BT (~25meV at room temperature). Therefore, one can The high-energy band tail of the TA spectrum was fitted using a Maxwell-Boltzmann distribution to extract Tc .

图12示出了载流子温度(开尔文或K)对时间(皮秒或ps)的曲线图,表示在各种泵浦功率密度下,根据各种实施例的中尺寸纳米晶体(NC)和体块膜的热载流子温度Tc的时间演变:初始光激发的热载流子密度n0(体块膜)和每NC平均产生的电子-空穴对<N0>,其中<N0>=Jσ,其中J是泵浦功率密度,σ是吸收截面。Figure 12 shows a graph of carrier temperature (Kelvin or K) versus time (picoseconds or ps), representing meso-sized nanocrystals (NC) and Time evolution of the hot-carrier temperature Tc of the bulk film: hot-carrier density n 0 for initial photoexcitation (bulk film) and electron-hole pairs <N 0 > averagely generated per NC, where <N 0 >=Jσ, where J is the pump power density, and σ is the absorption cross section.

图13示出了(a)光致发光(PL)强度(任意单位或a.u.)对时间(纳秒或ns)的曲线图,表示根据各种实施例的中尺寸甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)在3.1eV光激发下时间分辨光致发光(PL)的泵浦功率密度依赖;(b)瞬态光致发光(PL)强度(任意单位或a.u.)对泵浦强度的曲线图(微焦耳/平方厘米或μJ cm-2),表示根据各种实施例的三种不同尺寸的MAPbBr3NC在测量时间Δt=4ns下归一化PL强度对泵浦功率密度的关系图;以及(c)占据几率(百分比或%)对每个根据各种实施例的NC的电子-空穴(e-h)对的数量的曲线图。Figure 13 shows (a) a graph of photoluminescence (PL) intensity (arbitrary units or au) versus time (nanoseconds or ns) for mesoscale methylamine lead bromide perovskites according to various embodiments Pump power density dependence of time-resolved photoluminescence (PL) of ore nanocrystals (MAPbBr 3 NC) under 3.1eV light excitation; (b) transient photoluminescence (PL) intensity (arbitrary unit or au) on pump Graph of intensity (microjoules/cm2 or μJ cm −2 ) representing normalized PL intensity versus pump power density at measurement time Δt=4 ns for three different sizes of MAPbBr 3 NCs according to various embodiments and (c) a plot of the probability of occupancy (percentage or %) versus the number of electron-hole (eh) pairs per NC according to various embodiments.

基于NC中初始光子占据率的泊松分布,NC包含i对e-h对的概率由

Figure BDA0001906743920000241
给出,其中<N0>=Jσ是最初生成的每个NC的e-h对的平均数量(J是泵浦功率密度,σ是NC的吸收截面)。当光激发后的延迟时间比多载流子复合(例如,俄歇复合)长得多时,NC可能主要与单个激子发射复合,因此后期PL强度可能与光激发的NC的占据概率成比例,为/>
Figure BDA0001906743920000242
图13(b)显示当完成多载流子复合时,泵浦功率密度相关的TRPL的时间分辨光致发光(PL)的泵浦功率密度依赖在时间t=4ns时归一化,并且PL强度代表仅具有一个电子-空穴对的发射NC。通过将数据拟合为/>
Figure BDA0001906743920000243
方程(实线),可以获得NC的σ。对于从小到大的NC,拟合的σ分别为8.5±0.5×10-15,3.2±0.2×10-14和6.8±0.3×10-14cm2。Based on the Poisson distribution of the initial photon occupancy in the NC, the probability that the NC contains an i pair of eh pairs is given by
Figure BDA0001906743920000241
where <N 0 >=Jσ is the average number of eh pairs per NC initially generated (J is the pump power density, σ is the absorption cross-section of the NC). When the delay time after photoexcitation is much longer than multi-carrier recombination (e.g., Auger recombination), NCs may mainly recombine with single exciton emission, so the late PL intensity may be proportional to the occupancy probability of photoexcited NCs, for />
Figure BDA0001906743920000242
Figure 13(b) shows that the pump power density dependence of the time-resolved photoluminescence (PL) of TRPL with respect to the pump power density is normalized at time t = 4 ns when multi-carrier recombination is complete, and the PL intensity represents an emitting NC with only one electron-hole pair. By fitting the data to />
Figure BDA0001906743920000243
Equation (solid line), the σ of NC can be obtained. For small to large NCs, the fitted σ were 8.5±0.5×10 −15 , 3.2±0.2×10 −14 and 6.8±0.3×10 −14 cm 2 , respectively.

为了与体块膜进行比较,还可以确定NC中每NC体积的平均载流子密度,其定义为n0avg=N0/VNC,其中VNC是NC体积。对于NC,激发开始时<N0>~0.1的最大Tc可以是约1700K,这是具有相当的载流子密度的体块膜样品的约4倍。后者中较小的Tc可归因于热载流子的超快冷却,其发生在比TA测量的时间分辨率短得多的时间尺度上。For comparison with bulk films, the average carrier density per NC volume in the NC can also be determined, defined as n 0avg =N 0 /V NC , where V NC is the NC volume. For NCs, the maximum Tc for <N 0 >˜0.1 at the onset of excitation can be about 1700 K, which is about 4 times higher than for bulk film samples with comparable carrier densities. The smaller Tc in the latter can be attributed to the ultrafast cooling of hot carriers, which occurs on a much shorter timescale than the temporal resolution of the TA measurements.

应当注意,热载流子冷却时间的复杂相互作用由几个因素导致:(i)泵浦能量(即载流子的过剩能量——通常,过剩能量越高导致热载流子寿命越长);(ii)初始热载流子密度(即通常载流子密度越高导致热载流子寿命越长);和/或(iii)特定热载流子温度下的能量损失率(即,通常热载流子温度越低产生的能量损失率越小)。因此,必须适当注意对文献中报告的值进行公平比较。关于不同材料之间的热载流子寿命比较的更多讨论可以在下面的“热载流子寿命”部分中找到。It should be noted that the complex interplay of hot-carrier cooling times results from several factors: (i) the pump energy (i.e., the excess energy of the carriers - in general, higher excess energy leads to longer hot-carrier lifetimes) ; (ii) initial hot-carrier density (i.e., generally higher carrier density results in longer hot-carrier lifetime); and/or (iii) energy loss rate at a specific hot-carrier temperature (i.e., generally The lower the hot carrier temperature, the smaller the energy loss rate). Therefore, due care must be taken to make a fair comparison of values reported in the literature. More discussion on hot-carrier lifetime comparisons between different materials can be found in the "Hot-carrier lifetime" section below.

此外,为了更清楚和更容易地比较文献中报道的不同材料的热载流子冷却寿命,本文所述的热载流子冷却寿命可以定义为从脉冲激发到热载流子冷却到600K的时间间隔。该温度用作基准,因为先前的理论计算已经表明,对于Tc>600K,在宽范围的吸收体带隙上仍可能存在明显的热载流子转换效率(即>40%)。Furthermore, in order to compare the hot-carrier cooling lifetimes of different materials reported in the literature more clearly and easily, the hot-carrier cooling lifetime described in this paper can be defined as the time from pulse excitation to hot-carrier cooling to 600K interval. This temperature is used as a benchmark, as previous theoretical calculations have shown that for Tc >600K, significant hot-carrier conversion efficiencies (ie >40%) are still possible over a wide range of absorber bandgaps.

考虑到这些因素,对于对照MAPbBr3体块膜,获得了n0~2.1-15×1018cm-3下从<0.1ps至0.8ps的热载流子冷却寿命。这些寿命与在相似的n0和0.7eV的过剩能量下激发的MAPbI3薄膜的寿命相同;但是比两倍过剩能量(~1.44eV)的高度激发的热载流子的短。值得注意的是,MAPbBr3NC在类似的n0avg下可以表现出比钙钛矿体块膜对照样品长1-2个数量级的热载流子冷却寿命(如图14所示)。图14示出的表格1400中比较了根据各种实施例的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)、甲基胺溴化铅钙钛矿体块膜和文献中报道的其他材料的性质。如前所述,热载流子冷却寿命可以定义为从脉冲激发到热载流子冷却到600K的时间间隔。600K可以用作基准,因为先前的理论计算已经表明,对于Tc>600K,在宽范围的吸收体带隙上仍可能存在明显的热载流子转换效率(即>40%)。TA指的是“瞬态吸收”,TRPL指的是“时间分辨光致发光”。Taking these factors into account, hot-carrier cooling lifetimes from <0.1 ps to 0.8 ps at n 0 ~2.1-15×10 18 cm −3 were obtained for the control MAPbBr 3 bulk film. These lifetimes are identical to those of MAPbI3 films excited at similar n 0 and excess energy of 0.7 eV; but shorter than that of highly excited hot carriers at twice the excess energy (~1.44 eV). Notably, MAPbBr 3 NCs can exhibit 1–2 orders of magnitude longer hot-carrier cooling lifetimes than the perovskite bulk film control samples at similar n 0 avg (as shown in Fig. 14). Table 1400 shown in FIG. 14 compares methylamine lead bromide perovskite nanocrystals (MAPbBr 3 NC) according to various embodiments, methylamine lead bromide perovskite bulk films, and reported in the literature. properties of other materials. As mentioned earlier, the hot-carrier cooling lifetime can be defined as the time interval from pulse excitation to hot-carrier cooling to 600K. 600K can be used as a benchmark, as previous theoretical calculations have shown that, for Tc >600K, significant hot-carrier conversion efficiencies (i.e., >40%) are still possible over a wide range of absorber bandgaps. TA refers to "transient absorption" and TRPL refers to "time-resolved photoluminescence".

图15示出了根据各种实施例的三种不同尺寸的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)和体块膜在3.1eV光激发后的载流子温度(开尔文或K)对时间延迟(皮秒或ps)的曲线图,其中(a)在低泵浦功率密度下(相当于NC中<N0>~0.1,体块膜中n0~2.1×1017cm3),(b)在高泵浦功率密度下(相当于NC中<N0>~2.5,体块膜中n0~1.5×1019cm3)。大尺寸NC的寿命可以比体块膜样品的寿命长约40倍,其中体块膜以几乎高一个数量级的载流子密度1.5×1019cm-3被激发。例如,对于具有<N0>~2.5(或n0avg~3.5×1018cm-3)的大尺寸NC,热载流子冷却寿命可长达~32ps(图15)。实际上,MAPbBr3NC的热载流子冷却寿命可能比其他半导体本体和纳米材料的热载流子冷却寿命长得多。参考图14,对于GaAs薄膜,报道的冷却寿命为~2ps,载流子密度为~6.0×1018cm-3,过剩能量为1.7eV;对于CdSe纳米棒,报道的冷却寿命为~0.8ps,载流子密度为~5.5×1018cm-3,过剩能量为1.1eV。MAPbBr3NC可堪比18ps的更长寿命,在相当的载流子密度6.5×1018cm-3下以低得多的过剩能量~0.7eV激发。15 shows the carrier temperature ( Kelvin or K) Graphs versus time delay (picoseconds or ps), where (a) at low pump power densities (equivalent to <N 0 > ~ 0.1 in NC, n 0 ~ 2.1×10 17 cm in bulk membranes 3 ), (b) under high pump power density (equivalent to <N 0 >~2.5 in NC, n 0 ~1.5×10 19 cm 3 in bulk membrane). The lifetime of large-scale NCs can be about 40 times longer than that of bulk film samples excited with almost an order of magnitude higher carrier density of 1.5 × 10 cm −3 . For example, for large-sized NCs with <N 0 >˜2.5 (or n 0avg ˜3.5×10 18 cm −3 ), the hot-carrier cooling lifetime can be as long as ˜32 ps ( FIG. 15 ). In fact, the hot-carrier cooling lifetime of MAPbBr3 NCs may be much longer than that of other semiconductor bulk and nanomaterials. Referring to Figure 14, for GaAs thin films, the reported cooling lifetime is ~2ps, the carrier density is ~6.0× 1018cm -3 , and the excess energy is 1.7eV; for CdSe nanorods, the reported cooling lifetime is ~0.8ps, The carrier density is ~5.5×10 18 cm −3 and the excess energy is 1.1 eV. MAPbBr 3 NCs can have a longer lifetime comparable to 18 ps, excited at a much lower excess energy ~0.7 eV at a comparable carrier density of 6.5×10 18 cm −3 .

为了辨别MAPbBr3NC中较慢的热载流子冷却机制,观测低泵激发下的弛豫动力学。对于<N0>~0.1,基于泊松分布,用一个e-h对激发高达10%的NC(图13)。从NC中没有带边载流子的快速衰减可以看出(图16),在如此低的载流子密度下,多粒子复合可以忽略不计。To discern the slower hot-carrier cooling mechanism in MAPbBr 3 NCs, the relaxation kinetics under low pump excitations were observed. For <N 0 >˜0.1, up to 10% of NCs were excited with one eh pair based on a Poisson distribution ( FIG. 13 ). As can be seen from the absence of fast decay of band-edge carriers in NCs (Fig. 16), multi-particle recombination is negligible at such low carrier densities.

图16示出了归一化透射率变化ΔT/T对时间(皮秒或ps)的曲线图,表示在溶液中的甲基胺溴化铅(a)体块膜、(b)根据各种实施例的小尺寸纳米晶体(NC)、(c)根据各种实施例的中尺寸纳米晶体(NC)和(d)根据各种实施例的大尺寸纳米晶体(NC)分别在高泵浦功率密度和低泵浦功率密度下,在带边探测的归一化光致漂白动力学;以及(e)在溶液中的根据各种实施例的中尺寸纳米晶体(NC)与根据各种实施例的旋涂纳米晶体(NC)膜的瞬态吸收(TA)动力学比较;以及(f)在溶液中的根据各种实施例的小尺寸甲基胺溴化铅纳米晶体(NC)在带边探测的漂白动力学的泵浦功率密度依赖。图16中的(f)插图示出了在较长时间下减去单激子衰减之后提取的俄歇复合分量。光激发能量约为3.1eV。Figure 16 shows a graph of normalized transmittance change ΔT/T versus time (picoseconds or ps) for methylamine lead bromide in solution (a) bulk film, (b) according to various Small-sized nanocrystals (NCs) of the embodiments, (c) medium-sized nanocrystals (NCs) according to various embodiments, and (d) large-sized nanocrystals (NCs) according to various embodiments, respectively, at high pump power Density and low pump power density, normalized photobleaching kinetics at band-edge detection; and (e) meso-sized nanocrystals (NC) in solution according to various embodiments and Transient absorption (TA) kinetics comparison of spin-coated nanocrystal (NC) films of Pump power density dependence of probed bleaching kinetics. The (f) inset in Figure 16 shows the Auger recombination component extracted after subtracting single-exciton decay at longer times. The photoexcitation energy is about 3.1 eV.

因此,低泵浦激发下的热载流子弛豫机制可以代表材料的固有性质,并且可以不受诸如多粒子俄歇复合之类的外在效应的影响。Therefore, the hot-carrier relaxation mechanism under low pump excitation can represent an intrinsic property of the material and can be immune to extrinsic effects such as multi-particle Auger recombination.

在低泵浦功率密度下,随着NC尺寸的增加,Tc可以更快地衰减(图15)。图17示出了(a)能量损失率(电子伏每皮秒eV ps-1)对载流子温度(开尔文或K)的曲线图,表示根据各种实施例的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)(其中<N0>~0.1)与甲基胺溴化铅钙钛矿(MAPbBr3)体块膜(其中n0~2.1×1017cm-3)的载流子温度Tc对热载流子的能量损失率的关系图;(b)归一化透射率变化ΔT/T对时间(皮秒或ps)的曲线图,表示根据各种实施例的胶体甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)和体块膜在低载流子密度下,带边探测的归一化漂白动力学;以及(c)上升时间(飞秒或fs)/限制能量(电子伏或eV)的曲线图,表示甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)(黑色实心方块),体块膜(浅色实心方块)(粒径由膜厚度表示)和硒化镉纳米晶体(CdSe NC)(实心圆)中带边漂白的上升时间的尺寸依赖,以及MAPbBr3NCs(空心方块)和CdSe NC(空心圆)中量子限制能量的尺寸依赖。误差线表示标准误差。图17(a)-(c)的光激发能量是3.1eV。图18示出了拉曼强度(任意单位或a.u.)对波数(每厘米或cm-1)的曲线图,表示根据各种实施例制备的甲基胺溴化铅钙钛矿纳米晶体(MAPbBr3NC)在玻璃基板上滴涂的室温拉曼光谱。峰源自LO声子。从图18中所示的拉曼测量可以看出,MAPbBr3NC中热载流子冷却的可用声子模型分别位于约150cm-1(指定为Pb-Br键的拉伸)和300cm-1(可能来自150cm-1二阶和/或MA正离子的扭转模式。At low pump power densities, Tc can decay faster with increasing NC size (Fig. 15). Figure 17 shows (a) a plot of energy loss rate (electron volts per picosecond eV ps -1 ) versus carrier temperature (Kelvin or K) for methylamine lead calcium bromide according to various embodiments Titanium nanocrystal (MAPbBr 3 NC) (where <N 0 >~0.1) and methylamine lead bromide perovskite (MAPbBr 3 ) bulk film (where n 0 ~2.1×10 17 cm -3 ) supported Graph of carrier temperature Tc versus energy loss rate of hot carriers; (b) graph of normalized transmittance change ΔT/T versus time (picoseconds or ps), representing colloidal Normalized bleaching kinetics of band-edge probing of methylamine lead bromide perovskite nanocrystals (MAPbBr 3 NC) and bulk films at low carrier densities; and (c) rise time (femtosecond or fs )/confinement energy (electron volts or eV), representing methylamine lead bromide perovskite nanocrystals (MAPbBr 3 NC) (black solid squares), bulk films (light colored solid squares) (particle sizes given by The size dependence of the rise time of band-edge bleaching in cadmium selenide nanocrystals (CdSe NCs) (closed circles), and the quantum confinement energy in MAPbBr3 NCs (open squares) and CdSe NCs (open circles) rely. Error bars represent standard errors. The photoexcitation energy of Fig. 17(a)-(c) is 3.1 eV. 18 shows a graph of Raman intensity (arbitrary units or au) versus wavenumber (per centimeter or cm −1 ) for methylamine lead bromide perovskite nanocrystals (MAPbBr 3 ) prepared according to various embodiments. NC) Room temperature Raman spectra of drop-coating on glass substrates. The peaks originate from LO phonons. From the Raman measurements shown in Fig. 18, it can be seen that the available phonon models for hot-carrier cooling in MAPbBr3 NCs are located at about 150 cm −1 (specified as the stretching of the Pb–Br bond) and 300 cm −1 ( Possibly from the torsional mode of the 150cm -1 second order and/or MA positive ions.

图17(a)的实线表示LO-声子模型的数值拟合。箭头表示体块膜获得的最大Tc。图17(a)中的插图显示了小尺寸(S)、中尺寸(M)和大尺寸(L)钙钛矿NC的代表性TEM图像。图17(b)中的实线是单指数拟合。图17(b)中的插图示出了在具有离散能级的对称导带和价带中的声子瓶颈诱导的慢热载流子冷却的示意图。The solid line in Fig. 17(a) represents the numerical fit of the LO-phonon model. Arrows indicate the maximum Tc achieved by bulk membranes. The inset in Fig. 17(a) shows representative TEM images of small-size (S), medium-size (M) and large-size (L) perovskite NCs. The solid line in Figure 17(b) is a single exponential fit. The inset in Fig. 17(b) shows a schematic diagram of the phonon bottleneck-induced slow thermal carrier cooling in symmetric conduction and valence bands with discrete energy levels.

对于所有三种NC,每个载流子的能量损失率Jr(-1.5κB dTc/dt)可以在0.6-0.3eVps-1的范围内缓慢降低,直到Tc达到~700K(图17(a)),低于该值,Jr下降几个数量级,直到Tc接近晶格温度。这种冷却趋势类似于体块膜样品以及其他块状无机半导体和纳米结构的冷却趋势。这里,初始快速冷却(即较高的冷却速率)可归因于载流子耦合到纵向光学(LO)-声子,其在LO声子群和热载流子之间建立热平衡。比较不同的NC,小尺寸NC的初始Jr比大尺寸NC小~2倍(表明前者中的载流子-声子相互作用较弱)。随后通过纵向光学声子(LO声子)和声学声子之间的热平衡确定接近带边的热载流子的较慢冷却(即图17(a)中~300-500K)。For all three NCs, the energy loss rate J r (−1.5κ B dT c /dt) per carrier can be slowly decreased in the range of 0.6–0.3 eVps −1 until T c reaches ~700K (Fig. 17 (a)), below which Jr drops by several orders of magnitude until Tc approaches the lattice temperature. This cooling trend is similar to that of bulk film samples as well as other bulk inorganic semiconductors and nanostructures. Here, the initial rapid cooling (i.e., higher cooling rate) can be attributed to carrier coupling to longitudinal optical (LO)-phonons, which establish thermal equilibrium between the LO phonon population and hot carriers. Comparing different NCs, the initial Jr of small-sized NCs is ~2 times smaller than that of large-sized NCs (indicating weaker carrier-phonon interactions in the former). The slower cooling of hot carriers near the band edge (ie ~300-500 K in Fig. 17(a)) is then determined by the thermal equilibrium between longitudinal optical phonons (LO phonons) and acoustic phonons.

通过使用LO-声子相互作用模型(参见下面的LO-声子模型)拟合能量损失率,拟合的τLO(特征LO-声子衰减时间)随着NC维数的减小而增加(参见图17(a)),这可以为量子限制减少光学声子弛豫提供直接证据。这是声子瓶颈效应的特征,因此延迟了热载流子冷却。虽然NC处于弱限制状态,限制能量约为~15-60meV,但几篇早期的理论论文表明,即使在这种能级间隔仅为几meV的弱限制条件下,由声子相互作用介导的载流子弛豫也可以仍然受到严重阻碍。这是因为能量和动量守恒所施加的限制以及纵向光学(LO)声子的弱能量分散,它们共同引起声子瓶颈。此外,所有三个NC样品的声学声子温度(Ta)相当于~310K,与室温下的晶格温度接近,这有力地表明,热载流子冷却的减速可能不太可能由声学声子瓶颈引起。By fitting the energy loss rate using the LO-phonon interaction model (see LO-phonon model below), the fitted τ LO (characteristic LO-phonon decay time) increases with decreasing NC dimensionality ( See Fig. 17(a)), which can provide direct evidence that quantum confinement reduces optical phonon relaxation. This is characteristic of the phonon bottleneck effect, thus delaying hot carrier cooling. Although NCs are weakly confinement with confinement energies around ~15–60 meV, several early theoretical papers have shown that even in such weak confinement conditions where energy levels are separated by only a few meV, phonon interactions mediated Carrier relaxation can also still be severely hindered. This is because of the constraints imposed by the conservation of energy and momentum and the weak energy dispersion of longitudinal optical (LO) phonons, which together cause the phonon bottleneck. Furthermore, the acoustic phonon temperature (Ta) of all three NC samples corresponds to ∼310 K, which is close to the lattice temperature at room temperature, strongly suggesting that the slowdown of hot-carrier cooling may be less likely caused by the acoustic phonon bottleneck. cause.

带边漂白堆积方法也用于阐明热载流子冷却性质。除了拟合PB峰的高能带尾以阐明热载流子冷却特性的方法之外,另一种方法是探测高于带边的光激发载流子的带内弛豫。这可以通过监测带边漂白堆积来实现,因为带边载流子的复合(~ns)比其带内弛豫过程(从几个到几十ps)慢得多。后一种方法通常用于研究强限制量子胶体半导体NC中的热载流子动力学,因为来自离散能级的重叠PB带使得解决它们的热载流子分布极具挑战性。后一种方法可用于公平比较钙钛矿NC的热载流子冷却与常规无机半导体NC(例如CdSe NC)的热载流子冷却。The band-edge bleached stacking method was also used to elucidate the hot-carrier cooling properties. In addition to the approach of fitting the high-energy band tail of the PB peak to elucidate the hot-carrier cooling properties, another approach is to probe the in-band relaxation of photoexcited carriers above the band edge. This can be achieved by monitoring the band-edge bleach buildup, since the recombination (~ns) of band-edge carriers is much slower than its in-band relaxation process (from a few to tens of ps). The latter approach is often used to study hot-carrier dynamics in strongly confined quantum colloidal semiconductor NCs, since overlapping PB bands from discrete energy levels make resolving their hot-carrier distribution extremely challenging. The latter approach can be used for a fair comparison of hot-carrier cooling of perovskite NCs with that of conventional inorganic semiconducting NCs, such as CdSe NCs.

图17(b)显示钙钛矿样品的归一化TA光谱,其在低载流子密度下以相似的过剩能量光激发后在其带边PB峰处探测。每个堆积过程拟合单指数增长函数,以产生上升时间(τrise)。带边漂白上升发生在亚皮秒级的时间尺度内,随着NC尺寸的减小变得更慢,与较小的钙钛矿NC的较小的Jr和较慢的热载流子温度衰减(图15)一致。令人惊讶的是,钙钛矿NC表现出的趋势与CdSe NC的趋势完全相反(跨越强到弱的量子限制区域——图17(c)和图19)。Figure 17(b) shows the normalized TA spectra of perovskite samples detected at their band-edge PB peaks after photoexcitation with similar excess energy at low carrier densities. Each stacking process is fitted with a single exponential growth function to yield a rise time (τ rise ). Band-edge bleaching rise occurs on sub-picosecond timescales, becoming slower with decreasing NC size, consistent with the smaller Jr and slower hot-carrier temperature of smaller perovskite NCs Attenuation (Figure 15) is consistent. Surprisingly, perovskite NCs exhibit the exact opposite trend to that of CdSe NCs (spanning the strong to weak quantum confinement region—Fig. 17(c) and Fig. 19).

图19示出了(a)归一化透射率变化ΔT/T对时间(皮秒或ps)的曲线图,表示具有不同直径的胶体CdSe NC(在图例中示出)在低泵浦功率密度下带边探测的归一化漂白动力学;以及(b)时间(皮秒或ps)对能量的曲线图(电子伏或eV),表示低泵浦功率密度下最初产生<N0>~0.1(左),高泵浦功率密度下<N0>~2.5(右)。光激发能量为3.1eV。图19(a)中的实线是单指数生长拟合曲线。图19(a)中的插图示意性地示出了通过俄歇型能量传递的热载流子冷却过程。Figure 19 shows (a) a plot of normalized transmittance change ΔT/T versus time (picoseconds or ps) for colloidal CdSe NCs with different diameters (indicated in the legend) at low pump power densities Normalized bleaching kinetics for lower band edge detection; and (b) a plot of time (picoseconds or ps) versus energy (electron volts or eV) showing initial generation of <N 0 >∼0.1 at low pump power densities (left), <N 0 >~2.5 at high pump power density (right). The photoexcitation energy is 3.1 eV. The solid line in Figure 19(a) is a monoexponential growth fit curve. The inset in Fig. 19(a) schematically shows the hot-carrier cooling process by Auger-type energy transfer.

此外,钙钛矿NC上升时间也可以更长。随着CdSe NC的减少,热载流子冷却更快,这与先前的报道一致,这归因于从热电子到密集空穴态的俄歇型能量传递。结果清楚地表明,存在于常规无机半导体NC中的这种俄歇传递机制可以在钙钛矿NC中自然地被抑制。关于CdSe NC的示意性能级图(图5),一个可能的原因可能是图17(b)的插图中所示的钙钛矿NC的电子和空穴的对称能量分散和小的有效质量。表面重建、表面缺陷、原子波动等其他因素也可能导致热载流子冷却随着无机半导体尺寸减少而变得更快(例如,在量子限制的IV-VI半导体PbSe中,具有相同和小的电子和空穴有效质量)。因此,钙钛矿NC的低缺陷密度(与MAPbBr3NC的高PL量子产率(~80%)一致)也可能是这种独特行为的另一个原因(即,固有的声子瓶颈效应)。这些对钙钛矿胶体NC缓慢热载流子冷却的新见解(在低泵浦激发下)可能会挑战传统半导体NC的传统智慧。In addition, the rise time of perovskite NCs can also be longer. With the reduction of CdSe NCs, hot-carrier cooling is faster, which is consistent with previous reports, which is attributed to the Auger-type energy transfer from hot electrons to dense hole states. The results clearly demonstrate that this Auger transfer mechanism present in conventional inorganic semiconducting NCs can be naturally suppressed in perovskite NCs. Regarding the schematic energy level diagram of CdSe NCs (Fig. 5), one possible reason could be the symmetric energy dispersion and small effective mass of electrons and holes of perovskite NCs shown in the inset of Fig. 17(b). Other factors such as surface reconstruction, surface defects, atomic fluctuations, etc. may also cause hot-carrier cooling to become faster as the size of inorganic semiconductors decreases (for example, in the quantum-confined IV-VI semiconductor PbSe, with the same and small electron and hole effective mass). Therefore, the low defect density of perovskite NCs (consistent with the high PL quantum yield (∼80%) of MAPbBr3 NCs) may also be another reason for this unique behavior (i.e., the inherent phonon bottleneck effect). These new insights into the slow hot-carrier cooling of perovskite colloidal NCs (under low pump excitation) may challenge the conventional wisdom of traditional semiconducting NCs.

这些钙钛矿NC在高泵浦激发下也表现出独特的热载流子冷却特性。图20示出了(a)能量损失率(电子伏每皮秒或eV ps-1)对载流子温度(开尔文或K)的曲线图,表示根据各种实施例的甲基胺溴化铅钙钛矿纳米晶体MAPbBr3NC(<N0>~2.5)和MAPbBr3体块膜(n0~1.5×1019cm-3)的能量损失率与载流子温度Tc的关系;(b)寿命(皮秒或ps)对纳米晶体体积(立方纳米或nm3)的曲线图,说明根据各种实施例的钙钛矿纳米晶体(NC)体积与俄歇复合寿命和热载流子冷却时间的关系,和(c)归一化热载流子浓度nhot对时间(皮秒或ps)的曲线图,表示根据各种实施例在不同的泵浦功率密度下归一化的热载流子衰变。图20(a)中的实线表示低载流子密度下的LO-声子模型。图20(b)中的虚线显示了纳米晶体(NC)体积的平方根与寿命的关系,而插图说明了带边载流子俄歇复合的热载流子再激发(也称为作为俄歇加热),误差线表示标准误差。图20(c)中的实线是双指数衰减拟合。图20(a)-(c)的光激发能量是3.1eV。体块膜厚约240nm。These perovskite NCs also exhibit unique hot-carrier cooling properties under high pump excitation. 20 shows (a) a plot of energy loss rate (electron volts per picosecond or eV ps −1 ) versus carrier temperature (Kelvin or K) for methylamine lead bromide according to various embodiments. The relationship between energy loss rate and carrier temperature T c of perovskite nanocrystal MAPbBr 3 NC (<N 0 >~2.5) and MAPbBr 3 bulk film (n 0 ~1.5×10 19 cm -3 ); (b ) lifetime (picosecond or ps) versus nanocrystal volume (cubic nanometer or nm 3 ), illustrating perovskite nanocrystal (NC) volume versus Auger recombination lifetime and hot carrier cooling according to various embodiments Dependence of time, and (c) a plot of normalized hot carrier concentration nhot versus time (picoseconds or ps), showing the normalized heat load at different pump power densities according to various embodiments Flow decay. The solid line in Fig. 20(a) represents the LO-phonon model at low carrier density. The dashed line in Fig. 20(b) shows the square root of nanocrystal (NC) volume versus lifetime, while the inset illustrates the hot-carrier re-excitation of band-edge carrier Auger recombination (also known as Auger heating ), and the error bars represent standard errors. The solid line in Figure 20(c) is a double exponential decay fit. The photoexcitation energy of Fig. 20(a)-(c) is 3.1 eV. The bulk film thickness is about 240nm.

图20(a)示出了三种不同尺寸的NC(<N0>~2.5)和体块膜样品(n0~1.5×1019cm-3)之间的能量损失率与载流子温度的对比趋势。对于NC和体块膜,由载流子-LO-声子相互作用控制的初始热载流子冷却可能几乎与载流子密度无关。该结论可以从以下得出:(i)在不同载流子密度下的初始快速衰减Tc几乎相同(图12),以及(ii)在高载流子温度下的初始能量损失率在低载流子密度和高载流子密度下类似(图17(a)和图20(a))。对于体块膜,在600K以下热载流子寿命的延长(图12)和Jr与LO声子模型的轻微偏差(图20(a)中的线)可能是由于“热声子瓶颈效应”(通常在块状无机半导体中观察到,最近报道用于MAPbI3薄膜)。这可归因于由声学模型的部分加热引起的LO声子衰减减少。这种假设可以通过高泵浦功率密度下350K的较高声学声子温度Ta来支持。Figure 20(a) shows the energy loss rate versus carrier temperature between three different sizes of NCs (<N 0 >~2.5) and bulk film samples (n 0 ~1.5×10 19 cm -3 ) comparative trend. For both NC and bulk films, the initial hot-carrier cooling controlled by carrier-LO-phonon interactions may be almost independent of carrier density. This conclusion can be drawn from (i) the initial fast decay Tc at different carrier densities is almost the same (Fig. 12), and (ii) the initial energy loss rate at high The carrier density is similar to that at high carrier density (Fig. 17(a) and Fig. 20(a)). For bulk films, the extension of hot-carrier lifetime below 600 K (Fig. 12) and the slight deviation of Jr from the LO phonon model (line in Fig. 20(a)) may be due to the “thermal phonon bottleneck effect” (commonly observed in bulk inorganic semiconductors and recently reported for MAPbI thin films). This can be attributed to the reduced LO phonon attenuation caused by partial heating of the acoustic model. This assumption can be supported by the higher acoustic phonon temperature T of 350 K at high pump power density.

图21是能量损失率(电子伏每皮秒或eV ps-1)对载流子温度(开尔文或K)的曲线图,表示甲基胺溴化铅(MAPbBr3)体块膜在低载流子密度和高载流子密度下的热载流子能量损失率与载流子温度Tc的关系。实线表示数字拟合公式(3)的拟合(如下面“LO-声子模型”部分所示)。低载流子密度和高载流子密度下拟合的LO声子寿命τLO和声学温度Ta分别为150±20、280±20fs,以及305±10和350±10K。Figure 21 is a graph of energy loss rate (electron volts per picosecond or eV ps -1 ) versus carrier temperature (Kelvin or K) showing a bulk film of methylamine lead bromide (MAPbBr 3 ) at low current-carrying Carrier density and hot carrier energy loss rate at high carrier density as a function of carrier temperature Tc . The solid line represents the fit of the numerical fit equation (3) (shown in the "LO-phonon model" section below). The fitted LO phonon lifetime τ LO and acoustic temperature T a at low and high carrier densities are 150±20, 280±20fs, and 305±10 and 350±10K, respectively.

然而,对于NC,如图20(a)所示,虽然NC的Jr(<N0>~2.5)最初在高载流子温度下遵循LO-声子模型,但它们与LO-声子模型有很大差异,因为热载流子群冷却到1500K以下。对于温度范围<1000K,当载流子密度从<N0>~0.1(图17(a))增加到<N0>~2.5时(图20(a)),Jr急剧减小几个数量级。例如,在<N0>~0.1时,700K下的Jr约为0.3eV ps-1,而在<N0>~2.5时为~0.008eV ps-1。此外,在<N0>~2.5,载流子温度<1200K时,Jr随着NC尺寸的增加而减小。所有这些特征表明存在另一种慢速热载流子冷却机制,该机制仅在高载流子密度下占主导地位,我们认为这是俄歇加热机制,因为众所周知,由于载流子-载流子相互作用增加,俄歇复合在受限半导体NC中强烈增强。因此,通过带边载流子的俄歇复合,弛豫的热载流子(在带边处)有一定可能性被重新激发到更高能态(图20(b)的插图)。However, for NCs, as shown in Fig. 20(a), although the J r (<N 0 > ~ 2.5) of NCs initially follow the LO-phonon model at high carrier temperatures, they are not consistent with the LO-phonon model There is a big difference as the hot carrier population cools below 1500K. For the temperature range <1000K, Jr decreases sharply by several orders of magnitude when the carrier density increases from <N 0 >∼0.1 (Fig. 17(a)) to <N 0 >∼2.5 (Fig. 20(a)) . For example, J r at 700K is about 0.3 eV ps -1 at <N 0 >∼0.1, and ~0.008 eV ps −1 at <N 0 >∼2.5. In addition, when <N 0 >~2.5 and carrier temperature <1200K, J r decreases with the increase of NC size. All these features point to the existence of another slow hot-carrier cooling mechanism, which only dominates at high carrier densities, which we consider to be the Auger heating mechanism because it is well known that due to the carrier-carrier Sub-interactions increase and Auger recombination is strongly enhanced in confined semiconductor NCs. Therefore, the relaxed hot carriers (at the band edge) have some possibility to be re-excited to higher energy states by the Auger recombination of the band-edge carriers (inset of Fig. 20(b)).

图20(c)显示,不同大小的NC的热载流子的计算浓度(nhot(t))以双指数方式弛豫,在1ps内发生快速衰减和在几十ps内发生较慢衰减——类似于热载流子温度(图12和图15)。快速衰减可归因于载流子-LO-声子相互作用。此外,拟合缓慢衰减寿命nhot(t)与1/3的俄歇寿命τAug(即τhot~τAug/3——图20(b))完全匹配,另见下文“俄歇加热模型”部分)。例如,小尺寸NC的较慢衰减寿命拟合为~12ps,非常接近τAug为38ps的1/3。实验数据与包括俄歇效应的简单模型之间的良好一致性可以强有力地证实在高载流子密度下进一步延迟的热载流子冷却中俄歇加热的主要贡献。给定τAug~√(VNC)和慢热载流子寿命τhot~τAug/3,俄歇诱导的热载流子冷却寿命可以亚线性地取决于NC体积(图20(b))。虽然俄歇加热导致热载流子冷却速率的减慢,有利于热载流子提取,但是还应该注意俄歇效应可能相反地降低载流子密度。因此,在聚光热载流子太阳能电池的应用中,在高泵浦功率密度下可能需要平衡热载流子寿命和载流子损失。Figure 20(c) shows that the calculated concentration of hot carriers (n hot (t)) of NCs of different sizes relaxes in a biexponential manner, with fast decay within 1 ps and slower decay within tens of ps— - similar to the hot carrier temperature (Fig. 12 and Fig. 15). The fast decay can be attributed to carrier-LO-phonon interactions. Furthermore, the fitted slow decay lifetime n hot (t) perfectly matches the Auger lifetime τ Aug of 1/3 (i.e. τ hot ∼τ Aug /3 - Fig. 20(b)), see also "Auger heating model "part). For example, the slower decay lifetime of small-sized NCs is fitted at ~12 ps, very close to 1/3 of τ Aug 's 38 ps. The good agreement between the experimental data and a simple model including the Auger effect can strongly confirm the dominant contribution of Auger heating in the further delayed hot-carrier cooling at high carrier densities. Given τ Aug ∼√(V NC ) and slow hot-carrier lifetime τ hot ∼τ Aug /3, the Auger-induced hot-carrier cooling lifetime can sublinearly depend on the NC volume (Fig. 20(b)) . Although Auger heating results in a slowdown of the hot-carrier cooling rate, which is beneficial to hot-carrier extraction, it should also be noted that the Auger effect may conversely reduce the carrier density. Therefore, in the application of concentrating hot-carrier solar cells, it may be necessary to balance the hot-carrier lifetime and carrier loss at high pump power densities.

除了慢速热载流子冷却之外,有效热载流子提取的可行性可能是热载流子太阳能电池的另一个挑战性问题。可能需要非常快速地提取热载流子以限制能量损失,其中竞争存在于提取速率和冷却速率之间,而不是复合速率。考虑到MAPbBr3薄膜估算的热载流子扩散长度为~16-90nm(取决于热载流子寿命和扩散系数)(见下文“热载流子扩散长度的估算”),因此提取热载流子在技术上是可行的。本文证明了从1,2-乙二硫醇(EDT)处理的MAPbBr3NCs(EDT-NC)到4,7-二苯基-1,10-菲咯啉(Bphen)的有效热电子提取。In addition to slow hot-carrier cooling, the feasibility of efficient hot-carrier extraction may be another challenging issue for hot-carrier solar cells. Very rapid extraction of hot carriers may be required to limit energy loss, where competition exists between extraction rate and cooling rate, rather than recombination rate. Taking into account that the estimated hot-carrier diffusion length for MAPbBr3 thin films is ~16-90 nm (depending on hot-carrier lifetime and diffusion coefficient) (see "Estimation of hot-carrier diffusion length" below), the hot-carrier sub is technically feasible. Here, we demonstrate efficient thermionic extraction from 1,2-ethanedithiol (EDT)-treated MAPbBr3 NCs (EDT-NCs) to 4,7-diphenyl-1,10-phenanthroline (Bphen).

图22示出了光电子强度(每秒计数或cts/s)对能量(电子伏特或eV)的曲线图,表示在氧化铟锡(ITO)基板上的(a)1,2-乙二硫醇(EDT)处理的和(b)经后退火的EDT处理的根据各种实施例的甲基胺溴化铅(MAPbBr3)纳米晶体(NC)膜,以及(c)7-二苯基-1,10-菲咯啉(Bphen)膜的紫外光电子能谱(UPS)。价带最大值(VBM)可以通过价带前沿线性外推到背景强度来确定,图22(a)-(c)中分别是1.9±0.1、2.3±0.1和2.9±0.1eV。Figure 22 shows a graph of photoelectron intensity (counts per second or cts/s) versus energy (electron volts or eV) representing (a) 1,2-ethanedithiol on an indium tin oxide (ITO) substrate (EDT) treated and (b) post-annealed EDT treated methylamine lead bromide (MAPbBr 3 ) nanocrystalline (NC) films according to various embodiments, and (c) 7-diphenyl-1 , Ultraviolet photoelectron spectroscopy (UPS) of 10-phenanthroline (Bphen) film. The valence band maximum (VBM) can be determined by linear extrapolation of the valence band front to the background intensity, which are 1.9±0.1, 2.3±0.1 and 2.9±0.1 eV in Fig. 22(a)-(c), respectively.

可以选择Bphen作为热电子提取材料,因为该分子半导体具有高电子迁移率并且具有比我们的EDT处理的NC的导带最小值(CBM)更高的最低未占分子轨道(LUMO)(参见图22,UPS测量),仅暗示在带边上具有足够过剩能量的热载流子可以注入Bphen(参见图23A)。Bphen could be chosen as the hot electron extraction material because this molecular semiconductor has high electron mobility and has a higher lowest unoccupied molecular orbital (LUMO) than the conduction band minimum (CBM) of our EDT-treated NCs (see Fig. 22 , UPS measurement), only implying that hot carriers with sufficient excess energy at the band edge can be injected into Bphen (see Figure 23A).

图23A是平带能量图(垂直轴电子伏特或eV),以说明从根据各种实施例的钙钛矿纳米晶体到7-二苯基-1,10-菲咯啉(Bphen)的热电子提取与竞争的热电子冷却途径。可以从UPS和紫外-可见测量确定NC(或Bphen)的导带最小值(CBM)(或LUMO水平)和价带最小值(VBM)(或最高占据分子轨道(HOMO)水平)。图23B示出了根据各种实施例的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)膜的原子力显微镜(AFM)图像。图23C是根据各种实施例的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)/7-二苯基-1,10-菲咯啉(Bphen)双层膜的扫描电子显微镜(SEM)图像。比例尺为100nm。23A is a flat-band energy diagram (vertical axis electron volts or eV) to illustrate thermal electron transfer from perovskite nanocrystals to 7-diphenyl-1,10-phenanthroline (Bphen) according to various embodiments Extraction and competition of thermionic cooling pathways. The conduction band minimum (CBM) (or LUMO level) and valence band minimum (VBM) (or highest occupied molecular orbital (HOMO) level) of NC (or Bphen) can be determined from UPS and UV-Vis measurements. Figure 23B shows an atomic force microscope (AFM) image of a 1,2-ethanedithiol (EDT)-treated nanocrystalline (NC) film according to various embodiments. 23C is a scanning electron scan of a 1,2-ethanedithiol (EDT)-treated nanocrystal (NC)/7-diphenyl-1,10-phenanthroline (Bphen) bilayer film according to various embodiments Microscope (SEM) images. Scale bar is 100 nm.

图23D是归一化透射率变化ΔT/T对能量(电子伏特或eV)的曲线图,表示根据各种实施例具有(连续线)/不具有(虚线)7-二苯基-1,10-菲咯啉(Bphen)的约35nm厚的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)膜在3.1eV光致激发之后(<N0>约0.1)的归一化瞬态吸收(TA)光谱。图23D的插图显示0.8ps下的未归一化瞬态吸收(TA)光谱。图23E是根据各种实施例的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)膜和1,2-乙二硫醇(EDT)处理的纳米晶体(NC)膜/7-二苯基-1,10-菲咯啉(Bphen)双层膜在不同的泵浦功率密度下热载流子温度(开尔文或K)对延迟时间(皮秒或ps)的曲线图。虚线箭头表示添加Bphen层后初始热载流子温度的降低,表明有效的热电子提取。FIG. 23D is a graph of normalized transmittance change ΔT/T versus energy (electron volts or eV) with (continuous line)/without (dashed line) 7-diphenyl-1,10 according to various embodiments. -Normalization of about 35 nm thick 1,2-ethanedithiol (EDT)-treated nanocrystalline (NC) films of phenanthroline (Bphen) after 3.1 eV photoexcitation (<N 0 >about 0.1) Transient Absorption (TA) Spectroscopy. The inset of Figure 23D shows the unnormalized transient absorption (TA) spectrum at 0.8 ps. 23E is 1,2-ethanedithiol (EDT)-treated nanocrystal (NC) film and 1,2-ethanedithiol (EDT)-treated nanocrystal (NC) film/7 according to various embodiments - Plot of hot carrier temperature (Kelvin or K) versus delay time (picoseconds or ps) for biphenyl-1,10-phenanthroline (Bphen) bilayer films at different pump power densities. The dashed arrows indicate the decrease in the initial hot-carrier temperature after adding the Bphen layer, indicating efficient hot-electron extraction.

图23F是提取效率ηhot(百分比或%)对热电子过剩能量(电子伏特或eV)的曲线图,表示根据各种实施例约35nm厚的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)/7-二苯基-1,10-菲咯啉(Bphen)双层膜中热电子提取效率的泵浦能量依赖。图23F的插图显示具有/不具有Bphen的约35nm厚的EDT-NC膜在2.5eV光致激发之后(<N0>约0.1)0.8ps下的未归一化TA光谱。图23G是提取效率ηhot(百分比或%)对厚度(纳米或nm)的曲线图,表示根据各种实施例的1,2-乙二硫醇(EDT)处理的纳米晶体(NC)/7-二苯基-1,10-菲咯啉(Bphen)双层膜和体块膜/7-二苯基-1,10-菲咯啉(Bphen)双层膜经3.1eV泵浦能量激发后热电子提取效率的钙钛矿膜厚度依赖。插图显示具有/不具有Bphen的约140nm厚的EDT-NC膜在3.1eV光致激发之后(<N0>约0.1)0.8ps下的未归一化TA光谱。x轴上的误差条表示图23F中测定的过剩能量和图23G中测定的样品厚度的不确定性,y轴上的误差条表示表示测定的提取效率的不确定性。23F is a graph of extraction efficiency η hot (percentage or %) versus hot electron excess energy (electron volts or eV), showing the efficiency of about 35 nm thick 1,2-ethanedithiol (EDT) treatment according to various embodiments. Pump energy dependence of hot electron extraction efficiency in nanocrystalline (NC)/7-diphenyl-1,10-phenanthroline (Bphen) bilayers. The inset of FIG. 23F shows the unnormalized TA spectra at 0.8 ps after 2.5 eV photoexcitation (<N 0 >about 0.1 ) of an approximately 35 nm thick EDT-NC film with/without Bphen. Figure 23G is a graph of extraction efficiency η hot (percentage or %) versus thickness (nanometers or nm) representing 1,2-ethanedithiol (EDT)-treated nanocrystals (NC)/7 according to various embodiments -Diphenyl-1,10-phenanthroline (Bphen) bilayer film and bulk film/7-diphenyl-1,10-phenanthroline (Bphen) bilayer film excited by 3.1eV pump energy Perovskite film thickness dependence of hot electron extraction efficiency. The inset shows the unnormalized TA spectrum at 0.8 ps after 3.1 eV photoexcitation (<N 0 >about 0.1 ) of a ~140 nm thick EDT-NC film with/without Bphen. The error bars on the x-axis represent the uncertainty in the excess energy measured in Figure 23F and the sample thickness measured in Figure 23G, and the error bars on the y-axis represent the uncertainty in the extraction efficiency measured.

图24(a)示出了透射率(任意单位或a.u.)对波数(每厘米或cm-1)的曲线图,表示根据各种实施例所制备的甲基胺溴化铅纳米晶体(MAPbBr3NCs)、1,2-乙二硫醇(EDT)处理的纳米晶体(EDT-NC)和70℃退火的1,2-乙二硫醇纳米晶体(Ann-EDT-NC)的衰减全反射-傅里叶变换红外(ATR-FTIR)光谱;以及光发射强度(任意单位或a.u.)对结合能(电子伏特或eV)的曲线图,表示根据各种实施例(b)未退火和(c)70℃后退火的1,2-乙二硫醇(EDT)处理的纳米晶体(EDT-NC)膜的硫(S)2p X射线光电子能谱(XPS)。S 2p可以在NC表面上解卷积成未结合的硫醇和结合的硫醇盐(参见关于配体交换的FTIR和XPS分析的讨论部分)。Figure 24(a) shows a graph of transmittance (arbitrary units or au) versus wavenumber (per centimeter or cm -1 ) for methylamine lead bromide nanocrystals (MAPbBr 3 NCs), 1,2-ethanedithiol (EDT)-treated nanocrystals (EDT-NC) and 70°C annealed 1,2-ethanedithiol nanocrystals (Ann-EDT-NC) attenuated total reflection- Fourier transform infrared (ATR-FTIR) spectra; and plots of light emission intensity (arbitrary units or au) versus binding energy (electron volts or eV) representing (b) unannealed and (c) according to various embodiments Sulfur (S)2p X-ray photoelectron spectroscopy (XPS) of 1,2-ethanedithiol (EDT)-treated nanocrystal (EDT-NC) films annealed at 70 °C. S 2p can be deconvoluted on the NC surface into unbound thiols and bound thiolates (see Discussion section on FTIR and XPS analysis of ligand exchange).

Bphen具有窄的电子带宽,这可以使其接近热载流子太阳能电池中所需的能量选择性接触点。EDT处理可用于用硫醇盐代替存在于所制备的NC表面上的长且高度绝缘的油酸配体(参见图24中的ATR-FTIR和XPS测量以及关于配体的FTIR和XPS分析的部分),以更有效地与Bphen在NC膜内电子偶联(如图25中的TEM图像所示,处理后NC填充更紧密)。图25示出了(a)根据各种实施例的未处理的中尺寸甲基胺溴化铅纳米晶体(MAPbBr3NC)膜的原子力显微镜(AFM)图像,和(b)根据各种实施例的1,2-乙二硫醇处理的甲基胺溴化铅纳米晶体(EDT处理的MAPbBr3NC)代表性透射电子显微镜(TEM)图像。图26示出了(a)根据各种实施例的中尺寸甲基胺溴化铅纳米晶体(MAPbBr3NC)膜,(b)根据各种实施例的1,2-乙二硫醇处理的纳米晶体(EDT处理的NC)膜,和(c)根据各种实施例的1,2-乙二硫醇处理的纳米晶体膜/7-二苯基-1,10-菲咯啉(EDT处理的NC膜/Bphen)双层膜在低泵浦功率密度下(左图,<N0>~0.1)和高泵浦功率密度下(右图,<N0>~2.5)的伪彩色瞬态吸收(TA)光谱。3.1eV光激发后,EDT-NC/Bphen的高能带尾可能会减少。Bphen has a narrow electronic bandwidth, which could bring it close to the energy-selective contacts needed in hot-carrier solar cells. EDT treatment can be used to replace the long and highly insulating oleic acid ligands present on the surface of as-prepared NCs with thiolates (see ATR-FTIR and XPS measurements in Figure 24 and the section on FTIR and XPS analysis of ligands ) to more effectively electronically couple with Bphen within the NC membrane (as shown in the TEM image in Figure 25, the NCs are packed more tightly after treatment). Figure 25 shows (a) atomic force microscopy (AFM) images of untreated medium-sized methylamine lead bromide nanocrystal (MAPbBr 3 NC) films according to various embodiments, and (b) Representative transmission electron microscope (TEM) image of 1,2-ethanedithiol-treated methylamine lead bromide nanocrystals (EDT-treated MAPbBr 3 NC). Figure 26 shows (a) medium-sized methylamine lead bromide nanocrystal (MAPbBr 3 NC) film according to various embodiments, (b) 1,2-ethanedithiol-treated Nanocrystalline (EDT-treated NC) films, and (c) 1,2-ethanedithiol-treated nanocrystalline films/7-diphenyl-1,10-phenanthroline (EDT-treated False-color transients of NC film/Bphen) bilayer film at low pump power density (left picture, <N 0 >~0.1) and high pump power density (right picture, <N 0 >~2.5) Absorption (TA) Spectrum. After 3.1eV photoexcitation, the high-energy band tail of EDT-NC/Bphen may be reduced.

通过Bphen的旋涂EDT-NC薄膜(参见图23B-C中的AFM和SEM图像)的热电子提取可以通过EDT-NC/Bphen双层膜的TA光谱的高能带尾瞬时发生的明显减少来验证(参见图23D,图26中的伪彩色TA光谱和关于“光电NC和NC膜中的Trions对热载流子的影响”部分)。Thermionic extraction by spin-coated EDT-NC thin films of Bphen (see AFM and SEM images in Fig. 23B–C) can be verified by the apparent reduction of high-energy band-tail transient occurrence in the TA spectra of EDT-NC/Bphen bilayer films (See Figure 23D, the false-color TA spectrum in Figure 26 and the section on "Effect of Trions in Photonic NCs and NC Films on Hot Carriers").

对于~35nm厚的EDT-NC膜,在添加Bphen层之后,初始Tc在低泵浦强度下从~1300K冷却到450K,在光激发后~200fs内在高泵浦强度下从~1800冷却到800K(图23E),表明具有较高能量和温度的载流子可以注入Bphen。从EDT-NC和Bphen之间的导带最小值和LUMO偏移,可以提取具有过剩能量≥0.2±0.1eV的热载流子(图27)。图27示出了能量图(y轴:以电子伏特或eV为单位的能量),表示由紫外光电子能谱(UPS)和紫外-可见(UV-VIS)光谱测量确定的根据各种实施例非退火、退火的1,2-乙二硫醇-纳米晶体(EDT-NC)膜和7-二苯基-1,10-菲咯啉(Bphen)的平带能级对准,针对热电子提取的情况进行说明。提取的热电子的过剩能量(Ehot-excess)可以由NC的导带最小值和Bphen的LUMO之间的带偏移确定。For ~35 nm thick EDT-NC film, the initial Tc cools from ~1300K to 450K at low pump intensity after adding the Bphen layer, and cools from ~1800 to 800K at high pump intensity within ~200fs after photoexcitation (FIG. 23E), indicating that carriers with higher energy and temperature can be injected into Bphen. From the conduction band minima and LUMO shift between EDT-NC and Bphen, hot carriers with excess energy ≥0.2±0.1 eV can be extracted (Fig. 27). Figure 27 shows an energy graph (y-axis: energy in electron volts or eV) representing the non-volatile energy in accordance with various embodiments determined from ultraviolet photoelectron spectroscopy (UPS) and ultraviolet-visible (UV-VIS) spectroscopy measurements. Flat-band level alignment of annealed, annealed 1,2-ethanedithiol-nanocrystal (EDT-NC) films and 7-diphenyl-1,10-phenanthroline (Bphen) for hot electron extraction The situation is explained. The excess energy (E hot-excess ) of the extracted hot electrons can be determined from the band shift between the conduction band minima of NC and the LUMO of Bphen.

考虑到热载流子增加的扩散系数(参见关于热载流子扩散长度估算的部分)和NC之间的超快热载流子跳跃(在几十fs内),热电子可能通过NC内部的电子扩散以及在NC界面处的跳跃而注入Bphen。热电子转移的驱动力可以是热载流子能量和LUMO能量之间相对于费米能量的能量差,如图23A所示。对于有机分子而言,大的态密度是典型的。因此,高效的热载流子转移可归因于Bphen的LUMO能级中的大的受主态密度以及Bphen和NC之间的强电子耦合。另外的对照实验证明Bphen可能是从EDT-NC/Bphen中的NC中提取热载流子的唯一途径,并且在Bphen中存在转移的电荷载流子参见“验证热载流子转移的对照实验”和“Bphen中转移电荷载流子的PIA信号”部分。Considering the increased diffusion coefficient of hot carriers (see the section on hot-carrier diffusion length estimation) and the ultrafast hot-carrier hopping between NCs (within tens of fs), hot electrons may pass through the NC interior Electron diffusion and hopping at the NC interface inject Bphen. The driving force for hot electron transfer can be the energy difference between the hot carrier energy and the LUMO energy relative to the Fermi energy, as shown in Figure 23A. A large density of states is typical for organic molecules. Therefore, the efficient hot-carrier transfer can be attributed to the large density of acceptor states in the LUMO level of Bphen and the strong electronic coupling between Bphen and NC. Additional control experiments prove that Bphen may be the only way to extract hot carriers from NCs in EDT-NC/Bphen, and there are transferred charge carriers in Bphen. See "Control experiments to verify hot carrier transfer" and section "PIA signal for transfer of charge carriers in Bphen".

图28(a)示出了吸光度(任意单位或a.u)对波长(纳米或nm)的曲线图,表示在玻璃上的Bphen膜的线性吸收光谱;(b)归一化负透射率变化——ΔT/T对波长(纳米或nm)的曲线图,表示7-二苯基-1,10-菲咯啉(Bphen)(300nm泵浦强度为20μJ cm-2;400nm泵浦强度为40μJ cm-2)、根据各种实施例的钙钛矿纳米晶体(NC)(400nm泵浦强度为15μJ cm-2)和根据各种实施例的1,2-乙二硫醇纳米晶体/7-二苯基-1,10-菲咯啉(EDT-NC/Bphen)(400nm泵浦强度为15μJ cm-2)在激发后2ps的负瞬态吸收光谱;(c)时间(皮秒或ps)对波长(纳米或nm)的曲线图,表示根据各种实施例的1,2-乙二硫醇处理的纳米晶体/7-二苯基-1,10-菲咯啉(EDT-NC/Bphen)双层膜用泵浦强度为15μJ cm-2的400nm光激发的伪彩色瞬态吸收(TA)光谱;(d)归一化负透射率变化——ΔT/T对时间(皮秒或ps)的曲线图,用300nm光激发的Bphen,和根据各种实施例的1,2-乙二硫醇处理的纳米晶体/7-二苯基-1,10-菲咯啉(EDT-NC/Bphen)双层膜用400nm光泵浦,在1300nm下探测的归一化负瞬态吸收光谱。实线是双指数衰减函数的拟合曲线。Figure 28(a) shows a graph of absorbance (arbitrary unit or au) versus wavelength (nanometer or nm) representing the linear absorption spectrum of a Bphen film on glass; (b) normalized negative transmittance change— A graph of ΔT/T versus wavelength (nanometer or nm) for 7-diphenyl-1,10-phenanthroline (Bphen) (300nm pump intensity is 20μJ cm -2 ; 400nm pump intensity is 40μJ cm - 2 ), perovskite nanocrystals (NC) (400nm pump intensity of 15 μJ cm −2 ) according to various embodiments and 1,2-ethanedithiol nanocrystals/7-diphenyl Negative transient absorption spectrum of 1,10-phenanthroline (EDT-NC/Bphen) (400nm pump intensity 15μJ cm -2 ) at 2ps after excitation; (c) time (picosecond or ps) versus wavelength (nano or nm) graph representing 1,2-ethanedithiol-treated nanocrystals/7-diphenyl-1,10-phenanthroline (EDT-NC/Bphen) bis Pseudocolor transient absorption (TA) spectra of the layer film excited by 400nm light with a pump intensity of 15μJ cm -2 ; (d) Normalized negative transmittance change——ΔT/T versus time (picosecond or ps) Graph, Bphen excited with 300 nm light, and 1,2-ethanedithiol-treated nanocrystals/7-diphenyl-1,10-phenanthroline (EDT-NC/Bphen) according to various examples Normalized negative transient absorption spectrum of a bilayer film pumped with 400 nm light and probed at 1300 nm. The solid line is the fitted curve of the double exponential decay function.

值得注意的是,我们还观察到EDT-NC/Bphen双层膜(其中仅选择性激发NC)和Bphen(带隙以上激发)类似的近红外(NIR)光诱导吸收(PIA)信号(参见图28和“Bphen中转移的电荷载流子的PIA信号”部分),这可能是由Bphen中的光生自由基负离子引起的。因此,EDT-NC/Bphen双层膜中的光诱导吸收(PIA)信号可归因于从NC到Bphen转移的热载流子群(图28(b))。尽管如此,另一个替代解释可能是从NC到Bphen的热态能量传递引起的激发单重态吸收。Notably, we also observed similar near-infrared (NIR) photoinduced absorption (PIA) signals for EDT-NC/Bphen bilayers (in which only NCs are selectively excited) and Bphen (excited above the bandgap) (see Fig. 28 and section "PIA signal of transferred charge carriers in Bphen"), which may be caused by photogenerated radical anions in Bphen. Therefore, the photoinduced absorption (PIA) signal in the EDT-NC/Bphen bilayer film can be attributed to the hot carrier population transferred from NC to Bphen (Fig. 28(b)). Nevertheless, another alternative explanation could be the excited singlet absorption caused by the thermal state energy transfer from NC to Bphen.

可以基于在添加Bphen后~0.8ps处的带边光漂白强度的减少百分比来估算热电子提取效率(ηhot)(因为当热电子弛豫到带边时,降低的带边漂白强度可以归因于热载流子的提取)。对于~35nm厚的EDT-NC/Bphen双层膜,在<N0>~0.1和2.5泵浦强度下计算的ηhot分别为~72%和~58%。在较高的泵浦功率密度下降低的多热电子注入效率可能是由于从Bphen到NC的反电子转移增加,估算的反电子转移时间为~80ps(图29和“反电子转移时间估算”部分)。Hot electron extraction efficiency (η hot ) can be estimated based on the percent reduction in band-edge photobleaching intensity at ~0.8 ps after addition of Bphen (because when hot electrons relax to the band-edge, the reduced band-edge bleaching intensity can be attributed to in the extraction of hot carriers). For ~35 nm thick EDT-NC/Bphen bilayer films, the calculated η hot is ~72% and ~58% at <N 0 > ~0.1 and 2.5 pump intensities, respectively. The reduced multi-hot electron injection efficiency at higher pump power densities may be due to increased back electron transfer from Bphen to NC, with an estimated back electron transfer time of ~80 ps (Fig. ).

图29是归一化透射率变化ΔT/T对时间(皮秒或ps)的曲线图,表示根据各种实施例的1,2-乙二硫醇处理的纳米晶体(EDT-NC)膜和根据各种实施例的1,2-乙二硫醇处理的纳米晶体/7-二苯基-1,10-菲咯啉(EDT-NC/Bphen)双层膜在(a)低泵浦功率密度下(<N0>~0.1)和(b)高泵浦功率密度下(<N0>~2.5)3.1eV光激发的归一化带边漂白动力学。图30A是归一化透射率变化ΔT/T对能量(电子伏特或eV)的曲线图,表示根据各种实施例退火的具有(连续线)和不具有(虚线)7-二苯基-1,10-菲咯啉(Bphen)提取层的1,2-乙二硫醇处理(EDT处理)中尺寸甲基胺溴化铅纳米晶体(MAPbBr3NC)膜在低泵浦功率密度下<N0>~0.1的归一化瞬态吸收光谱。图30A的插图显示0.8ps下的未归一化TA光谱,ηhot确定为~83%。图30B是载流子温度(开尔文或K)对时间(皮秒或ps)的曲线图,表示根据各种实施例的两个样本的提取热载流子温度对延迟时间的关系。图30C是归一化透射率变化ΔT/T对能量(电子伏特或eV)的曲线图,表示具有(连续线)和不具有(虚线)7-二苯基-1,10-菲咯啉(Bphen)提取层的甲基胺溴化铅(MAPbBr3)体块膜(~240nm厚)在低泵浦功率密度下2×1017cm-3的归一化瞬态吸收(TA)光谱。图30C的插图显示0.8ps下的未归一化TA光谱,ηhot确定为~16%。图30D示出了根据各种实施例的两个样本的载流子温度(开尔文或K)对时间延迟(皮秒或ps)的曲线图。光激发能量为3.1eV。29 is a graph of normalized transmittance change ΔT/T versus time (picoseconds or ps) for 1,2-ethanedithiol-treated nanocrystal (EDT-NC) films and 1,2-ethanedithiol-treated nanocrystal/7-diphenyl-1,10-phenanthroline (EDT-NC/Bphen) bilayers according to various embodiments at (a) low pump power Normalized band-edge bleaching kinetics for 3.1 eV photoexcitation at density (<N 0 >~0.1) and (b) high pump power density (<N 0 >~2.5). 30A is a graph of normalized transmittance change ΔT/T versus energy (electron volts or eV) showing 7-diphenyl-1 with (continuous line) and without (dashed line) annealed according to various embodiments. , 1,2-ethanedithiol-treated (EDT-treated) medium-sized methylamine lead bromide nanocrystal (MAPbBr 3 NC) films of 10-phenanthroline (Bphen)-extracted layer at low pump power densities <N 0 > ~ 0.1 normalized transient absorption spectrum. The inset of Figure 30A shows the unnormalized TA spectrum at 0.8 ps, with η hot determined to be -83%. 30B is a graph of carrier temperature (Kelvin or K) versus time (picoseconds or ps) showing extracted hot carrier temperature versus delay time for two samples according to various embodiments. Figure 30C is a graph of normalized transmittance change ΔT/T versus energy (electron volts or eV) with (continuous line) and without (dashed line) 7-diphenyl-1,10-phenanthroline ( Normalized transient absorption (TA) spectrum of 2×10 17 cm -3 bulk film (~240nm thick) of methylamine lead bromide (MAPbBr 3 ) bulk film (~240nm thick) in Bphen) extraction layer at low pump power density. The inset of Figure 30C shows the unnormalized TA spectrum at 0.8 ps, with η hot determined to be -16%. Figure 30D shows a graph of carrier temperature (Kelvin or K) versus time delay (picoseconds or ps) for two samples according to various embodiments. The photoexcitation energy is 3.1 eV.

考虑到NC膜中的空隙(图23B AFM图像),一些Bphen分子可以穿透NC膜的上层,这可以通过增加较薄的NC薄膜/Bphen双层膜中的NC/Bphen界面来进一步提高热载流子提取效率。此外,适度的后加热(例如,在70℃下5分钟)EDT-NC不仅可以进一步增强电子耦合(参见图24中的XPS光谱和“配体交换的FTIR和XPS分析”部分)和ηhot至~83%(图30A),还可以增加NC相对于价带最小值(VBM)的费米能级(图27)(可能是由于退火期间的硫掺杂)。这可以实现提取具有高于带边(高达0.5±0.1eV)的过剩能量的热载流子,Tc从~1300冷却到400K(图30B)。Considering the voids in the NC film (Fig. 23B AFM image), some Bphen molecules can penetrate the upper layer of the NC film, which can further improve the heat loading by increasing the NC/Bphen interface in the thinner NC film/Bphen bilayer Fluor extraction efficiency. Furthermore, moderate post-heating (e.g., 5 min at 70 °C) of EDT-NC can not only further enhance the electronic coupling (see XPS spectra in Fig . ~83% (FIG. 30A), and can also increase the Fermi level of NCs relative to the valence band minimum (VBM) (FIG. 27) (probably due to sulfur doping during annealing). This enables extraction of hot carriers with excess energy above the band edge (up to 0.5 ± 0.1 eV) with Tc cooling from ~1300 to 400K (Fig. 30B).

通过泵能量相关的ηhot可以揭示热电子注入Bphen的进一步证据。如图23F所示,随着热载流子过剩能量从~0.7eV减少到0.1eV(使用带边以上的泵浦能量从3.1eV到2.5eV激发),ηhot从~72%减少到15%。这些结果可以验证只有具有足够过剩能量的热载流子可以注入Bphen(与图4a中的能级图一致)。它们还证明了使用Bphen和窄LUMO提取热电子的高选择性。重要的是,当NC膜的厚度从~35nm增加到~140nm时(图31),在3.1eV光激发后,ηhot从~72%急剧下降到20%(图23G)。减少的热电子提取可能是由于NC膜内的有限的热电子扩散/跳跃范围引起的。图31示出了根据各种实施例的具有不同厚度的1,2-乙二硫醇处理的纳米晶体(EDT-NC膜)的横截面扫描电子显微镜(SEM)图像。图31(a)-(d)中的比例尺是100nm。Further evidence for hot electron injection into Bphen can be revealed by pump energy-dependent η hot . As shown in Figure 23F, as the hot carrier excess energy decreases from ~0.7eV to 0.1eV (excitation from 3.1eV to 2.5eV using pump energy above the band edge), ηhot decreases from ~72% to 15% . These results can verify that only hot carriers with sufficient excess energy can be injected into Bphen (consistent with the energy level diagram in Fig. 4a). They also demonstrate high selectivity for hot electron extraction using Bphen and a narrow LUMO. Importantly, when the thickness of the NC film was increased from ~35nm to ~140nm (Fig. 31), η hot dropped sharply from ~72% to 20% after 3.1 eV photoexcitation (Fig. 23G). The reduced hot electron extraction may be caused by the limited hot electron diffusion/hopping range within the NC film. 31 shows cross-sectional scanning electron microscope (SEM) images of 1,2-ethanedithiol-treated nanocrystals (EDT-NC films) with different thicknesses, according to various embodiments. The scale bar in Figure 31(a)-(d) is 100 nm.

相比之下,由于最初的快速热载流子冷却,在相似的光激发条件下,厚度为~240nm的体块膜/Bphen的ηhot为~16%,Tc仅从~450变化到380K(图30C-D)。即使当体块膜厚度减小到~40nm时,ηhot仍然比EDT-NC膜小得多。In contrast, bulk film/Bphen with a thickness of ∼240 nm has an ηhot of ∼16% and Tc only changes from ∼450 to 380K under similar photoexcitation conditions due to the initial rapid hot-carrier cooling (FIG. 30C-D). Even when the bulk film thickness is reduced to ~40 nm, η hot is still much smaller than that of EDT-NC film.

总之,在类似光激发条件下,与钙钛矿体块膜相比,胶体MAPbBr3NC可以表现出慢约2个数量级的热载流子冷却时间和约4倍高的热载流子温度。在低泵浦功率密度下,NC中的热载流子冷却可能由声子瓶颈效应介导,这在较小的NC中出乎意料地较慢(与传统NC相比)。这一发现与传统胶体半导体纳米晶体中的常规理解相反,即随着维数的降低,带内俄歇效应更为显着,从而突破声子瓶颈。在高泵浦功率密度下,俄歇加热主导热载流子冷却速率,在较大的NC中可能较慢(以前在常规NC中未观察到)。重要的是,这些胶体钙钛矿纳米晶体中的增强的慢速热载流子冷却可以实现有效的热载流子提取。结果表明,具有高达~0.6eV过剩能量的热电子可以从经表面处理的MAPbBr3NCs薄膜有效地注入(高达~83%)到电子提取层,注入时间为~0.2ps。In summary, under similar photoexcitation conditions, colloidal MAPbBr3 NCs can exhibit about 2 orders of magnitude slower hot-carrier cooling time and about 4 times higher hot-carrier temperature compared with bulk perovskite films. At low pump power densities, hot-carrier cooling in NCs may be mediated by a phonon bottleneck effect, which is unexpectedly slower in smaller NCs (compared to conventional NCs). This finding is contrary to the conventional understanding in traditional colloidal semiconductor nanocrystals, that is, as the dimensionality decreases, the in-band Auger effect is more significant, thereby breaking through the phonon bottleneck. At high pump power densities, Auger heating dominates the hot-carrier cooling rate, which may be slower in larger NCs (previously not observed in conventional NCs). Importantly, the enhanced slow hot-carrier cooling in these colloidal perovskite nanocrystals enables efficient hot-carrier extraction. The results show that hot electrons with excess energy up to ∼0.6 eV can be efficiently injected (up to ∼83%) from the surface-treated MAPbBr3 NCs film into the electron extraction layer with an injection time of ∼0.2 ps.

钙钛矿NC中的热载流子性质可为极薄吸收体(ETA)和聚光热载流子太阳能电池提供新的机会。对于前者,ETA-太阳能电池在概念上可能接近染料敏化的异质结。分子染料可以用极薄(~数十纳米)的半导体吸收层代替。通过纳米结构化电极(例如,使用高度多孔的TiO2支架,ZnO纳米线阵列等),由于表面增大和多次散射,由薄吸收体覆盖的有效面积可以增加几个数量级。最重要的是,由于热载流子的传输路径长度较短,ETA层对于热载流子提取可能是非常有益的。对于后者,聚光型太阳能电池中的照明功率可以增加到1000suns,比典型电池中的1-sun强度大得多,俄歇加热诱导的钙钛矿NC中较慢的热载流子冷却也是可应用的。The hot-carrier properties in perovskite NCs may provide new opportunities for extremely thin absorbers (ETAs) and concentrating hot-carrier solar cells. For the former, ETA-solar cells may conceptually approach dye-sensitized heterojunctions. Molecular dyes can be replaced by extremely thin (~tens of nanometers) semiconductor absorber layers. By nanostructuring electrodes (e.g., using highly porous TiO2 scaffolds, ZnO nanowire arrays, etc.), the effective area covered by thin absorbers can be increased by several orders of magnitude due to surface enlargement and multiple scattering. Most importantly, the ETA layer may be very beneficial for hot-carrier extraction due to the shorter transport path length of hot-carriers. For the latter, the illumination power in concentrator solar cells can be increased up to 1000suns, much larger than the 1-sun intensity in typical cells, as is the slower hot-carrier cooling in perovskite NCs induced by Auger heating. Can be used.

不同尺寸的钙钛矿纳米晶体合成Synthesis of Perovskite Nanocrystals of Different Sizes

Zhang等人报道了通过配体辅助的再沉淀(LARP)方法合成甲基胺溴化铅(MAPbBr3)纳米晶体(NC)(见《明亮的发光和颜色可调的胶体CH3NH3PBX3(X=Br,I,Cl)量子点:显示技术的潜在替代品》,ACS Nano 9,4533-4542,2015)。首先在玻璃小瓶中,将0.16mmol甲基溴化铵(MABr),0.2mmol溴化铅(PbBr2)在5mL二甲基甲酰胺(DMF)溶液中混合,然后将50μL油胺(OAm)和0.5mL油酸(OAc)在DMF溶液中混合,形成最终的前驱体溶液。将含有5mL甲苯的另一个圆底烧瓶在油浴中预热至60℃,然后在剧烈搅拌条件下将250μL制备的前驱体溶液迅速注入热甲苯溶液中,溶液立即变为绿色,确认MAPbBr3NC的形成。继续反应5分钟并在水浴中冷却停止。将反应溶液转移到离心管中,以不同大小的球形MAPbBr3NC所需速度离心。将MAPbBr3NC沉淀重新溶解在甲苯溶液中用于进一步研究。对于小尺寸、中尺寸和大尺寸NC,分别使用12000rpm、8000rpm和4000rpm的离心速度分离沉淀物。对于小尺寸、中尺寸和大尺寸NC,平均直径分别为~4.9、8.9和11.6nm(图6)。Zhang et al. reported the synthesis of methylamine lead bromide (MAPbBr 3 ) nanocrystals (NCs) via a ligand-assisted reprecipitation (LARP) method (see "Bright Luminescent and Color-Tunable Colloidal CH 3 NH 3 PBX 3 (X=Br, I, Cl) Quantum Dots: A Potential Alternative for Display Technology", ACS Nano 9, 4533-4542, 2015). First in a glass vial, mix 0.16 mmol methylammonium bromide (MABr), 0.2 mmol lead bromide (PbBr 2 ) in 5 mL dimethylformamide (DMF) solution, then 50 μL oleylamine (OAm) and 0.5 mL of oleic acid (OAc) was mixed in DMF solution to form the final precursor solution. Another round-bottomed flask containing 5 mL of toluene was preheated to 60 °C in an oil bath, and then 250 μL of the prepared precursor solution was quickly injected into the hot toluene solution under vigorous stirring conditions, and the solution immediately turned green, confirming that MAPbBr 3 NC Formation. The reaction was continued for 5 minutes and stopped by cooling in a water bath. Transfer the reaction solution to a centrifuge tube and centrifuge at the desired speed for spherical MAPbBr 3 NCs of different sizes. The MAPbBr3NC precipitate was redissolved in toluene solution for further study. For small, medium and large sized NCs, centrifugation speeds of 12000 rpm, 8000 rpm and 4000 rpm were used to separate the precipitates, respectively. The mean diameters were -4.9, 8.9 and 11.6 nm for small, medium and large size NCs, respectively (Fig. 6).

MAPbBr 3体块膜制备 MAPbBr3 Bulk Membrane Preparation

在石英基底上旋涂含有0.6M MAPbBr3的DMF溶液(5000rpm,12秒)。在旋涂过程中,在旋转开始3秒后向薄膜中加入几滴甲苯。然后将膜在室温下干燥30分钟并在70℃下退火5分钟。所有的薄膜沉积和退火都在充满N2的手套箱中完成。体块膜的晶粒尺寸大于~1μm,厚度约为240nm(图7)。A DMF solution containing 0.6 M MAPbBr 3 was spin-coated on a quartz substrate (5000 rpm, 12 seconds). During spin coating, add a few drops of toluene to the film 3 s after the start of the spin. The films were then dried at room temperature for 30 min and annealed at 70 °C for 5 min. All film deposition and annealing were done in a N2- filled glove box. The bulk film has a grain size greater than ~1 μm and a thickness of approximately 240 nm (Fig. 7).

MAPbBr3NC和EDT处理的MAPbBr3NC膜的制备Preparation of MAPbBr 3 NC and EDT-treated MAPbBr 3 NC membrane

通过逐层旋涂处理方法生长MAPbBr3NC膜和1,2-乙二硫醇(EDT)处理的NC。所有旋涂步骤均设定在1000rpm,旋转时间固定为30秒。为了制备NC膜,将在甲苯(10mg ml-1)中的NC旋涂在玻璃基板上两层。对于EDT处理的NC膜,每层EDT处理的NC膜的生长包括三个步骤:(1)在基板顶部旋涂NC溶液;(2)用0.2M EDT的2-丙醇溶液覆盖NC薄膜,等待30秒后再旋涂;(3)在膜上滴加无水甲苯,然后旋涂以清洗剩余的长链配体。重复上述过程2-10次,得到不同厚度的NC膜。对于退火后的样品,退火在70℃下进行5分钟。所有处理均在充满N2的手套箱中进行。MAPbBr 3 NC films and 1,2-ethanedithiol (EDT)-treated NCs were grown by a layer-by-layer spin-coating process. All spin-coating steps were set at 1000 rpm and the spin time was fixed at 30 s. To prepare NC films, NCs in toluene (10 mg ml −1 ) were spin-coated on glass substrates in two layers. For EDT-treated NC films, the growth of each layer of EDT-treated NC films involved three steps: (1) spin-coating NC solution on top of the substrate; (2) covering the NC film with 0.2 M EDT in 2-propanol solution, and waiting for Spin coating after 30 seconds; (3) add anhydrous toluene dropwise on the membrane, and then spin coating to clean the remaining long-chain ligands. Repeat the above process 2-10 times to obtain NC films with different thicknesses. For the annealed samples, the annealing was performed at 70 °C for 5 min. All treatments were performed in a N2 -filled glove box.

Bphen薄膜制备Bphen film preparation

通过热蒸发方法在10-6托的压力下沉积4,7-二苯基-1,10-菲咯啉(红菲咯啉或Bphen)。Bphen以0.1-0.2nm s-1的速率沉积在经旋涂的、非退火或退火的钙钛矿NC膜上。4,7-Diphenyl-1,10-phenanthroline (rubphenanthroline or Bphen) was deposited by a thermal evaporation method at a pressure of 10 −6 Torr. Bphen was deposited on spin-coated, non-annealed or annealed perovskite NC films at a rate of 0.1–0.2 nm s −1 .

CdSe纳米晶体CdSe nanocrystals

分散在甲苯中的CdSe纳米晶体购自Sigma-Aldrich公司。CdSe nanocrystals dispersed in toluene were purchased from Sigma-Aldrich Company.

TA测量TA measurement

使用Helios光谱仪(Ultrafast Systems公司)在fs-ns的时间范围内进行瞬态吸收(TA)测量。泵浦脉冲由光学参量放大器(Coherent OPerA SoloTM或Light ConversionTOPAS-CTM)产生,其由1-kHz再生放大器泵浦(即Coherent LibraTM(50fs,1KHz,800nm)或Coherent LegendTM(150fs,1KHz,800nm)),或通过将带有BBO晶体的800nm基本再生放大器输出倍频,以获得400nm脉冲。两种系统均使用锁模钛蓝宝石振荡器(Coherent VitesseTM,80MHz)。通过将一小部分(~10μJ)再生放大器的基本800nm激光脉冲聚焦到2mm蓝宝石晶体(可见光范围)或1cm蓝宝石晶体(近红外范围)中,产生白光连续探测光束(在400nm-1500nm范围内)。使用用于UV-VIS区域的CMOS传感器和用于NIR区域的InGaAs二极管阵列传感器收集探测光束。在测量期间,将样品在室温下保持在充满N2的室中。对于热载流子提取测量,对于Bphen/钙钛矿/玻璃基板的样品结构,泵浦光束从Bphen侧激发样品。Transient absorption (TA) measurements were performed in the fs-ns time range using a Helios spectrometer (Ultrafast Systems). The pump pulses were generated by an optical parametric amplifier (Coherent OPerA Solo TM or Light ConversionTOPAS-C TM ), which was pumped by a 1-kHz regenerative amplifier (i.e., Coherent Libra TM (50fs, 1KHz, 800nm) or Coherent Legend TM (150fs, 1KHz ,800nm)), or by doubling the output of an 800nm basic regenerative amplifier with a BBO crystal to obtain a 400nm pulse. Both systems use a mode-locked Ti:Sapphire oscillator (Coherent Vitesse , 80MHz). A white-light continuous probe beam (in the 400nm–1500nm range) is generated by focusing a small portion (~10 μJ) of the fundamental 800nm laser pulse from the regenerative amplifier into a 2mm sapphire crystal (visible range) or a 1cm sapphire crystal (near infrared range). The probe beam is collected using a CMOS sensor for the UV-VIS region and an InGaAs diode array sensor for the NIR region. During the measurements, the samples were kept in a N2 - filled chamber at room temperature. For hot carrier extraction measurements, the pump beam excites the sample from the Bphen side for the sample structure of Bphen/perovskite/glass substrate.

PL和时间分辨PL测量PL and Time-Resolved PL Measurements

以常规反向散射几何结构收集稳态PL光谱,并通过耦合到单色仪(Acton,SpectraProTM)的电荷耦合器件阵列(Princeton Instruments,PixisTM)检测。PL的时间演变由Optronis OptoscopeTM超快扫描照相机系统解决。激发源是与上述相同的再生放大器(Coherent LibraTM)和光学参量放大器(Coherent OPerA SoloTM)。所有上述测量均在室温下进行。Steady-state PL spectra were collected in conventional backscattering geometry and detected by a charge-coupled device array (Princeton Instruments, Pixis ) coupled to a monochromator (Acton, SpectraPro ). The temporal evolution of PL is resolved by the Optronis Optoscope TM ultrafast scanning camera system. The excitation source was the same regenerative amplifier (Coherent Libra ) and optical parametric amplifier (Coherent OPerA Solo ) as above. All the above measurements were performed at room temperature.

TEM、AFM和SEM测量TEM, AFM and SEM measurements

通过透射电子显微镜(TEM,JEOL JEM-2010)测定NC的形状和大小。通过原子力显微镜(AFM,Asylum Research MFP-3D)记录钙钛矿NC膜的表面形态,其中硅悬臂在攻丝力模式下操作。通过扫描电子显微镜(SEM,JEOL JSM-7600F)表征样品的形态和厚度。The shape and size of NCs were determined by transmission electron microscopy (TEM, JEOL JEM-2010). The surface morphology of the perovskite NC films was recorded by atomic force microscopy (AFM, Asylum Research MFP-3D), with the silicon cantilever operating in the tapping force mode. The morphology and thickness of the samples were characterized by scanning electron microscopy (SEM, JEOL JSM-7600F).

UPS和XPS测量UPS and XPS measurements

紫外光电子能谱(UPS)用于研究价带占据态的界面能级对准。使用与XPS中相同的仪器进行光谱收集。激发光源为He-I(h=21.2eV),灯功率为50W。使用CAE模式以2.00eV通过能量在表面法线下采集光电子,样品偏置为-10V。采用X射线光电子能谱(XPS)分析样品的组成。通过气密的样品转移容器将样品从手套箱转移到超高真空(UHV)分析室。UHV室的压力保持在1×10-9托下。使用200W的Al Kα(hν=1486.6eV)光子源激发样品,同时通过半球形电子能量分析仪(Omicron EA-125)进行光谱收集。测量在室温下进行,光电子沿表面法线方向收集。Ultraviolet photoelectron spectroscopy (UPS) was used to study the interface level alignment of valence band occupied states. Spectral collection was performed using the same instrumentation as in XPS. The excitation light source is He-I (h=21.2eV), and the lamp power is 50W. Photoelectrons were collected at the surface normal using CAE mode with a pass energy of 2.00 eV and a sample bias of −10 V. The composition of the samples was analyzed by X-ray photoelectron spectroscopy (XPS). Samples were transferred from the glove box to an ultra-high vacuum (UHV) analysis chamber via an airtight sample transfer container. The pressure of the UHV chamber was maintained at 1 x 10 -9 Torr. A 200W Al Kα (hν=1486.6eV) photon source was used to excite the sample while spectrum collection was performed by a hemispherical electron energy analyzer (Omicron EA-125). The measurements are performed at room temperature and the photoelectrons are collected along the surface normal direction.

XRD、UV-VIS、AR-FTIR和拉曼测量XRD, UV-VIS, AR-FTIR and Raman measurements

通过粉末X射线衍射(XRD,Bruker D8 Advance)分析晶体结构。使用具有积分球(ISR-3100)的UV-VIS光谱仪(SHIMADZU UV-3600 UV-VIS-NIR分光光度计)记录吸收光谱。通过配备有通用衰减全反射(ATR)取样附件(PerkinElmer,Waltham,MA,USA)的FrontierFT-IR/NIR光谱仪(PerkinElmer,Waltham,MA,USA)测量所有样品的FTIR光谱。使用WITec拉曼显微镜(WITec GmbH,Ulm,Germany)以633nm HeNe激光器作为激发源记录拉曼光谱。The crystal structure was analyzed by powder X-ray diffraction (XRD, Bruker D8 Advance). Absorption spectra were recorded using a UV-VIS spectrometer (SHIMADZU UV-3600 UV-VIS-NIR spectrophotometer) with an integrating sphere (ISR-3100). FTIR spectra of all samples were measured by a Frontier FT-IR/NIR spectrometer (PerkinElmer, Waltham, MA, USA) equipped with a universal attenuated total reflectance (ATR) sampling accessory (PerkinElmer, Waltham, MA, USA). Raman spectra were recorded using a WITec Raman microscope (WITec GmbH, Ulm, Germany) with a 633 nm HeNe laser as excitation source.

热载流子寿命hot carrier lifetime

应当注意,热载流子冷却时间的复杂相互作用由以下几个因素导致:It should be noted that the complex interplay of hot carrier cooling times results from several factors:

(i)泵浦能量(即载流子的过剩能量——通常,过剩能量越高导致热载流子寿命越长);(i) pumping energy (i.e. excess energy of the carriers - in general, higher excess energy results in longer hot-carrier lifetime);

(ii)初始热载流子密度(即通常载流子密度越高导致热载流子寿命越长);和(ii) initial hot carrier density (i.e. generally higher carrier density results in longer hot carrier lifetime); and

(iii)特定热载流子温度下的能量损失率(如图17a所示,其中对于从1600到300K的热载流子温度,能量损失率变化几个数量级)——通常,较低的热载流子温度产生较小的能量损失率。(应该注意的是,列出的寿命是从脉冲激发到热载流子冷却达到600K的时间间隔。)(iii) Energy loss rate at a specific hot-carrier temperature (as shown in Figure 17a, where the energy loss rate varies by several orders of magnitude for hot-carrier temperatures from 1600 to 300K)—generally, lower thermal The carrier temperature produces a smaller energy loss rate. (It should be noted that the lifetimes listed are the time interval from pulse excitation to hot-carrier cooling to 600K.)

在没有指定上述参数/条件的情况下,难以概括并且非常不公平地比较不同材料之间的热载流子寿命。此外,所测量的热载流子寿命可能受所用实验技术的时间分辨率的限制,从而产生人为的更长的寿命,其受系统时间响应而非其固有的热载流子寿命的限制。例如,使用超快扫描照相机或时间相关单光子计数(TCSPC)系统通过时间分辨光致发光(TRPL)技术测量热载流子寿命可能会受到这些设备的系统分辨率的限制(即对于大多数超快扫描照相机~10ps,对于Hamamatsu系统~1ps,对于TCSPC系统通常为~50ps)。另一方面,TA或荧光上转换PL技术具有<150fs的更高系统时间响应,可识别材料的更真实的热载流子寿命。因此,必须适当注意对文献中报告的值进行公平比较。Without specifying the above parameters/conditions, it is difficult to generalize and a very unfair comparison of hot carrier lifetimes between different materials. Furthermore, the measured hot-carrier lifetime may be limited by the temporal resolution of the experimental technique used, resulting in artificially longer lifetimes that are limited by the system's temporal response rather than its intrinsic hot-carrier lifetime. For example, measuring hot-carrier lifetimes by time-resolved photoluminescence (TRPL) techniques using ultrafast scanning cameras or time-correlated single-photon counting (TCSPC) systems may be limited by the system resolution of these devices (i.e., for most ultra- ~10 ps for fast scan cameras, ~1 ps for Hamamatsu systems, typically ~50 ps for TCSPC systems). On the other hand, TA or fluorescent up-conversion PL technology has a higher system time response of <150 fs, which can identify a more realistic hot-carrier lifetime of the material. Therefore, due care must be taken to make a fair comparison of values reported in the literature.

为了确保热载流子温度和冷却动力学的公平比较,在考虑上述参数(即载流子密度、载流子温度、泵浦能量和技术)的情况下完成材料的汇总,在图14中示出。此外,应该注意到图14中的热载流子冷却寿命定义是从脉冲激发到热载流子冷却达到600K的时间间隔(上述(iii))。以该温度为基准,因为先前的理论计算已经表明,对于Tc>600K,在宽范围的吸收体带隙上仍可能存在明显的热载流子转换效率(即>40%)。随着热载流子分布接近晶格的热平衡(300K),能量损失率可能变得慢得多(参见图17(a))。尽管这些伪“热载流子”产生了长寿命,但它们实际上对热载流子太阳能电池的操作几乎没有贡献。因此,本文不作比较。To ensure a fair comparison of hot-carrier temperature and cooling kinetics, a summary of materials was done taking into account the above parameters (i.e., carrier density, carrier temperature, pumping energy, and technology), shown in Fig. out. In addition, it should be noted that the hot-carrier cooling lifetime in Fig. 14 is defined as the time interval from pulse excitation to hot-carrier cooling reaching 600 K ((iii) above). This temperature is taken as a benchmark, since previous theoretical calculations have shown that for Tc >600K, significant hot-carrier conversion efficiencies (ie >40%) are still possible over a wide range of absorber bandgaps. As the hot carrier distribution approaches the thermal equilibrium of the lattice (300K), the energy loss rate may become much slower (see Fig. 17(a)). Although these pseudo "hot carriers" generate long lifetimes, they actually contribute little to the operation of hot-carrier solar cells. Therefore, this article does not make a comparison.

LO声子模型LO Phonon Model

每个载流子Jr的能量损失率以由-1.5kb dTc/dt提取的Tc确定。Jr可以拟合以下模型:The rate of energy loss per carrier Jr is determined in terms of Tc extracted from −1.5kb dTc /dt . J r can fit the following models:

Figure BDA0001906743920000411
Figure BDA0001906743920000411

其中τLO是特征LO声子衰减时间,Ta是声学声子温度,

Figure BDA0001906743920000421
是声子能量(~42meV),NLO(T)是温度T下的LO-声子占据数。图2a的拟合产生了与MAPbBr3NC(~310K)和体块膜(~305K)相当的Ta。对于小、中和大NC,τLO分别为~340fs、220fs和180fs,相比之下,体块膜的快速τLO约为150fs。where τLO is the characteristic LO phonon decay time, Ta is the acoustic phonon temperature,
Figure BDA0001906743920000421
is the phonon energy (~42meV), and N LO (T) is the LO-phonon occupancy at temperature T. The fit of Fig. 2a yielded a T a comparable to that of MAPbBr3 NCs (~310K) and bulk membranes (~305K). For small, medium, and large NCs, the τ LO was ~340 fs, 220 fs, and 180 fs, respectively, compared to the fast τ LO of ~150 fs for bulk membranes.

俄歇加热模型Auger heating model

从带边光漂白动力学的泵浦功率密度依赖(图16(f))中提取MAPbBr3NC的俄歇衰变寿命,其表现出对NC体积(VNC)的亚线性依赖,为τAug~√(VNC)(图20(a))。这种行为与最近在弱限制CsPbBr3NC中的双激子俄歇复合的观测结果一致,但与强限制系统中τAug对NC尺寸的线性相关性形成对比。因此,次线性依赖性可归因于我们的钙钛矿NC中较弱的限制。The Auger decay lifetime of MAPbBr 3 NCs is extracted from the pump power density dependence of the band-edge photobleaching kinetics (Fig. 16(f)), which exhibits a sublinear dependence on the NC volume (V NC ) as τ Aug ∼ √(V NC ) (Fig. 20(a)). This behavior is consistent with recent observations of biexciton Auger recombination in weakly confinement CsPbBr3 NCs, but contrasts with the linear dependence of τ Auger on NC size in strongly confinement systems. Therefore, the sublinear dependence can be attributed to the weaker confinement in our perovskite NCs.

鉴于俄歇复合是一个三粒子过程,因此NC中的俄歇加热速率与~n3成正比,其中n是带边有效载流子密度。因此,热载流子群的演化可以用以下方程描述:Given that Auger recombination is a three-particle process, the Auger heating rate in NCs is proportional to ∼n3 , where n is the band-edge effective carrier density. Therefore, the evolution of the hot carrier population can be described by the following equation:

Figure BDA0001906743920000422
Figure BDA0001906743920000422

其中第一项代表与俄歇加热无关的热载流子的弛豫,第二项对应于俄歇加热贡献;C指的是带边载流子的俄歇复合系数。在热载流子的寿命期内,可以忽略单个激子复合,因为它的寿命很长(几纳秒)。带边载流子通过由n(t)~e-t/τAug给出的主要俄歇过程复合,作为第一近似值。这个方程的直接积分产生了以下时间演变:where the first term represents the relaxation of hot carriers independent of Auger heating, and the second term corresponds to the Auger heating contribution; C refers to the Auger recombination coefficient of band edge carriers. During the lifetime of hot carriers, single exciton recombination can be ignored because of its long lifetime (a few nanoseconds). The band-edge carriers recombine by the principal Auger process given by n(t)∼e −t/τAug , as a first approximation. Direct integration of this equation yields the following time evolution:

Figure BDA0001906743920000423
Figure BDA0001906743920000423

其中nhot0是生成的热载流子的初始群,D等于c/(A-3/τAug)。因此,方程(4)预测热载流子群以指数方式衰减,其寿命之一对应于τAug/3。where n hot0 is the initial population of generated hot carriers, and D is equal to c/(A-3/τ Aug ). Thus, equation (4) predicts that the hot carrier population decays exponentially, with one of its lifetimes corresponding to τ Aug /3.

考虑到热载流子的费米-狄拉克分布,可以使用以下关系式计算有效热载流子密度:Considering the Fermi-Dirac distribution of hot carriers, the effective hot carrier density can be calculated using the following relationship:

Figure BDA0001906743920000424
Figure BDA0001906743920000424

图20(c)示出了在不同泵浦功率密度下归一化计算的热载流子密度对衰减时间的曲线图。Figure 20(c) shows a plot of the normalized calculated hot carrier density versus decay time at different pump power densities.

热载流子扩散长度的估算Estimation of Hot Carrier Diffusion Length

MAPbBr3中的热载流子扩散长度可以按如下方法进行估算。首先,载流子的扩散系数取决于制备材料的缺陷密度。在室温(~300K)下多晶钙钛矿薄膜的电子扩散系数D可以是~1cm2s-1,体块膜MAPbBr3是5-8cm2s-1。其次,D也可以取决于载流子温度(Tc),关系式D=μκBTc/e。对于NC膜,以800K作为平均热载流子温度,较低的D值为1cm2s-1,并且在低泵浦功率密度下热载流子寿命为1ps,热载流子扩散长度可以通过L=√(Dhotτhot)≈16nm获得。在~32ps的热载流子寿命下的高泵浦功率密度产生的扩散长度L≈90nm。考虑到在Bphen侧激发钙钛矿/Bphen样品,以及在fs激光脉冲激发之后半导体中的初始指数载流子分布,因此最接近Bphen的钙钛矿中更高浓度的热载流子可以更容易地注入Bphen。对于NC膜,考虑到一些Bphen分子可以渗透到NC膜的上层,并且热载流子经历快速跳跃,因此,~35nm厚的NC膜在低泵浦功率密度下提取的~70%热载流子转移效率可能是合理的。对于体块膜,以400K作为平均热载流子温度,较高的D值为5cm2s-1,并且在低泵浦功率密度下热载流子寿命为0.15ps,热载流子扩散长度可以为≈10nm。因此,体块膜的转移效率为~15%也是合理的。The hot-carrier diffusion length in MAPbBr3 can be estimated as follows. First, the carrier diffusion coefficient depends on the defect density of the prepared material. At room temperature (~300K), the electron diffusion coefficient D can be ~1 cm 2 s -1 for polycrystalline perovskite thin films and 5-8 cm 2 s -1 for bulk films MAPbBr 3 . Secondly, D can also depend on the carrier temperature (T c ), the relationship D=μκ B T c /e. For NC film, with 800K as the average hot carrier temperature, the lower D value is 1cm 2 s -1 , and the hot carrier lifetime is 1ps at low pump power density, the hot carrier diffusion length can be passed by L=√(D hot τ hot )≈16nm obtained. The high pump power density at a hot-carrier lifetime of ~32 ps yields a diffusion length L≈90 nm. Considering the excitation of the perovskite/Bphen sample on the Bphen side, and the initial exponential carrier distribution in the semiconductor after fs laser pulse excitation, a higher concentration of hot carriers in the perovskite closest to the Bphen can be more easily Ground injection of Bphen. For NC membranes, considering that some Bphen molecules can permeate into the upper layer of NC membranes, and hot carriers undergo rapid hopping, ∼70% of the hot carriers extracted by ∼35 nm thick NC membranes at low pump power densities Transfer efficiency may be reasonable. For the bulk film, with 400K as the average hot carrier temperature, the higher D value is 5cm 2 s -1 , and the hot carrier lifetime is 0.15ps at low pump power density, the hot carrier diffusion length Can be ≈10 nm. Therefore, a transfer efficiency of ~15% for bulk membranes is also reasonable.

配体交换的FTIR和XPS分析FTIR and XPS analysis of ligand exchange

EDT处理的MAPbBr3NP的FTIR光谱显示高效去除原始油酸和油胺配体(图24)。从2921和2841cm-1处的CH2拉伸的减少可清楚地观察到这些配体的去除。在1710cm-1处的C=O拉伸完全除去,以及在800cm-1处N-H的摇摆振动和在1384cm-1处的C-O-H键的消失,进一步支持油酸和油胺配体的EDT配体交换。FTIR spectra of EDT-treated MAPbBr 3 NPs showed efficient removal of native oleic acid and oleylamine ligands ( FIG. 24 ). The removal of these ligands is clearly observed from the reduction of CH2 stretching at 2921 and 2841 cm −1 . The complete removal of the C=O stretch at 1710 cm, together with the rocking vibration of NH at 800 cm and the disappearance of the COH bond at 1384 cm further supports the EDT ligand exchange of oleic acid and oleylamine ligands .

非退火和后退火的EDT处理的MAPbBr3NC中的硫的XPS分析揭示了两组S 2p双峰,其中2p3/2峰位于结合能为~162.5eV和~164.2eV(后退火~162.7eV和~164.3eV)处,分别由EDT的结合硫醇盐和未结合的硫醇产生到NC表面(图24)。未经后退火的NC中结合-未结合硫醇基团的比例为~1.04,在70℃下后退火的NC中增加至~1.47。因此,后退火处理进一步增加了EDT-NC与Bphen的电子耦合。XPS analysis of sulfur in non-annealed and post-annealed EDT-treated MAPbBr3 NCs revealed two sets of S 2p doublets, with 2p 3/2 peaks located at binding energies of ~162.5 eV and ~164.2 eV (post-annealed ~162.7 eV and ˜164.3 eV), bound thiolate and unbound thiol from EDT, respectively, were generated on the NC surface ( FIG. 24 ). The bound-to-unbound thiol group ratio was ~1.04 in NCs without post-annealing and increased to ~1.47 in NCs post-annealed at 70 °C. Therefore, the post-annealing treatment further increases the electronic coupling between EDT-NC and Bphen.

光电NC和NC膜中的Trions对热载流子的影响Influence of Trions in Optoelectronic NC and NC Films on Hot Carriers

图16(e)显示了溶液中的与旋涂膜的中尺寸纳米晶体(NC)带边光漂白动力学比较。从指数拟合(实曲线)看,在低泵浦功率密度下寿命从~4.5变化到~3ns,加速可能是由于光电荷NC的存在。在高泵浦功率密度下,除了俄歇复合之外,可能在旋涂的NC膜中出现快速衰减寿命~290ps,这可归因于Trions(光电激子)。然而,它们仅引起GSB的较低能量侧的变宽(参见图26中的NC膜的较低能量侧的漂白带尾,与图10中的伪彩色TA光谱中的溶液中的NC相比)。Trions的能量减少可能是由于激子-激子相互作用。NC膜中的Trions可能不会影响位于GSB较高能量侧的热载流子的动力学。Figure 16(e) shows a comparison of band-edge photobleaching kinetics of meso-sized nanocrystals (NCs) in solution and spin-coated films. From the exponential fit (solid curve), the lifetime varies from ∼4.5 to ∼3 ns at low pump power densities, and the acceleration may be due to the presence of photocharged NCs. At high pump power densities, in addition to Auger recombination, fast decay lifetimes ~290 ps may occur in spin-coated NC films, which can be attributed to Trions (photoexcitons). However, they only cause broadening of the lower energy side of the GSB (see bleached band tail on the lower energy side of the NC film in Fig. 26 compared to NC in solution in the false-color TA spectrum in Fig. 10) . The reduced energy of Trions may be due to exciton-exciton interactions. Trions in the NC film may not affect the dynamics of hot carriers located on the higher energy side of the GSB.

对照实验以验证热载流子转移Control experiments to verify hot carrier transfer

MAPbBr3NC膜在有/无EDT处理的情况下表现出类似的热载流子冷却动力学。在没有EDT处理的情况下,NC表现出与具有/不具有Bphen提取层的类似热载流子冷却动力学。此外,我们发现在热蒸发器中经历完全相同处理的NC膜中,除了实际上没有沉积Bphen层,热载流子性质没有任何明显变化。The MAPbBr3 NC films exhibit similar hot-carrier cooling kinetics with/without EDT treatment. Without EDT treatment, NCs exhibited similar hot-carrier cooling kinetics to those with/without Bphen extraction layer. Furthermore, we found that in NC films subjected to exactly the same treatment in a thermal evaporator, except that no Bphen layer was actually deposited, there was no noticeable change in the hot carrier properties.

Bphen中转移的电荷载流子的PIA信号PIA signal of transferred charge carriers in Bphen

对于原始Bphen膜,在300nm光的带隙以上激发时(参考图28(a)中的吸收光谱),在NIR范围内存在非常宽的光诱导吸收(PIA,图28(b)),典型的有机半导体(如P3HT,PCBM)。其强度随探针波长的增加而逐渐增加。PIA带可暂时主要指向Bphen中光生自由基负离子的吸收。对照实验用Bphen 400nm(低于带隙)的激发(在低泵浦功率密度和高泵浦功率密度下)产生无效(PIA)特征(图28(b)),表明在Bphen中不存在光生自由基负离子。For the pristine Bphen film, when excited above the bandgap of 300 nm light (refer to the absorption spectrum in Fig. 28(a)), there is a very broad photoinduced absorption in the NIR range (PIA, Fig. 28(b)), typical Organic semiconductors (eg P3HT, PCBM). Its intensity gradually increases with the probe wavelength. The PIA band can temporarily mainly point to the absorption of photogenerated radical anions in Bphen. Control experiments with excitation of Bphen at 400 nm (below the bandgap) (at low and high pump power densities) produced inactive (PIA) features (Fig. 28(b)), indicating the absence of photogenerated freedom in Bphen Base negative ions.

对于EDT-NC/Bphen样品(NC膜厚度~50nm),用400nm光选择性地激发NC。在低泵浦功率密度下,可能没有可测量的TA信号。这可能是由于TA信号(间接产生的自由基负离子)低于TA设置的检测限(10-4ΔT/T)。在较高的泵浦功率密度下(即~15μJ cm-2,对应于<N>~2.5),可以观测到类似于原始Bphen的弱PIA带(图28(b)和(c))。然而,泵浦功率的任何进一步增加都可能导致钙钛矿的降解。For EDT-NC/Bphen samples (NC film thickness ~50 nm), NCs were selectively excited with 400 nm light. At low pump power densities, there may be no measurable TA signal. This may be due to the fact that the TA signal (indirectly generated radical anions) is below the detection limit set by TA (10 −4 ΔT/T). At higher pump power densities (ie ~15 μJ cm −2 , corresponding to <N> ~2.5), weak PIA bands similar to pristine Bphen could be observed ( FIG. 28( b ) and (c )). However, any further increase in pump power may lead to degradation of the perovskite.

对照实验还显示没有来自在500nm激发(即NC中的光激发载流子具有可忽略的过剩能量)下EDT-NC/Bphen样品和在400nm高泵浦功率密度激发(图28(b))下单独的NC膜的TA信号。因此,这些实验表明,在EDT-NC/Bphen杂化物中观察到的PIA可能仅由热载流子从NC注入Bphen引起。Control experiments also showed that there is no EDT-NC/Bphen sample from excitation at 500 nm (i.e., the photoexcited carriers in NCs have negligible excess energy) and excitation at high pump power density at 400 nm (Fig. 28(b)). TA signal of individual NC membranes. Therefore, these experiments suggest that the PIA observed in EDT-NC/Bphen hybrids may only be caused by hot-carrier injection from NCs into Bphen.

此外,PIA的弛豫可具有一个快速衰减寿命(原始Bphen为~70ps,NC/Bphen为~25ps)和一个缓慢衰减寿命(原始Bphen为~1ns,NC/Bphen为~0.5ns)(图28(d))。快速衰减可能是由于载流子捕获到原始Bphen的缺陷中以及额外的电子反转到NC/Bphen的NC。缓慢衰减可能是由于Bphen中的自由基负离子/激子与NC/Bphen杂化物中的NC中的空穴复合。最后,考虑到NC中热电子和热空穴之间的能量差(在大多数极端情况下为~3.1eV)与Bphen带隙(3.5eV)相比较小,通过来自热载流子复合的能量传递在Bphen中产生载流子的可能性极小。Furthermore, the relaxation of PIA can have a fast decay lifetime (~70 ps for pristine Bphen, ~25 ps for NC/Bphen) and a slow decay lifetime (~1 ns for pristine Bphen, ~0.5 ns for NC/Bphen) (Fig. 28( d)). The fast decay may be due to the carrier trapping into the defects of pristine Bphen and the inversion of extra electrons to the NC of NC/Bphen. The slow decay may be due to the recombination of radical anions/excitons in Bphen with holes in NCs in NC/Bphen hybrids. Finally, considering that the energy difference between hot electrons and hot holes in NCs (~3.1eV in most extreme cases) is small compared to the Bphen bandgap (3.5eV), the energy from hot carrier recombination It is highly unlikely that transport would generate carriers in Bphen.

估算反电子转移时间Estimating the back electron transfer time

注入的电子从Bphen到NC的反向传递可以引起TA信号中的NC中电子的弛豫时间的增加。反电子转移率(1/τbk)可以通过EDT-NC膜(1/τNC)和EDT-NC/Bphen双层膜(1/τNC/Bp)之间NC的带边漂白弛豫速率的变化量来估算,即1/τbk=1/τNC-1/τNC/Bp)。The reverse transfer of injected electrons from Bphen to NCs can cause an increase in the relaxation time of electrons in NCs in the TA signal. The inverse electron transfer rate (1/τ bk ) can be determined by the band edge bleaching relaxation rate of the NC between the EDT-NC film (1/τ NC ) and the EDT-NC/Bphen bilayer film (1/τ NC/Bp ). Estimated by the amount of change, that is, 1/τ bk =1/τ NC -1/τ NC/Bp ).

在低泵浦功率密度(<N0>~0.1)下,EDT-NC膜和EDT-NC/Bphen双层膜的弛豫动力学的不变性(图29(a))证明存在非常小的反电子传输速率和超过我们测量时间窗口的长传输时间,这可能是由于快速捕获和定位阻碍了载流子漂移回到NC膜。因此,长τbk有利于热电子注入。在高泵浦功率密度(<N0>~2.5)下,τNC/Bp明显延长(图29)。使用上述关系式,估计的反电子时间τbk为~80ps。减少的反电子转移时间(即增加的反电子转移速率)与降低的热电子注入效率一致,从<N0>~0.1的72%降低到<N0>~2.5的58%。At low pump power densities (<N 0 >∼0.1), the invariance of the relaxation kinetics of EDT-NC membranes and EDT-NC/Bphen bilayers (Fig. The electron transport rate and the long transport time beyond the time window of our measurement, which may be due to the rapid trapping and localization hinder the drift of carriers back to the NC film. Therefore, long τbk is favorable for hot electron injection. At high pump power densities (<N 0 >˜2.5), τ NC /Bp was significantly prolonged ( FIG. 29 ). Using the above relation, the estimated anti-electron time τ bk is -80 ps. The reduced back-electron transfer time (ie, increased back-electron transfer rate) is consistent with reduced hot electron injection efficiency from 72% for <N 0 >∼0.1 to 58% for <N 0 >∼2.5.

尽管已经参考特定实施例具体示出和描述了本发明,但是本领域技术人员应该理解,在不脱离本发明的精神和范围的情况下,可以在形式和细节上进行各种改变。因此,本发明的范围由所附权利要求指示,并且涵盖落入权利要求的等同物的含义和范围内的所有改变。While the present invention has been particularly shown and described with reference to particular embodiments, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention. The scope of the invention is thus indicated by the appended claims and all changes which come within the meaning and range of equivalency of the claims are therefore embraced.

Claims (22)

1. A hot carrier solar cell comprising:
a nanocrystal layer comprising one or more nanocrystals, each of the one or more nanocrystals comprising a halide perovskite material;
a first electrode in contact with a first side of the nanocrystal layer; and
a second electrode in contact with a second side of the nanocrystal layer, the second side opposite the first side;
wherein the thickness of the nanocrystal layer is less than 100nm.
2. The hot carrier solar cell according to claim 1, further comprising: an optical device comprising one or more optical elements that direct solar energy to the nanocrystal layer.
3. The hot carrier solar cell according to claim 2, wherein the one or more optical elements are optical lenses.
4. The hot carrier solar cell according to claim 1, wherein the first electrode is a hot electron extraction layer comprising any one selected from the following materials: titanium oxide, zinc oxide, phenyl-C61-butanoic acid methyl ester, 4, 7-diphenyl-1, 10-phenanthroline, poly (9-vinylcarbazole), 2- (4-biphenyl) -5-phenyl-1, 3, 4-oxadiazole, 2'' - (1, 3, 5-phenylclaw) -tris (1-phenyl-1-H-benzimidazole), poly (9, 9-dioctylfluorene) and bathocuproine.
5. The hot carrier solar cell according to claim 1, wherein the second electrode is a hot hole extraction layer comprising any one selected from the following materials: 2,2', 7' -tetrakis [ N, N-bis (4-methoxyphenyl) amino ] -9,9' -spirobifluorene, poly (3-hexylthiophene-2, 5-ylidene), poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate and poly (9, 9-dioctyl-fluorene-co-N- (4-butylphenyl) diphenylamine.
6. The hot carrier solar cell according to claim 1, wherein the first electrode is an energy selective contact point that allows electrons having an excess energy equal to or higher than a predetermined value to pass through and reflects electrons having an excess energy lower than a predetermined value back to the nanocrystal layer.
7. The hot carrier solar cell according to claim 1, wherein the second electrode is an energy selective contact point that allows holes having an excess energy equal to or higher than a predetermined value to pass through and reflects holes having an excess energy lower than a predetermined value back to the nanocrystal layer.
8. The hot carrier solar cell according to claim 1, wherein the one or more nanocrystals exhibit a hot carrier cooling lifetime of greater than 30 ps.
9. The hot carrier solar cell according to claim 1, wherein the radius of each of the one or more nanocrystals is any value selected from 2nm to 7 nm.
10. The hot carrier solar cell according to any one of claims 1 to 9, wherein the halide perovskite material is an organic-inorganic halide perovskite material.
11. The hot carrier solar cell according to any one of claims 1 to 9, wherein the halide perovskite material is an inorganic halide perovskite material.
12. A method of forming a hot carrier solar cell, comprising:
providing a nanocrystal layer comprising one or more nanocrystals, each of the one or more nanocrystals comprising a halide perovskite material;
forming a first electrode such that the first electrode is in contact with a first side of the nanocrystal layer; and
forming a second electrode layer such that the second electrode is in contact with a second side of the nanocrystal layer, wherein the second side is opposite the first side;
wherein the thickness of the nanocrystal layer is less than 100nm.
13. The method of claim 12, further comprising: an optical device is formed that includes one or more optical elements that direct solar energy to the nanocrystal layer.
14. The method of claim 13, wherein the one or more optical elements are optical lenses.
15. A method according to claim 12, wherein the first electrode is a hot electron extraction layer comprising any one selected from the group consisting of: titanium oxide, zinc oxide, phenyl-C61-butanoic acid methyl ester, 4, 7-diphenyl-1, 10-phenanthroline, poly (9-vinylcarbazole), 2- (4-biphenyl) -5-phenyl-1, 3, 4-oxadiazole, 2'' - (1, 3, 5-phenylclaw) -tris (1-phenyl-1-H-benzimidazole), poly (9, 9-dioctylfluorene) and bathocuproine.
16. The method of claim 12, wherein the second electrode is a hot hole extraction layer comprising any one selected from the group consisting of: 2,2', 7' -tetrakis [ N, N-bis (4-methoxyphenyl) amino ] -9,9' -spirobifluorene, poly (3-hexylthiophene-2, 5-ylidene), poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate and poly (9, 9-dioctyl-fluorene-co-N- (4-butylphenyl) diphenylamine.
17. The method of claim 12, wherein the second electrode is an energy selective contact that allows holes having excess energy equal to or above a predetermined value to pass through and reflects holes having excess energy below a predetermined value back to the nanocrystal layer.
18. The method of claim 12, wherein the first electrode is an energy selective contact point that allows electrons having excess energy equal to or above a predetermined value to pass through and reflects electrons having excess energy below a predetermined value back to the nanocrystal layer.
19. The method of claim 12, wherein the one or more nanocrystals exhibit a hot carrier cooling lifetime of greater than 30 ps.
20. The method of claim 12, wherein the radius of each of the one or more nanocrystals is any value selected from 2nm to 7 nm.
21. A method according to any one of claims 12 to 20, wherein the halide perovskite material is an organic-inorganic halide perovskite material.
22. A method according to any one of claims 12 to 20, wherein the halide perovskite material is an inorganic halide perovskite material.
CN201780037453.3A 2016-07-27 2017-07-20 Hot carrier solar cell and method of forming the same Active CN109804479B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SG10201606182S 2016-07-27
SG10201606182S 2016-07-27
PCT/SG2017/050365 WO2018021966A2 (en) 2016-07-27 2017-07-20 Hot-carrier solar cell, and method to form the same

Publications (2)

Publication Number Publication Date
CN109804479A CN109804479A (en) 2019-05-24
CN109804479B true CN109804479B (en) 2023-05-30

Family

ID=61016379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780037453.3A Active CN109804479B (en) 2016-07-27 2017-07-20 Hot carrier solar cell and method of forming the same

Country Status (2)

Country Link
CN (1) CN109804479B (en)
WO (1) WO2018021966A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065722B (en) * 2018-07-12 2020-12-01 西南大学 A kind of solar cell based on hot carrier and preparation method thereof
GB201817167D0 (en) * 2018-10-22 2018-12-05 Univ Oxford Innovation Ltd Process for producing a layer with mixed solvent system
CN115124991A (en) * 2021-03-26 2022-09-30 浙江大学 Product for converting photoluminescence on quantum dot integrated body
CN114203918B (en) * 2021-12-09 2023-09-12 西北工业大学 Novel photoelectric memristor based on PVK/ZnO heterostructure
FR3135349B1 (en) 2022-05-06 2025-02-21 Inst Photovoltaique Dile De France Hot-carrier multi-junction solar cells
CN115498114A (en) * 2022-07-06 2022-12-20 桂林电子科技大学 Inverted perovskite solar cell cathode interface strengthening treatment material, method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650083A (en) * 2011-05-10 2014-03-19 技术研究及发展基金有限公司 Ultrathin film solar cells
WO2016072807A1 (en) * 2014-11-06 2016-05-12 포항공과대학교 산학협력단 Method for manufacturing perovskite nanocrystal particle light emitting body where organic ligand is substituted, nanocrystal particle light emitting body manufactured thereby, and light emitting device using same
CN105633181A (en) * 2016-03-18 2016-06-01 武汉理工大学 Perovskite solar cell and preparation method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130019924A1 (en) * 2009-11-25 2013-01-24 The Trustees Of Boston College Nanoscopically Thin Photovoltaic Junction Solar Cells
TWI485154B (en) * 2013-05-09 2015-05-21 Univ Nat Cheng Kung Organic hybrid solar cell with perovskite structure light absorbing material and manufacturing method thereof
EP2846371A1 (en) * 2013-09-10 2015-03-11 Ecole Polytechnique Fédérale de Lausanne (EPFL) Inverted solar cell and process for producing the same
US9966726B2 (en) * 2013-09-12 2018-05-08 Nanyang Technological University Emission source and method of forming the same
ES2776161T3 (en) * 2013-12-17 2020-07-29 Univ Oxford Innovation Ltd Photovoltaic device comprising a metal halide perovskite and a passivating agent
CN106457063A (en) * 2014-03-17 2017-02-22 莫纳什大学 Improved precipitation process for producing perovskite-based solar cells
US10193088B2 (en) * 2014-11-06 2019-01-29 Postech Academy-Industry Foundation Perovskite nanocrystalline particles and optoelectronic device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650083A (en) * 2011-05-10 2014-03-19 技术研究及发展基金有限公司 Ultrathin film solar cells
WO2016072807A1 (en) * 2014-11-06 2016-05-12 포항공과대학교 산학협력단 Method for manufacturing perovskite nanocrystal particle light emitting body where organic ligand is substituted, nanocrystal particle light emitting body manufactured thereby, and light emitting device using same
CN105633181A (en) * 2016-03-18 2016-06-01 武汉理工大学 Perovskite solar cell and preparation method therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Exciton Relaxation Dynamics in Photo-Excited CsPbI3 Perovskite Nanocrystals;Qinghui Liu;《Scientific reports》;20160612;全文 *
Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells;Jeong-Hyeok Im;《Nature of nanotechnolgy》;20140831;全文 *
Mesoscale Growth and Assembly of Bright Luminescent Organolead Halide Perovskite Quantum Wires;Meghan B. Teunis;《Chemistry of materials》;20160615;全文 *

Also Published As

Publication number Publication date
WO2018021966A3 (en) 2018-12-20
CN109804479A (en) 2019-05-24
WO2018021966A2 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
CN109804479B (en) Hot carrier solar cell and method of forming the same
Panuganti et al. Distance dependence of forster resonance energy transfer rates in 2D perovskite quantum wells via control of organic spacer length
Fuhr et al. Spectroscopic and magneto-optical signatures of Cu1+ and Cu2+ defects in copper indium sulfide quantum dots
Sum et al. Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters
Shukla et al. Effect of confinement on the exciton and biexciton dynamics in perovskite 2D-nanosheets and 3D-nanocrystals
Lee et al. Temperature-dependent photoluminescence of cesium lead halide perovskite quantum dots: splitting of the photoluminescence peaks of CsPbBr3 and CsPb (Br/I) 3 quantum dots at low temperature
Pietryga et al. Spectroscopic and device aspects of nanocrystal quantum dots
Liu et al. Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands
Chernomordik et al. Quantum dot solar cell fabrication protocols
Ihly et al. The photothermal stability of PbS quantum dot solids
Li et al. Bright tail states in blue-emitting ultrasmall perovskite quantum dots
Carey et al. Colloidal quantum dot solar cells
Zhao et al. Growth and device application of CdSe nanostructures
Rogach et al. Infrared‐emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications
Nose et al. Colloidal synthesis of ternary copper indium diselenide quantum dots and their optical properties
Justice Babu et al. Fast polaron formation and low carrier mobility in defect-free polyhedral CsPbBr3 perovskite nanocrystals
Kadlag et al. Luminescence and solar cell from ligand-free colloidal AgInS 2 nanocrystals
Sagar et al. HgSe/CdE (E= S, Se) core/shell nanocrystals by colloidal atomic layer deposition
CN107636431A (en) Single dispersing IR absorbs nano particle and associated method and device
CN112420930B (en) Composite light-harvesting materials and devices
Talgorn et al. Photoconductivity enhancement in multilayers of CdSe and CdTe quantum dots
Kamath et al. Toward bright mid-infrared emitters: thick-shell n-Type HgSe/CdS Nanocrystals
Liu et al. Solution annealing induces surface chemical reconstruction for high-efficiency PbS quantum dot solar cells
Qin et al. Luminescence and Degeneration Mechanism of Perovskite Light‐Emitting Diodes and Strategies for Improving Device Performance
Mi et al. Biexciton-like auger blinking in strongly confined CsPbBr3 perovskite quantum dots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant