CN109784482B - Neural computing system and current estimation method thereof - Google Patents
Neural computing system and current estimation method thereof Download PDFInfo
- Publication number
- CN109784482B CN109784482B CN201711105185.2A CN201711105185A CN109784482B CN 109784482 B CN109784482 B CN 109784482B CN 201711105185 A CN201711105185 A CN 201711105185A CN 109784482 B CN109784482 B CN 109784482B
- Authority
- CN
- China
- Prior art keywords
- terminal
- sensing
- voltage value
- row line
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000001537 neural effect Effects 0.000 title claims description 20
- 230000000946 synaptic effect Effects 0.000 claims description 36
- 238000007667 floating Methods 0.000 claims description 8
- 210000000225 synapse Anatomy 0.000 abstract description 11
- 239000013598 vector Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明大致涉及一种类神经计算系统,且特别是涉及一种基于硬件阵列结构所实现的类神经计算系统。The present invention generally relates to a neuron-like computing system, and in particular to a neuron-like computing system realized based on a hardware array structure.
背景技术Background technique
近来,利用硬件阵列结构所实现的类神经计算装置被提出。相较于利用处理器(例如CPU)来执行类神经演算的装置,类神经计算装置具有低功耗的优点。Recently, neuro-like computing devices implemented using hardware array structures have been proposed. Compared with devices that use a processor (such as a CPU) to perform neuro-calculations, neuro-computing devices have the advantage of low power consumption.
类神经计算装置通常包括多个突触单元(synapse)。各个突触单元对应于一权重值。当一输入向量施加至类神经计算装置,此输入向量将与关联的一或多个突触单元所对应的权重值所构成的权重向量相乘,并在输出通道上形成积项和(sum of product)感测电流。此积项和感测电流的大小反映一积项和结果。A neural computing device usually includes multiple synapse units. Each synaptic unit corresponds to a weight value. When an input vector is applied to a neural computing device, the input vector will be multiplied by the weight vector formed by the weight values corresponding to the associated one or more synaptic units, and a product term (sum of product) sensing current. The magnitude of the product term and sensed current reflects a product term sum result.
然而,随着突触单元数量增加,输出通道上的积项和感测电流可能变的相当大,使得耗能提高。However, as the number of synaptic units increases, the product term and sense current on the output channel can become quite large, resulting in increased power consumption.
发明内容Contents of the invention
本发明大致涉及一种基于硬件阵列结构所实现的类神经计算系统。根据本发明实施例,突触单元阵列的输出通道可切换地连接至第一终端或第二终端。输出通道在连接至第一终端时会呈现第一电压值,并在连接至第二终端时呈现第二电压值。积项和感测电流值可根据第一电压值以及第二电压值之间的差值而被推估出来。相较于传统方法中可能直接对流经输出通道的积项和大电流进行测量以进行运算,根据本发明,连接至第一终端或第二终端的输出通道仅可能导通大小被限制的电流,甚至不导通电流,故可有效降低能耗。The present invention generally relates to a neural computing system realized based on a hardware array structure. According to an embodiment of the present invention, the output channels of the synaptic unit array are switchably connected to the first terminal or the second terminal. The output channel exhibits a first voltage value when connected to the first terminal, and exhibits a second voltage value when connected to the second terminal. The product term and the sensing current value can be estimated according to the difference between the first voltage value and the second voltage value. Compared with the traditional method that may directly measure the product term and the large current flowing through the output channel for calculation, according to the present invention, the output channel connected to the first terminal or the second terminal may only conduct a limited current, It does not even conduct current, so it can effectively reduce energy consumption.
根据本发明的一方面,提出一种类神经计算装置。类神经计算系统包括突触单元阵列、切换电路、感测电路以及处理电路。突触单元阵列包括多条列线、多条行线以及多个突触单元。突触单元位于列线与行线的交叉处。切换电路耦接突触单元阵列,并用以将行线连接至第一终端或第二终端。感测电路耦接突触单元阵列,用以感测行线上的电压值以及电流值。处理电路耦接切换电路以及感测电路,经配置而用以:通过切换电路将多条行线中的一特定行线电性连接至第一终端、通过感测电路自电性连接至第一终端时的特定行线取得一第一电压值、通过切换电路将特定行线电性连接至第二终端、通过感测电路自电性连接至第二终端时的特定行线取得第二电压值、根据第一电压值以及第二电压值之间的电压差值,估计积项和感测电流值。According to an aspect of the present invention, a neuro-computing-like device is proposed. The neuro-like computing system includes an array of synaptic units, switching circuits, sensing circuits, and processing circuits. The synaptic unit array includes a plurality of column lines, a plurality of row lines and a plurality of synaptic units. Synaptic cells are located at the intersection of column and row lines. The switching circuit is coupled to the array of synaptic units and used to connect the row line to the first terminal or the second terminal. The sensing circuit is coupled to the array of synaptic units for sensing voltage and current values on the row lines. The processing circuit is coupled to the switching circuit and the sensing circuit, configured to: electrically connect a specific row line among the plurality of row lines to the first terminal through the switching circuit, and electrically connect to the first terminal through the sensing circuit. A specific row line at the time of termination obtains a first voltage value, electrically connects the specific row line to the second terminal through the switching circuit, obtains a second voltage value from the specific row line at the time of being electrically connected to the second terminal through the sensing circuit 1. Estimate the product term and the sensed current value according to the voltage difference between the first voltage value and the second voltage value.
根据本发明的另一方面,提出一种类神经计算装置的电流估计方法。类神经计算系统包括突触单元阵列、切换电路、感测电路以及处理电路,突触单元阵列包括多条列线、多条行线以及位于列线与行线的交叉处的多个突触单元。该电流估计方法包括:通过切换电路将多条行线中的一特定行线电性连接至第一终端、通过感测电路自电性连接至第一终端时的特定行线取得第一电压值、通过切换电路将特定行线电性连接至第二终端、通过感测电路自电性连接至第二终端时的特定行线取得第二电压值、通过处理电路根据第一电压值以及第二电压值之间的一电压差值估计一积项和感测电流值。According to another aspect of the present invention, a current estimation method of a neural computing device is proposed. The neural computing system includes a synaptic unit array, a switching circuit, a sensing circuit, and a processing circuit. The synaptic unit array includes a plurality of column lines, a plurality of row lines, and a plurality of synaptic units located at the intersections of the column lines and the row lines. . The current estimation method includes: electrically connecting a specific row line among the plurality of row lines to the first terminal through a switching circuit, obtaining a first voltage value from the specific row line electrically connected to the first terminal through a sensing circuit , electrically connecting the specific row line to the second terminal through the switching circuit, obtaining the second voltage value from the specific row line when it is electrically connected to the second terminal through the sensing circuit, and using the processing circuit according to the first voltage value and the second voltage value A voltage difference between the voltage values estimates a product term and senses the current value.
为了对本发明的上述及其他方面有更佳的了解,下文特举实施例,并配合所附附图详细说明如下:In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given below, and the accompanying drawings are described in detail as follows:
附图说明Description of drawings
图1是根据本发明的一实施例所示意性绘示的类神经计算系统的方块图。FIG. 1 is a schematic block diagram of a neural computing system according to an embodiment of the present invention.
图2示意性地绘示突触单元阵列以及切换电路的电路结构图。FIG. 2 schematically shows a circuit structure diagram of a synaptic unit array and a switching circuit.
图3是依据本发明一实施例所绘示的类神经计算系统的电流估计方法的流程图。FIG. 3 is a flow chart of a current estimation method of a neural computing system according to an embodiment of the present invention.
【符号说明】【Symbol Description】
102:突触单元阵列102: array of synaptic cells
104:切换电路104: switch circuit
106:感测电路106: Sensing circuit
108:处理电路108: Processing circuit
201、203、205:列线201, 203, 205: column lines
202、204、206:行线202, 204, 206: row lines
210:突触单元210: Synaptic Unit
WU:电阻元件WU: resistance element
SU:选择器SU: selector
V1、V2、V3:输入电压V 1 , V 2 , V 3 : Input voltage
I1、I2、I3:感测电流I 1 , I 2 , I 3 : Sensing current
T1:第一终端T1: first terminal
T2:第二终端T2: second terminal
SW:开关元件SW: switching element
302、304、306、308、310:步骤302, 304, 306, 308, 310: steps
具体实施方式detailed description
图1是根据本发明的一实施例所示意性绘示的类神经计算系统的方块图。类神经计算系统包括突触单元阵列102、切换电路104、感测电路106以及处理电路108。切换电路104以及感测电路106耦接突触单元阵列102。处理电路108耦接切换电路104以及感测电路106。FIG. 1 is a schematic block diagram of a neural computing system according to an embodiment of the present invention. The neural computing system includes a
突触单元阵列102可将输入向量与由一或多个突触单元所形成的加权向量进行相乘以进行积项和运算。切换电路104受控于处理电路108,用以将突触单元阵列102的各个输出通道连接至第一终端或第二终端。感测电路106可感测输出通道的电压值以及电流值。因此,感测电路106可取得突触单元阵列102的输出通道在连接至第一终端时所呈现的第一电压值以及在连接至第二终端时所呈现的第二电压值。处理电路108可根据第一电压值以及第二电压值之间的电压差值,推估积项和感测电流值的大小。The
感测电路106例如包括感测放大器(sensing amplifier)。处理电路108可例如以微处理器、微控制器、芯片及/或电路板来实现。The
图2示意性地绘示突触单元阵列102以及切换电路104的电路结构图。虽然图2中绘示3×3个突触单元,但应注意突触单元阵列102可包括任意数量的突触单元及组合。FIG. 2 schematically shows a circuit structure diagram of the
如图2所示,突触单元阵列102包括多条列线201、203、205、多条行线202、204、206以及多个位于列线201、203、205与行线202、204、206的交叉处的突触单元210。As shown in FIG. 2 , the
列线201、203、205是作为突触单元阵列102的输入通道,用以分别接收输入电压V1、V2、V3。输入电压V1、V2、V3可视为对系统提供的输入向量[V1、V2、V3]。突触单元210可响应接收自列线201、203、205上的输入电压V1、V2、V3,在作为阵列的输出通道的行线202、204、206上分别形成感测电流I1、I2、I3。The column lines 201 , 203 , and 205 serve as input channels of the
突触单元210可以是任何适用于类神经计算装置的权重元件,例如由电阻元件WU以及选择器SU(例如晶体管)串连形成的「1S1R」电路结构。The
切换电路104可通过开关元件SW将各条行线202、204、206的一端连接至第一终端T1或第二终端T2。第一终端T1以及第二终端T2皆非接地端。不同于传统类神经计算装置可能在接地的行线上形成积项和大感测电流,当行线202、204、206连接至第一终端T1或第二终端T2,行线202、204、206上的感测电流I1、I2、I3将被限制成预设的小电流(显小于积项和电流),甚至无电流产生。The
在一范例中,第一终端T1为一浮接节点,第二终端T2为一电流限制元件,例如电流镜、晶体管或其它可提供固定/限制电流的电流源。In one example, the first terminal T1 is a floating node, and the second terminal T2 is a current limiting element, such as a current mirror, a transistor or other current sources that can provide a fixed/limited current.
应注意的是,虽然图2中绘示3组第一终端T1及第二终端T2,但应注意切换电路104可包括任意数量的第一终端T1/第二终端T2及组合。举例来说,多条行线可共享相同的第一终端T1及/或第二终端T2。It should be noted that although three sets of first terminals T1 and second terminals T2 are shown in FIG. 2 , it should be noted that the
感测电路106耦接行线202、204、206。感测电路106可侦测行线202、204、206在第一状态(即连接至第一终端T1的状态)或第二状态(即行线的一端连接至第二终端T2的状态)时所呈现的电流值、电压值,并将侦测结果提供给处理电路108估计积项和电流值。The
举例来说,假设第一终端T1为一浮接节点,第二终端T2为一电流限制元件,处理电路108可先利用切换电路104将欲读取的一行线(如行线202)设定在第一状态,并利用感测电路106取得该行线上的第一电压值。处理电路108可接着将感测电路106设定在第二状态,以取得该行线上的第二电压值以及该行线所导通的一感测电流值。如此一来,处理电路108可根据第一电压值(Va)与第二电压值(Vb)之间的电压差值与感测电流值(Is)之间的乘积,估测出积项和感测电流值(Isp)。举例来说,积项和感测电流值Isp可表示如下:For example, assuming that the first terminal T1 is a floating node and the second terminal T2 is a current limiting element, the
以行线202为例,为了估测行线202的积项和电流值,处理电路108可先通过切换电路104将行线202浮接(也就是将行线202连接至第一终端T1),并通过感测电路106取得行线202上的第一电压值,例如0.5V。Taking the
接着,响应于将行线202切换连接至以50μA电流源实现的第二终端T2,处理电路108将通过感测电路106取得行线202上的第二电压值,例如0.4V。Next, in response to switching the
在取得第一电压值以及第二电压值之后,处理电路108即可依据(式0)估算出行线202的积项和感测电流值如下:After obtaining the first voltage value and the second voltage value, the
为帮助理解,以下说明为何(式0)可用于估计积项和电流值。To help understand, the following explains why (Equation 0) can be used to estimate product terms and current values.
首先,可知当某一行线的一端接地,该行线上的电流即相当于积项和感测电流,其可表示如下:First of all, it can be seen that when one end of a row line is grounded, the current on the row line is equivalent to the product term and the sensing current, which can be expressed as follows:
其中gout,i表示耦接至第i条列线以及欲读取的该行线的突触单元的权重值,Vi表示施加于第i条列线的输入电压值,Iout|ground表示该行线接地时所形成的感测电流值(也就是待估计的积项和感测电流值(Isp))。Where g out,i represents the weight value of the synaptic unit coupled to the i-th column line and the row line to be read, V i represents the input voltage value applied to the i-th column line, I out | ground represents The sensing current value formed when the row line is grounded (that is, the product term to be estimated and the sensing current value (I sp )).
为了降低积项和运算时在行线上产生的电流,切换电路104可响应处理电路108,将该行线连接至浮接节点(此例中即第一终端T1)。当该行线为浮接,该行线将不会导通电流(也就是行线上的感测电流Iout|floating为0),并呈现平衡电压值Vout|floating(此例中即第一电压值Va)。因此,可将(式1)改写如下:In order to reduce the current generated on the row line during the product-term sum operation, the
其中 in
切换电路104更可响应处理电路108,将该行线连接至电流限制元件(在此例中即第二终端T2)。此时该行线上将导通一感测电流Is,且具有电压值Vout|Iout=Is(在此例中即第二电压值Vb)如下:The
其中α的值介于0至1之间。where the value of α is between 0 and 1.
依据(式1)、(式2)以及(式3),可得到:According to (Formula 1), (Formula 2) and (Formula 3), it can be obtained:
可看出,(式4)与(式0)具有相同的数学表示。It can be seen that (Equation 4) and (Equation 0) have the same mathematical expression.
在其他范例中,第一终端T1和第二终端T2是对应不同电流值的两个电流限制元件。此时,当一行线是以第一终端T1作为终端,该行线上将导通第一感测电流并具有第一电压值。当该行线是以第二终端T2作为终端,该行线上将导通第二感测电流并具有第二电压值。通过简单地修饰(式1)至(式4)的推导过程,处理电路108可利用第一感测电流值、第一电压值、第二感测电流值、以及第二电压值估测出对应该行线的积项和电流值。In other examples, the first terminal T1 and the second terminal T2 are two current limiting elements corresponding to different current values. At this time, when a row line is terminated by the first terminal T1, the row line will conduct the first sensing current and have the first voltage value. When the row line is terminated by the second terminal T2, the row line conducts the second sensing current and has a second voltage value. By simply modifying the derivation process of (Formula 1) to (Formula 4), the
图3是依据本发明一实施例所绘示的类神经计算系统的电流估计方法的流程图。FIG. 3 is a flow chart of a current estimation method of a neural computing system according to an embodiment of the present invention.
在步骤302,切换电路104将欲读取的一特定行线电性连接至第一终端T1。In
在步骤304,处理电路108通过感测电路106,自电性连接至第一终端T1时的该特定行线取得第一电压值。In
在步骤306,切换电路104将该特定行线电性连接至第二终端T2。In
在步骤308,处理电路108通过感测电路106,自电性连接至第二终端T2时的该特定行线取得第二电压值。In
在步骤310,处理电路108根据第一电压值以及第二电压值之间的电压差值,估计一积项和感测电流值。In
在一实施例中,为了解决第一电压值与第二电压值之间电压差值过小而不易判读的问题,可通过特别设计的感测技术将该电压差值转换至时域(time domain),以根据转换结果推估积项和感测电流值。举例来说,可规划行线在第一状态/第二状态下对电容充电,以根据电容的充放电时间取得第一电压值和第二电压值之间的电压差值,进而估测积项和感测电流值。In one embodiment, in order to solve the problem that the voltage difference between the first voltage value and the second voltage value is too small to be interpreted, the voltage difference can be converted into a time domain (time domain) by a specially designed sensing technology. ) to estimate the product term and sense current value from the conversion result. For example, the row line can be planned to charge the capacitor in the first state/second state, so as to obtain the voltage difference between the first voltage value and the second voltage value according to the charging and discharging time of the capacitor, and then estimate the product term and sense current value.
综上所述,本发明大致涉及一种基于硬件阵列结构所实现的类神经计算系统。根据本发明实施例,突触单元阵列的输出通道可切换地连接至第一终端或第二终端。输出通道在连接至第一终端时会呈现第一电压值,并在连接至第二终端时呈现第二电压值。积项和感测电流值可根据第一电压值以及第二电压值之间的差值而被推估出来。相较于传统方法中可能直接对流经输出通道的积项和大电流进行测量以进行运算,根据本发明,连接至第一终端或第二终端的输出通道仅可能导通大小被限制的电流,甚至不导通电流,故可有效降低能耗。To sum up, the present invention generally relates to a neural computing system implemented based on a hardware array structure. According to an embodiment of the present invention, the output channels of the synaptic unit array are switchably connected to the first terminal or the second terminal. The output channel exhibits a first voltage value when connected to the first terminal, and exhibits a second voltage value when connected to the second terminal. The product term and the sensing current value can be estimated according to the difference between the first voltage value and the second voltage value. Compared with the traditional method that may directly measure the product term and the large current flowing through the output channel for calculation, according to the present invention, the output channel connected to the first terminal or the second terminal may only conduct a limited current, It does not even conduct current, so it can effectively reduce energy consumption.
虽然本发明已以实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中普通技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当以权利要求所界定的为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Those skilled in the art to which the present invention belongs may make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711105185.2A CN109784482B (en) | 2017-11-10 | 2017-11-10 | Neural computing system and current estimation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711105185.2A CN109784482B (en) | 2017-11-10 | 2017-11-10 | Neural computing system and current estimation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109784482A CN109784482A (en) | 2019-05-21 |
CN109784482B true CN109784482B (en) | 2023-01-13 |
Family
ID=66485500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711105185.2A Active CN109784482B (en) | 2017-11-10 | 2017-11-10 | Neural computing system and current estimation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109784482B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200394502A1 (en) * | 2019-06-14 | 2020-12-17 | Macronix International Co., Ltd. | Neuromorphic computing device |
US11741353B2 (en) | 2020-12-09 | 2023-08-29 | International Business Machines Corporation | Bias scheme for single-device synaptic element |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4963769A (en) * | 1989-05-08 | 1990-10-16 | Cypress Semiconductor | Circuit for selective power-down of unused circuitry |
CN106470023A (en) * | 2015-08-18 | 2017-03-01 | 华为技术有限公司 | Neurn simulation circuit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8738554B2 (en) * | 2011-09-16 | 2014-05-27 | International Business Machines Corporation | Event-driven universal neural network circuit |
WO2015130304A1 (en) * | 2014-02-28 | 2015-09-03 | Hewlett-Packard Development Company, L.P. | Sensing circuit for resistive memory array |
-
2017
- 2017-11-10 CN CN201711105185.2A patent/CN109784482B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4963769A (en) * | 1989-05-08 | 1990-10-16 | Cypress Semiconductor | Circuit for selective power-down of unused circuitry |
CN106470023A (en) * | 2015-08-18 | 2017-03-01 | 华为技术有限公司 | Neurn simulation circuit |
Non-Patent Citations (3)
Title |
---|
Neuron-synapse IC chip-set for large-scale chaotic neural networks;Y. Horio等;《IEEE Transactions on Neural Networks》;20030930;第14卷(第5期);第[80]-[81]页 * |
对人工智能中的类神经网络方面的研究与探讨;孔晓荣等;《内蒙古科技与经济》;20050430(第08期);第[1393]-[1404]页 * |
神经元电路设计实现的研究;王蓓;《中国优秀硕士学位论文全文数据库信息科技辑(月刊)》;20090215(第02期);第[一]-[六]章 * |
Also Published As
Publication number | Publication date |
---|---|
CN109784482A (en) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102654812B (en) | Capacitance voltage conversion circuit | |
TWI621984B (en) | Capacitance measuring circuit and capacitance measuring method | |
US11042715B2 (en) | Electronic system for performing a multiplication of a matrix and vector | |
JP6615683B2 (en) | Capacitance measurement circuit, input device using the circuit, electronic device | |
CN112445456A (en) | System, computing device and method using multiplier-accumulator circuit | |
TWI441070B (en) | Sensing methods for touch sensing devices | |
CN110383282A (en) | Systems and methods for mixed signal computing | |
CN110046539A (en) | Fingerprint sensor and its operating method | |
TWI855031B (en) | Weight cell and memory device | |
US20180032780A1 (en) | Fingerprint detection circuit and electronic device | |
CN109784482B (en) | Neural computing system and current estimation method thereof | |
KR20170108264A (en) | Fingerprint sensor and electronic device having the same | |
EP3547543A1 (en) | Analog-to-digital converter (adc) with reset skipping operation and analog-to-digital conversion method | |
JP2020521963A (en) | Voltage measuring device and method | |
CN104376362B (en) | Cynapse device and artificial neural network for artificial neural network | |
CN111640463B (en) | Variation-resistant 3T3R binary weighted cell with low output current and high on/off ratio | |
US10345951B2 (en) | Touch panel and sensing method thereof | |
US12093809B2 (en) | Arithmetic device and neural network device | |
CN108414959B (en) | Piezoelectric sensor detection circuit, array piezoelectric sensor circuit and control method | |
US11062197B2 (en) | Neuromorphic computing system and current estimation method using the same | |
TWI861058B (en) | Weight cell and electronic device | |
TWI647627B (en) | Neuromorphic computing system and current estimation method using the same | |
JP3199707B2 (en) | Semiconductor arithmetic circuit and arithmetic device | |
CN115796252A (en) | Weight writing method and device, electronic device and storage medium | |
CN115167703A (en) | Touch driving device, touch device and touch driving method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TG01 | Patent term adjustment | ||
TG01 | Patent term adjustment |