[go: up one dir, main page]

CN109772593B - A method for predicting slurry level based on dynamic characteristics of flotation foam - Google Patents

A method for predicting slurry level based on dynamic characteristics of flotation foam Download PDF

Info

Publication number
CN109772593B
CN109772593B CN201910071569.XA CN201910071569A CN109772593B CN 109772593 B CN109772593 B CN 109772593B CN 201910071569 A CN201910071569 A CN 201910071569A CN 109772593 B CN109772593 B CN 109772593B
Authority
CN
China
Prior art keywords
image
flotation
foam
historical
slurry level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910071569.XA
Other languages
Chinese (zh)
Other versions
CN109772593A (en
Inventor
高宪文
刘道喜
王明顺
张鼎森
佟俊霖
刘博健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910071569.XA priority Critical patent/CN109772593B/en
Publication of CN109772593A publication Critical patent/CN109772593A/en
Application granted granted Critical
Publication of CN109772593B publication Critical patent/CN109772593B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明提供一种基于浮选泡沫动态特征的矿浆液位预测方法,涉及浮选过程生产检测领域。包括:建立浮选参数历史数据库、历史图像数据库、矿浆液位预测历史数据库;对图像序列相邻的两帧进行处理并从中提取运动区域;绘制帧图像的宏块轮廓,搜索出计算泡沫流动速度的最佳位置;通过对相关的两帧连续图像进行傅里叶变换,计算泡沫的运动速度;建立历史数据样本库并进行拟合,得到速度与矿浆液位函数并保存;对浮选机相应时刻的矿浆液位进行预测并输出。本方法以图像运动特征以及泡沫动态特征参数为输入,基于SVR支持向量回归算法进行建模,实现浮选槽矿浆液位过程的检测,解决了现有技术依赖人工专家经验而不能对预测矿浆液位进行实时监测的问题。

Figure 201910071569

The invention provides a method for predicting the liquid level of ore slurry based on the dynamic characteristics of flotation foam, and relates to the field of production detection in flotation process. Including: establishing the historical database of flotation parameters, historical image database, and historical database of slurry level prediction; processing two adjacent frames of the image sequence and extracting the motion area; drawing the outline of the macro block of the frame image, searching for the calculation of the froth flow velocity The optimal position of the foam is calculated by Fourier transform of two consecutive frames of related images; the movement speed of the foam is calculated; the historical data sample library is established and fitted to obtain the function of speed and slurry level and save; corresponding to the flotation machine The slurry level at the moment is predicted and output. The method takes the image motion characteristics and foam dynamic characteristic parameters as input, builds modeling based on the SVR support vector regression algorithm, realizes the detection of the slurry level process in the flotation cell, and solves the problem that the existing technology relies on manual expert experience and cannot predict the slurry level. The problem of real-time monitoring of bits.

Figure 201910071569

Description

一种基于浮选泡沫动态特征的矿浆液位预测方法A method for predicting slurry level based on dynamic characteristics of flotation foam

技术领域technical field

本发明涉及浮选过程生产检测技术领域,具体涉及一种基于浮选泡沫动态特征的矿浆液位预测方法。The invention relates to the technical field of production detection in flotation process, in particular to a method for predicting the liquid level of ore slurry based on the dynamic characteristics of flotation foam.

背景技术Background technique

矿物浮选是在特定工艺条件下,矿浆中加入浮选药剂,充入空气,并通过搅拌产生大量气泡,然后回收含有用矿物泡沫以此达到选矿目标的方法。浮选泡沫具有数量多、黏着、混杂、形状不规则等特征,泡沫形态与流速特征难以定量描述。浮选工艺的众多研究表明,浮选泡沫的特征变化能及时反映过程控制量以及矿石性质的变化,因此可以把浮选泡沫的特征变化作为浮选效果最快捷的指示。Mineral flotation is a method in which flotation reagents are added to the pulp, filled with air, and a large number of air bubbles are generated by stirring, and then the mineral foam is recovered to achieve the beneficiation target under specific process conditions. Flotation froth is characterized by a large number, adhesion, mixing, and irregular shape. The froth morphology and flow rate characteristics are difficult to quantitatively describe. Numerous studies on flotation process have shown that the characteristic change of flotation froth can reflect the change of process control quantity and ore properties in time, so the characteristic change of flotation froth can be used as the quickest indication of flotation effect.

泡沫流速大小是所有泡沫动静态特征当中最被关注的对象,在品位-回收率优化控制系统起着极为关键的作用,对矿物回收率的调节作用显著。浮选过程中,现场工人主要依靠浮选机矿浆液位判断浮选工况是否正常,但是由于现场条件的限制,并未有较好的方法解决矿浆液位实时监测的问题。The size of the foam flow rate is the most concerned object among all the dynamic and static characteristics of the foam. It plays an extremely critical role in the grade-recovery optimization control system, and has a significant adjustment effect on the mineral recovery rate. During the flotation process, the on-site workers mainly rely on the slurry level of the flotation machine to judge whether the flotation conditions are normal. However, due to the limitations of the site conditions, there is no better way to solve the problem of real-time monitoring of the slurry level.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的问题,本发明提供一种基于浮选泡沫动态特征的矿浆液位预测方法,通过建立浮选泡沫动态特征和矿浆液位样本库拟合出泡沫动态特征与矿浆液位之间的关系,从而解决现有技术依赖人工专家经验而不能对预测矿浆液位进行实时监测的问题。Aiming at the problems existing in the prior art, the present invention provides a method for predicting the slurry level based on the dynamic characteristics of flotation foam. Therefore, the existing technology relies on the experience of manual experts and cannot perform real-time monitoring of the predicted slurry level.

为了实现上述目的,一种基于浮选泡沫动态特征的矿浆液位预测方法,具体步骤如下:In order to achieve the above purpose, a method for predicting the slurry level based on the dynamic characteristics of flotation foam, the specific steps are as follows:

步骤1:收集浮选机浮选过程中与泡沫动态特征相关的特征参数建立浮选参数历史数据库;所述特征参数包括刮板转速、充气量和矿浆的浓度;Step 1: collect characteristic parameters related to the dynamic characteristics of froth in the flotation process of the flotation machine to establish a flotation parameter historical database; the characteristic parameters include scraper rotation speed, aeration volume and pulp concentration;

步骤2:利用视频监控技术采集连续的浮选泡沫图像,建立历史图像数据库;Step 2: Use video surveillance technology to collect continuous flotation froth images and establish a historical image database;

步骤3:记录历史图像数据库中每幅图像中浮选机的矿浆液位线下值并建立矿浆液位预测历史数据库;Step 3: Record the below-line value of the slurry level of the flotation machine in each image in the historical image database and establish a historical database for slurry level prediction;

步骤4:对历史图像数据库中每幅图像中的泡沫流动速度进行提取,建立泡沫流动速度历史数据库,具体步骤如下:Step 4: Extract the foam flow velocity in each image in the historical image database, and establish a historical database of foam flow velocity. The specific steps are as follows:

步骤4.1:在历史图像数据库中找到图像序列相邻的两帧,然后对两帧图像进行灰度处理,再利用帧间差分法得到差分图像并二值化;Step 4.1: Find two adjacent frames of the image sequence in the historical image database, then perform grayscale processing on the two frame images, and then use the inter-frame difference method to obtain the difference image and binarize it;

步骤4.2:对差值二值化后的图像进行阈值化处理,提取出图像中的运动区域;Step 4.2: Threshold the image after the difference binarization, and extract the motion area in the image;

步骤4.3:把运动区域的帧图像分成固定大小的多个图像块,利用宏块配准法对图像块进行运动分析,找出前后帧图像各部分的位置对应关系,绘制宏块轮廓,从而得到各子块的运动速度特征;Step 4.3: Divide the frame image of the motion area into multiple image blocks of fixed size, use the macroblock registration method to analyze the motion of the image blocks, find out the position correspondence of each part of the frame image before and after, draw the outline of the macroblock, and obtain The movement speed characteristics of each sub-block;

步骤4.4:采用分三步搜索法在运动区域的帧图像中通过两级搜索相邻帧中所选目标子块的最佳匹配位置,即最适合计算泡沫运动速度的位置;Step 4.4: Use a three-step search method to search for the best matching position of the selected target sub-block in the adjacent frame through two stages in the frame image of the motion area, that is, the position most suitable for calculating the speed of foam movement;

步骤4.5:通过相关函数幅值的方式判断第k帧图像和第k+1帧图像是否相关,若是,则继续步骤4.6,若否,则判断另外两帧相邻图像是否相关,直至所有帧图像均判断完成;Step 4.5: Determine whether the k-th frame image and the k+1-th frame image are related by means of the magnitude of the correlation function. If so, continue to step 4.6; if not, determine whether the other two adjacent images are related, until all frame images are judged to be completed;

步骤4.6:分别对第k帧图像和第k+1帧图像进行傅里叶变换,将图像从空间域转换至频域,得到Fk(w,v)和Fk+1(w,v),其中,w和v为图像的频域坐标;Step 4.6: Perform Fourier transform on the k-th frame image and the k+1-th frame image respectively, convert the image from the spatial domain to the frequency domain, and obtain F k (w, v) and F k+1 (w, v) , where w and v are the frequency domain coordinates of the image;

步骤4.7:根据第k帧图像和第k+1帧图像傅里叶图谱的互功率谱,分别计算两幅图像在x轴和y轴方向上相对平移量x0和y0,从而得到泡沫的运动速度;Step 4.7: Calculate the relative translations x 0 and y 0 of the two images in the x-axis and y-axis directions according to the cross-power spectrum of the k-th frame image and the k+1-th frame image Fourier map, so as to obtain the foam movement speed;

所述第k帧图像和第k+1帧图像傅里叶图谱的互功率谱的计算公式如下:The formula for calculating the cross-power spectrum of the Fourier atlas of the k-th frame image and the k+1-th frame image is as follows:

Figure BDA0001957449870000021
Figure BDA0001957449870000021

其中,F1 *表示F1的共轭复数,j为虚单位,j2=-1;Among them, F 1 * represents the complex conjugate of F 1 , j is an imaginary unit, and j 2 =-1;

步骤4.8:根据得到的泡沫流动速度建立泡沫流动速度历史数据库;Step 4.8: Create a historical database of foam flow speed according to the obtained foam flow speed;

步骤5:根据浮选参数历史数据库、矿浆液位预测历史数据库和泡沫流动速度历史数据库,建立历史数据样本库;Step 5: According to the historical database of flotation parameters, the historical database of slurry level prediction and the historical database of froth flow rate, establish a historical data sample database;

步骤6:将历史数据样本库中的样本通过SVR支持向量回归拟合出泡沫流动速度与矿浆液位之间的函数关系并以函数的形式保存,具体步骤如下:Step 6: Fit the sample in the historical data sample library through SVR support vector regression to fit the functional relationship between the foam flow velocity and the slurry level and save it in the form of a function. The specific steps are as follows:

步骤6.1:对历史数据样本库中的泡沫流动速度与矿浆液位的数值进行标准化处理;Step 6.1: Standardize the values of foam flow velocity and slurry level in the historical data sample library;

步骤6.2:将标准化处理后的样本打乱顺序后随机排序,取一部分样本作为训练数据,剩余的样本作为测试数据;Step 6.2: Arrange the standardized samples in random order, take a part of the samples as training data, and use the remaining samples as test data;

步骤6.3:通过SVR支持向量回归对训练数据进行拟合,并对拟合结果进行测试后,得到泡沫流动速度与矿浆液位之间的函数关系并以函数的形式保存;Step 6.3: Fit the training data through SVR support vector regression, and test the fitting results to obtain the functional relationship between the foam flow velocity and the slurry level and save it in the form of a function;

步骤7:利用视频监控技术采集新的连续的浮选泡沫图像,重复步骤4,对更新图像中的泡沫流动速度进行提取;Step 7: Use video surveillance technology to collect new continuous flotation froth images, repeat step 4, and extract the froth flow velocity in the updated image;

步骤8:将提取到的泡沫流动速度作为输入,带入得到的泡沫流动速度与矿浆液位函数,对浮选机相应时刻的矿浆液位进行预测并输出。Step 8: Take the extracted froth flow velocity as input, bring in the obtained froth flow velocity and the slurry level function, predict and output the slurry level of the flotation machine at the corresponding moment.

本发明的有益效果:Beneficial effects of the present invention:

本发明提出一种基于浮选泡沫动态特征的矿浆液位预测方法,根据结合历史数据、生产现场调研及浮选生产理论分析,浮选槽泡沫的流速与矿浆的液位有着必然关系。同时针对浮选泡沫图像动态特征,提出了基于视觉信息的矿浆液位检测的思路,通过帧间差分法和宏块配准相结合的方法有效提取泡沫图像的运动特征;以图像运动特征以及刮板转速、充气量、矿浆的浓度为输入,基于SVR支持向量回归算法进行建模。实现了浮选槽矿浆液位过程检测功能。The invention proposes a method for predicting the slurry level based on the dynamic characteristics of flotation foam. According to historical data, production site investigation and theoretical analysis of flotation production, the flow rate of the flotation tank foam has an inevitable relationship with the slurry level. At the same time, in view of the dynamic characteristics of the flotation foam image, the idea of ore slurry level detection based on visual information is proposed, and the motion characteristics of the foam image are effectively extracted by the combination of the frame difference method and the macroblock registration method. The rotation speed, aeration volume, and slurry concentration are input, and the modeling is carried out based on the SVR support vector regression algorithm. The function of detecting the slurry level in the flotation tank is realized.

附图说明Description of drawings

图1为本发明实施例中基于浮选泡沫动态特征的矿浆液位预测方法的流程图;Fig. 1 is the flow chart of the method for predicting the slurry level based on the dynamic characteristics of flotation foam in the embodiment of the present invention;

图2为本发明实施例中利用视频监控技术采集连续的浮选泡沫图像示意图;FIG. 2 is a schematic diagram of collecting continuous flotation froth images using video monitoring technology in an embodiment of the present invention;

其中,(a)为利用视频监控技术采集连续的浮选泡沫图像中的第一幅图像示意图;(b)为利用视频监控技术采集连续的浮选泡沫图像中的第二幅图像示意图;(c)为利用视频监控技术采集连续的浮选泡沫图像中的第三幅图像示意图;(d)为利用视频监控技术采集连续的浮选泡沫图像中的第四幅图像示意图;(e)为利用视频监控技术采集连续的浮选泡沫图像中的第五幅图像示意图;(f)为利用视频监控技术采集连续的浮选泡沫图像中的第六幅图像示意图;Wherein, (a) is a schematic diagram of the first image in the continuous flotation froth images collected by video surveillance technology; (b) is a schematic diagram of the second image in the continuous flotation froth images captured by video surveillance technology; (c) ) is the schematic diagram of the third image in the continuous flotation froth images collected by video surveillance technology; (d) is the schematic diagram of the fourth image in the continuous flotation froth images captured by video surveillance technology; (e) is the schematic diagram of the fourth image using video surveillance technology Schematic diagram of the fifth image in the continuous flotation froth images collected by monitoring technology; (f) is a schematic diagram of the sixth image in the continuous flotation froth images collected by video surveillance technology;

图3为本发明实施例中对采集到的相邻两帧图像进行灰度处理并差分二值化后的图像示意图;3 is a schematic diagram of an image obtained by performing grayscale processing and differential binarization on two adjacent frames of images collected in an embodiment of the present invention;

其中,(a)为对采集到的第一幅图像进行灰度处理并差分二值化后的图像示意图;(b)为对采集到的第二幅图像进行灰度处理并差分二值化后的图像示意图;(c)为对采集到的第三幅图像进行灰度处理并差分二值化后的图像示意图;(d)为对采集到的第四幅图像进行灰度处理并差分二值化后的图像示意图;(e)为对采集到的第五幅图像进行灰度处理并差分二值化后的图像示意图;(f)为对采集到的第六幅图像进行灰度处理并差分二值化后的图像示意图;Among them, (a) is a schematic diagram of the first image collected after grayscale processing and differential binarization; (b) is the second image collected after grayscale processing and differential binarization Schematic diagram of the image; (c) is a schematic diagram of the image after grayscale processing and differential binarization of the third image collected; (d) The fourth image collected is subjected to grayscale processing and differential binarization Schematic diagram of the image after transformation; (e) is a schematic diagram of the image after grayscale processing and differential binarization of the fifth image collected; (f) is the sixth image collected after grayscale processing and differential Schematic diagram of the image after binarization;

图4为本发明实施例中差分二值化图像进行阈值化处理后的图像示意图;4 is a schematic diagram of an image after thresholding processing of a differential binarized image in an embodiment of the present invention;

其中,(a)为第一幅差分二值化图像进行阈值化处理后的图像示意图;(b)为第二幅差分二值化图像进行阈值化处理后的图像示意图;(c)为第三幅差分二值化图像进行阈值化处理后的图像示意图;(d)为第四幅差分二值化图像进行阈值化处理后的图像示意图;(e)为第五幅差分二值化图像进行阈值化处理后的图像示意图;(f)为第六幅差分二值化图像进行阈值化处理后的图像示意图;Among them, (a) is a schematic diagram of the first differential binarized image after thresholding; (b) is a schematic diagram of the second differential binarized image after thresholding; (c) is the third image. Schematic diagram of the image after thresholding of the differential binarized image; (d) is a schematic diagram of the image after thresholding of the fourth differential binarized image; (e) is the fifth differential binarized image subjected to thresholding Schematic diagram of the image after processing; (f) is a schematic diagram of the image after thresholding processing of the sixth differential binarized image;

图5为本发明实施例中阈值化图像进行宏块轮廓绘制后的图像示意图;5 is a schematic diagram of an image after a thresholded image is drawn with a macroblock outline according to an embodiment of the present invention;

其中,(a)为第一幅阈值化图像进行宏块轮廓绘制后的图像示意图;(b)为第二幅阈值化图像进行宏块轮廓绘制后的图像示意图;(c)为第三幅阈值化图像进行宏块轮廓绘制后的图像示意图;(d)为第四幅阈值化图像进行宏块轮廓绘制后的图像示意图;(e)为第五幅阈值化图像进行宏块轮廓绘制后的图像示意图;(f)为第六幅阈值化图像进行宏块轮廓绘制后的图像示意图;Among them, (a) is a schematic diagram of the first thresholded image after macroblock outline drawing; (b) is an image schematic diagram of the second thresholded image after macroblock outline drawing; (c) is the third threshold value image (d) is a schematic diagram of the fourth thresholded image after macroblock outline drawing; (e) is the fifth thresholded image after macroblock outline drawing Schematic diagram; (f) is a schematic diagram of the image after the sixth thresholded image is drawn by the macroblock outline;

图6为本发明实施例中利用视频监控技术采集新的连续的浮选泡沫图像示意图;6 is a schematic diagram of collecting new continuous flotation froth images using video surveillance technology in an embodiment of the present invention;

其中,其中,(a)为利用视频监控技术采集新的连续的浮选泡沫图像中的第一幅图像示意图;(b)为利用视频监控技术采集新的连续的浮选泡沫图像中的第二幅图像示意图。Wherein, (a) is a schematic diagram of the first image in the new continuous flotation froth image collected by video surveillance technology; (b) is the second image in the new continuous flotation froth image collected by video surveillance technology A schematic diagram of an image.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优势更加清晰,下面结合附图和具体实施例对本发明做进一步详细说明。此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The specific embodiments described herein are only used to explain the present invention, and are not intended to limit the present invention.

一种基于浮选泡沫动态特征的矿浆液位预测方法,流程如图1所示,包括如下步骤:A method for predicting the slurry level based on the dynamic characteristics of flotation foam, the process is shown in Figure 1, including the following steps:

步骤1:收集浮选机浮选过程中与泡沫动态特征相关的特征参数建立浮选参数历史数据库;所述特征参数包括刮板转速、充气量和矿浆的浓度。Step 1: Collect characteristic parameters related to the dynamic characteristics of froth in the flotation process of the flotation machine to establish a flotation parameter historical database; the characteristic parameters include scraper rotation speed, aeration volume and pulp concentration.

本实施例中,收集到的浮选动态特征相关参数历史数据如表1所示。In this embodiment, the collected historical data of parameters related to flotation dynamic characteristics are shown in Table 1.

表1相关参数历史数据(部分样本库)Table 1 Historical data of related parameters (part of the sample library)

Figure BDA0001957449870000041
Figure BDA0001957449870000041

Figure BDA0001957449870000051
Figure BDA0001957449870000051

步骤2:利用视频监控技术采集连续的浮选泡沫图像,建立历史图像数据库。Step 2: Use video surveillance technology to collect continuous flotation froth images and establish a historical image database.

本实施例中,采集到的连续的浮选泡沫图像如图2所示。In this embodiment, the collected continuous flotation froth images are shown in FIG. 2 .

步骤3:记录历史图像数据库中每幅图像中浮选机的矿浆液位线下值并建立矿浆液位预测历史数据库。Step 3: Record the below-line value of the slurry level of the flotation machine in each image in the historical image database and establish a historical database of slurry level prediction.

本实施例中,每幅图像中浮选机的矿浆液位线下值构建的矿浆液位预测历史数据库如表1所示。In this embodiment, the slurry level prediction historical database constructed by the below-line value of the slurry level of the flotation machine in each image is shown in Table 1.

步骤4:对历史图像数据库中每幅图像中的泡沫流动速度进行提取,建立泡沫流动速度历史数据库,具体步骤如下:Step 4: Extract the foam flow velocity in each image in the historical image database, and establish a historical database of foam flow velocity. The specific steps are as follows:

步骤4.1:在历史图像数据库中找到图像序列相邻的两帧,然后对两帧图像进行灰度处理,再利用帧间差分法得到差分图像并二值化;Step 4.1: Find two adjacent frames of the image sequence in the historical image database, then perform grayscale processing on the two frame images, and then use the inter-frame difference method to obtain the difference image and binarize it;

本实施例中,对历史图像数据库中的图像进行灰度处理,再进行差分二值化后的结果如图3所示。In this embodiment, the grayscale processing is performed on the images in the historical image database, and the result after performing differential binarization is shown in FIG. 3 .

步骤4.2:对差值二值化后的图像进行阈值化处理,提取出图像中的运动区域。Step 4.2: Threshold the image after the difference binarization, and extract the motion area in the image.

本实施例中,对差值二值化后的图像进行阈值化处理后的结果如图4所示。In this embodiment, the result of performing thresholding processing on the difference binarized image is shown in FIG. 4 .

步骤4.3:把运动区域的帧图像分成固定大小的多个图像块,利用宏块配准法对图像块进行运动分析,找出前后帧图像各部分的位置对应关系,绘制宏块轮廓,从而得到各子块的运动速度特征。Step 4.3: Divide the frame image of the motion area into multiple image blocks of fixed size, use the macroblock registration method to analyze the motion of the image blocks, find out the position correspondence of each part of the frame image before and after, draw the outline of the macroblock, and obtain The movement speed characteristics of each sub-block.

本实施例中,绘制好宏块轮廓的图像如图5所示。In this embodiment, the image on which the outline of the macroblock is drawn is shown in FIG. 5 .

步骤4.4:采用分三步搜索法在运动区域的帧图像中通过两级搜索相邻帧中所选目标子块的最佳匹配位置,即最适合计算泡沫运动速度的位置。Step 4.4: Use a three-step search method to search for the best matching position of the selected target sub-blocks in adjacent frames in two stages in the frame image of the motion area, that is, the position that is most suitable for calculating the speed of foam movement.

步骤4.5:通过相关函数幅值的方式判断第k帧图像和第k+1帧图像是否相关,若是,则继续步骤4.6,若否,则判断另外两帧相邻图像是否相关,直至所有帧图像均判断完成。Step 4.5: Determine whether the k-th frame image and the k+1-th frame image are related by means of the magnitude of the correlation function. If so, continue to step 4.6; if not, determine whether the other two adjacent images are related, until all frame images All judged to be complete.

步骤4.6:分别对第k帧图像和第k+1帧图像进行傅里叶变换,将图像从空间域转换至频域,得到Fk(w,v)和Fk+1(w,v),其中,w和v为图像的频域坐标。Step 4.6: Perform Fourier transform on the k-th frame image and the k+1-th frame image respectively, convert the image from the spatial domain to the frequency domain, and obtain F k (w, v) and F k+1 (w, v) , where w and v are the frequency-domain coordinates of the image.

本实施例中,若第k+1帧图像fk+1(x,y)为第k帧图像fk(x,y)在x和y方向上分别平移x0和y0后得到的,则有公式(1):In this embodiment, if the k+1 th frame image f k+1 (x, y) is obtained after the k th frame image f k (x, y) is translated by x 0 and y 0 in the x and y directions, respectively, Then there is formula (1):

fk+1(x,y)=fk(x-x0,y-y0) (1)f k+1 (x, y)=f k (xx 0 , yy 0 ) (1)

其中,x和y为图像的空间域坐标。where x and y are the spatial domain coordinates of the image.

分别对第k帧图像和第k+1帧图像进行傅里叶变换后得到Fk(w,v)和Fk+1(w,v),则有公式(2):Fourier transform is performed on the k-th frame image and the k+1-th frame image to obtain F k (w, v) and F k+1 (w, v), then there is formula (2):

Figure BDA0001957449870000061
Figure BDA0001957449870000061

步骤4.7:根据第k帧图像和第k+1帧图像傅里叶图谱的互功率谱,分别计算两幅图像在x轴和y轴方向上相对平移量x0和y0,从而得到泡沫的运动速度。Step 4.7: Calculate the relative translations x 0 and y 0 of the two images in the x-axis and y-axis directions according to the cross-power spectrum of the k-th frame image and the k+1-th frame image Fourier map, so as to obtain the foam Movement speed.

所述第k帧图像和第k+1帧图像傅里叶图谱的互功率谱的计算公式如公式(3)所示:The calculation formula of the cross-power spectrum of the Fourier atlas of the k-th frame image and the k+1-th frame image is shown in formula (3):

Figure BDA0001957449870000062
Figure BDA0001957449870000062

其中,F1 *表示F1的共轭复数,j为虚单位,j2=-1。Wherein, F 1 * represents the complex conjugate of F 1 , j is an imaginary unit, and j 2 =-1.

步骤4.8:根据得到的泡沫流动速度建立泡沫流动速度历史数据库。Step 4.8: According to the obtained foam flow speed, a historical database of foam flow speed is established.

通过对公式(3)进行傅里叶逆变换,在空间点(x0,y0)处将形成一个单位脉冲函数,脉冲位置即为两幅被配准图像间的相对平移量x0和y0,通过这个位移量就可以得出泡沫的运动速度。By inverse Fourier transform of formula (3), a unit impulse function will be formed at the spatial point (x 0 , y 0 ), and the pulse position is the relative translation amount x 0 and y between the two registered images 0 , the movement speed of the foam can be obtained through this displacement.

本实施例中,定义流向浮选槽流速为正方向,流向浮选槽中心则为流速负方向,得到的泡沫流动速度历史数据库如表2所示。In this embodiment, the flow velocity toward the flotation cell is defined as the positive direction, and the flow toward the center of the flotation cell is defined as the negative flow velocity. The obtained foam flow velocity historical database is shown in Table 2.

表2提取浮选泡沫流速特征(示例)Table 2 Extraction of flotation froth flow velocity characteristics (example)

Figure BDA0001957449870000063
Figure BDA0001957449870000063

Figure BDA0001957449870000071
Figure BDA0001957449870000071

步骤5:根据浮选参数历史数据库、矿浆液位预测历史数据库和泡沫流动速度历史数据库,建立历史数据样本库。Step 5: According to the historical database of flotation parameters, the historical database of slurry level prediction and the historical database of froth flow rate, a historical data sample database is established.

本实施例中,建立的历史数据样本库如表3所示。In this embodiment, the established historical data sample database is shown in Table 3.

表3样本库(部分)Table 3 Sample library (part)

Figure BDA0001957449870000072
Figure BDA0001957449870000072

Figure BDA0001957449870000081
Figure BDA0001957449870000081

步骤6:将历史数据样本库中的样本通过SVR支持向量回归拟合出泡沫流动速度与矿浆液位之间的函数关系并以函数的形式保存,具体步骤如下:Step 6: Fit the sample in the historical data sample library through SVR support vector regression to fit the functional relationship between the foam flow velocity and the slurry level and save it in the form of a function. The specific steps are as follows:

步骤6.1:对历史数据样本库中的泡沫流动速度与矿浆液位的数值进行标准化处理。Step 6.1: Standardize the values of foam flow velocity and slurry level in the historical data sample library.

本实施例中,标准化处理即为归一化处理,具体处理公式如公式(4)所示:In this embodiment, the normalization processing is the normalization processing, and the specific processing formula is shown in formula (4):

Pi=2(P-Pmin)/(Pmax-Pmin)-1 (4)P i =2(PP min )/(P max -P min )-1 (4)

其中:Pi为处理后的数据,P为输入数据,Pmax为输入数据中的最大值,Pmin为输入数据中的最小值。Among them: Pi is the processed data, P is the input data, Pmax is the maximum value in the input data, and Pmin is the minimum value in the input data.

步骤6.2:将标准化处理后的样本打乱顺序后随机排序,取一部分样本作为训练数据,剩余的样本作为测试数据。Step 6.2: Arrange the standardized samples in random order, take a part of the samples as training data, and use the remaining samples as test data.

本实施例中,取样本的前五分之四作为训练数据,后五分之一作为测试数据。In this embodiment, the first four-fifths of the samples are taken as training data, and the last fifth of the samples are taken as test data.

步骤6.3:通过SVR支持向量回归对训练数据进行拟合,并对拟合结果进行测试后,得到泡沫流动速度与矿浆液位之间的函数关系并以函数的形式保存。Step 6.3: Fit the training data through SVR support vector regression, and test the fitting results to obtain the functional relationship between the foam flow velocity and the slurry level and save it in the form of a function.

本实施例中,当测试误差小于0.1%时,认为训练结果满意,保存好这组函数关系,得到的函数表达式如公式(5)所示:In this embodiment, when the test error is less than 0.1%, it is considered that the training result is satisfactory, and the set of functional relationships is saved, and the obtained functional expression is shown in formula (5):

high=f(V0,A,C,|V|) (5)high=f(V 0 , A, C, |V|) (5)

其中,V0为刮板转速,A为充气量,C为矿浆浓度,V为矿浆流速。Among them, V 0 is the rotating speed of the scraper, A is the aeration amount, C is the slurry concentration, and V is the slurry flow rate.

步骤7:利用视频监控技术采集新的连续的浮选泡沫图像,重复步骤4,对更新图像中的泡沫流动速度进行提取。Step 7: Use video surveillance technology to collect new continuous flotation froth images, repeat step 4, and extract the froth flow velocity in the updated image.

本实施例中,采集到的新的连续的浮选泡沫图像如图6所示,重复步骤4,提取到的泡沫流动速度如表4所示。In this embodiment, the acquired new continuous flotation froth image is shown in FIG. 6 , and step 4 is repeated, and the extracted froth flow velocity is shown in Table 4.

表4浮选泡沫动态特征特征Table 4 Dynamic characteristics of flotation froth

刮板转速V<sub>0</sub>Scraper speed V<sub>0</sub> 充气量A(m3/min)Aeration volume A(m3/min) 矿浆浓度C(%)Pulp concentration C (%) 矿浆流速VSlurry velocity V 2020 1.021.02 32.3032.30 52.0152.01

步骤8:将提取到的泡沫流动速度作为输入,带入得到的泡沫流动速度与矿浆液位函数,对浮选机相应时刻的矿浆液位进行预测并输出。Step 8: Take the extracted froth flow velocity as input, bring in the obtained froth flow velocity and the slurry level function, predict and output the slurry level of the flotation machine at the corresponding moment.

本实施例中,将提取到的泡沫流动速度带入得到的泡沫流动速度与矿浆液位函数,得到矿浆液位预测结果和实际记录结果如表5所示。In this embodiment, the extracted foam flow velocity is brought into the obtained function of the foam flow velocity and the slurry level, and the predicted results of the slurry level and the actual recorded results are shown in Table 5.

表5矿浆液位预测结果和实际记录结果对比表Table 5 Comparison table between predicted results of slurry level and actual recorded results

序号serial number 矿浆液位值Slurry level value 预测结果forecast result 2.22.2 实际结果actual results 2.12.1

本发明提供的预测方法与现有方法相比较具有以下的优点:通过图像特征提取技术,利用帧间差分和宏块配准法对泡沫图像进行特征提取,建立了基于泡沫图像的矿浆液位预测模型,实现了对浮选过程矿浆液位的预测,能够为操作人员调整浮选工况提供辅助。Compared with the existing method, the prediction method provided by the present invention has the following advantages: through the image feature extraction technology, the feature extraction is performed on the foam image by using the difference between frames and the macroblock registration method, and a prediction model of the slurry level based on the foam image is established. , realizes the prediction of the slurry level in the flotation process, and can provide assistance for the operator to adjust the flotation conditions.

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;因而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand; The technical solutions described in the foregoing embodiments are modified, or some or all of the technical features thereof are equivalently replaced; therefore, these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope defined by the claims of the present invention.

Claims (3)

1.一种基于浮选泡沫动态特征的矿浆液位预测方法,其特征在于,包括以下步骤:1. a method for predicting ore slurry liquid level based on flotation froth dynamic characteristics, is characterized in that, comprises the following steps: 步骤 1:收集浮选机浮选过程中与泡沫动态特征相关的特征参数建立浮选参数历史数据库;所述特征参数包括刮板转速、充气量和矿浆的浓度;Step 1: Collect characteristic parameters related to the dynamic characteristics of froth in the flotation process of the flotation machine to establish a flotation parameter historical database; the characteristic parameters include scraper rotation speed, aeration volume and pulp concentration; 步骤 2:利用视频监控技术采集连续的浮选泡沫图像,建立历史图像数据库;Step 2: Use video surveillance technology to collect continuous flotation froth images and establish a historical image database; 步骤 3:记录历史图像数据库中每幅图像中浮选机的矿浆液位线下值并建立矿浆液位预测历史数据库;Step 3: Record the below-line value of the slurry level of the flotation machine in each image in the historical image database and establish a historical database of slurry level prediction; 步骤 4:对历史图像数据库中每幅图像中的泡沫流动速度进行提取,建立泡沫流动速度历史数据库,过程如下;Step 4: Extract the foam flow velocity in each image in the historical image database, and establish a foam flow velocity historical database. The process is as follows; 步骤 4.1:在历史图像数据库中找到图像序列相邻的两帧,然后对两帧图像进行灰度处理,再利用帧间差分法得到差分图像并二值化;Step 4.1: Find two adjacent frames of the image sequence in the historical image database, then perform grayscale processing on the two frames of images, and then use the inter-frame difference method to obtain the difference image and binarize it; 步骤 4.2:对差值二值化后的图像进行阈值化处理,提取出图像中的运动区域;Step 4.2: Threshold the image after the difference binarization, and extract the motion area in the image; 步骤 4.3:把运动区域的帧图像分成固定大小的多个图像块,利用宏块配准法对图像块进行运动分析,找出前后帧图像各部分的位置对应关系,绘制宏块轮廓,从而得到各子块的运动速度特征;Step 4.3: Divide the frame image of the motion area into multiple image blocks of fixed size, use the macroblock registration method to analyze the motion of the image blocks, find out the position correspondence of each part of the frame image before and after, draw the outline of the macroblock, and obtain The movement speed characteristics of each sub-block; 步骤 4.4:采用分三步搜索法在运动区域的帧图像中通过两级搜索相邻帧中所选目标子块的最佳匹配位置,即最适合计算泡沫运动速度的位置;Step 4.4: Use the three-step search method to search for the best matching position of the selected target sub-block in the adjacent frame through two stages in the frame image of the motion area, that is, the position that is most suitable for calculating the speed of foam movement; 步骤 4.5:通过相关函数幅值的方式判断第 k 帧图像和第 k+1 帧图像是否相关,若是,则继续步骤 4.6,若否,则判断另外两帧相邻图像是否相关,直至所有帧图像均判断完成;Step 4.5: Determine whether the k-th frame image and the k+1-th frame image are related by means of the magnitude of the correlation function. If so, continue to step 4.6; if not, determine whether the other two adjacent images are related, until all frame images are judged to be completed; 步骤 4.6:分别对第 k 帧图像和第 k+1 帧图像进行傅里叶变换,将图像从空间域转换至频域,得到 F k(w,v)和 F k+1(w,v),其中,wv为图像的频域坐标;Step 4.6: Perform Fourier transform on the k-th frame image and the k+1-th frame image respectively, convert the image from the spatial domain to the frequency domain, and obtain F k ( w, v ) and F k+1 ( w, v ) , where w and v are the frequency domain coordinates of the image; 步骤 4.7:根据第 k 帧图像和第 k+1 帧图像傅里叶图谱的互功率谱,分别计算两幅图像在x轴和y轴方向上相对平移量x0和y0,从而得到泡沫的运动速度;Step 4.7: Calculate the relative translations x0 and y0 of the two images in the x-axis and y-axis directions according to the cross-power spectrum of the k-th frame image and the k+1-th frame image Fourier spectrum, so as to obtain the movement speed of the foam ; 步骤 4.8:根据得到的泡沫流动速度建立泡沫流动速度历史数据库;Step 4.8: Create a foam flow rate historical database based on the obtained foam flow rate; 步骤 5:根据浮选参数历史数据库、矿浆液位预测历史数据库和泡沫流动速度历史数据库,建立历史数据样本库;Step 5: According to the historical database of flotation parameters, the historical database of slurry level prediction and the historical database of froth flow rate, establish a historical data sample database; 步骤 6:将历史数据样本库中的样本通过 SVR 支持向量回归拟合出泡沫流动速度与矿浆液位之间的函数关系并以函数的形式保存;Step 6: Fit the sample in the historical data sample library through SVR support vector regression to fit the functional relationship between the foam flow velocity and the slurry level and save it in the form of a function; 步骤 7:利用视频监控技术采集新的连续的浮选泡沫图像,重复步骤4,对更新图像中的泡沫流动速度进行提取;Step 7: Use video surveillance technology to collect new continuous flotation froth images, repeat step 4, and extract the froth flow velocity in the updated image; 步骤 8:将提取到的泡沫流动速度作为输入,带入得到的泡沫流动速度与矿浆液位函数,对浮选机相应时刻的矿浆液位进行预测并输出。Step 8: Take the extracted froth flow velocity as input, bring in the obtained froth flow velocity and slurry level function, predict and output the slurry level of the flotation machine at the corresponding moment. 2.根据权利要求 1所述的基于浮选泡沫动态特征的矿浆液位预测方法,其特征在于,所述步骤4.7中第k帧图像和第k+1帧图像傅里叶图谱的互功率谱的计算公式如下:2. The method for predicting the slurry level based on the dynamic characteristics of flotation foam according to claim 1, wherein in the step 4.7, the cross-power spectrum of the k-th frame image and the k+1-th frame image Fourier spectrum The calculation formula is as follows:
Figure 737087DEST_PATH_IMAGE002
Figure 737087DEST_PATH_IMAGE002
其中,F1*表示 F1的共轭复数,j为虚单位,j 2=-1。Wherein, F 1 * represents the complex conjugate of F 1 , j is an imaginary unit, and j 2 =-1.
3.根据权利要求1所述的基于浮选泡沫动态特征的矿浆液位预测方法,其特征在于,所述步骤6包括以下步骤:3. The method for predicting the slurry level based on the dynamic characteristics of flotation foam according to claim 1, wherein the step 6 comprises the following steps: 步骤 6.1:对历史数据样本库中的泡沫流动速度与矿浆液位的数值进行标准化处理;Step 6.1: Standardize the values of foam flow velocity and slurry level in the historical data sample library; 步骤 6.2:将标准化处理后的样本打乱顺序后随机排序,取一部分样本作为训练数据,剩余的样本作为测试数据;Step 6.2: Arrange the standardized samples in random order, take a part of the samples as training data, and use the remaining samples as test data; 步骤 6.3:通过 SVR 支持向量回归对训练数据进行拟合,并对拟合结果进行测试后,得到泡沫流动速度与矿浆液位之间的函数关系并以函数的形式保存。Step 6.3: Fit the training data through SVR support vector regression, and test the fitting results to obtain the functional relationship between the foam flow velocity and the slurry level and save it in the form of a function.
CN201910071569.XA 2019-01-25 2019-01-25 A method for predicting slurry level based on dynamic characteristics of flotation foam Active CN109772593B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910071569.XA CN109772593B (en) 2019-01-25 2019-01-25 A method for predicting slurry level based on dynamic characteristics of flotation foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910071569.XA CN109772593B (en) 2019-01-25 2019-01-25 A method for predicting slurry level based on dynamic characteristics of flotation foam

Publications (2)

Publication Number Publication Date
CN109772593A CN109772593A (en) 2019-05-21
CN109772593B true CN109772593B (en) 2020-09-29

Family

ID=66502553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910071569.XA Active CN109772593B (en) 2019-01-25 2019-01-25 A method for predicting slurry level based on dynamic characteristics of flotation foam

Country Status (1)

Country Link
CN (1) CN109772593B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042220B (en) * 2021-04-07 2022-09-13 中国恩菲工程技术有限公司 Flotation run control system and flotation run control method
CN113393432B (en) * 2021-06-09 2024-05-03 紫金智控(厦门)科技股份有限公司 Intelligent froth flotation detection system
CN116586199B (en) * 2023-07-17 2023-09-19 山东九曲圣基新型建材有限公司 Flotation control system for gold tailing treatment
CN117943213B (en) * 2024-03-27 2024-06-04 浙江艾领创矿业科技有限公司 Real-time monitoring and early warning system and method for micro-bubble flotation machine
CN119272239A (en) * 2024-12-06 2025-01-07 矿冶科技集团有限公司 Copper flotation foam layer thickness prediction method, device, equipment and storage medium
CN119863630B (en) * 2025-03-25 2025-06-17 江西理工大学 Ore pulp liquid level prediction method, system and storage medium based on flotation foam dynamic characteristics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA004377B1 (en) * 1999-11-24 2004-04-29 Оутокумпу Ойй Monitoring and control of a froth flotation plant
CN101334366B (en) * 2008-07-18 2011-05-25 中南大学 A Flotation Recovery Prediction Method Based on Image Feature Analysis
CN102680050B (en) * 2012-04-24 2014-03-05 中南大学 A Sulfur Flotation Liquid Level Measurement Method Based on Foam Image Features and Ventilation
CN103604946B (en) * 2013-05-30 2016-03-23 中南大学 A kind of embedded foam flow velocity measuring system towards mineral froth flotation and method
CN104408724B (en) * 2014-11-27 2017-12-01 中南大学 Froth flotation level monitoring and operating mode's switch method and system based on depth information
CN105488816B (en) * 2015-11-27 2018-09-11 中南大学 A kind of mineral floating foam flow velocity on-line measuring device and method based on 3D vision information
CN108830831B (en) * 2018-05-11 2021-11-30 中南大学 Zinc flotation foam natural speed feature extraction method based on improved SURF matching

Also Published As

Publication number Publication date
CN109772593A (en) 2019-05-21

Similar Documents

Publication Publication Date Title
CN109772593B (en) A method for predicting slurry level based on dynamic characteristics of flotation foam
CN107808378B (en) Detection method for latent defects of complex structural castings based on vertical vertical and horizontal line profile features
CN103955922B (en) Method for detecting flaws of printed fabric based on Gabor filter
Schmugge et al. Crack segmentation by leveraging multiple frames of varying illumination
CN107705283B (en) Particle and bubble collision detection method based on Otsu image segmentation
CN114581764B (en) Underground structure crack disease discriminating method based on deep learning algorithm
CN108830831B (en) Zinc flotation foam natural speed feature extraction method based on improved SURF matching
Ye et al. Diagnosis of sewer pipe defects on image recognition of multi-features and support vector machine in a southern Chinese city
CN106780493A (en) A kind of circular flaw recognition methods based on weld seam X-ray digital image
CN109781737B (en) Detection method and detection system for surface defects of hose
CN104331714A (en) Image data extraction and neural network modeling-based platinum flotation grade estimation method
CN109003275A (en) The dividing method of weld defect image
CN107133952A (en) A kind of alligatoring recognition methods for merging time-frequency characteristics
CN108931621B (en) Zinc ore grade soft measurement method based on process texture characteristics
CN112733747A (en) Identification method, system and device for relieving falling fault of valve pull rod
CN108242060A (en) A Method of Image Edge Detection Based on Sobel Operator
CN107516315A (en) A monitoring method for slag discharge of roadheader based on machine vision
CN110378866A (en) A kind of canal lining breakage image recognition methods based on unmanned plane inspection
CN116071306A (en) Machine vision detection method for riveting defect of rolling bearing retainer
CN115456949A (en) A machine vision-based inspection method for oil pipe flat grinding quality
CN118411379B (en) Automatic deburring process feedback optimization system and method
CN113469938B (en) Pipe gallery video analysis method and system based on embedded front-end processing server
CN115409778A (en) A Threshold Segmentation Method for Images of Infrared Small Targets with Background Suppression
CN103604946B (en) A kind of embedded foam flow velocity measuring system towards mineral froth flotation and method
CN119068275A (en) Flotation foam feature extraction method and device, storage medium, and computer equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant