CN109738163B - Method for acquiring image rotation-out-of-target amount in photoelectric tracking equipment - Google Patents
Method for acquiring image rotation-out-of-target amount in photoelectric tracking equipment Download PDFInfo
- Publication number
- CN109738163B CN109738163B CN201910041940.8A CN201910041940A CN109738163B CN 109738163 B CN109738163 B CN 109738163B CN 201910041940 A CN201910041940 A CN 201910041940A CN 109738163 B CN109738163 B CN 109738163B
- Authority
- CN
- China
- Prior art keywords
- detector
- target
- image
- rotation
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明提出一种应用于光电跟踪设备中消像旋脱靶量获取方法。通过在光电跟踪设备中引入基准激光,在探测器中提取基准光点像的位置来获取系统像旋角度,采用旋转坐标法获取消像旋的有效脱靶量。该脱靶量可作为光电跟踪系统的跟踪误差控制量。不需要旋转平台的测角器件实时提供角度信息量,仅需在探测器上实时检测基准光像点与基准零点时刻基准光像点的相对旋转量角度β。该旋转角度包含多维运动平台的旋转量信息,以及系统光路内部反射镜之间的相对旋转量,由旋转角β产生旋转矩阵,该矩阵左乘原始脱靶量(γy,γz),最终得到消旋脱靶量(γy1,γz1)。该方法简易且消旋脱靶量精度高,其精度不受旋转平台安装精度、测角器件测角精度等因素的影响。
The invention proposes a method for acquiring the off-target amount of deimage rotation applied in photoelectric tracking equipment. The system image rotation angle is obtained by introducing the reference laser into the photoelectric tracking device, and the position of the reference light spot image is extracted in the detector. The missed target amount can be used as the tracking error control amount of the photoelectric tracking system. The angle measuring device that does not require a rotating platform provides the angle information in real time, and only needs to detect the relative rotation angle β between the reference light image point and the reference light image point at the reference zero point in real time on the detector. The rotation angle includes the rotation amount information of the multi-dimensional motion platform and the relative rotation amount between the mirrors in the optical path of the system. The rotation matrix is generated by the rotation angle β, and the matrix is multiplied by the original miss amount (γ y , γ z ), and finally get The amount of off-target racemization (γ y1 , γ z1 ). The method is simple and has high precision of racemic off-target amount.
Description
技术领域technical field
本发明属于光学工程、跟踪控制等技术领域,具体涉及一种应用于光电跟踪设备中消像旋脱靶量获取方法。The invention belongs to the technical fields of optical engineering, tracking control and the like, and in particular relates to a method for acquiring a deimager missing target amount applied in a photoelectric tracking device.
背景技术Background technique
消像旋脱靶量获取方法应用于光电跟踪设备系统对目标的跟踪控制。目标光穿过多维运动平台到达探测器所成像会产生旋转,导致所提取的目标像点脱靶量含有运动平台的旋转运动信息,并未真正反映目标的运动特征,未经消旋的脱靶量信息不能作为系统的控制误差,否则导致系统跟踪失败。以往光束消旋一般采用硬件光束消旋器或软件运动平台测角信息两种方法,其中光束消旋器内部含有齿轮等传动机构,其传动机构的运动不平稳会影响目标像点的稳定性;而采用运动平台的测角信息方法会受到测角传感器测角精度的影响,而且仅仅包含运动平台的旋转角度信息,并未包含内部反射镜之间的旋转信息,该方法一定程度上还受系统设备运动平台正交性的影响,对系统装调精度有很高的要求。而采用本发明的方法对脱靶量进行消像旋处理,简单易行,不需要运动平台传感器的测角信息,仅需探测器提供位置信息即可,可靠性得到进一步提升,而且测角精度也高于以往的方法。The acquisition method of the deimager missing target is applied to the tracking control of the target by the photoelectric tracking equipment system. The target light passes through the multi-dimensional motion platform to reach the detector, and the image will cause rotation, resulting in the extracted target image point off-target amount containing the rotational motion information of the motion platform, which does not really reflect the motion characteristics of the target, and the non-racemic off-target amount information It cannot be used as the control error of the system, otherwise the system tracking will fail. In the past, beam derotation generally used two methods: hardware beam derotator or software motion platform angle measurement information. The beam derotator contains gears and other transmission mechanisms inside, and the unstable movement of the transmission mechanism will affect the stability of the target image point; The angle measurement information method using the motion platform will be affected by the angle measurement accuracy of the angle sensor, and only contains the rotation angle information of the motion platform, but does not include the rotation information between the internal mirrors. This method is also affected by the system to a certain extent. The influence of the orthogonality of the equipment motion platform has high requirements on the system assembly and adjustment accuracy. However, using the method of the present invention to perform deimage rotation processing on the off-target amount is simple and easy to implement, does not require the angle measurement information of the moving platform sensor, and only needs the position information provided by the detector, the reliability is further improved, and the angle measurement accuracy is also improved. higher than previous methods.
发明内容SUMMARY OF THE INVENTION
针对以上消像旋方法的技术问题,提出一种较易实现的应用于光电跟踪设备中消像旋的脱靶量获取方法,该方法能从根本上解决上述问题。Aiming at the technical problems of the above demagnetization method, an easier-to-implement method for obtaining the off-target amount of demagnetization in photoelectric tracking equipment is proposed, which can fundamentally solve the above problems.
为了实现本发明的目的,本发明提供一种较易实现的应用于光电跟踪设备中消像旋脱靶量获取方法,解决其技术问题所采用的技术方案包括:发射一束激光作为基准光,在系统的入瞳前端由激光器、光束准直镜和角锥镜将准直后的激光束耦合引入光电跟踪设备系统;跟踪设备开始跟踪目标前,标定记录基准激光束在探测器靶面坐标系上的像点位置信息,与探测器靶面坐标系零点形成一向量OP0;当目标像进入系统探测器,由图像处理系统获取在探测器靶面坐标系下带像旋的目标原始脱靶量信息(γy,γz),从该时刻起检测基准激光像点的位置,与探测器靶面坐标系零点形成向量OP1,计算向量OP0与向量OP1的夹角β。由该夹角β形成坐标旋转矩阵Rβ,左乘目标原始脱靶量信息(γy,γz),得到消像旋脱靶量信息(γy1,γz1)。In order to achieve the purpose of the present invention, the present invention provides an easy-to-implement method for obtaining the deimage rotation off-target amount applied in photoelectric tracking equipment. The technical solution adopted to solve the technical problem includes: emitting a laser beam as a reference light, At the front of the entrance pupil of the system, the laser, beam collimator and cube mirror couple the collimated laser beam into the photoelectric tracking equipment system; before the tracking equipment starts to track the target, the reference laser beam is calibrated and recorded on the detector target surface coordinate system The image point position information and the zero point of the detector target surface coordinate system form a vector OP 0 ; when the target image enters the system detector, the image processing system obtains the original missing target amount information of the target with image rotation in the detector target surface coordinate system (γ y , γ z ), the position of the reference laser image point is detected from this moment, and a vector OP 1 is formed with the zero point of the detector target surface coordinate system, and the angle β between the vector OP 0 and the vector OP 1 is calculated. The coordinate rotation matrix R β is formed from the included angle β, and the original miss-target amount information (γ y ,γ z ) of the target is multiplied to the left to obtain the de-imaged miss-target amount information (γ y1 ,γ z1 ).
其中,引入的激光束需要根据设备系统的视场ω调整光束与系统视轴的角度,使基准激光在探测器上的像点位置P0(y,z)距离探测器坐标零点O(0,0)大于三分之二视场。Among them, the introduced laser beam needs to adjust the angle between the beam and the viewing axis of the system according to the field of view ω of the equipment system, so that the image point position P 0 (y, z) of the reference laser on the detector is far from the detector coordinate zero point O(0, 0) Greater than two-thirds of the field of view.
本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:
1.仅仅凭借基准激光和探测器作为测角工具,就能测量得到系统设备多维运动平台的运动信息,相比现有的采用光束消旋器以及采用测角器件测角来说,该方法简单易行,且经济性好;1. The motion information of the multi-dimensional motion platform of the system equipment can be measured only by using the reference laser and the detector as angle measuring tools. Compared with the existing beam derotators and angle measuring devices, this method is simple. Easy and economical;
2.采用基准激光束穿越整个系统光路,不仅包含了多维运动平台的运动信息,还包含了系统内部由于外界环境干扰导致的像旋噪声,测得的像旋角度精度和跟踪精度要高于现有方法;2. The reference laser beam is used to pass through the optical path of the entire system, which not only includes the motion information of the multi-dimensional motion platform, but also includes the image rotation noise caused by the external environment interference inside the system. The measured image rotation angle accuracy and tracking accuracy are higher than the current accuracy. has a method;
3.相比采用测角器件测角消像旋的方法,该方法在使用前仅需标定系统设备的像旋零点,不需标定各运动平台的运动方向对像旋的影响,在使用上可大大节约时间成本且可靠性高。3. Compared with the method of using the angle measuring device to measure the image rotation, this method only needs to calibrate the image rotation zero point of the system equipment before use, and does not need to calibrate the influence of the movement direction of each motion platform on the image rotation, which can be used in use. Significant time savings and high reliability.
附图说明Description of drawings
图1为本发明提出的应用于光电跟踪设备中消像旋的脱靶量获取方法的布局示意图,其中,1为主镜,2为激光器,3为光束准直镜,4为基准平行光源,5为角锥镜,6为次镜,7为探测系统。Fig. 1 is the layout schematic diagram of the method for obtaining the off-target amount of de-image rotation in photoelectric tracking equipment proposed by the present invention, wherein 1 is a main mirror, 2 is a laser, 3 is a beam collimating mirror, 4 is a reference parallel light source, and 5 is a reference parallel light source. is a cube mirror, 6 is a secondary mirror, and 7 is a detection system.
图2为望远镜(俯仰轴系)和探测器坐标系示意图。Figure 2 is a schematic diagram of the telescope (elevation axis system) and the detector coordinate system.
图3为消像旋脱靶量坐标旋转求解示意图。FIG. 3 is a schematic diagram of the coordinate rotation solution of the off-target amount of the deimager.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to specific embodiments and accompanying drawings.
本发明提出的应用于光电跟踪设备中消像旋的脱靶量获取方法,包括:在系统的入瞳前端由激光器2、光束准直镜3和角锥镜5将准直后的激光束耦合引入光电跟踪设备系统;由激光器2和光束准直镜3组成基准平行光源4,跟踪设备开始跟踪目标前,标定记录基准激光束在探测系统7的探测器靶面坐标系上的像点位置信息,与探测器靶面坐标系零点形成向量OP0;当目标像进入探测系统7的探测器,由图像处理系统获取在探测器靶面坐标系下带像旋的目标原始脱靶量信息,从该时刻起检测基准激光像点的位置,与探测器靶面坐标系零点形成向量OP1,计算向量OP0与向量OP1的夹角β。由该夹角β形成坐标旋转矩阵Rβ,左乘目标原始脱靶量信息(γy,γz),得到消像旋脱靶量信息(γy1,γz1)。The method for obtaining the off-target amount of deimage rotation in the photoelectric tracking device proposed by the present invention includes: coupling the collimated laser beam into the front of the entrance pupil of the system by the
具体步骤如下:Specific steps are as follows:
第一步:根据图1和图2提供本发明的应用于光电跟踪设备中消像旋的脱靶量获取方法的基准激光光路的布局示意图和望远镜(即俯仰轴系)和探测器坐标系示意图,由小型激光器2以及光束准直镜3组成的基准平行光源4安装于光电跟踪设备的前端,安装位置如图2所示;由安装于光电跟踪设备上方的角锥镜5将准直激光原方向返回进入跟踪系统,如图1所示。图1显示了基准激光光路的整体布局。图2显示了望远镜和探测器的坐标系统,两个坐标系都采用右手坐标系。The first step: according to FIG. 1 and FIG. 2, the layout schematic diagram of the reference laser light path and the telescope (that is, the pitch axis system) and the detector coordinate system schematic diagram of the method for obtaining the missed target amount of the de-image rotation in the photoelectric tracking device of the present invention are provided, The reference
第二步:根据图2提供本发明的望远镜(即俯仰轴系)和探测器坐标系示意图,旋转设备系统的运动平台,如方位轴系和俯仰轴系等,使望远镜坐标系与探测器坐标系保持一致。初始调整准直激光源与系统视轴的角度,使准直激光的像点位于1点位置,即探测器坐标系的零点位置,此时表明准直激光束与系统视轴保持一致;调整准直激光源与系统视轴的角度,使准直激光的像点移动到2点或2’点位置。其中2点和2’点位置位于系统2/3视场以外的位置,一方面远离目标像点,避免对目标成像以及脱靶量的提取造成影响,另一方面远离探测器坐标零点O会提高向量OP0和向量OP1的解算精度。The second step: provide the telescope (that is, the pitch axis system) of the present invention and the schematic diagram of the detector coordinate system according to FIG. 2 , the moving platform of the rotating equipment system, such as the azimuth axis system and the pitch axis system, etc., make the telescope coordinate system and the detector coordinate system remain consistent. Initially adjust the angle between the collimated laser source and the system boresight so that the image point of the collimated laser is at 1 point, that is, the zero position of the detector coordinate system. At this time, it means that the collimated laser beam is consistent with the boresight of the system; The angle between the straight laser source and the boresight of the system moves the image point of the collimated laser to the 2 o'clock or 2'o'clock position. Among them, the 2 and 2' points are located outside the 2/3 field of view of the system. On the one hand, they are far away from the target image point to avoid affecting the target imaging and the extraction of the off-target amount. On the other hand, the distance from the detector coordinate zero point O will increase the vector The precision of the solution for OP 0 and vector OP 1 .
第三步:根据图2和图3分别提供本发明的望远镜(即俯仰轴系)和探测器坐标系示意图和消像旋脱靶量坐标旋转求解示意图,由探测器图像处理系统提取标定并记录准直激光像2点或2’点位置(图2所示),该像点等同于图3中准直激光像点P0(y,z),如图3所示,与探测器靶面坐标系零点O(0,0)形成向量OP0。图3显示了系统探测器靶面上的基准激光和目标像点的位置脱靶量信息。The third step: according to FIG. 2 and FIG. 3, respectively provide a schematic diagram of the telescope (that is, the pitch axis system) and the detector coordinate system of the present invention and a schematic diagram of the coordinate rotation solution of the de-image rotation miss-target amount, and the detector image processing system extracts and calibrates and records the standard The position of 2 points or 2' of the straight laser image (shown in Figure 2), this image point is equivalent to the collimated laser image point P 0 (y,z) in Figure 3, as shown in Figure 3, and the coordinates of the detector target surface The system zero O(0,0) forms the vector OP 0 . Figure 3 shows the positional miss distance information of the reference laser and the target image point on the target surface of the system detector.
第四步:根据图3提供本发明的消像旋脱靶量坐标旋转求解示意图,当目标像进入系统探测器,由图像处理系统获取在探测器靶面坐标系下带像旋的目标原始脱靶量信息(γy,γz),从该时刻起检测基准激光像点的位置P1(y’,z’),与探测器靶面坐标系零点O形成向量OP1。Step 4: According to FIG. 3, a schematic diagram of the coordinate rotation solution of the de-image rotation missed target amount of the present invention is provided. When the target image enters the system detector, the image processing system obtains the original missed target amount of the target with the image rotation in the detector target surface coordinate system. Information (γ y , γ z ), the position P 1 (y', z') of the detected reference laser image point from this moment, and the zero point O of the detector target surface coordinate system form a vector OP 1 .
第五步:根据图3提供本发明的消像旋脱靶量坐标旋转求解示意图,由夹角公式β=acos(OP0,OP1)=(OP0·OP1)/(|OP0|·|OP1|)计算向量OP0与向量OP1的夹角β。由两向量的叉乘判断夹角β是顺时针还是逆时针,设向量OP0中两元素为(y,z),向量OP1中两元素为(y’,z’),求两向量的叉积为OP0×OP1=(y·z’)-(y’·z)。如果叉积OP0×OP1>0,表示夹角β为逆时针,则坐标旋转矩阵为Rβ=[cosβ,sinβ;-sinβ,cosβ]。如果叉积OP0×OP1<0,表示夹角β为顺时针,则坐标旋转矩阵为Rβ=[cos(-β),sin(-β);-sin(-β),cos(-β)]。Step 5: According to FIG. 3 , a schematic diagram of the solution of the coordinate rotation of the off-target amount of the deimager according to the present invention is provided, and the angle formula β=acos(OP 0 , OP 1 )=(OP 0 ·OP 1 )/(|OP 0 |· |OP 1 |) calculates the angle β between the vector OP 0 and the vector OP 1 . Determine whether the angle β is clockwise or counterclockwise by the cross product of the two vectors. Let the two elements in the vector OP 0 be (y, z), and the two elements in the vector OP 1 are (y', z'), and find the two vectors. The cross product is OP 0 ×OP 1 =(y·z')-(y'·z). If the cross product OP 0 ×OP 1 >0, indicating that the angle β is counterclockwise, the coordinate rotation matrix is R β =[cosβ,sinβ;-sinβ,cosβ]. If the cross product OP 0 ×OP 1 <0, indicating that the included angle β is clockwise, the coordinate rotation matrix is R β =[cos(-β),sin(-β);-sin(-β),cos(- β)].
第六步:根据图3提供本发明的消像旋脱靶量坐标旋转求解示意图,坐标旋转矩阵Rβ左乘目标原始脱靶量信息(γy,γz),即得到消像旋的脱靶量信息(γy1,γz1)=Rβ·(γy,γz)。The sixth step: according to FIG. 3 , a schematic diagram for solving the coordinate rotation of the deimager miss-target amount of the present invention is provided, and the coordinate rotation matrix R β is multiplied by the left-multiplying target original miss-amount information (γ y , γ z ), that is, the miss-target amount information of the deimager is obtained. (γ y1 , γ z1 )=R β ·(γ y , γ z ).
以上所述的实施例仅限于解释本发明,本发明的保护范围应包括权利要求的全部内容,而且通过实施例该领域的技术人员即可以实现本发明权利要求的全部内容。The above-mentioned embodiments are only intended to explain the present invention, and the protection scope of the present invention should include the entire contents of the claims, and those skilled in the art can realize the entire contents of the claims of the present invention through the examples.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910041940.8A CN109738163B (en) | 2019-01-16 | 2019-01-16 | Method for acquiring image rotation-out-of-target amount in photoelectric tracking equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910041940.8A CN109738163B (en) | 2019-01-16 | 2019-01-16 | Method for acquiring image rotation-out-of-target amount in photoelectric tracking equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109738163A CN109738163A (en) | 2019-05-10 |
CN109738163B true CN109738163B (en) | 2020-11-17 |
Family
ID=66365137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910041940.8A Active CN109738163B (en) | 2019-01-16 | 2019-01-16 | Method for acquiring image rotation-out-of-target amount in photoelectric tracking equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109738163B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110455498B (en) * | 2019-07-04 | 2021-03-16 | 湖北航天技术研究院总体设计所 | Performance testing device and method for composite shaft tracking and aiming system |
CN110608717B (en) * | 2019-09-19 | 2021-01-15 | 中国科学院长春光学精密机械与物理研究所 | Method and system for tracking horizontal telescope image elimination rotation target and electronic equipment |
CN110715795B (en) * | 2019-10-14 | 2021-06-01 | 中国科学院光电技术研究所 | Calibration and measurement method for fast reflector in photoelectric tracking system |
CN111879338B (en) * | 2020-07-28 | 2022-02-22 | 安徽中科美络信息技术有限公司 | Electronic map-based driving track planning compensation method and device |
CN113188765A (en) * | 2021-04-23 | 2021-07-30 | 长光卫星技术有限公司 | Test system for MTF and anti-dispersion test of visible light detector |
CN113237439B (en) * | 2021-04-30 | 2022-07-15 | 长春理工大学 | Decoupling tracking method of periscopic laser communication terminal |
CN113608186B (en) * | 2021-09-13 | 2023-10-20 | 中国工程物理研究院应用电子学研究所 | Calibration method of radar system and photoelectric imaging system |
CN115683159A (en) * | 2022-10-14 | 2023-02-03 | 天津津航技术物理研究所 | Embedded software-based simulation test method for photoelectric platform to track misses |
CN118584658B (en) * | 2024-06-19 | 2025-03-18 | 银河航天(北京)网络技术有限公司 | Image rotation elimination method, device, electronic device, storage medium and program product |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950419A (en) * | 2010-08-26 | 2011-01-19 | 西安理工大学 | Quick image rectification method in presence of translation and rotation at same time |
CN102096925A (en) * | 2010-11-26 | 2011-06-15 | 中国科学院上海技术物理研究所 | Real-time closed loop predictive tracking method of maneuvering target |
JP2012243383A (en) * | 2011-05-24 | 2012-12-10 | Toshiba Corp | Information recorder, and information recording method |
CN103471620A (en) * | 2013-09-29 | 2013-12-25 | 四川九洲电器集团有限责任公司 | Angular accuracy computing and tracking accuracy assessing system and method |
CN104296655A (en) * | 2014-09-26 | 2015-01-21 | 中国科学院光电研究院 | Calibration method of image rotation formula initial angle of laser tracker |
CN108710379A (en) * | 2018-06-14 | 2018-10-26 | 上海卫星工程研究所 | Fixed statellite is imaged Yaw steering angle computational methods |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104501745B (en) * | 2015-01-19 | 2017-12-12 | 中国人民解放军国防科学技术大学 | A kind of quick determination method and device of photo electric imaging system optical axis deviation |
CN108490446B (en) * | 2018-01-25 | 2020-12-01 | 中国人民解放军91977部队 | Photoelectric three-coordinate searching and tracking device and method |
-
2019
- 2019-01-16 CN CN201910041940.8A patent/CN109738163B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950419A (en) * | 2010-08-26 | 2011-01-19 | 西安理工大学 | Quick image rectification method in presence of translation and rotation at same time |
CN102096925A (en) * | 2010-11-26 | 2011-06-15 | 中国科学院上海技术物理研究所 | Real-time closed loop predictive tracking method of maneuvering target |
JP2012243383A (en) * | 2011-05-24 | 2012-12-10 | Toshiba Corp | Information recorder, and information recording method |
CN103471620A (en) * | 2013-09-29 | 2013-12-25 | 四川九洲电器集团有限责任公司 | Angular accuracy computing and tracking accuracy assessing system and method |
CN104296655A (en) * | 2014-09-26 | 2015-01-21 | 中国科学院光电研究院 | Calibration method of image rotation formula initial angle of laser tracker |
CN108710379A (en) * | 2018-06-14 | 2018-10-26 | 上海卫星工程研究所 | Fixed statellite is imaged Yaw steering angle computational methods |
Non-Patent Citations (4)
Title |
---|
CCD像面旋转引起的脱靶量误差及检测方法;龙华伟 等;《光学精密工程》;20031231;第11卷(第6期);第607-611页 * |
CCD相机靶面倾斜误差修正应用研究;廉绿松;《长春理工大学学报(自然科学版)》;20090630;第32卷(第2期);第233-235页 * |
光电跟踪系统集成仿真系统的开发;史建亮 等;《系统工程理论与实践》;20120831;第32卷(第8期);第1864-1870页 * |
反射式探测系统中数字消像旋的简易方法;杨锐 等;《光电技术应用》;20090830(第4期);第13-15页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109738163A (en) | 2019-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109738163B (en) | Method for acquiring image rotation-out-of-target amount in photoelectric tracking equipment | |
US7643135B1 (en) | Telescope based calibration of a three dimensional optical scanner | |
US7797120B2 (en) | Telescope based calibration of a three dimensional optical scanner | |
US9791569B2 (en) | Coordinate measurement system and method | |
US7466401B2 (en) | Self-compensating laser tracker | |
US20090109426A1 (en) | Self-compensating laser tracker | |
CN103884334A (en) | Moving target positioning method based on wide beam laser ranging and single camera | |
CN109520425A (en) | A kind of essence tracking error test device and test method | |
CN109520446A (en) | A kind of measurement method of revolution at a high speed shafting dynamic inclination error | |
US20220229182A1 (en) | Surveying Instrument | |
CN106017404A (en) | Detection device and method for included angle between visual axis of camera and optical axis of auxiliary laser in image pickup measurement | |
Liu et al. | Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters | |
CN116630435A (en) | Intelligent recognition and detection system and method for remote sensing camera | |
CN117849987A (en) | A high-precision focusing method for an optical axis vertical camera based on coordinate measurement | |
CN115704671A (en) | Blade operation parameter measuring device and measuring method | |
CN106403991A (en) | Method for compensation and control of multi-optical path installation errors based on miss distance offset | |
CN118377004A (en) | Optical axis calibration method and device for distributed aperture laser active detection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |