CN109735582B - A kind of method of lipase-catalyzed online synthesis of cyclohexanol β-amino alcohol derivatives - Google Patents
A kind of method of lipase-catalyzed online synthesis of cyclohexanol β-amino alcohol derivatives Download PDFInfo
- Publication number
- CN109735582B CN109735582B CN201811592195.8A CN201811592195A CN109735582B CN 109735582 B CN109735582 B CN 109735582B CN 201811592195 A CN201811592195 A CN 201811592195A CN 109735582 B CN109735582 B CN 109735582B
- Authority
- CN
- China
- Prior art keywords
- reaction
- syringe
- lipase
- cyclohexanol
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 24
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 238000006243 chemical reaction Methods 0.000 claims abstract description 138
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000002994 raw material Substances 0.000 claims abstract description 31
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical compound C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 claims abstract description 27
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohexene oxide Natural products O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 claims abstract description 27
- 230000035484 reaction time Effects 0.000 claims abstract description 25
- 108090001060 Lipase Proteins 0.000 claims abstract description 22
- 102000004882 Lipase Human genes 0.000 claims abstract description 21
- 239000004367 Lipase Substances 0.000 claims abstract description 21
- 235000019421 lipase Nutrition 0.000 claims abstract description 21
- 239000003054 catalyst Substances 0.000 claims abstract description 20
- 238000007142 ring opening reaction Methods 0.000 claims abstract description 18
- 108010048733 Lipozyme Proteins 0.000 claims abstract description 17
- 239000007810 chemical reaction solvent Substances 0.000 claims abstract description 14
- 239000000047 product Substances 0.000 claims description 15
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 12
- -1 aniline compound Chemical class 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 238000010828 elution Methods 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- 238000006555 catalytic reaction Methods 0.000 claims description 7
- LIKMAJRDDDTEIG-UHFFFAOYSA-N n-hexene Natural products CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 239000000741 silica gel Substances 0.000 claims description 5
- 229910002027 silica gel Inorganic materials 0.000 claims description 5
- 239000003208 petroleum Substances 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 239000012043 crude product Substances 0.000 claims 2
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 239000012046 mixed solvent Substances 0.000 claims 1
- 238000010898 silica gel chromatography Methods 0.000 claims 1
- 238000005292 vacuum distillation Methods 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000012805 post-processing Methods 0.000 abstract description 3
- 150000001448 anilines Chemical class 0.000 abstract 1
- JJYPMNFTHPTTDI-UHFFFAOYSA-N 3-methylaniline Chemical compound CC1=CC=CC(N)=C1 JJYPMNFTHPTTDI-UHFFFAOYSA-N 0.000 description 16
- 229940040461 lipase Drugs 0.000 description 12
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 239000004593 Epoxy Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 8
- 238000004809 thin layer chromatography Methods 0.000 description 7
- MJNOEMYMZJOVRT-UHFFFAOYSA-N 2-(3-methylanilino)cyclohexan-1-ol Chemical compound CC1=CC=CC(NC2C(CCCC2)O)=C1 MJNOEMYMZJOVRT-UHFFFAOYSA-N 0.000 description 6
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methyl-N-phenylamine Natural products CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- JTCBCGKEWZZVIP-UHFFFAOYSA-N 2-(4-methylanilino)cyclohexan-1-ol Chemical compound C1=CC(C)=CC=C1NC1C(O)CCCC1 JTCBCGKEWZZVIP-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 108010084311 Novozyme 435 Proteins 0.000 description 4
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 241000222175 Diutina rugosa Species 0.000 description 3
- 230000000269 nucleophilic effect Effects 0.000 description 3
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 108091005658 Basic proteases Proteins 0.000 description 2
- 102000019280 Pancreatic lipases Human genes 0.000 description 2
- 108050006759 Pancreatic lipases Proteins 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 208000012839 conversion disease Diseases 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229940116369 pancreatic lipase Drugs 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 150000004992 toluidines Chemical class 0.000 description 2
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100031375 Endothelial lipase Human genes 0.000 description 1
- 241000235403 Rhizomucor miehei Species 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000001088 anti-asthma Effects 0.000 description 1
- 229940127003 anti-diabetic drug Drugs 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940127088 antihypertensive drug Drugs 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002118 epoxides Chemical group 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000008648 triflates Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开了一种脂肪酶催化在线合成环己醇类β‑氨基醇衍生物的方法:以甲醇为反应溶剂,以苯胺类化合物和氧化环己烯为原料,以脂肪酶Lipozyme RM IM为催化剂,将原料和反应溶剂置于注射器中,将脂肪酶Lipozyme RM IM均匀填充在微流控通道反应器的反应通道中,在注射泵的推动下使原料和反应溶剂连续通入反应通道器中进行开环反应,所述微流控通道反应器的反应通道内径为0.8~2.4mm,反应通道长为0.5~1.0m;控制开环反应温度为30~50℃,开环反应时间为10~30min,通过产物收集器在线收集反应液,反应液经常规后处理得到环己醇类β‑氨基醇衍生物。本发明具有反应时间短、选择性高及产率高的优点。The invention discloses a method for on-line synthesis of cyclohexanol β-amino alcohol derivatives catalyzed by lipase: methanol is used as a reaction solvent, aniline compounds and cyclohexene oxide are used as raw materials, and lipase Lipozyme RM IM is used as a catalyst. , put the raw material and the reaction solvent in the syringe, evenly fill the lipase Lipozyme RM IM in the reaction channel of the microfluidic channel reactor, and make the raw material and the reaction solvent continuously pass into the reaction channel device under the push of the syringe pump. For the ring-opening reaction, the inner diameter of the reaction channel of the microfluidic channel reactor is 0.8-2.4mm, and the length of the reaction channel is 0.5-1.0m; the temperature of the ring-opening reaction is controlled to be 30-50°C, and the ring-opening reaction time is 10-30min , the reaction solution is collected online by a product collector, and the reaction solution is subjected to conventional post-processing to obtain cyclohexanol β-amino alcohol derivatives. The present invention has the advantages of short reaction time, high selectivity and high yield.
Description
技术领域technical field
本发明涉及一种脂肪酶催化在线合成环己醇类β-氨基醇衍生物的方法。The invention relates to a method for on-line synthesis of cyclohexanol β-amino alcohol derivatives catalyzed by lipase.
背景技术Background technique
β-氨基醇是一种用途广泛的有机合成中间体,被广泛应用于合成具有生物活性的天然物质、非天然的氨基酸、药物化学、手性助剂和配体等,在医药化学及生物学占有非常重要的地位,许多临床上广泛应用的药物,如抗高血压药、抗糖尿病药、抗哮喘药和抗疟疾药等临床药物中都含有β-氨基醇结构单元。有机物分子中有超过75%的药物或药物中间体都含有氨基官能团。同时具有氨基和羟基官能团的手性氨基醇在不对称催化领域显示出良好的手性诱导能力。手性氨基醇中具有良好配位能力的N原子和O原子,可与多种元素(如B、Li、Zn 等)形成配合物而成为性能优良的手性催化剂,具有很高的立体选择性和催化活性。因此探索合成 β-氨基醇类化合物的绿色合成新技术具有重要的意义。β-Amino alcohol is a versatile organic synthesis intermediate, which is widely used in the synthesis of biologically active natural substances, unnatural amino acids, medicinal chemistry, chiral auxiliaries and ligands, etc., in medicinal chemistry and biology. Occupying a very important position, many clinically widely used drugs, such as antihypertensive drugs, antidiabetic drugs, antiasthma drugs and antimalarial drugs, contain β-amino alcohol structural units. More than 75% of drugs or drug intermediates in organic molecules contain amino functional groups. Chiral amino alcohols with both amino and hydroxyl functional groups show good chirality-inducing ability in the field of asymmetric catalysis. The N and O atoms with good coordination ability in chiral amino alcohols can form complexes with various elements (such as B, Li, Zn, etc.) to become chiral catalysts with excellent performance, with high stereoselectivity and catalytic activity. Therefore, it is of great significance to explore new green synthesis techniques for synthesizing β-amino alcohols.
合成β-氨基醇的典型方法是环氧化合物和芳香胺发生亲核开环反应,这些方法在应用中都需要大量的胺和很高的温度,而高温对一些敏感性的官能团很不利,将伴随着大量副反应的发生。由于环氧化合物中存在着环张力和极化的碳氧键,所以很容易发生开环反应,但弱亲核性的胺和空间位阻大的胺,环氧化合物很难与其发生反应。在这一转化中,存在着区域选择性、非对映选择性和对映选择性等诸多选择性问题。传统的合成方法中,环氧化合物和过量的胺在高温下反应,而高温会导致副反应的发生,同时也限制了一些对高温敏感的底物的使用,所以需要寻找一些高效和具有良好选择性的催化剂来促进环氧化合物的亲核开环反应。目前国内对环氧化物开环胺解反应的研究还处于起步阶段,但国外研究已较多,其应用前景相当广泛。金属卤化物、金属三氟甲磺酸盐、过渡金属等作为催化剂,被用于催化合成β-氨基醇。但是这类催化剂的催化体系制备过程复杂,造价昂贵,易流失,且会产生对环境有害的物质。另有报道使用石墨、蒙脱石-K10粘土或金属有机骨架来进行反应,但是这些反应存在反应时间长,区域选择性差等缺点。由此,探索β-氨基醇的绿色合成方法在药物合成中成为一个热点研究的领域。The typical method for synthesizing β-amino alcohols is the nucleophilic ring-opening reaction between epoxy compounds and aromatic amines. These methods all require a large amount of amines and high temperature in application, and high temperature is unfavorable for some sensitive functional groups. accompanied by a large number of side reactions. Due to the existence of ring tension and polarized carbon-oxygen bonds in epoxy compounds, ring-opening reactions are easy to occur, but it is difficult for epoxy compounds to react with weakly nucleophilic amines and sterically hindered amines. In this transformation, there are many selectivity problems such as regioselectivity, diastereoselectivity and enantioselectivity. In the traditional synthesis method, the epoxy compound and excess amine are reacted at high temperature, and high temperature will lead to the occurrence of side reactions, and also limit the use of some substrates sensitive to high temperature, so it is necessary to find some efficient and good options. It can be used as a catalyst to promote the nucleophilic ring-opening reaction of epoxy compounds. At present, the domestic research on epoxide ring-opening amination reaction is still in its infancy, but there are many foreign researches, and its application prospect is quite broad. Metal halides, metal triflates, transition metals, etc. are used as catalysts to catalyze the synthesis of β-amino alcohols. However, the preparation process of the catalytic system of this type of catalyst is complicated, expensive, easy to run off, and produces substances harmful to the environment. Another report uses graphite, montmorillonite-K10 clay or metal organic framework to carry out the reaction, but these reactions have the disadvantages of long reaction time and poor regioselectivity. Therefore, exploring green synthesis methods of β-amino alcohols has become a hot research field in drug synthesis.
酶催化反应由于其高效、绿色及专一性强成为绿色化学研究的一个重点。酶促反应因废弃物少,条件温和,选择性高及产物稳定性好而在工业生物合成、医疗保健和食品工业等领域得到了广泛的应用。但是酶促反应存在着溶剂对底物溶解以及溶剂极性对酶活抑制等的制约,反应时间往往很长(24h~96h),对特定底物转化率不是很高,因而在传统酶促反应基础上发展一种基于微流控技术的酶促β-氨基醇类化合物的合成新技术成为我们的研究目标。Enzyme-catalyzed reactions have become a focus of green chemistry research due to their high efficiency, greenness and specificity. Enzymatic reactions have been widely used in industrial biosynthesis, medical care and food industry due to their low waste, mild conditions, high selectivity and good product stability. However, the enzymatic reaction has constraints on the dissolution of the substrate by the solvent and the inhibition of the enzyme activity by the polarity of the solvent. The reaction time is often very long (24h~96h), and the conversion rate of specific substrates is not very high. On the basis of the development of a new technology for the synthesis of enzymatic β-amino alcohol compounds based on microfluidic technology has become our research goal.
同常规化学反应器相比,微流控反应器具有混合效率高、传质传热快、参数控制精确、反应选择性高以及安全性好等特点而被广泛应用于有机合成反应。在连续流动微反应器中,许多反应可以实现微量反应的条件快速筛选,即使在苛刻的实验条件下也可以进行安全反应,大幅度节约了反应原料、提高了筛选效率,使之更加贴合绿色化学的概念。Compared with conventional chemical reactors, microfluidic reactors have the characteristics of high mixing efficiency, fast mass and heat transfer, accurate parameter control, high reaction selectivity and good safety, and are widely used in organic synthesis reactions. In the continuous flow microreactor, many reactions can be quickly screened for micro-reaction conditions, and safe reactions can be carried out even under harsh experimental conditions, which greatly saves reaction raw materials, improves screening efficiency, and makes it more suitable for green. Chemistry concept.
到目前为止,酶催化环氧化合物开环合成β-氨基醇类化合物的研究还相对较少。皱褶假丝酵母脂肪酶CRL(Candida rugosa lipase from Candida rugosa)能有效的催化反应的进行,但该方法需要较长的反应时间(8h~12h),且对于特定底物反应的转化率不是特别理想。为了开发一种高效绿色、区域选择性好且经济环保的β-氨基醇类化合物合成的新技术,我们研究了微通道反应器中脂肪酶催化在线合成2-(3-甲基苯氨基)环己醇的方法,旨在寻找一种高效环保的2-(3-甲基苯氨基)环己醇的高区域选择性在线合成的新技术。So far, there are relatively few studies on enzyme-catalyzed ring-opening of epoxy compounds to synthesize β-amino alcohols. Candida rugosa lipase CRL ( Candida rugosa lipase from Candida rugosa ) can effectively catalyze the reaction, but this method requires a long reaction time (8h~12h), and the conversion rate for a specific substrate reaction is not particularly ideal. In order to develop a new technology for efficient, green, regioselective, and economical and environmentally friendly synthesis of β-aminoalcohols, we investigated the on-line synthesis of 2-(3-methylanilino) ring catalyzed by lipase in a microchannel reactor. The method of hexanol aims to find a new technology for the high regioselectivity on-line synthesis of 2-(3-methylanilino)cyclohexanol with high efficiency and environmental protection.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是提供一种微流控通道反应器中脂肪酶催化在线合成环己醇类β-氨基醇衍生物的新工艺,具有反应时间短、产率高、选择性好的优点。The technical problem to be solved by the present invention is to provide a new process for on-line synthesis of cyclohexanol β-amino alcohol derivatives catalyzed by lipase in a microfluidic channel reactor, which has the advantages of short reaction time, high yield and good selectivity advantage.
为解决上述技术问题,本发明采用如下技术方案:In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions:
一种脂肪酶催化在线合成环己醇类β-氨基醇衍生物的方法,所述方法采用微流控通道反应器,所述的微流控通道反应器包括依次连接的注射器、反应通道和产物收集器,所述注射器安装于注射泵中,所述的注射器通过第一连接管道与反应通道入口连接,所述产物收集器通过第二连接管道与反应通道出口连接,所述反应通道内径为0.8~2.4 mm,反应通道长为0.5~1.0 m;所述方法包括:以甲醇为反应溶剂,以式1所示的苯胺类化合物和氧化环己烯为原料,以脂肪酶Lipozyme RM IM为催化剂,将所述的原料和所述的反应溶剂置于注射器中,将所述的脂肪酶Lipozyme RM IM均匀填充在反应通道中,在注射泵的推动下使用所述的原料和所述的反应溶剂连续通入反应通道中进行开环反应,控制反应温度为30~50 ℃,反应时间为10~30 min,通过产物收集器在线收集反应液,所述的反应液经后处理得到式2所示的环己醇类β-氨基醇衍生物;所述的式1所示的苯胺类化合物和氧化环己烯的物质的量之比为1:0.6~1.4;在所述反应通道可容纳所填充催化剂的最大限度内,所述的催化剂的加入量以所述反应溶剂的体积计为0.025~0.05 g/mL;反应体系中,所述氧化环己烯的浓度为0.12~0.28 mmol/mL,A method for on-line synthesis of cyclohexanol β-amino alcohol derivatives catalyzed by lipase, the method adopts a microfluidic channel reactor, and the microfluidic channel reactor comprises a syringe, a reaction channel and a product connected in sequence Collector, the syringe is installed in the syringe pump, the syringe is connected with the inlet of the reaction channel through the first connecting pipe, the product collector is connected with the outlet of the reaction channel through the second connecting pipe, and the inner diameter of the reaction channel is 0.8 ~2.4 mm, the length of the reaction channel is 0.5~1.0 m; the method includes: using methanol as a reaction solvent, using the aniline compound shown in
式1或式2中,所述的R为3-CH3或4-CH3。In Formula 1 or
进一步,本发明采用的微流控通道反应器中,所述注射器数目可以是一个或多个,视具体反应需求而定。本发明反应原料为两种,优选使用两个注射器,具体的,所述的注射器分别是第一注射器与第二注射器,所述的第一连接管道为Y型或T型管道,所述的第一注射器与第二注注射器分别连接在所述的Y型或T型管道的两个接口并通过所述的Y型或T型管道与所述的反应通道串联,通过微通道的反应物分子接触与碰撞几率增大,使两股反应液流在公共的反应通道中混合并进行反应。Further, in the microfluidic channel reactor used in the present invention, the number of the syringes may be one or more, depending on the specific reaction requirements. There are two kinds of reaction raw materials in the present invention, and two syringes are preferably used. Specifically, the syringes are the first syringe and the second syringe respectively, the first connecting pipeline is a Y-shaped or T-shaped pipeline, and the third A syringe and a second syringe are respectively connected to the two ports of the Y-shaped or T-shaped pipeline, and are connected in series with the reaction channel through the Y-shaped or T-shaped pipeline, and the reactant molecules through the microchannel are in contact with each other. The probability of collision is increased, so that the two reaction streams are mixed and reacted in the common reaction channel.
再进一步,更为具体的,本发明所述的方法包括下列步骤:所述的方法包括下列步骤:以物质的量之比为1:0.6~1.4的式1所示的苯胺类化合物和氧化环己烯为原料,以脂肪酶Lipozyme RM IM为催化剂,以甲醇为反应溶剂,将所述的脂肪酶Lipozyme RM IM均匀填充在反应通道中,先用甲醇溶解式1所示的苯胺类化合物装于第一注射器中;用甲醇溶解氧化环己烯装于第二注射器中;再将所述的第一注射器、第二注射器装于同一注射泵中,然后在注射泵的同步推动下使原料和反应溶剂通过所述的Y型或T型管道汇总后进入反应通道中进行反应,控制反应温度为30~50 ℃,反应时间为10~30 min,通过产物收集器在线收集反应液,所述的反应液经后处理制得式2所示的环己醇类β-氨基醇衍生物;所述的催化剂的加入量为0.5~1g;反应体系中,所述氧化环己烯的浓度为0.12~0.28 mmol/mL。Still further, more specifically, the method of the present invention includes the following steps: the method includes the following steps: the aniline compound shown in
本发明中所述第一注射器与第二注射器的规格一致,所述的第一注射器中所述式1所示的苯胺类化合物的浓度通常为0.2 mmol/mL。The specifications of the first syringe and the second syringe in the present invention are consistent, and the concentration of the aniline compound represented by the
进一步,所述的微流控通道反应器还包括恒温箱,所述的反应通道置于恒温箱中,以此可以有效控制反应温度。所述的恒温箱可以根据反应温度要求自行选择,比如水浴恒温箱等。Further, the microfluidic channel reactor further includes a constant temperature box, and the reaction channel is placed in the constant temperature box, so that the reaction temperature can be effectively controlled. The incubator can be selected according to the reaction temperature requirements, such as a water bath incubator and the like.
本发明对于反应通道的材质不限,推荐使用绿色、环保的材质,例如硅胶管;对于反应通道的形状最好为曲线形,可以保证反应液匀速稳定的通过。The present invention is not limited to the material of the reaction channel, and it is recommended to use a green and environmentally friendly material, such as a silicone tube; the shape of the reaction channel is preferably curved, which can ensure the uniform and stable passage of the reaction liquid.
本发明中,所述的脂肪酶Lipozyme RM IM使用诺维信(novozymes)公司生产的商品,其是一种由微生物制备的、1,3 位置专用、食品级脂肪酶(EC 3.1.1.3)在颗粒硅胶上的制剂。它是从Rhizomucor miehei得到的、用一种基因改性米曲霉(Aspergillus oryzae)微生物经过深层发酵生产的。In the present invention, the lipase Lipozyme RM IM is a commodity produced by Novozymes, which is a 1,3 position-specific, food-grade lipase (EC 3.1.1.3) prepared by microorganisms. Formulation on granular silica gel. It is obtained from Rhizomucor miehei and is produced by submerged fermentation with a genetically modified Aspergillus oryzae microorganism.
本发明方法将脂肪酶Lipozyme RM IM均匀填充在反应通道,可通过物理法直接将颗粒状的催化剂均匀固定于反应通道内即可。In the method of the present invention, the lipase Lipozyme RM IM is uniformly filled in the reaction channel, and the granular catalyst can be directly and uniformly fixed in the reaction channel by a physical method.
进一步,所述式1所示的苯胺类化合物与氧化环己烯的物质的量之比优选为1:0.8~1.2,最优选为1:1。Further, the ratio of the amount of the aniline compound represented by the
进一步,所述开环反应温度优选为30~40 ℃,最优选为35 ℃。Further, the ring-opening reaction temperature is preferably 30 to 40 °C, most preferably 35 °C.
进一步,所述开环反应时间优选为15~25 min,最优选为20 min。Further, the ring-opening reaction time is preferably 15-25 min, most preferably 20 min.
本发明的反应产物可以在线收集,所得反应液可以通过常规后处理方法即可获得环己醇类β-氨基醇衍生物。所述常规后处理方法可以是:所得反应液减压蒸馏除去溶剂,用200-300目硅胶湿法装柱,洗脱试剂为石油醚:乙酸乙酯体积比=9:1,得到的样品用少量洗脱试剂溶解后湿法上柱,收集洗脱液,同时TLC跟踪洗脱进程,将得到的含有单一产物的洗脱液合并蒸干,即为环己醇类β-氨基醇衍生物。The reaction product of the present invention can be collected online, and the obtained reaction solution can obtain cyclohexanol β-amino alcohol derivatives through conventional post-processing methods. The conventional post-processing method can be as follows: the obtained reaction solution is distilled under reduced pressure to remove the solvent, 200-300 mesh silica gel is used for wet packing, the elution reagent is petroleum ether: ethyl acetate volume ratio=9:1, and the obtained sample is After dissolving a small amount of elution reagent, apply wet method to the column, collect the eluate, and track the elution process by TLC. The obtained eluate containing a single product is combined and evaporated to dryness, which is a cyclohexanol β-amino alcohol derivative.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
本发明在微流控通道反应器中利用脂肪酶催化在线合成环己醇类β-氨基醇衍生物,该法不仅大大地缩短了反应时间,而且具有高的转化率和选择性;同时首次利用经济的脂肪酶Lipozyme RM IM催化环氧化合物与胺的开环反应,降低了反应成本,具有经济高效的优势。The invention utilizes lipase to catalyze the online synthesis of cyclohexanol β-amino alcohol derivatives in a microfluidic channel reactor, the method not only greatly shortens the reaction time, but also has high conversion rate and selectivity; The economical lipase Lipozyme RM IM catalyzes the ring-opening reaction of epoxy compounds and amines, which reduces the reaction cost and has the advantages of economical efficiency.
附图说明Description of drawings
图1为本发明实施例采用的微流控通道反应器的结构示意图。FIG. 1 is a schematic structural diagram of a microfluidic channel reactor used in an embodiment of the present invention.
图中,1、2-注射器,3-反应通道,4-产物收集器,5-水浴恒温箱。In the figure, 1, 2-syringe, 3-reaction channel, 4-product collector, 5-water bath incubator.
具体实施方式Detailed ways
下面以具体实施例对本发明的保护范围作进一步说明,但本发明的保护范围不限于此:The protection scope of the present invention is further described below with specific embodiments, but the protection scope of the present invention is not limited thereto:
本发明实施例使用的微流控通道反应器的结构参考图1,包括一个注射泵(未显示)、两个注射器1和2、反应通道3、水浴恒温箱(5,仅显示其平面示意图)和产物收集器4;两个注射器1和2安装于注射泵中,通过一个Y型接口与反应通道3入口连接,所述反应通道3置于水浴恒温箱5中,通过水浴恒温箱5控制反应温度,所述的反应通道3的内径2.0mm,管长1.0 m,所述反应通道3出口通过一接口与产物收集器4连接。Referring to FIG. 1, the structure of the microfluidic channel reactor used in the embodiment of the present invention includes a syringe pump (not shown), two
实施例1:2-(3-甲基苯氨基)环己醇的合成Example 1: Synthesis of 2-(3-methylanilino)cyclohexanol
装置参考图1:将间甲苯胺(2.0 mmol)溶解在10mLMeOH中,氧化环己烯(2.0 mmol)溶解在10 mL MeOH中,然后分别装于10 mL注射器中备用。0.87 g脂肪酶Lipozyme RM IM均匀填充在反应通道中,在PHD 2000注射泵推动下,两路反应液分别以15.6 µL•min-1的流速通过“Y”接头进入反应通道中进行反应,通过水浴恒温箱控制反应器温度在35 ℃,反应液在反应通道内连续流动反应20 min,反应结果通过薄层色谱TLC跟踪检测。Refer to Figure 1 for the device: m-toluidine (2.0 mmol) was dissolved in 10 mL of MeOH, and cyclohexene oxide (2.0 mmol) was dissolved in 10 mL of MeOH, and then loaded into 10 mL syringes for use. 0.87 g of lipase Lipozyme RM IM was evenly filled in the reaction channel. Driven by the PHD 2000 syringe pump, the two reaction solutions entered the reaction channel through the "Y" joint at a flow rate of 15.6 µL·min -1 respectively, and the reaction was carried out through the water bath. The temperature of the reactor was controlled by a thermostat at 35 °C, the reaction solution was continuously flowed in the reaction channel for 20 min, and the reaction results were tracked and detected by thin-layer chromatography (TLC).
通过产物收集器在线收集反应液,减压蒸馏除去溶剂,用200-300目硅胶湿法装柱,洗脱试剂为石油醚:乙酸乙酯=9:1,柱高35 cm,柱直径4.5 cm,样品用少量洗脱试剂溶解后湿法上柱,洗脱液收集流速2 mL•min−1,同时TLC跟踪洗脱进程,将得到的含有单一产物的洗脱液合并蒸干,得到淡黄色油状物,获得2-(3-甲基苯氨基)环己醇,HPLC检测2-(3-甲基苯氨基)环己醇转化率82%,选择性100%。The reaction solution was collected online through a product collector, the solvent was distilled off under reduced pressure, and the column was wet-packed with 200-300 mesh silica gel. The elution reagent was petroleum ether:ethyl acetate=9:1, the column height was 35 cm, and the column diameter was 4.5 cm. , the sample was dissolved with a small amount of elution reagent, and then loaded onto the column by wet method. The eluent was collected at a flow rate of 2 mL·min −1 . At the same time, the elution process was tracked by TLC. The oily substance was obtained as 2-(3-methylanilino)cyclohexanol. The conversion rate of 2-(3-methylanilino)cyclohexanol was detected by HPLC to be 82%, and the selectivity was 100%.
核磁表征结果如下:The NMR characterization results are as follows:
1H NMR (500 MHz, CDCl3): δ = 7.16 (t, J =7.6 Hz, 1 H), 6.69 - 6.54 (m,3 H), 3.48 - 3.35 (m, 1 H), 3.17 - 3.09( m, 1 H), 2.31 (s, 3 H), 2.23 - 2.09(m, 2 H), 1.88 - 1.73(m, 2 H), 1.39 - 1.27 (m, 4 H), 1.16 - 1.03 (m, 1 H). 13CNMR (125 MHz, CDCl3): δ = 147.8, 139.5, 129.4, 120.2, 115.7, 112.1, 74.1,60.6, 32.9, 30.1, 24.9, 24.2, 21.4. 1 H NMR (500 MHz, CDCl 3 ): δ = 7.16 (t, J =7.6 Hz, 1 H), 6.69 - 6.54 (m, 3 H), 3.48 - 3.35 (m, 1 H), 3.17 - 3.09 ( m, 1 H), 2.31 (s, 3 H), 2.23 - 2.09(m, 2 H), 1.88 - 1.73(m, 2 H), 1.39 - 1.27 (m, 4 H), 1.16 - 1.03 (m, 1 H). 13 CNMR (125 MHz, CDCl 3 ): δ = 147.8, 139.5, 129.4, 120.2, 115.7, 112.1, 74.1, 60.6, 32.9, 30.1, 24.9, 24.2, 21.4.
实施例2-5Example 2-5
改变微流控微通道反应器中的溶剂,控制温度35 ℃,其他同实施例1,结果如表1所示:The solvent in the microfluidic microchannel reactor was changed, and the temperature was controlled to 35 °C. Others were the same as those in Example 1. The results are shown in Table 1:
表1的结果表明,当间甲苯胺和氧化环己烯底物物质的量之比为1:1,流速为15.6µL•min-1,反应时间均为20 min,反应温度均为35℃,反应器以MeOH为有机溶剂时反应的转化率最优,所以本发明中微流控微通道反应器中最佳溶剂为甲醇。The results in Table 1 show that when the ratio of m-toluidine and cyclohexene oxide substrate substances is 1:1, the flow rate is 15.6 µL·min -1 , the reaction time is 20 min, and the reaction temperature is 35 °C, The conversion rate of the reaction is the best when the reactor uses MeOH as the organic solvent, so methanol is the best solvent in the microfluidic microchannel reactor in the present invention.
实施例6-9Examples 6-9
以间甲苯胺的用量为基准,改变微流控微通道反应器中间甲苯胺和氧化环己烯的底物物质的量之比,控制温度35 ℃,其他同实施例1,结果如表2所示:Based on the consumption of m-toluidine, change the ratio of the amount of the substrate substance of m-toluidine and cyclohexene oxide in the microfluidic micro-channel reactor, and control the temperature to 35 ° C, and the others are the same as in Example 1, and the results are shown in Table 2. Show:
表2的结果表明,当流速为15.6 µL•min-1,反应时间均为20 min,反应温度均为35℃,反应器以MeOH为有机溶剂,随着反应物氧化环己烯的增加,反应的转化率也随着增加,当底物比间甲苯胺和氧化环己烯为1:1时,反应的转化率最优,所以本发明中微流控微通道反应器中最佳底物物质的量之比为1:1。The results in Table 2 show that when the flow rate is 15.6 µL•min -1 , the reaction time is 20 min, the reaction temperature is 35 °C, and MeOH is used as the organic solvent in the reactor, with the increase of cyclohexene oxidation of the reactant, the reaction The conversion rate of the reaction also increases with the increase. When the ratio of the substrate to m-toluidine and cyclohexene oxide is 1:1, the conversion rate of the reaction is optimal, so the optimal substrate material in the microfluidic microchannel reactor in the present invention is The ratio of the quantity is 1:1.
实施例10-13Examples 10-13
改变微流控通道反应器的温度,其他同实施例1,反应结果如表3所示:Change the temperature of the microfluidic channel reactor, and the others are the same as in Example 1, and the reaction results are shown in Table 3:
表3的结果表明,当流速为15.6 µL•min-1,反应时间均为20 min,反应器以MeOH为有机溶剂,反应物间甲苯胺和氧化环己烯物质的量之比均为1:1,当反应温度处于35℃时,反应的转化率最佳,温度或太高或太低都将影响酶的活性。所以本发明中微流控微通道反应器中最佳温度为35 ℃。The results in Table 3 show that when the flow rate is 15.6 µL·min -1 , the reaction time is 20 min, the reactor uses MeOH as the organic solvent, and the ratio of m-toluidine and cyclohexene oxide is 1: 1. When the reaction temperature is 35°C, the conversion rate of the reaction is the best, and the activity of the enzyme will be affected if the temperature is too high or too low. Therefore, the optimum temperature in the microfluidic microchannel reactor of the present invention is 35°C.
实施例14-17Examples 14-17
改变微流控通道反应器的反应时间,其他同实施例1,反应结果如表4所示:Change the reaction time of the microfluidic channel reactor, and the others are the same as in Example 1, and the reaction results are shown in Table 4:
表4的结果表明,当反应器以MeOH为有机溶剂,反应物间甲苯胺和氧化环己烯物质的量之比均为1:1,反应温度均为35 ℃,当反应时间为20 min的时候,反应转化率为82%,选择性为100%。所以本发明中微流控微通道反应器中最佳反应时间20 min。The results in Table 4 show that when the reactor uses MeOH as the organic solvent, the ratio of the amount of the reactants m-toluidine and cyclohexene oxide is 1:1, the reaction temperature is 35 °C, and when the reaction time is 20 min At this time, the reaction conversion was 82% and the selectivity was 100%. Therefore, the optimal reaction time in the microfluidic microchannel reactor of the present invention is 20 min.
对比例1-4Comparative Examples 1-4
改变微流控微通道反应器中的催化剂,分别改为猪胰脂肪酶PPL(对比例1)、脂肪酶Novozym 435(对比例2)、枯草杆菌碱性蛋白酶(对比例3)、脂肪酶TM IM(对比例4),其他同实施例1,结果如表5所示。The catalysts in the microfluidic microchannel reactor were changed to porcine pancreatic lipase PPL (comparative example 1), lipase Novozym 435 (comparative example 2), Bacillus subtilis alkaline protease (comparative example 3), lipase TM IM (Comparative Example 4), the others are the same as in Example 1, and the results are shown in Table 5.
表5的结果表明,对于微流控通道反应器中酶促环氧化合物的开环反应而言,不同的酶对反应有着十分明显的影响。利用脂肪酶TM IM催化该反应,2-(3-甲基苯氨基)环己醇的转化率为42%。而利用Novozym 435催化反应,2-(3-甲基苯氨基)环己醇的转化率仅为14%。The results in Table 5 show that for the enzymatic ring-opening reaction of epoxy compounds in the microfluidic channel reactor, different enzymes have very obvious effects on the reaction. The reaction was catalyzed by lipase TM IM, and the conversion of 2-(3-methylanilino)cyclohexanol was 42%. The conversion of 2-(3-methylanilino)cyclohexanol was only 14% using Novozym 435 catalyzed reaction.
从表5的结果看,对于微流控通道反应器中酶促环氧化合物的开环反应而言,最有效的催化剂为脂肪酶Lipozyme RM IM,间甲苯胺的转化率为82%,选择性为100%。From the results in Table 5, for the enzymatic ring-opening reaction of epoxy compounds in the microfluidic channel reactor, the most effective catalyst is lipase Lipozyme RM IM, the conversion rate of m-toluidine is 82%, and the selectivity is 82%. is 100%.
实施例18:2-(4-甲基苯氨基)环己醇的合成Example 18: Synthesis of 2-(4-methylanilino)cyclohexanol
装置参考图1:将对甲苯胺(2.0 mmol)溶解在10 mL MeOH中,氧化环己烯(2.0mmol)溶解在10 mL MeOH中,然后分别装于10 mL注射器中备用。0.87 g脂肪酶Lipozyme RMIM均匀填充在反应通道中,在PHD 2000注射泵推动下,两路反应液分别以15.6 µL•min-1的流速通过“Y”接头进入反应通道中进行反应,通过水浴恒温箱控制反应器温度在35 ℃,反应液在反应通道内连续流动反应20 min,反应结果通过薄层色谱TLC跟踪检测。Refer to Figure 1 for the device: p-toluidine (2.0 mmol) was dissolved in 10 mL of MeOH, and cyclohexene oxide (2.0 mmol) was dissolved in 10 mL of MeOH, and then filled in 10 mL syringes for use. 0.87 g of lipase Lipozyme RMIM was evenly filled in the reaction channel. Driven by the PHD 2000 syringe pump, the two reaction solutions entered the reaction channel through the "Y" joint at a flow rate of 15.6 µL·min -1 respectively. The temperature of the reactor was controlled by the box at 35 °C, the reaction solution was continuously flowed in the reaction channel for 20 min, and the reaction results were tracked and detected by thin-layer chromatography (TLC).
通过产物收集器在线收集反应液,减压蒸馏除去溶剂,用200-300目硅胶湿法装柱,洗脱试剂为石油醚:乙酸乙酯=9:1,柱高35 cm,柱直径4.5 cm,样品用少量洗脱试剂溶解后湿法上柱,洗脱液收集流速2 mL•min−1,同时TLC跟踪洗脱进程,将得到的含有单一产物的洗脱液合并蒸干,得到淡黄色油状物,获得2-(4-甲基苯氨基)环己醇,HPLC检测2-(4-甲基苯氨基)环己醇转化率75%,选择性100%。The reaction solution was collected online through a product collector, the solvent was distilled off under reduced pressure, and the column was wet-packed with 200-300 mesh silica gel. The elution reagent was petroleum ether:ethyl acetate=9:1, the column height was 35 cm, and the column diameter was 4.5 cm. , the sample was dissolved with a small amount of elution reagent, and then loaded onto the column by wet method. The eluent was collected at a flow rate of 2 mL·min −1 . At the same time, the elution process was tracked by TLC. The oily substance was obtained as 2-(4-methylanilino)cyclohexanol. The conversion rate of 2-(4-methylanilino)cyclohexanol was detected by HPLC to be 75% and the selectivity was 100%.
核磁表征结果如下:The NMR characterization results are as follows:
1H NMR (500 MHz, CDCl3): δ = 7.04 - 6.96 (d, J = 8.3 Hz, 2H), 6.65 -6.62 (d, J = 7.8 Hz, 2H), 3.44 - 3.33 (m, 1H), 3.16 (ddd, J = 10.9, 10.0, 4.3Hz, 1H), 2.94 (br s, 1H), 2.27 (s, 3H), 2.17 - 2.08 (m, 2H), 1.78 - 1.69 (m,2H), 1.36 - 1.25 (m, 3H), 1.13 - 1.04 (m, 1H). 13C NMR (125 MHz, CDCl3): δ =143.9, 129.7, 126.8, 113.7, 74.2, 60.3, 33.0, 30.7, 24.9, 24.2, 21.4. 1 H NMR (500 MHz, CDCl 3 ): δ = 7.04 - 6.96 (d, J = 8.3 Hz, 2H), 6.65 -6.62 (d, J = 7.8 Hz, 2H), 3.44 - 3.33 (m, 1H), 3.16 (ddd, J = 10.9, 10.0, 4.3Hz, 1H), 2.94 (br s, 1H), 2.27 (s, 3H), 2.17 - 2.08 (m, 2H), 1.78 - 1.69 (m,2H), 1.36 - 1.25 (m, 3H), 1.13 - 1.04 (m, 1H). 13 C NMR (125 MHz, CDCl 3 ): δ =143.9, 129.7, 126.8, 113.7, 74.2, 60.3, 33.0, 30.7, 24.9, 24.2, 21.4.
实施例19-22Examples 19-22
改变微流控微通道反应器中的溶剂,控制温度35℃,其他同实施例18,结果如表6所示:The solvent in the microfluidic microchannel reactor was changed, and the temperature was controlled to 35°C, and the others were the same as in Example 18. The results are shown in Table 6:
表6的结果表明,当对甲苯胺和氧化环己烯底物物质的量之比为1:1,流速为15.6µL•min-1,反应时间均为20 min,反应温度均为35 ℃,反应器以MeOH为有机溶剂时反应的转化率最优,所以本发明中微流控微通道反应器中最佳溶剂为甲醇。The results in Table 6 show that when the ratio of p-toluidine and cyclohexene oxide substrate substances is 1:1, the flow rate is 15.6 µL·min -1 , the reaction time is 20 min, and the reaction temperature is 35 ℃, The conversion rate of the reaction is the best when the reactor uses MeOH as the organic solvent, so methanol is the best solvent in the microfluidic microchannel reactor in the present invention.
实施例23-26Examples 23-26
以对甲苯胺的用量为基准,改变微流控微通道反应器中对甲苯胺和氧化环己烯的底物物质的量之比,控制温度35 ℃,其他同实施例18,结果如表7所示:Based on the consumption of p-toluidine, change the ratio of the amount of p-toluidine and the substrate substance of cyclohexene oxide in the microfluidic microchannel reactor, and control the temperature to 35 ° C, and the other is the same as in Example 18, and the results are shown in Table 7 shown:
表7的结果表明,当流速为15.6 µL•min-1,反应时间均为20 min,反应温度均为35℃,反应器以MeOH为有机溶剂,随着反应物氧化环己烯的增加,反应的转化率也随着增加,当底物比对甲苯胺和氧化环己烯为1:1时,反应的转化率最优,所以本发明中微流控微通道反应器中最佳底物物质的量之比为1:1。The results in Table 7 show that when the flow rate is 15.6 µL·min -1 , the reaction time is 20 min, the reaction temperature is 35 °C, and MeOH is used as the organic solvent in the reactor, with the increase of cyclohexene oxidation of the reactant, the reaction The conversion rate of the reaction also increases with the increase. When the substrate ratio of p-toluidine and cyclohexene oxide is 1:1, the conversion rate of the reaction is optimal, so the optimal substrate material in the microfluidic microchannel reactor in the present invention is The ratio of the quantity is 1:1.
实施例27-30Examples 27-30
改变微流控通道反应器的温度,其他同实施例18,反应结果如表8所示:Change the temperature of the microfluidic channel reactor, and the others are the same as in Example 18, and the reaction results are shown in Table 8:
表8的结果表明,当流速为15.6 µL•min-1,反应时间均为20 min,反应器以MeOH为有机溶剂,反应物对甲苯胺和氧化环己烯物质的量之比均为1:1,当反应温度处于35 ℃时,反应的转化率最佳,温度或太高或太低都将影响酶的活性。所以本发明中微流控微通道反应器中最佳温度为35 ℃。The results in Table 8 show that when the flow rate is 15.6 µL·min -1 , the reaction time is 20 min, the reactor uses MeOH as the organic solvent, and the ratio of the amount of reactants to toluidine and cyclohexene oxide is 1: 1. When the reaction temperature is 35 °C, the conversion rate of the reaction is the best, and the temperature is too high or too low will affect the activity of the enzyme. Therefore, the optimum temperature in the microfluidic microchannel reactor in the present invention is 35°C.
实施例31-34Examples 31-34
改变微流控通道反应器的反应时间,其他同实施例18,反应结果如表9所示:Change the reaction time of the microfluidic channel reactor, and the others are the same as in Example 18, and the reaction results are shown in Table 9:
表9的结果表明,当反应器以MeOH为有机溶剂,反应物对甲苯胺和氧化环己烯物质的量之比均为1:1,反应温度均为35 ℃,当反应时间为20 min的时候,反应转化率为75%,选择性为100%。所以本发明中微流控微通道反应器中最佳反应时间20 min。The results in Table 9 show that when the reactor uses MeOH as the organic solvent, the ratio of the amount of the reactants to toluidine and cyclohexene oxide is 1:1, and the reaction temperature is 35 °C. When the reaction time is 20 min At this time, the reaction conversion was 75% and the selectivity was 100%. Therefore, the optimal reaction time in the microfluidic microchannel reactor of the present invention is 20 min.
对比例5-8Comparative Examples 5-8
改变微流控微通道反应器中的催化剂,分别改为猪胰脂肪酶PPL(对比例5)、脂肪酶Novozym 435(对比例6)、枯草杆菌碱性蛋白酶(对比例7)、脂肪酶TM IM(对比例8),其他同实施例18,结果如表10所示。The catalysts in the microfluidic microchannel reactor were changed to porcine pancreatic lipase PPL (comparative example 5), lipase Novozym 435 (comparative example 6), Bacillus subtilis alkaline protease (comparative example 7), lipase TM IM (Comparative Example 8), the others are the same as in Example 18, and the results are shown in Table 10.
表10的结果表明,对于微流控通道反应器中酶促环氧化合物的开环反应而言,不同的酶对反应有着十分明显的影响。利用脂肪酶TM IM催化该反应,2-(4-甲基苯氨基)环己醇的转化率为41%。而利用Novozym 435催化反应,2-(4-甲基苯氨基)环己醇的转化率仅为15%。从表10的结果看,对于微流控通道反应器中酶促环氧化合物的开环反应而言,最有效的催化剂为脂肪酶Lipozyme RM IM,对甲苯胺的转化率为75%,选择性为100%。The results in Table 10 show that for the enzymatic ring-opening reaction of epoxy compounds in the microfluidic channel reactor, different enzymes have very obvious effects on the reaction. Using lipase TM IM to catalyze the reaction, the conversion of 2-(4-methylanilino)cyclohexanol was 41%. While using Novozym 435 catalyzed reaction, the conversion of 2-(4-methylanilino)cyclohexanol was only 15%. From the results in Table 10, for the enzymatic ring-opening reaction of epoxy compounds in the microfluidic channel reactor, the most effective catalyst is lipase Lipozyme RM IM, the conversion rate of p-toluidine is 75%, and the selectivity is 75%. is 100%.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2018115845687 | 2018-12-24 | ||
CN201811584568 | 2018-12-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109735582A CN109735582A (en) | 2019-05-10 |
CN109735582B true CN109735582B (en) | 2022-06-21 |
Family
ID=66359817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811592195.8A Active CN109735582B (en) | 2018-12-24 | 2018-12-25 | A kind of method of lipase-catalyzed online synthesis of cyclohexanol β-amino alcohol derivatives |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109735582B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111560408B (en) * | 2020-02-29 | 2022-11-25 | 浙江工业大学 | Method for synthesizing coumarin-3-carboxylic acid sugar ester derivative on line based on flow chemistry enzymatic catalysis |
CN111705090A (en) * | 2020-05-19 | 2020-09-25 | 浙江农林大学 | A kind of method for synthesizing 3-(naphthalene-2-amino) propanehydroxamic acid by continuous flow reaction |
CN113481268B (en) * | 2021-06-22 | 2022-08-23 | 深圳市小分子新药创新中心有限公司 | Method for continuously preparing aliphatic chain-GLP-1 receptor agonist polypeptide by using microreactor |
CN114350737B (en) * | 2022-01-14 | 2023-09-15 | 台州仙琚药业有限公司 | Preparation method of 5 alpha, 6 alpha-epoxy-11 beta, 17 alpha-dihydroxypregna-3, 20-diethylene glycol ketal |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ298913B6 (en) * | 1997-11-27 | 2008-03-12 | Lonza Ag | Process for preparing aminoalcohol and derivatives thereof |
CN1386730A (en) * | 2002-06-25 | 2002-12-25 | 中国科学院上海有机化学研究所 | Optically active 2,3-bienol and bienol ester, and synthesizing process and use thereof |
AT500556A1 (en) * | 2004-03-18 | 2006-01-15 | Dsm Fine Chem Austria Gmbh | METHOD FOR THE PRODUCTION OF CHIRAL, SECONDARY ALCOHOLS |
CN107988277B (en) * | 2017-12-21 | 2021-06-08 | 浙江农林大学 | A kind of method of lipase-catalyzed online synthesis of S-benzyl palmitic acid thioester |
-
2018
- 2018-12-25 CN CN201811592195.8A patent/CN109735582B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109735582A (en) | 2019-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109735582B (en) | A kind of method of lipase-catalyzed online synthesis of cyclohexanol β-amino alcohol derivatives | |
CN109988794B (en) | A method for enzymatically synthesizing nitrobenzimidazole derivatives in a continuous flow reactor | |
CN107475330A (en) | A kind of method of lipase-catalyzed online synthesis N (5 glucose ester valeryl) metoprolol | |
CN107488683A (en) | A kind of lipase-catalyzed online synthesis N(5 vinyl acetate valeryls)The method of mexiletine | |
CN107384991B (en) | Method for synthesizing 5' -O-ethylene adipamide uridine on line by lipase catalysis | |
CN109593804B (en) | A kind of method for enzyme-catalyzed rapid synthesis of nitrobenzimidazole derivatives | |
CN107988277B (en) | A kind of method of lipase-catalyzed online synthesis of S-benzyl palmitic acid thioester | |
CN107384781A (en) | A kind of method of lipase-catalyzed online synthesis 5 '-O- ethene adipyls -5-methyl-uridin | |
CN107384992A (en) | A kind of method of lipase-catalyzed online synthesis 5 '-O- lauroyl -5-methyl-uridin | |
CN107488690A (en) | A kind of method of lipase-catalyzed online synthesis N (5 glucose ester valeryl) mexiletine | |
CN109988787B (en) | A kind of lipase catalyzed method for online synthesis of 2-phenylaminocyclohexanol | |
CN107475329A (en) | A kind of method of lipase-catalyzed online synthesis N (5 sucrose ester valeryl) mexiletine | |
CN107488691A (en) | A kind of method of lipase-catalyzed online synthesis N (5 lauroyl mannoses valeryl) metoprolol | |
CN109706194B (en) | A method for on-line synthesis of phenethyl alcohol β-amino alcohol derivatives based on flow chemistry enzymatic aminolysis reaction | |
CN104561170B (en) | A kind of method of lipase-catalyzed online synthesis of acetic acid 1 (6 nitrobenzimidazole base) ethyl ester | |
CN111690698A (en) | Method for synthesizing 3- (benzo [ d ] [1,3] dioxo-5-amino) propyl hydroxamic acid by two-step serial flow | |
CN109762853B (en) | A kind of method for on-line synthesis of isopropanol β-amino alcohol derivatives catalyzed by lipase | |
CN107988278B (en) | Method for synthesizing S-benzyl lauric acid thioester on line by lipase catalysis | |
CN107418989A (en) | A kind of method of lipase-catalyzed online synthesis N (5 sucrose ester valeryl) metoprolol | |
CN108060185A (en) | A kind of method of lipase-catalyzed online synthesis S- (4- methylbenzyls) thiacetate | |
CN111676255A (en) | A kind of method that lipase catalyzes on-line synthesis of 3-anilinopropiohydroxamic acid | |
CN108060183A (en) | A kind of lipase-catalyzed online synthesis 6-(Benzylthio)The method of -6- oxo vinyl caproates | |
CN111690695A (en) | Enzymatic microfluidic online synthesis method of 3-phenylaminopropylhydroxamic acid | |
CN115478086A (en) | A method for enzymatically synthesizing adenine Michael addition derivatives online | |
CN104561174A (en) | Method for synthesizing 1-(4-nitroimidazolyl)ethyl palmitate on line under catalysis of lipase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |