CN109733382B - Automobile rollover prevention method based on model predictive control - Google Patents
Automobile rollover prevention method based on model predictive control Download PDFInfo
- Publication number
- CN109733382B CN109733382B CN201811557669.5A CN201811557669A CN109733382B CN 109733382 B CN109733382 B CN 109733382B CN 201811557669 A CN201811557669 A CN 201811557669A CN 109733382 B CN109733382 B CN 109733382B
- Authority
- CN
- China
- Prior art keywords
- vehicle
- ltr
- des
- automobile
- front wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Regulating Braking Force (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
技术领域technical field
本发明涉及汽车主动安全技术领域,具体涉及一种基于模型预测控制的汽车防侧翻方法。The invention relates to the technical field of vehicle active safety, in particular to a vehicle rollover prevention method based on model predictive control.
背景技术Background technique
随着经济的发展,全世界汽车的数量持续增长,道路变得拥挤,汽车出行的危险变大。因此,人们在关注汽车舒适性,经济型的同时,也把目光转向了安全性。在所有汽车安全事故当中,有一类事故的发生率不高,但是致死致伤的概率缺相当高。美国国家公路交通安全管理局(NHTSA)的调查报告显示,2014年由侧翻事故造成的人员死亡数量占当年所有交通事故致死数量的三分之一,因侧翻事故的死亡人数为7659人,多于其他车型。With the development of the economy, the number of cars around the world continues to grow, the roads become congested, and the danger of car travel increases. Therefore, while people pay attention to the comfort and economy of the car, they also turn their attention to safety. Among all automobile safety accidents, there is a type of accident with a low incidence rate, but the probability of death and injury is quite high. According to the National Highway Traffic Safety Administration (NHTSA) investigation report, in 2014, the number of deaths caused by rollover accidents accounted for one-third of all traffic deaths in that year, and the number of deaths due to rollover accidents was 7,659. more than other models.
目前在防侧翻领域主要运用的防侧翻控制方法有主动转向,差速制动,主动/半主动的悬架,在侧翻评价指标方面普遍采用的基于侧倾角、侧倾角速度的LTR的侧翻评价方法。其中主动转向方式进行的防侧翻控制主要通过转向电机进行反向附加转角干预的方式降低侧翻指标,差速制动可以产生一个附加横摆力矩同时降低车速达到降低侧翻的风险,主动/半主动悬架主要是通过改变悬架阻尼器的液压孔来进行阻尼的调节从而使得车辆防侧翻能力加强。At present, the anti-roll control methods mainly used in the field of anti-rollover include active steering, differential braking, active/semi-active suspension, and LTR based on roll angle and roll angular velocity are commonly used in rollover evaluation indicators. Rollover evaluation method. Among them, the anti-rollover control performed by active steering mainly reduces the rollover index by intervening in the reverse additional angle of the steering motor. Differential braking can generate an additional yaw moment and reduce the vehicle speed to reduce the risk of rollover. Active/ The semi-active suspension mainly adjusts the damping by changing the hydraulic hole of the suspension damper to enhance the anti-rollover ability of the vehicle.
但上述的这些控制方式大多在防侧翻的时候只注重车身姿态,通过控制车身达到防侧翻效果,进而忽略了其所产生的控制效果,可能会使得车辆偏离原有路径或者行驶入别的车道进而产生二次碰撞,或者其他危险,违背驾驶员意图和控制意图,因此还有需要改进的地方。However, most of the above-mentioned control methods only pay attention to the body posture when preventing rollover, and achieve the anti-rollover effect by controlling the body, and then ignore the control effect produced by it, which may cause the vehicle to deviate from the original path or drive into other Lanes in turn create secondary collisions, or other hazards, contrary to driver intent and control intent, so there is room for improvement.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是针对背景技术中所涉及到的缺陷,提供一种基于模型预测控制的汽车防侧翻及跟踪系统及其控制。The technical problem to be solved by the present invention is to provide a vehicle rollover prevention and tracking system based on model predictive control and its control, aiming at the defects involved in the background technology.
本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical solutions for solving the above-mentioned technical problems:
一种基于模型预测控制的汽车防侧翻方法,包含以下步骤:A method for preventing vehicle rollover based on model predictive control, comprising the following steps:
步骤1),测得车辆的前轮转角δf、车速vr、横摆角速度βr、横向位置y;Step 1), measure the front wheel angle δ f of the vehicle, the vehicle speed v r , the yaw rate β r , and the lateral position y;
步骤2),计算出车辆的横向载荷转移率LTR:Step 2), calculate the lateral load transfer rate LTR of the vehicle:
步骤3),将横向载荷转移率LTR和预设的横向载荷转移率阈值LTRdes作比较,将横向位置Y和预设的参考横向位置Ydes的差值和η做比较,η为预设的最大差阈值:Step 3), compare the lateral load transfer rate LTR with the preset lateral load transfer rate threshold LTR des , compare the difference between the lateral position Y and the preset reference lateral position Y des with n, and n is the preset Maximum difference threshold:
当|(Y-Ydes)|<η且LTR<LTRdes时,不对车身状态进行调整;When |(YY des )|<η and LTR<LTR des , the body state is not adjusted;
当|(Y-Ydes)|>η且LTR<LTRdes时,控制汽车的两个前轮进行转向;When |(YY des )|>η and LTR<LTR des , control the two front wheels of the car to steer;
当|(Y-Ydes)|<η且LTR>LTRdes时,控制汽车的四个车轮进行制动,When |(YY des )|<η and LTR>LTR des , control the four wheels of the car to brake,
当|(Y-Ydes)|>η且LTR>LTRdes时,控制汽车的两个前轮进行转向,同时控制汽车的四个车轮进行制动。When |(YY des )|>η and LTR>LTR des , the two front wheels of the car are controlled to steer, and the four wheels of the car are controlled to brake at the same time.
作为本发明一种基于模型预测控制的汽车防侧翻方法进一步的优化方案,所述步骤2) 的详细步骤如下:As a further optimization scheme of the vehicle rollover prevention method based on model predictive control of the present invention, the detailed steps of the step 2) are as follows:
步骤2.1),根据ay=vrβr,计算出车辆的侧向加速度ay Step 2.1), according to a y =v r β r , calculate the lateral acceleration a y of the vehicle
步骤2.2),对y方向受力分析,获得侧倾角加速度 Step 2.2), analyze the force in the y direction to obtain the roll angle acceleration
式中,m为汽车总质量;ms为簧上质量;e为簧载质量到侧倾中心的距离;为侧倾角加速度;k1、k2分别为车辆前后轮侧偏刚度;a、b分别为车辆质心到前后轴的距离;β为质心侧偏角;βr为横摆角速度;where m is the total mass of the vehicle; m s is the sprung mass; e is the distance from the sprung mass to the roll center; is the roll angle acceleration; k 1 and k 2 are the cornering stiffnesses of the front and rear wheels of the vehicle respectively; a and b are the distances from the center of mass of the vehicle to the front and rear axles respectively; β is the side slip angle of the center of mass; β r is the yaw rate;
步骤2.3),对x方向做力矩平衡:Step 2.3), do moment balance in the x direction:
式中,Ixs为汽车簧载质量绕车辆坐标系x轴的转动惯量;ms为簧上质量;g为重力加速度,为车身为侧倾角,为侧倾刚度,为侧倾阻尼,为车身侧倾角速度;In the formula, I xs is the moment of inertia of the car sprung mass around the x-axis of the vehicle coordinate system; m s is the sprung mass; g is the acceleration of gravity, is the body roll angle, is the roll stiffness, is the roll damping, is the body roll angular velocity;
步骤2.4),对z方向做力矩平衡,获得横摆角加速度 Step 2.4), do the moment balance in the z direction to obtain the yaw angular acceleration
其中,Iz为整车质量绕车辆坐标系z轴的转动惯量;为横摆角加速度;Among them, I z is the moment of inertia of the vehicle mass around the z-axis of the vehicle coordinate system; is the yaw angular acceleration;
步骤2.5),建立三自由度车辆模型,并根据车速和转角求得当前状态车辆的侧倾角和侧倾角速度;Step 2.5), establish a three-degree-of-freedom vehicle model, and obtain the roll angle and roll angle speed of the vehicle in the current state according to the vehicle speed and turning angle;
步骤2.5),根据汽车侧翻过程中轮胎对路面的压力进行受力分析:Step 2.5), according to the force analysis of the tire pressure on the road surface during the rollover process of the car:
式中,FR、FL分别为右侧车轮纵向反力之和,左侧车轮纵向反力之和,T为轮距,md为簧下质量,hd为簧下质量质心到地面距离;In the formula, F R and F L are the sum of the longitudinal reaction forces of the right wheel and the left wheel respectively, T is the wheel base, m d is the unsprung mass, and h d is the distance from the center of mass of the unsprung mass to the ground. ;
步骤2.6),由于横向载荷转移率且FR+FL=mg,则:step 2.6), due to the lateral load transfer rate And F R + F L =mg, then:
作为本发明一种基于模型预测控制的汽车防侧翻方法进一步的优化方案,所述步骤3) 中控制汽车的两个前轮进行转向的具体步骤如下:As a further optimization scheme of the vehicle rollover prevention method based on the model predictive control of the present invention, the specific steps of controlling the two front wheels of the vehicle to perform steering in the step 3) are as follows:
步骤3.1.1),电子控制单元根据Y和参考横向位置Ydes、利用模型预测控制方法计算出相应的附加前轮转角δf:Step 3.1.1), the electronic control unit calculates the corresponding additional front wheel rotation angle δ f according to Y and the reference lateral position Y des using the model predictive control method:
步骤3.1.2),建立主动前轮转向控制器的非线性模型:Step 3.1.2), establish the nonlinear model of the active front wheel steering controller:
式中:为纵向加速度;为横向车速;c1,c2分别为前后轮纵向刚度;s1,s2分别为前后轮滑移率;为横向加速度;为纵向车速;惯性坐标系横向速度;为惯性坐标系纵向速度;r为横摆角;where: is the longitudinal acceleration; is the lateral vehicle speed; c 1 , c 2 are the longitudinal stiffness of the front and rear wheels respectively; s 1 , s 2 are the slip rates of the front and rear wheels respectively; is the lateral acceleration; is the longitudinal speed; Inertial coordinate system lateral velocity; is the longitudinal velocity of the inertial coordinate system; r is the yaw angle;
步骤3.1.3),得到状态方程将其离散化:Step 3.1.3), get the state equation Discretize it:
其中u=δf,A、B均为系数;in u=δ f , A and B are coefficients;
步骤3.1.4),设计目标函数如下,计算出附加前轮转角:Step 3.1.4), the design objective function is as follows, and the additional front wheel rotation angle is calculated:
满足前轮转角约束:δf,min≤δf≤δf,max Satisfy front wheel rotation angle constraints: δ f,min ≤δ f ≤δ f,max
式中,Y(t)是t时刻系统实际输出的横向位置;Yc(t)是t时刻参考的横向位置;Np是预测时域;Nc是控制时域;u(t)是t时刻主动前轮转向控制器输出的控制变量;δf为前轮转角,Q、R分别为目标函数第一项和第二项的权重矩阵,p为权重系数,ε为松弛因子;δf,min为最小前轮转角,δf,max为最大前轮转角;In the formula, Y(t) is the lateral position of the actual output of the system at time t; Y c (t) is the lateral position of the reference at time t; N p is the prediction time domain; N c is the control time domain; u(t) is t is the control variable output by the active front wheel steering controller at all times; δ f is the front wheel angle, Q and R are the weight matrices of the first and second terms of the objective function, p is the weight coefficient, and ε is the relaxation factor; δ f, min is the minimum front wheel rotation angle, δf , max is the maximum front wheel rotation angle;
步骤3.1.5),控制器根据计算出的附加前轮转角控制汽车的两个前轮进行转向;Step 3.1.5), the controller controls the two front wheels of the car to steer according to the calculated additional front wheel angle;
作为本发明一种基于模型预测控制的汽车防侧翻方法进一步的优化方案,所述步骤3) 中控制汽车的四个车轮进行制动的具体步骤如下:As a further optimization scheme of the vehicle rollover prevention method based on the model predictive control of the present invention, the specific steps of controlling the four wheels of the vehicle to brake in the step 3) are as follows:
步骤3.2.1),电子控制单元根据LTR和参考横向载荷转移率LTRdes,采用主动制动控制器计算出前左、前右、后左、后右轮胎的纵向力Fxfl、Fxfr、Fxrl、Fxrr,所述主动制动控制器的非线性模型为:Step 3.2.1), the electronic control unit uses the active brake controller to calculate the longitudinal forces F xfl , F xfr , F xrl of the front left, front right, rear left and rear right tires according to the LTR and the reference lateral load transfer rate LTR des , F xrr , the nonlinear model of the active braking controller is:
式中,Fyfl、Fyfr、Fyrl、Fyrr分别为前左、前右、后左、后右轮胎侧向力;In the formula, F yfl , F yfr , F yrl , and F yrr are the lateral forces of the front left, front right, rear left and rear right tires, respectively;
步骤3.2.2),得到状态方程将其离散化:Step 3.2.2), get the state equation Discretize it:
其中U=[Fxfl,Fxfr,Fxrl,Fxrr]TC、D均为系数;in U=[F xfl , F xfr , F xrl , F xrr ] T C and D are coefficients;
步骤3.2.3),设计目标函数如下,计算出四个轮胎的制动力:Step 3.2.3), the design objective function is as follows, and the braking force of the four tires is calculated:
满足四个轮胎制动力约束:Umin≤U≤Umax Satisfy the four tire braking force constraints: U min ≤U≤U max
式中,Y1(t)是t时刻系统实际输出的LTR;Y1c(t)是t时刻参考的LTRdes;Ph是预测时域;Ch是控制时域;U(t)是t时刻主动制动控制器输出的控制变量;S、W分别为目标函数第一项和第二项的权重矩阵,i为权重系数,为松弛因子;Umin为最小轮胎力,Umax为最大轮胎力;In the formula, Y 1 (t) is the LTR actually output by the system at time t; Y 1c (t) is the LTR des referenced at time t; Ph is the prediction time domain; C h is the control time domain; U(t) is t is the control variable output by the active braking controller at all times; S and W are the weight matrices of the first and second terms of the objective function respectively, i is the weight coefficient, is the relaxation factor; U min is the minimum tire force, and U max is the maximum tire force;
步骤3.2.4),控制器根据计算出的四个轮胎的制动力对四个车轮进行制动。Step 3.2.4), the controller brakes the four wheels according to the calculated braking force of the four tires.
本发明采用以上技术方案与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention adopts the above technical scheme, and has the following technical effects:
本发明提供了一种基于模型预测控制的汽车防侧翻方法,现有的防侧翻系统大多采用主动转向或者差动制动,在控制器工作过程中,很少考虑控制效果带来其他影响,例如:驶入其他车道,偏离驾驶员意图。进而引发更大危险,本发明专利通过采用主动转向和主动制动及其切换控制模式,可根据行驶状态进行模式切换,实现防侧翻与跟踪路径的完美融合;The invention provides an anti-rollover method based on model prediction control. Most of the existing anti-rollover systems adopt active steering or differential braking, and rarely consider other influences caused by the control effect during the working process of the controller. , for example: moving into another lane, deviating from the driver's intent. This will lead to greater danger. By using active steering and active braking and their switching control modes, the patent of the present invention can switch the mode according to the driving state, so as to realize the perfect integration of anti-rollover and tracking path;
本发明所提出的侧翻评价指标相比较之前LTR获得方法,更加精确,考虑簧上质量与簧下质量对车身侧翻带来的不同影响,对防侧翻的控制效果起到更加精准的效果。Compared with the previous LTR acquisition method, the rollover evaluation index proposed in the present invention is more accurate, considering the different effects of sprung mass and unsprung mass on the rollover of the vehicle body, and has a more accurate effect on the control effect of rollover prevention .
附图说明Description of drawings
图1为本发明专利系统结构图;Fig. 1 is the structure diagram of the patent system of the present invention;
图2为本发明的流程示意图;Fig. 2 is the schematic flow chart of the present invention;
图3为两个前轮进行转向的流程图。Figure 3 is a flow chart of the steering of the two front wheels.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案做进一步的详细说明:Below in conjunction with accompanying drawing, the technical scheme of the present invention is described in further detail:
本发明可以以许多不同的形式实现,而不应当认为限于这里所述的实施例。相反,提供这些实施例以便使本公开透彻且完整,并且将向本领域技术人员充分表达本发明的范围。在附图中,为了清楚起见放大了组件。The present invention may be embodied in many different forms and should not be considered limited to the embodiments described herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, components are exaggerated for clarity.
本发明的结构如图1所示,包括相互连接的传感器、电子控制单元和执行机构;所述的电子控制单元包括状态判定单元、状态识别单元和执行机构控制单元。状态判定单元和状态识别单元都与传感器相连接,所述的状态评价单元通过触发单元与所述状态识别单元连接,所述的状态识别单元通过所述执行机构控制单元(模型预测控制)连接所述执行机构;所述的执行机构单元的信息反馈给所述的电子控制单元。所述的执行机构为主动前轮转向机构和主动制动机构。The structure of the present invention is shown in FIG. 1 , including interconnected sensors, electronic control units and actuators; the electronic control units include a state determination unit, a state identification unit and an actuator control unit. Both the state determination unit and the state identification unit are connected to the sensor, the state evaluation unit is connected to the state identification unit through the trigger unit, and the state identification unit is connected to the state identification unit through the actuator control unit (model predictive control). the actuator; the information of the actuator unit is fed back to the electronic control unit. The executive mechanism is an active front wheel steering mechanism and an active braking mechanism.
如图2所示,本发明公开了一种基于模型预测控制的汽车防侧翻方法,包含以下步骤:As shown in Figure 2, the present invention discloses a method for preventing vehicle rollover based on model predictive control, comprising the following steps:
步骤1),测得车辆的前轮转角δf、车速vr、横摆角速度βr、横向位置y;Step 1), measure the front wheel angle δ f of the vehicle, the vehicle speed v r , the yaw rate β r , and the lateral position y;
步骤2),计算出车辆的横向载荷转移率LTR:Step 2), calculate the lateral load transfer rate LTR of the vehicle:
步骤2.1),根据ay=vrβr,计算出车辆的侧向加速度ay Step 2.1), according to a y =v r β r , calculate the lateral acceleration a y of the vehicle
步骤2.2),对y方向受力分析,获得侧倾角加速度 Step 2.2), analyze the force in the y direction to obtain the roll angle acceleration
式中,m为汽车总质量;ms为簧上质量;e为簧载质量到侧倾中心的距离;为侧倾角加速度;k1、k2分别为车辆前后轮侧偏刚度;a、b分别为车辆质心到前后轴的距离;β为质心侧偏角;βr为横摆角速度;where m is the total mass of the vehicle; ms is the sprung mass; e is the distance from the sprung mass to the roll center; is the roll angle acceleration; k 1 and k 2 are the cornering stiffnesses of the front and rear wheels of the vehicle respectively; a and b are the distances from the center of mass of the vehicle to the front and rear axles respectively; β is the side slip angle of the center of mass; β r is the yaw rate;
步骤2.3),对x方向做力矩平衡:Step 2.3), do moment balance in the x direction:
式中,Ixs为汽车簧载质量绕车辆坐标系x轴的转动惯量;ms为簧上质量;g为重力加速度,为车身为侧倾角,为侧倾刚度,为侧倾阻尼,为车身侧倾角速度;In the formula, I xs is the moment of inertia of the car sprung mass around the x-axis of the vehicle coordinate system; m s is the sprung mass; g is the acceleration of gravity, is the body roll angle, is the roll stiffness, is the roll damping, is the body roll angular velocity;
步骤2.4),对z方向做力矩平衡,获得横摆角加速度 Step 2.4), do the moment balance in the z direction to obtain the yaw angular acceleration
其中,Iz为整车质量绕车辆坐标系z轴的转动惯量;为横摆角加速度;Among them, I z is the moment of inertia of the vehicle mass around the z-axis of the vehicle coordinate system; is the yaw angular acceleration;
步骤2.5),建立三自由度车辆模型,并根据车速和转角求得当前状态车辆的侧倾角和侧倾角速度;Step 2.5), establish a three-degree-of-freedom vehicle model, and obtain the roll angle and roll angle speed of the vehicle in the current state according to the vehicle speed and turning angle;
步骤2.5),根据汽车侧翻过程中轮胎对路面的压力进行受力分析:Step 2.5), according to the force analysis of the tire pressure on the road surface during the rollover process of the car:
式中,FR、FL分别为右侧车轮纵向反力之和,左侧车轮纵向反力之和,T为轮距,md为簧下质量,hd为簧下质量质心到地面距离;In the formula, F R and F L are the sum of the longitudinal reaction forces of the right wheel and the left wheel respectively, T is the wheel base, m d is the unsprung mass, and h d is the distance from the center of mass of the unsprung mass to the ground. ;
步骤2.6),由于横向载荷转移率且FR+FL=mg,则:step 2.6), due to the lateral load transfer rate And F R + F L =mg, then:
步骤3),将横向载荷转移率LTR和预设的横向载荷转移率阈值LTRdes作比较,将横向位置 Y和预设的参考横向位置Ydes的差值和η做比较,η为预设的最大差阈值:Step 3), compare the lateral load transfer rate LTR with the preset lateral load transfer rate threshold LTR des , compare the difference between the lateral position Y and the preset reference lateral position Y des with n, and n is the preset Maximum difference threshold:
当|(Y-Ydes)|<η且LTR<LTRdes时,不对车身状态进行调整;When |(YY des )|<η and LTR<LTR des , the body state is not adjusted;
当|(Y-Ydes)|>η且LTR<LTRdes时,控制汽车的两个前轮进行转向;When |(YY des )|>η and LTR<LTR des , control the two front wheels of the car to steer;
当|(Y-Ydes)|<η且LTR>LTRdes时,控制汽车的四个车轮进行制动,When |(YY des )|<η and LTR>LTR des , control the four wheels of the car to brake,
当|(Y-Ydes)|>η且LTR>LTRdes时,控制汽车的两个前轮进行转向,同时控制汽车的四个车轮进行制动;When |(YY des )|>η and LTR>LTR des , control the two front wheels of the car to steer, and control the four wheels of the car to brake at the same time;
其中,如图3所示,控制汽车的两个前轮进行转向的具体步骤如下:Among them, as shown in Figure 3, the specific steps for controlling the steering of the two front wheels of the car are as follows:
步骤3.1.1),电子控制单元根据Y和参考横向位置Ydes、利用模型预测控制方法计算出相应的附加前轮转角δf:Step 3.1.1), the electronic control unit calculates the corresponding additional front wheel rotation angle δ f according to Y and the reference lateral position Y des using the model predictive control method:
步骤3.1.2),建立主动前轮转向控制器的非线性模型:Step 3.1.2), establish the nonlinear model of the active front wheel steering controller:
式中:为纵向加速度;为横向车速;c1,c2分别为前后轮纵向刚度;s1,s2分别为前后轮滑移率;为横向加速度;为纵向车速;惯性坐标系横向速度;为惯性坐标系纵向速度;r为横摆角;where: is the longitudinal acceleration; is the lateral vehicle speed; c 1 , c 2 are the longitudinal stiffness of the front and rear wheels respectively; s 1 , s 2 are the slip rates of the front and rear wheels respectively; is the lateral acceleration; is the longitudinal speed; Inertial coordinate system lateral velocity; is the longitudinal velocity of the inertial coordinate system; r is the yaw angle;
步骤3.1.3),得到状态方程将其离散化:Step 3.1.3), get the state equation Discretize it:
其中u=δf,A、B均为系数;in u=δ f , A and B are coefficients;
步骤3.1.4),设计目标函数如下,计算出附加前轮转角:Step 3.1.4), the design objective function is as follows, and the additional front wheel rotation angle is calculated:
满足前轮转角约束:δf,min≤δf≤δf,max Satisfy front wheel rotation angle constraints: δ f,min ≤δ f ≤δ f,max
式中,Y(t)是t时刻系统实际输出的横向位置;Yc(t)是t时刻参考的横向位置;Np是预测时域;Nc是控制时域;u(t)是t时刻主动前轮转向控制器输出的控制变量;δf为前轮转角,Q、R分别为目标函数第一项和第二项的权重矩阵,功能是为了使系统尽快达到所预期的效果,p为权重系数,ε为松弛因子,目的是防止出现求解过程中没有最优解;δf,min为最小前轮转角,δfmax为最大前轮转角;In the formula, Y(t) is the lateral position of the actual output of the system at time t; Y c (t) is the lateral position of the reference at time t; N p is the prediction time domain; N c is the control time domain; u(t) is t is the control variable output by the active front wheel steering controller at all times; δ f is the front wheel angle, Q and R are the weight matrices of the first and second terms of the objective function respectively, the function is to make the system achieve the expected effect as soon as possible, p is the weight coefficient, ε is the relaxation factor, the purpose is to prevent no optimal solution in the solution process; δ f,min is the minimum front wheel rotation angle, and δ fmax is the maximum front wheel rotation angle;
步骤3.1.5),控制器根据计算出的附加前轮转角控制汽车的两个前轮进行转向;Step 3.1.5), the controller controls the two front wheels of the car to steer according to the calculated additional front wheel angle;
控制汽车的四个车轮进行制动的具体步骤如下:The specific steps to control the four wheels of the car to brake are as follows:
步骤3.2.1),电子控制单元根据LTR和参考横向载荷转移率LTRdes,采用主动制动控制器计算出前左、前右、后左、后右轮胎的纵向力Fxfl、Fxfr、Fxrl、Fxrr,所述主动制动控制器的非线性模型为:Step 3.2.1), the electronic control unit uses the active brake controller to calculate the longitudinal forces F xfl , F xfr , F xrl of the front left, front right, rear left and rear right tires according to the LTR and the reference lateral load transfer rate LTR des , F xrr , the nonlinear model of the active braking controller is:
式中,Fyfl、Fyfr、Fyrl、Fyrr分别为前左、前右、后左、后右轮胎侧向力;In the formula, F yfl , F yfr , F yrl , and F yrr are the lateral forces of the front left, front right, rear left and rear right tires, respectively;
步骤3.2.2),得到状态方程将其离散化:Step 3.2.2), get the state equation Discretize it:
其中U=[Fxfl,Fxfr,Fxrl,Fxrr]T,C、D均为系数;in U=[F xfl , F xfr , F xrl , F xrr ] T , C and D are coefficients;
步骤3.2.3),设计目标函数如下,计算出四个轮胎的制动力:Step 3.2.3), the design objective function is as follows, and the braking force of the four tires is calculated:
满足四个轮胎制动力约束:Umin≤U≤Umax Satisfy the four tire braking force constraints: U min ≤U≤U max
式中,Y1(t)是t时刻系统实际输出的LTR;Y1c(t)是t时刻参考的LTRdes;Ph是预测时域;Ch是控制时域;U(t)是t时刻主动制动控制器输出的控制变量;S、W分别为目标函数第一项和第二项的权重矩阵,功能是为了使系统尽快达到所预期的效果,i为权重系数,为松弛因子,目的是防止出现求解过程中没有最优解;Umin为最小轮胎力,Umax为最大轮胎力;In the formula, Y 1 (t) is the LTR actually output by the system at time t; Y 1c (t) is the LTR des referenced at time t; Ph is the prediction time domain; C h is the control time domain; U(t) is t The control variables output by the active braking controller at all times; S and W are the weight matrices of the first and second terms of the objective function, respectively, the function is to make the system achieve the expected effect as soon as possible, i is the weight coefficient, is the relaxation factor, the purpose is to prevent that there is no optimal solution in the solution process; U min is the minimum tire force, and U max is the maximum tire force;
步骤3.2.4),控制器根据计算出的四个轮胎的制动力对四个车轮进行制动。Step 3.2.4), the controller brakes the four wheels according to the calculated braking force of the four tires.
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。It will be understood by those skilled in the art that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It should also be understood that terms such as those defined in general dictionaries should be understood to have meanings consistent with their meanings in the context of the prior art and, unless defined as herein, are not to be taken in an idealized or overly formal sense. explain.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the objectives, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811557669.5A CN109733382B (en) | 2018-12-19 | 2018-12-19 | Automobile rollover prevention method based on model predictive control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811557669.5A CN109733382B (en) | 2018-12-19 | 2018-12-19 | Automobile rollover prevention method based on model predictive control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109733382A CN109733382A (en) | 2019-05-10 |
CN109733382B true CN109733382B (en) | 2020-07-07 |
Family
ID=66360759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811557669.5A Active CN109733382B (en) | 2018-12-19 | 2018-12-19 | Automobile rollover prevention method based on model predictive control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109733382B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110126915B (en) * | 2019-05-17 | 2020-11-17 | 中国农业大学 | Active steering control-based active rollover prevention control method and system for wheeled tractor |
CN111027132B (en) * | 2019-08-08 | 2022-08-23 | 中国第一汽车股份有限公司 | Vehicle roll control method, device, equipment and storage medium |
CN110626353B (en) * | 2019-09-09 | 2020-09-08 | 武汉理工大学 | Vehicle dangerous state early warning method based on roll risk index |
CN110562243B (en) * | 2019-09-11 | 2021-07-27 | 武汉理工大学 | A kind of anti-rollover method, device and anti-rollover vehicle |
CN110471428B (en) * | 2019-09-18 | 2021-05-07 | 吉林大学 | Path tracking method based on variable pre-aiming distance and speed constraint of model |
CN111674387B (en) * | 2020-05-27 | 2022-08-05 | 南京航空航天大学 | A method for generating a new type of rollover early warning indicator based on derivative iterative prediction |
CN111873991B (en) * | 2020-07-22 | 2022-04-08 | 中国第一汽车股份有限公司 | Vehicle steering control method, device, terminal and storage medium |
CN112406854B (en) * | 2020-11-25 | 2022-05-10 | 东风越野车有限公司 | Method for controlling side-tipping stability of wheel hub motor-driven off-road vehicle |
CN113370798B (en) * | 2021-05-27 | 2022-09-13 | 武汉理工大学 | A differential torsional rollover prevention control method and device for in-wheel motor-driven vehicles |
CN113806958A (en) * | 2021-09-26 | 2021-12-17 | 上汽通用五菱汽车股份有限公司 | Anti-roll control method, device and storage medium based on MPC algorithm |
CN113879282A (en) * | 2021-11-09 | 2022-01-04 | 杭州云栖智能汽车创新中心 | Automatic-driving vehicle rollover prevention control method |
CN114890345B (en) * | 2022-04-26 | 2024-05-28 | 安徽合力股份有限公司 | Forklift stability control method and control system |
CN115465258B (en) * | 2022-08-30 | 2025-04-08 | 石家庄铁道大学 | Vehicle rollover prevention method and device, terminal and storage medium |
CN116639182A (en) * | 2023-04-18 | 2023-08-25 | 湖南大学 | Active steering control method and system for four-wheel steering passenger car |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3736999B2 (en) * | 1999-09-06 | 2006-01-18 | 本田技研工業株式会社 | Vehicle rollover judgment method |
EP1873020A1 (en) * | 2006-06-29 | 2008-01-02 | Delphi Technologies, Inc. | Integrated vehicle crash sensing system and method |
CN106080553A (en) * | 2016-07-13 | 2016-11-09 | 南京航空航天大学 | A kind of four-wheel steering automobile anti-rollover control system merging speed change and method |
CN106427957A (en) * | 2015-08-11 | 2017-02-22 | 比亚迪股份有限公司 | Stabilization control system and stabilization control method based on four-wheel drive for electric vehicle, as well as electric vehicle |
CN107176216A (en) * | 2017-06-15 | 2017-09-19 | 石家庄铁道大学 | Heavy-duty car anti-rollover system |
CN107571706A (en) * | 2017-09-22 | 2018-01-12 | 合肥工业大学 | A kind of fork truck anti-rollover control method |
CN107745709A (en) * | 2017-09-26 | 2018-03-02 | 湖北文理学院 | Preventing vehicle rollover pre-warning and control method, system and hardware-in-loop simulation method |
CN108680364A (en) * | 2018-03-29 | 2018-10-19 | 南京航空航天大学 | A kind of vehicle side turning evaluation index and evaluation method |
CN108773376A (en) * | 2018-05-07 | 2018-11-09 | 南京航空航天大学 | A kind of the automobile objective layered Collaborative Control and optimization method of fusion driving intention |
-
2018
- 2018-12-19 CN CN201811557669.5A patent/CN109733382B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3736999B2 (en) * | 1999-09-06 | 2006-01-18 | 本田技研工業株式会社 | Vehicle rollover judgment method |
EP1873020A1 (en) * | 2006-06-29 | 2008-01-02 | Delphi Technologies, Inc. | Integrated vehicle crash sensing system and method |
CN106427957A (en) * | 2015-08-11 | 2017-02-22 | 比亚迪股份有限公司 | Stabilization control system and stabilization control method based on four-wheel drive for electric vehicle, as well as electric vehicle |
CN106080553A (en) * | 2016-07-13 | 2016-11-09 | 南京航空航天大学 | A kind of four-wheel steering automobile anti-rollover control system merging speed change and method |
CN107176216A (en) * | 2017-06-15 | 2017-09-19 | 石家庄铁道大学 | Heavy-duty car anti-rollover system |
CN107571706A (en) * | 2017-09-22 | 2018-01-12 | 合肥工业大学 | A kind of fork truck anti-rollover control method |
CN107745709A (en) * | 2017-09-26 | 2018-03-02 | 湖北文理学院 | Preventing vehicle rollover pre-warning and control method, system and hardware-in-loop simulation method |
CN108680364A (en) * | 2018-03-29 | 2018-10-19 | 南京航空航天大学 | A kind of vehicle side turning evaluation index and evaluation method |
CN108773376A (en) * | 2018-05-07 | 2018-11-09 | 南京航空航天大学 | A kind of the automobile objective layered Collaborative Control and optimization method of fusion driving intention |
Non-Patent Citations (1)
Title |
---|
融合助力转向功能的新型主动转向系统LQG控制策略;赵万忠等;《中国机械工程》;20140215;第25卷(第3期);417-421页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109733382A (en) | 2019-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109733382B (en) | Automobile rollover prevention method based on model predictive control | |
CN110606079B (en) | Layered control vehicle rollover prevention method and multi-shaft distributed driving vehicle | |
CN103213582B (en) | Anti-rollover pre-warning and control method based on body roll angular estimation | |
Odhams et al. | Active steering of a tractor–semi-trailer | |
US9636965B2 (en) | Suspension system | |
CN106740873B (en) | Rollover early warning system and early warning method thereof | |
CN106945670A (en) | Anti-rollover system for automobiles and control strategy based on driver's input prediction | |
CN106585625A (en) | Four-wheel steering vehicle rollover prevention system and control method thereof | |
CN106080553A (en) | A kind of four-wheel steering automobile anti-rollover control system merging speed change and method | |
CN106004870A (en) | Vehicle stability integrated control method based on variable-weight model prediction algorithm | |
CN109591537A (en) | A kind of automotive semi-active suspension control system and method | |
JP4882848B2 (en) | Integrated vehicle behavior controller | |
GB2414815A (en) | Determining lateral velocity and yaw rate of a vehicle | |
US8855856B2 (en) | Vehicle roll control method using controllable friction force of MR dampers | |
CN207190988U (en) | A kind of car anti-rollover system based on electronic control air suspension system | |
CN107662468A (en) | Design method of vehicle roll motion safety H2/H∞ controller for active suspension | |
CN113378408B (en) | Optimal control method for whole vehicle coupling of electric control suspension | |
CN114312766B (en) | Control system and method based on transverse active collision avoidance | |
Takano et al. | Dynamics control of large vehicles for rollover prevention | |
CN115963836A (en) | Path tracking and vehicle body posture cooperative control method | |
Darling et al. | A low cost active anti-roll suspension for passenger cars | |
Wang et al. | Roll stability control of in-wheel motors drive electric vehicle on potholed roads | |
CN118810324B (en) | Intelligent suspension system of passenger car and control method thereof | |
CN111674387B (en) | A method for generating a new type of rollover early warning indicator based on derivative iterative prediction | |
Lu et al. | Impacts of dynamic toe angle variations on four-wheel independent steering control and their optimization strategies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |