[go: up one dir, main page]

CN109706155B - pOsHEN1::OsSPL14 gene expression cassette and its construction method and application - Google Patents

pOsHEN1::OsSPL14 gene expression cassette and its construction method and application Download PDF

Info

Publication number
CN109706155B
CN109706155B CN201811001480.8A CN201811001480A CN109706155B CN 109706155 B CN109706155 B CN 109706155B CN 201811001480 A CN201811001480 A CN 201811001480A CN 109706155 B CN109706155 B CN 109706155B
Authority
CN
China
Prior art keywords
osspl14
poshen1
rice
expression cassette
oshen1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811001480.8A
Other languages
Chinese (zh)
Other versions
CN109706155A (en
Inventor
杨东雷
刘明明
汪明璇
张笑寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201811001480.8A priority Critical patent/CN109706155B/en
Publication of CN109706155A publication Critical patent/CN109706155A/en
Application granted granted Critical
Publication of CN109706155B publication Critical patent/CN109706155B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明为平衡水稻抗逆和发育的对立性面,提供一种pOsHEN1::OsSPL14基因表达盒,所述pOsHEN1::OsSPL14基因表达盒包括OsHEN1启动子和OsSPL14基因,所述OsSPL14基因连接于OsHEN1启动子下游,本发明还提供一种含有前述pOsHEN1::OsSPL14基因表达盒的重组表达载体,并提供前述的重组表达载体的构建方法。本发明的基因表达盒和重组表达载体能够产生水稻优良产量性状如增加茎粗和提高单蘖产量和/或提高水稻对水稻白叶枯病菌PXO99A的抗性。当转基因株系在未受到PXO99A入侵时,微小增加转基因水稻中本底的OsSPL14的表达量,发挥OsSPL14调节水稻理想株型的特性,适当降低分蘖以提高有效分蘖数,增加茎粗抗倒伏和提高水稻单蘖产量。当转基因株系受到PXO99A入侵时,大幅度地提高下游OsSPL14基因的转录水平,能够特异的增强对白叶枯的抗病性。

Figure 201811001480

The present invention provides a pOsHEN1::OsSPL14 gene expression cassette in order to balance the opposing aspects of rice stress resistance and development. The pOsHEN1::OsSPL14 gene expression cassette includes an OsHEN1 promoter and an OsSPL14 gene, and the OsSPL14 gene is connected to the OsHEN1 promoter. Downstream, the present invention also provides a recombinant expression vector containing the aforementioned pOsHEN1::OsSPL14 gene expression cassette, and provides the aforementioned construction method of the recombinant expression vector. The gene expression cassette and recombinant expression vector of the present invention can produce excellent yield traits in rice, such as increased stem diameter and single tiller yield and/or improved rice resistance to Bacterial blight PXO99A. When the transgenic line was not invaded by PXO99A, the expression of OsSPL14 in the background of transgenic rice was slightly increased, and the characteristics of OsSPL14 in regulating the ideal plant type of rice were exerted, and tillering was appropriately reduced to increase the effective tiller number, increase stem diameter, lodging resistance and improve Single tiller yield of rice. When the transgenic line was invaded by PXO99A, the transcription level of the downstream OsSPL14 gene was greatly increased, which could specifically enhance the resistance to bacterial blight.

Figure 201811001480

Description

pOsHEN1::OsSPL14基因表达盒及其构建方法和应用pOsHEN1::OsSPL14 gene expression cassette and its construction method and application

技术领域technical field

本发明涉及植物基因工程技术领域,具体指pOsHEN1::OsSPL14基因表达盒的构建和育种应用。The invention relates to the technical field of plant genetic engineering, in particular to the construction and breeding application of a pOsHEN1::OsSPL14 gene expression cassette.

背景技术Background technique

Xanthomonas oryzae pv.oryzae,Xoo是引起水稻白叶枯病的致病菌。水稻白叶枯病在我国各稻区均有发生,为水稻主要病害。高温下秧苗病斑短条状,小而狭,扩展后叶片很快枯黄凋萎,秕谷和碎米多,减产达20%-30%,重的可达50%-60%,甚至颗粒无收,对产量影响较大。因此极有必要通过基因工程提高水稻对白叶枯病抗性。Xanthomonas oryzae pv.oryzae, Xoo are pathogenic bacteria that cause bacterial blight in rice. Rice bacterial blight occurs in all rice regions in my country and is the main disease of rice. Under high temperature, the seedling disease spots are short stripes, small and narrow. After expansion, the leaves quickly wither, yellow and wither. There are many grains and broken rice. harvest, which has a greater impact on yield. Therefore, it is very necessary to improve rice resistance to bacterial blight through genetic engineering.

植物包括农作物大都固着在生长地,它们可以根据一直在变化的外界环境而改变内源生长发育的信号网络,从而更好地适应外界环境。当遭遇病原菌侵染时,植物会将能量从生长发育方面调节到防御信号网络上,因此抗病的过程往往表现为抑制生长发育。为了提高农作物的抗病性,实验室里的相关研究筛选了一批组成型激活抗性反应的突变体。这些突变体往往表现为细胞死亡,高表达抗病相关基因,抗性物质高累积,最终能有效地抑制细菌或者真菌的繁殖,但是这些突变体在生长发育方面大都有植株矮化,育性降低,种子产量下降等缺点。这些抗病基因的研究对于了解植物免疫分子通路有很大的贡献,但是因为以上提到的经常伴随的发育缺陷,妨碍了这些基因在遗传育种生产中的应用。Plants, including crops, are mostly fixed in the growing place, and they can change the signal network of endogenous growth and development according to the constantly changing external environment, so as to better adapt to the external environment. When infected by pathogenic bacteria, plants will adjust energy from growth and development to defense signaling network, so the process of disease resistance often manifests as inhibition of growth and development. In order to improve the disease resistance of crops, related research in the laboratory screened a group of mutants that constitutively activate the resistance response. These mutants often show cell death, high expression of disease resistance-related genes, and high accumulation of resistant substances, which can ultimately effectively inhibit the reproduction of bacteria or fungi. However, most of these mutants have dwarf plants and reduced fertility in terms of growth and development. , the decline of seed yield and other disadvantages. The study of these disease resistance genes has greatly contributed to understanding the molecular pathways of plant immunity, but the application of these genes in genetic breeding production is hampered by the often accompanying developmental defects mentioned above.

因此,在提高水稻对白叶枯病抗性研究中,需要平衡水稻抗逆和发育的对立性面。研究出一种既可以特异性增加水稻抗病性,又可以增加水稻产量的转基因材料具有重要且广阔的应用价值。Therefore, in improving the resistance of rice to bacterial blight, it is necessary to balance the opposing sides of rice stress resistance and development. It has important and broad application value to develop a transgenic material that can not only specifically increase rice disease resistance, but also increase rice yield.

发明内容SUMMARY OF THE INVENTION

本发明目的是为了针对现有技术的不足,提供一种既可以特异性增加水稻白叶枯病抗性,又可以增加水稻产量的基因表达盒及其构建方法和应用。The purpose of the present invention is to provide a gene expression cassette that can not only specifically increase the resistance to bacterial blight of rice, but also increase the yield of rice, and its construction method and application, in order to address the deficiencies of the prior art.

本发明的技术方案如下:The technical scheme of the present invention is as follows:

本发明的第一个目的是提供一种pOsHEN1::OsSPL14基因表达盒,所述pOsHEN1::OsSPL14基因表达盒包括OsHEN1启动子和OsSPL14基因,所述OsSPL14基因连接于OsHEN1启动子下游。The first object of the present invention is to provide a pOsHEN1::OsSPL14 gene expression cassette, the pOsHEN1::OsSPL14 gene expression cassette includes an OsHEN1 promoter and an OsSPL14 gene, and the OsSPL14 gene is connected downstream of the OsHEN1 promoter.

所述OsHEN1启动子核苷酸序列如SEQ ID No.5所示,OsSPL14基因核苷酸序列如SEQ ID No.6所示。The nucleotide sequence of the OsHEN1 promoter is shown in SEQ ID No.5, and the nucleotide sequence of the OsSPL14 gene is shown in SEQ ID No.6.

本发明的第二个目的是提供一种含有前述pOsHEN1::OsSPL14基因表达盒的重组表达载体。The second object of the present invention is to provide a recombinant expression vector containing the aforementioned pOsHEN1::OsSPL14 gene expression cassette.

进一步的,所述重组表达载体为将权利要求1所述的pOsHEN1::OsSPL14基因表达盒插入到pCAMBIA1305.1质粒载体的EcoRI和HindIII位点之间得到。Further, the recombinant expression vector is obtained by inserting the pOsHEN1::OsSPL14 gene expression cassette of claim 1 between the EcoRI and HindIII sites of the pCAMBIA1305.1 plasmid vector.

前述的pOsHEN1::OsSPL14基因表达盒或前述的重组表达载体在改良水稻作物中的应用,所述改良包括:提高水稻优良产量性状和/或提高水稻对水稻白叶枯病菌PXO99A的抗性。The application of the aforementioned pOsHEN1::OsSPL14 gene expression cassette or the aforementioned recombinant expression vector in improving rice crops, the improvement comprising: improving the excellent yield traits of rice and/or improving the resistance of rice to Bacterial blight PXO99A.

进一步的,水稻优良产量性状包括:降低分蘖以提高有效分蘖数减少生产消耗,和/或增加茎粗增强抗倒伏能力,和/或提高水稻单穗产量,以提高水稻产量Further, the excellent yield traits of rice include: reducing tillers to increase the number of effective tillers and reducing production consumption, and/or increasing stem diameter to enhance lodging resistance, and/or increasing yield per ear of rice to increase rice yield

本发明的第三个目的是提供前述的重组表达载体的构建方法,所述构建方法包括如下步骤:The third object of the present invention is to provide the construction method of the aforementioned recombinant expression vector, and the construction method comprises the following steps:

S1:以水稻日本晴DNA为模板,以OsHEN1启动子特异引物pOsHEN1-F:S1: Using rice Nipponbare DNA as template, using OsHEN1 promoter-specific primer pOsHEN1-F:

tatgaccatgattacgaattcTTATGTGCACTAGAAACTATCTGAGGAC(SEQ ID No.1)和pOsHEN1-R:CAAACGCCCAAAAAAAACAA(SEQ ID No.2)进行PCR扩增,克隆出OsHEN1的启动子扩增产物;tatgaccatgattacgaattcTTATGTGCACTAGAAACTATCTGAGGAC (SEQ ID No. 1) and pOsHEN1-R: CAAACGCCCAAAAAAAACAA (SEQ ID No. 2) were amplified by PCR, and the amplified product of the promoter of OsHEN1 was cloned;

S2:以水稻日本晴DNA为模板,以OsSPL14基因特异引物OsSPL14-F:S2: Using rice Nipponbare DNA as a template, using OsSPL14 gene-specific primer OsSPL14-F:

ttgttttttttgggcgtttgTTCCGTCTCTTTCCTCTCTCTTCT(SEQ ID No.3)和OsSPL14-R:ttgttttttttgggcgtttgTTCCGTCTCTTTCCTCTCTCTTCT (SEQ ID No. 3) and OsSPL14-R:

tggtctttgtagtcaagcttCAGAGACCAATCCATCGTGTTG(SEQ ID No.4)进行PCR扩增,克隆出OsSPL14的基因组DNA扩增产物;tggtctttgtagtcaagcttCAGAGACCAATCCATCGTGTTG (SEQ ID No. 4) was amplified by PCR, and the genomic DNA amplification product of OsSPL14 was cloned;

S3:利用同源重组法将S1和S2获得的扩增片段连接到EcoRI和HindIII双酶切的pCAMBIA1305.1的质粒载体,获得含有pOsHEN1::OsSPL14表达盒的重组载体。S3: The amplified fragments obtained from S1 and S2 were connected to the plasmid vector of pCAMBIA1305.1 double-digested by EcoRI and HindIII by homologous recombination method to obtain a recombinant vector containing the pOsHEN1::OsSPL14 expression cassette.

进一步的,S3具体操作步骤为:利用南京诺维赞公司的货号为C113-02的同源重组试剂盒,将OsHEN1的启动子片段、OsSPL14的基因组DNA片段和EcoRI和HindIII双酶切后的pCAMBIA1305.1线性片段连接在一起,经过大肠杆菌转化,单克隆鉴定获得含有pOsHEN1::OsSPL14表达盒的重组载体。Further, the specific operation steps of S3 are as follows: using the homologous recombination kit with the product number C113-02 of Nanjing Novizan Company, the promoter fragment of OsHEN1, the genomic DNA fragment of OsSPL14 and pCAMBIA1305 after double digestion with EcoRI and HindIII were used. 1. The linear fragments were connected together, and after E. coli transformation, a recombinant vector containing the pOsHEN1::OsSPL14 expression cassette was obtained by monoclonal identification.

同源重组体系如下:The homologous recombination system is as follows:

Figure BDA0001783072430000021
Figure BDA0001783072430000021

Figure BDA0001783072430000031
Figure BDA0001783072430000031

按上述体系配置重组体系,移液枪吸打混匀,37℃放置30分钟后立即置于冰上5分钟,进行下一步大肠杆菌转化。The recombination system was configured according to the above system, mixed with a pipette, placed at 37°C for 30 minutes, and then placed on ice for 5 minutes to carry out the next step of Escherichia coli transformation.

转化大肠杆菌Transform E. coli

1.从-70℃超低温冰柜中取出一管(100μl)感受态菌,冰浴5~10min融化感受态菌。1. Take out a tube (100 μl) of competent bacteria from the -70°C ultra-low temperature freezer, and melt the competent bacteria in an ice bath for 5-10 minutes.

2.加入5μl连接好的重组质粒,轻轻震荡后放置冰上20min。2. Add 5 μl of the ligated recombinant plasmid, shake gently and place on ice for 20 min.

3.轻轻摇匀后插入42℃水浴中90秒热激,然后迅速放回冰中,静置2min。3. Shake gently, insert it into a 42°C water bath for 90 seconds to heat shock, then quickly put it back on ice and let it stand for 2 minutes.

4.在超净工作台中向上述管中分别加入500μl无抗LB培养基轻轻混匀,然后固定到摇4. Add 500 μl of anti-LB medium to the above tubes in the ultra-clean workbench and mix gently, and then fix to the shaker.

床的弹簧架上37℃震荡45min。Shake at 37°C for 45min on the spring frame of the bed.

5.在超净工作台中取上述转化混合液,倒入含卡那霉素抗生素的固体LB平板培养皿中,5. Take the above transformation mixture on the ultra-clean workbench and pour it into a solid LB plate culture dish containing kanamycin antibiotics.

用酒精灯烧过的玻璃涂布棒涂布,超净台中吹干培养基表面。Coat with a glass coating rod burned by an alcohol lamp, and dry the surface of the medium in an ultra-clean bench.

6.倒置培养基放入37℃恒温培养箱过夜。6. Invert the medium and put it into a 37°C constant temperature incubator overnight.

7.挑单克隆菌落进行菌落PCR鉴定后测序再鉴定,确定阳性质粒pOsHEN1::OsSPL14载体。7. Pick a single clone colony for colony PCR identification, sequence and then identify the positive plasmid pOsHEN1::OsSPL14 vector.

本发明的pOsHEN1::OsSPL14基因表达盒或含有pOsHEN1::OsSPL14基因表达盒的重组表达载体,提高水稻优良产量性状如茎粗、单穗产量以提高水稻产量和/或提高水稻对水稻白叶枯病菌PXO99A的抗性的作用机制如下:The pOsHEN1::OsSPL14 gene expression cassette of the present invention or the recombinant expression vector containing the pOsHEN1::OsSPL14 gene expression cassette can improve rice excellent yield traits such as stem diameter and single ear yield to increase rice yield and/or improve rice resistance to rice bacterial blight The mechanism of action of the resistance of pathogen PXO99A is as follows:

水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae,Xoo)通过三型分泌系统(Typethree secretion system,T3SS)将不同的效应因子直接分泌到水稻细胞内,这些效应因子与水稻内相互作用的靶标结合以产生抗病或者感病反应。转录激活类(transcriptionactivation-like,TAL)效应因子作为稻黄单胞菌最重要的三型效应因子在其与水稻互作的过程中起着关键作用。其中水稻基因OsHEN1受到Xoo PXO99A的Tal9A转录激活类效应因子的直接调控,Xoo PXO99A的Tal9A转录激活效应因子可以特异的结合到OsHEN1的启动子-25bp处的Xoo PXO99A的Tal9A效应结合位点上,激活OsHEN1启动子。Xanthomonas oryzae pv. oryzae (Xoo) secretes different effectors directly into rice cells through the Typethree secretion system (T3SS), and these effectors bind to interacting targets in rice for produce a disease-resistant or susceptible response. Transcription activation-like (TAL) effector, as the most important tritype effector of Xanthomonas oryzae, plays a key role in its interaction with rice. The rice gene OsHEN1 is directly regulated by the Tal9A transcriptional activation effector of Xoo PXO99A. The Tal9A transcriptional activation effector of Xoo PXO99A can specifically bind to the Tal9A effector binding site of Xoo PXO99A at the promoter-25bp of OsHEN1, and activate the Tal9A effector binding site of Xoo PXO99A. OsHEN1 promoter.

水稻OsSPL14(IPA1)是水稻的理想株型基因,过量表达OsSPL14降低水稻的分蘖数,精细调控(上调表达)OsSPL14的表达可以通过降低水稻的总分蘖数,增加水稻的有效分蘖数而提高水稻产量。Rice OsSPL14 (IPA1) is an ideal plant type gene of rice. Overexpression of OsSPL14 reduces rice tiller number. Fine regulation (up-regulation of expression) of OsSPL14 expression can increase rice yield by reducing total rice tiller number and increasing rice effective tiller number. .

此外,发明人首次意外发现OsSPL14对水稻的抗病同样发挥着重要作用。在水稻中,上调OsSPL14基因的表达,还可以明显增强对白叶枯病的抗性。In addition, the inventors unexpectedly discovered that OsSPL14 also plays an important role in the disease resistance of rice for the first time. In rice, up-regulation of OsSPL14 gene expression can also significantly enhance resistance to bacterial blight.

本发明构建的pOsHEN1::OsSPL14基因表达盒在诱导型启动子OsHEN1的下游连接OsSPL14基因,转化水稻后,获得含有pOsHEN1::OsSPL14基因表达盒的水稻转基因株系。The pOsHEN1::OsSPL14 gene expression cassette constructed in the present invention is connected to the OsSPL14 gene downstream of the inducible promoter OsHEN1, and after rice is transformed, a rice transgenic line containing the pOsHEN1::OsSPL14 gene expression cassette is obtained.

OsHEN1启动子主要包含PXO99A致病因子的靶位点,同时,大多数水稻材料OsSPL14基因序列都是一样的,个别材料间的序列差异,但功能相同,因此对本发明的技术方案可适用于各水稻品种。The OsHEN1 promoter mainly contains the target site of the PXO99A pathogenic factor. At the same time, the OsSPL14 gene sequence of most rice materials is the same, and the sequence differences between individual materials have the same function. Therefore, the technical solution of the present invention can be applied to various rice materials. Variety.

当转基因株系在未受到PXO99A入侵时,由于表达盒中的OsSPL14的存在,微小增加转基因水稻中本底的OsSPL14的表达量,此状态下,可发挥OsSPL14调节水稻分蘖的特性,能够适当降低分蘖以提高有效分蘖数,减少生产消耗,增加茎粗增加抗倒伏能力和提高水稻单穗产量,并可以通过合理的密植以增加水稻产量。When the transgenic line is not invaded by PXO99A, the presence of OsSPL14 in the expression cassette slightly increases the expression of OsSPL14 in the background of transgenic rice. In this state, it can play the role of OsSPL14 in regulating rice tillering, which can appropriately reduce tillering. In order to increase the number of effective tillers, reduce production consumption, increase stem diameter, increase lodging resistance and improve single ear yield of rice, and can increase rice yield through reasonable dense planting.

当转基因株系受到PXO99A入侵时,PXO99A tal9A转录激活效应子能够特异的结合到OsHEN1的启动子上-25bp处的Xoo PXO99A的Tal9A效应结合位点上,OsHEN1启动子受XooPXO99A的Tal9A的诱导后被特异性激活,进而大幅度地提高下游OsSPL14基因的转录水平,实现在外源白叶枯病菌PXO99A侵染的情况下特异的增强对PXO99A白叶枯病菌的抗病性。When the transgenic line was invaded by PXO99A, the PXO99A tal9A transcriptional activation effector could specifically bind to the Tal9A effector binding site of Xoo PXO99A at -25 bp on the OsHEN1 promoter, and the OsHEN1 promoter was induced by Tal9A of XooPXO99A. Specific activation, thereby greatly increasing the transcription level of the downstream OsSPL14 gene, to achieve specific enhancement of the disease resistance to PXO99A bacterial blight under the infection of exogenous bacterial blight PXO99A.

同时,OsHEN1启动子作为诱导型启动子,由于诱导型启动子具有时空特异性,能够仅在植物体内受PXO99A侵染的部位超量表达目的OsSPL14基因,其他器官和组织中表达量不受影响。因此实现受侵染的部位中OsSPL14基因表达量大量上调(几十上百倍的增加),有效增强目标抗性,而其他器官和组织中OsSPL14基因表达量不受影响,避免植株整体OsSPL14均过量表达,导致分蘖数过度减少而严重减产的情况。在有效抗病的同时,不影响水稻的产量,从而获得既增加水稻产量有可以增强对水稻白叶枯病菌PXO99A抗病性的优良水稻品种。At the same time, the OsHEN1 promoter is an inducible promoter. Due to the spatiotemporal specificity of the inducible promoter, the target OsSPL14 gene can be overexpressed only in the part infected by PXO99A in plants, and the expression level in other organs and tissues is not affected. Therefore, the OsSPL14 gene expression in the infected part is greatly up-regulated (tens to hundreds of times of increase), effectively enhancing the target resistance, while the OsSPL14 gene expression in other organs and tissues is not affected, avoiding the overexpression of OsSPL14 in the whole plant , resulting in excessive reduction of tiller numbers and severe yield reduction. While effectively resisting diseases, it does not affect the yield of rice, thereby obtaining an excellent rice variety that can increase the yield of rice and can enhance the disease resistance to the bacterial blight of rice PXO99A.

本发明技术方案所实现的有益效果为:The beneficial effects achieved by the technical solution of the present invention are:

本发明构建的pOsHEN1::OsSPL14基因表达盒转化水稻后,当转基因株系在未受到PXO99A入侵时,表现为适当降低分蘖,以保证有效分蘖数,减少生产消耗,增加茎粗抗倒伏和提高水稻单穗产量,并可以通过合理的密植以增加产量。当转基因株系受到PXO99A入侵时,能够在水稻特定部位特异增强抗白叶枯病菌PXO99A的能力,并且不会影响植株整体的OsSPL14基因表达量,避免因分蘖数的过度减少而严重减产,因此能够很好的平衡水稻抗逆和发育的对立性面,从而获得既增加水稻产量有可以增强抗病性的优良水稻品种,并且我们的HS转基因株系可以通过多种育种手段来精确调控OsSPL14的表达,在农业领域具有广阔的应用和市场前景。After the pOsHEN1::OsSPL14 gene expression cassette constructed in the present invention is transformed into rice, when the transgenic line is not invaded by PXO99A, the tiller is appropriately reduced, so as to ensure the effective tiller number, reduce production consumption, increase stem diameter and lodging resistance and improve rice Yield per ear, and can be increased by reasonable dense planting. When the transgenic line is invaded by PXO99A, it can specifically enhance the resistance to bacterial blight PXO99A in specific parts of rice, and it will not affect the overall OsSPL14 gene expression of the plant, and avoid serious yield reduction due to excessive reduction in the number of tillers. It balances the opposing aspects of rice stress resistance and development, so as to obtain excellent rice varieties that can increase rice yield and enhance disease resistance, and our HS transgenic lines can precisely regulate the expression of OsSPL14 through a variety of breeding methods. , has broad application and market prospects in the agricultural field.

附图说明Description of drawings

图1pCAMBIA1305.1载体质粒图谱和多克隆位点信息示意图。Figure 1. Schematic diagram of pCAMBIA1305.1 vector plasmid map and multiple cloning site information.

图2将pOsHEN1::OsSPL14基因表达盒侵染转化水稻,得到四个转基因株系(HS-2,HS-9,HS-8,Hs-4)的株型图。Fig. 2 The pOsHEN1::OsSPL14 gene expression cassette was transformed into rice, and the plant type diagrams of four transgenic lines (HS-2, HS-9, HS-8, Hs-4) were obtained.

图3四个转基因株系(HS-2,HS-9,HS-8,Hs-4)在未受PXO99A诱导状态下本底OsSPL14表达上调。Figure 3. The four transgenic lines (HS-2, HS-9, HS-8, Hs-4) had up-regulated background OsSPL14 expression in the uninduced state of PXO99A.

图4四个转基因株系(HS-2,HS-9,HS-8,Hs-4)在未受PXO99A诱导状态下株高和分蘖的统计;Figure 4. Statistics of plant height and tiller of four transgenic lines (HS-2, HS-9, HS-8, Hs-4) in the state not induced by PXO99A;

图中:a为HS-2,HS-9,HS-8,Hs-4与野生型NIP株高对比柱状图;b为HS-2,HS-9,HS-8,Hs-4与野生型NIP分蘖对比柱状图;n.d.表示转基因株系与野生型对照相比差异的显著水平P>0.05;星号(*)表示转基因株系与野生型对照相比差异的显著性水平在P<0.05;双星号(**)表示转基因株系与野生型对照相比差异的显著性水平在P<0.01。In the figure: a is the histogram of plant height comparison of HS-2, HS-9, HS-8, Hs-4 and wild type NIP; b is HS-2, HS-9, HS-8, Hs-4 and wild type NIP tiller comparison histogram; n.d. indicates the significant level of the difference between the transgenic line and the wild-type control at P>0.05; asterisk (*) indicates that the significant level of the difference between the transgenic line and the wild-type control is at P<0.05; Double asterisks (**) indicate the significance level of the difference between the transgenic lines and the wild-type control at P<0.01.

图5四个转基因株系(HS-2,HS-9,HS-8,Hs-4)在未受PXO99A诱导状态下第三节茎粗的统计;Figure 5. Statistics of the stem diameter of the third node of the four transgenic lines (HS-2, HS-9, HS-8, Hs-4) without induction by PXO99A;

图中:a为HS-2,HS-9,HS-8,Hs-4与野生型NIP第三节茎对比图,b为HS-2,HS-9,HS-8,Hs-4与野生型NIP第三节茎粗对比柱状图;星号(*)表示转基因株系与野生型对照相比差异的显著性水平在P<0.05;双星号(**)表示转基因株系与野生型对照相比差异的显著性水平在P<0.01。In the figure: a is the comparison of HS-2, HS-9, HS-8, Hs-4 and wild-type NIP third node stem, b is HS-2, HS-9, HS-8, Hs-4 and wild type Type NIP third section stem diameter comparison histogram; asterisk (*) indicates that the significance level of the difference between transgenic lines and wild-type control is at P<0.05; double asterisks (**) indicate that transgenic lines are compared with wild-type control The significance level of the difference compared to the control is at P<0.01.

图6四个转基因株系(HS-2,HS-9,HS-8,Hs-4)在未受PXO99A诱导状态下与野生型NIP主穗对比图;Figure 6 is a graph comparing the main panicle of four transgenic lines (HS-2, HS-9, HS-8, and Hs-4) with wild-type NIP in the state not induced by PXO99A;

图7四个转基因株系(HS-2,HS-9,HS-8,Hs-4)在未受PXO99A诱导状态下与野生型NIP分枝对比柱状图;Figure 7. Bar graph comparing four transgenic lines (HS-2, HS-9, HS-8, Hs-4) with wild-type NIP branches in a state not induced by PXO99A;

图中:a为HS-2,HS-9,HS-8,Hs-4与野生型NIP一级分枝对比柱状图;b为HS-2,HS-9,HS-8,Hs-4与野生型NIP二级分枝对比柱状图;c为HS-2,HS-9,HS-8,Hs-4与野生型NIP主穗颖花数对比柱状图;星号(*)表示转基因株系与野生型对照相比差异的显著性水平在P<0.05;双星号(**)表示转基因株系与野生型对照相比差异的显著性水平在P<0.01。In the figure: a is the histogram comparing the primary branches of HS-2, HS-9, HS-8, Hs-4 and wild-type NIP; b is the comparison of HS-2, HS-9, HS-8, Hs-4 and The histogram of the secondary branches of wild-type NIP; c is the histogram of the number of spikelets in the main spike of HS-2, HS-9, HS-8, Hs-4 and wild-type NIP; asterisks (*) indicate transgenic lines The significance level of the difference compared with the wild-type control is at P<0.05; the double asterisk (**) indicates that the significance level of the difference between the transgenic line and the wild-type control is at P<0.01.

图8四个转基因株系(HS-2,HS-9,HS-8,Hs-4)在未受PXO99A诱导状态下主穗结实数统计;Fig. 8 Statistics of the number of main panicles of four transgenic lines (HS-2, HS-9, HS-8, Hs-4) without induction by PXO99A;

图中:a为HS-2,HS-9,HS-8,Hs-4与野生型NIP主穗结实数对比图,b为HS-2,HS-9,HS-8,Hs-4与野生型NIP主穗产量对比柱状图;星号(*)表示转基因株系与野生型对照相比差异的显著性水平在P<0.05;双星号(**)表示转基因株系与野生型对照相比差异的显著性水平在P<0.01。In the figure: a is the comparison of the number of main spikes of HS-2, HS-9, HS-8, Hs-4 and wild type NIP, b is HS-2, HS-9, HS-8, Hs-4 and wild type Type NIP main panicle yield comparison histogram; asterisk (*) indicates that the significant level of difference between transgenic lines and wild-type control is at P<0.05; double asterisks (**) indicate that transgenic lines are compared with wild-type control The significance level of the difference was at P<0.01.

图9荧光定量PCR鉴定三个转基因株系(HS-2,HS-9,HS-8,HS-4)中OsSPL14受PXO99A诱导时表达情况;Figure 9 Fluorescence quantitative PCR identification of the expression of OsSPL14 in three transgenic lines (HS-2, HS-9, HS-8, HS-4) induced by PXO99A;

图10四个转基因株系(HS-2,HS-9,HS-8,Hs-4)在受诱导状态下抗病性统计;Figure 10. Statistics of disease resistance of four transgenic lines (HS-2, HS-9, HS-8, Hs-4) in the induced state;

图中:a.为HS-2,HS-9,HS-8,Hs-4与野生型NIP病斑长度对比图,b.为HS-2,HS-9,HS-8,Hs-4与野生型NIP病斑长度对比柱状图;c.为HS-2,HS-9,HS-8,Hs-4抗性增加比例对比柱状图;星号(*)表示转基因株系与野生型对照相比差异的显著性水平在P<0.05;双星号(**)表示转基因株系与野生型对照相比差异的显著性水平在P<0.01。In the figure: a. is the comparison of the lengths of HS-2, HS-9, HS-8, Hs-4 and wild-type NIP lesions, b. is HS-2, HS-9, HS-8, Hs-4 and The histogram of the length of wild-type NIP lesions; c. is the histogram of the proportion of increased resistance of HS-2, HS-9, HS-8, and Hs-4; asterisks (*) indicate the comparison between the transgenic lines and the wild-type control The significance level of the ratio difference is at P<0.05; the double asterisk (**) indicates that the significance level of the difference between the transgenic lines and the wild-type control is at P<0.01.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。以下实施例中所涉及的原料,如无特别说明均为市售,所涉及检测方法如无特别说明,则均为常规方法。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to specific embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. The raw materials involved in the following examples are commercially available unless otherwise specified, and the detection methods involved are conventional methods unless otherwise specified.

实施例1构建pOsHEN1::OsSPL14基因表达盒和构建含有pOsHEN1::OsSPL14基因表达盒的重组表达载体Example 1 Construction of pOsHEN1::OsSPL14 gene expression cassette and construction of recombinant expression vector containing pOsHEN1::OsSPL14 gene expression cassette

S1:在水稻OsHEN1基因的转录起始位点上游约2000bp设计克隆pOsHEN1-F引物,在OsHEN1的5’端非翻译区末端设计pOsHEN1-R引物,以水稻日本晴DNA为模板,以OsHEN1启动子特异引物pOsHEN1-F:tatgaccatgattacgaattcTTATGTGCACTAGAAACTATCTGAGGAC(SEQ IDNo.1)和pOsHen1-R:CAAACGCCCAAAAAAAACAA(SEQ ID No.2)进行PCR扩增,克隆出OsHen1的启动子扩增产物;S1: Design and clone pOsHEN1-F primer at about 2000bp upstream of the transcription start site of rice OsHEN1 gene, design pOsHEN1-R primer at the end of the 5' untranslated region of OsHEN1, use rice Nipponbare DNA as template, and use OsHEN1 promoter-specific primer The primers pOsHEN1-F: tatgaccatgattacgaattcTTATGTGCACTAGAAACTATCTGAGGAC (SEQ ID No. 1) and pOsHen1-R: CAAACGCCCAAAAAAAACAA (SEQ ID No. 2) were amplified by PCR, and the amplified product of the promoter of OsHen1 was cloned;

S2:以OsSPL14的转录起始位点设计克隆OsSPL14-F引物,在OsSPL14转录终止位点下游约500bp设计克隆OsSPL14-R引物,以水稻日本晴DNA为模板,以OsSPL14基因特异引物OsSPL14-F:ttgttttttttgggcgtttgTTCCGTCTCTTTCCTCTCTCTTCT(SEQ ID No.3)和OsSPL14-R:tggtctttgtagtcaagcttCAGAGACCAATCCATCGTGTTG(SEQ ID No.4)进行PCR扩增,克隆出OsSPL14的基因组DNA扩增产物;S2: Design and clone the OsSPL14-F primer based on the transcription start site of OsSPL14, design and clone the OsSPL14-R primer about 500 bp downstream of the OsSPL14 transcription termination site, use the rice Nipponbare DNA as the template, and use the OsSPL14 gene-specific primer OsSPL14-F: ttgtttttttttgggcgtttgTTCCGTCTCTTTCCTCTCTCTTCT (SEQ ID No.3) and OsSPL14-R: tggtctttgtagtcaagcttCAGAGACCAATCCATCGTGTTG (SEQ ID No.4) were amplified by PCR, and the genomic DNA amplification product of OsSPL14 was cloned;

S3:利用同源重组法将S1获得的OsHEN1的启动子片段、S2获得的OsSPL14的基因组DNA片段连接到EcoRI和HindIII双酶切的pCAMBIA1305.1的质粒载体线性片段,经过大肠杆菌转化,单克隆PCR鉴定后再测序鉴定获得含有OsSPL14的基因组DNA片段连接在OsHEN1的启动子片段下游的pOsHEN1::OsSPL14表达盒的重组载体。S3: The promoter fragment of OsHEN1 obtained from S1 and the genomic DNA fragment of OsSPL14 obtained from S2 were connected to the plasmid vector linear fragment of pCAMBIA1305.1 double-digested by EcoRI and HindIII by homologous recombination, and transformed into E. PCR identification followed by sequencing identification to obtain a recombinant vector containing the genomic DNA fragment of OsSPL14 linked to the pOsHEN1::OsSPL14 expression cassette downstream of the OsHEN1 promoter fragment.

同源重组体系如下:The homologous recombination system is as follows:

Figure BDA0001783072430000071
Figure BDA0001783072430000071

按上述体系配置重组体系,移液枪吸打混匀,37℃放置30分钟后立即置于冰上5分钟,进行下一步大肠杆菌转化。The recombination system was configured according to the above system, mixed with a pipette, placed at 37°C for 30 minutes, and then placed on ice for 5 minutes to carry out the next step of Escherichia coli transformation.

转化大肠杆菌Transform E. coli

1.从-70℃超低温冰柜中取出一管(100μl)感受态菌,冰浴5~10min融化感受态菌。1. Take out a tube (100 μl) of competent bacteria from the -70°C ultra-low temperature freezer, and melt the competent bacteria in an ice bath for 5-10 minutes.

2.加入5μl连接好的重组质粒,轻轻震荡后放置冰上20min。2. Add 5 μl of the ligated recombinant plasmid, shake gently and place on ice for 20 min.

3.轻轻摇匀后插入42℃水浴中90秒热激,然后迅速放回冰中,静置2min。3. Shake gently, insert it into a 42°C water bath for 90 seconds to heat shock, then quickly put it back on ice and let it stand for 2 minutes.

4.在超净工作台中向上述管中分别加入500μl无抗LB培养基轻轻混匀,然后固定到摇床的弹簧架上37℃震荡45min。4. Add 500 μl of anti-LB medium to the above tubes in the ultra-clean workbench and mix gently, then fix it on the spring rack of the shaker and shake at 37°C for 45 minutes.

5.在超净工作台中取上述转化混合液,倒入含卡那霉素抗生素的固体LB平板培养皿中,用酒精灯烧过的玻璃涂布棒涂布,超净台中吹干培养基表面。5. Take the above transformation mixture on the ultra-clean workbench, pour it into a solid LB plate petri dish containing kanamycin antibiotics, coat it with a glass coating rod burned by an alcohol lamp, and blow dry the surface of the medium in the ultra-clean workbench .

6.倒置培养基放入37℃恒温培养箱过夜。6. Invert the medium and put it into a 37°C constant temperature incubator overnight.

7.挑单克隆菌落进行菌落PCR鉴定后测序再鉴定,确定阳性质粒pOsHEN1::OsSPL14载体。7. Pick a single clone colony for colony PCR identification, sequence and then identify the positive plasmid pOsHEN1::OsSPL14 vector.

实施例2含有pOsHen1::OsSPL14基因表达盒的重组表达载体转化水稻获得转基因株系HSExample 2 The recombinant expression vector containing the pOsHen1::OsSPL14 gene expression cassette was transformed into rice to obtain a transgenic line HS

转化用水稻为:野生型水稻日本晴(NIP)。The rice used for transformation was: wild-type rice Nipponbare (NIP).

利用水稻农杆菌介导的转化法获得多个稳定的转基因株系,用于本发明的实验研究。具体转化、侵染及转基因水稻培养方法为:A plurality of stable transgenic lines were obtained by the transformation method mediated by Agrobacterium oryzae, which were used for the experimental research of the present invention. The specific transformation, infection and transgenic rice cultivation methods are as follows:

1.水稻成熟种子去皮,挑选健康完整的种子。1. Peel the mature seeds of rice and select healthy and intact seeds.

2.用70%乙醇清洗浸泡2-3分钟,洗两到三次,然后用10%的次氯酸钠溶液清洗30分钟。2. Wash and soak with 70% ethanol for 2-3 minutes, wash two to three times, and then wash with 10% sodium hypochlorite solution for 30 minutes.

3.无菌水洗三到四次。3. Wash with sterile water three to four times.

4.将去皮的种子置于无菌滤纸上吹干。4. Dry the peeled seeds on sterile filter paper.

5.将吹干的种子摆放到诱导培养基上,黑暗培养15-20天,直到长出黄色较大的愈伤组织。5. Put the dried seeds on the induction medium, and cultivate in the dark for 15-20 days, until the larger yellow callus grows.

6.剥下愈伤,转至继代培养基上黑暗培养两周。6. Peel off the callus and transfer to subculture medium for two weeks in the dark.

7.共培养。含有阳性质粒载体的农杆菌EHA105与愈伤组织在液体共培养基中轻轻摇晃培养30分钟,共培养后的愈伤组织转移至无菌滤纸晾干。7. Co-cultivation. Agrobacterium EHA105 containing positive plasmid vector and callus were cultured in liquid co-culture medium with gentle shaking for 30 minutes, and the callus after co-culture was transferred to sterile filter paper to dry.

8.晾干后的愈伤组织转移至共培养基中,培养2-3天。8. The air-dried callus is transferred to the co-culture medium and cultivated for 2-3 days.

9.用含有抗生素特美汀的无菌水清洗愈伤组织后转移至含有50mg/L潮霉素的筛选培养基中,黑暗培养2-3周。转至50mg/L的二筛培养基中黑暗培养,直至长出新的愈伤组织。9. Wash the callus with sterile water containing the antibiotic Timentin and transfer it to a screening medium containing 50 mg/L hygromycin, and cultivate in the dark for 2-3 weeks. Transfer to 50mg/L sieve medium and culture in the dark until new callus grows.

10.转移新的愈伤组织到分化培养基中,长出水稻苗后转移至生根培养基。10. Transfer new callus to differentiation medium, and transfer to rooting medium after rice seedlings grow.

11.在生根培养基长至壮苗时移栽到田间。11. Transplant into the field when the rooting medium grows to strong seedlings.

得到四个转基因株系HS-2,HS-9,HS-8,Hs-4(图2)。Four transgenic lines HS-2, HS-9, HS-8, Hs-4 were obtained (Fig. 2).

实施例3转基因株系在未受PXO99A诱导状态下农艺性状研究Example 3 Research on agronomic characters of transgenic lines without induction by PXO99A

本研究以野生型水稻日本晴(NIP)为对照,研究实施例2得到的四个转基因株系HS-2,HS-9,HS-8,Hs-4在未受PXO99A诱导状态下农艺性状。In this study, wild-type rice Nipponbare (NIP) was used as a control to study the agronomic characters of the four transgenic lines HS-2, HS-9, HS-8 and Hs-4 obtained in Example 2 without being induced by PXO99A.

3.1植株本底OsSPL14表达量3.1 Plant background OsSPL14 expression

研究方法:荧光定量PCRResearch method: real-time quantitative PCR

3.2Trizol法提取总RNA3.2 Trizol method to extract total RNA

四个转基因株系HS-2,HS-9,HS-8,Hs-4和NIP对照在未受PXO99A诱导状态,取叶片样品分别进行如下操作:Four transgenic lines HS-2, HS-9, HS-8, Hs-4 and NIP control were not induced by PXO99A, and the leaf samples were taken as follows:

(1)称取0.1g新鲜的叶片,用研钵在液氮中迅速研磨,彻底粉碎后迅速转移到1.5mL的离心管(液氮预冷)中。并在离心管中加入1mL Trizol,冰上放置10min;(1) Weigh 0.1 g of fresh leaves, quickly grind them in liquid nitrogen with a mortar, thoroughly grind them, and quickly transfer them to a 1.5 mL centrifuge tube (precooled with liquid nitrogen). Add 1 mL of Trizol to the centrifuge tube and place on ice for 10 min;

(2)加入100uL氯仿,剧烈震荡30S,冰上放置5min;(2) Add 100uL of chloroform, shake vigorously for 30S, and place on ice for 5min;

(3)4℃,13000rpm,10min;(3) 4℃, 13000rpm, 10min;

(4)转移上清于另一个新1.5ml RNase-Free离心管中,加等体积异丙醇轻轻颠倒混匀,室温放置10min;(4) Transfer the supernatant to another new 1.5ml RNase-Free centrifuge tube, add an equal volume of isopropanol, gently invert and mix, and place at room temperature for 10 minutes;

(5)4℃,13000rpm,15min;(5) 4℃, 13000rpm, 15min;

(6)弃去上清,加入500uL RNase-Free 75%乙醇,洗涤两次;(6) Discard the supernatant, add 500uL RNase-Free 75% ethanol, and wash twice;

(7)倒掉乙醇,室温放置约10min;(7) pour out ethanol, place about 10min at room temperature;

(8)加50uL RNase-Free水,65℃金属浴保温15min后,-80℃保存备用;(8) Add 50uL RNase-Free water, keep it in a metal bath at 65°C for 15 minutes, and store it at -80°C for later use;

3.3RNA逆转录[HiScript II Q RT SuperMix for qPCR(+gDNA wiper)试剂盒]3.3 RNA reverse transcription [HiScript II Q RT SuperMix for qPCR (+gDNA wiper) kit]

1.总RNA 1ng-500ng1. Total RNA 1ng-500ng

2.gDNA wiper 2微升2. 2 microliters of gDNA wiper

3.加无菌水至总体积8微升3. Add sterile water to a total volume of 8 µl

上述混合液置于42摄氏度PCR仪2min后,取出置于冰上。加入2微升HiScript II QRT SuperMix的逆转录酶,在PCR仪中50℃15min,85℃2min后取出,稀释200倍,备用。3.4荧光定量PCRThe above mixture was placed in a PCR machine at 42 degrees Celsius for 2 min, then taken out and placed on ice. Add 2 microliters of HiScript II QRT SuperMix reverse transcriptase, in the PCR machine at 50°C for 15min, take it out after 2min at 85°C, dilute 200 times, and set aside. 3.4 Fluorescence quantitative PCR

反应体系配制Reaction system preparation

Figure BDA0001783072430000091
Figure BDA0001783072430000091

反应程序设置:Reactor setup:

1.预变性:95℃5分钟。1. Pre-denaturation: 95°C for 5 minutes.

2.循环反应:95℃10秒,60℃30秒,40个循环。2. Cyclic reaction: 95°C for 10 seconds, 60°C for 30 seconds, 40 cycles.

3.溶解曲线:95℃15秒,60℃30秒,95℃15秒。3. Dissolution curve: 95°C for 15 seconds, 60°C for 30 seconds, and 95°C for 15 seconds.

其他细节步骤和荧光定量PCR都是常规已知的配方或者市场常用的试剂盒,没有特殊的处理,不做赘述。Other detailed steps and real-time PCR are conventionally known formulas or kits commonly used in the market. There is no special treatment and will not be described in detail.

荧光定量PCR基因编号及引物序列Fluorescence quantitative PCR gene number and primer sequence

Figure BDA0001783072430000092
Figure BDA0001783072430000092

结果显示:转基因株系相对于野生型,在未受PXO99A诱导状态下植株本底OsSPL14表达上调了3~15倍(图3)。The results showed that compared with the wild type, the expression of OsSPL14 in the background of the transgenic lines was up-regulated by 3-15 times in the absence of PXO99A induction (Fig. 3).

3.2株高和分蘖3.2 Plant height and tillers

将四个转基因株系HS-2,HS-9,HS-8,Hs-4与野生型水稻日本晴(NIP)的株高和分蘖情况进行对比。The plant height and tiller status of four transgenic lines HS-2, HS-9, HS-8, and Hs-4 were compared with those of wild-type Nipponbare (NIP).

结果显示:转基因株系相对于野生型株高增加,分蘖数减少,有效分蘖数提高。(图4)3.3第三节茎粗The results showed that compared with the wild type, the transgenic lines increased the plant height, decreased the number of tillers, and increased the number of effective tillers. (Fig. 4) 3.3 Thickness of the third stalk

将四个转基因株系HS-2,HS-9,HS-8,Hs-4与野生型水稻日本晴(NIP)的第三节茎粗进行对比。The stem diameter of the third node of the four transgenic lines, HS-2, HS-9, HS-8, and Hs-4, was compared with that of wild-type rice Nipponbare (NIP).

结果显示:转基因株系相对于野生型第三节茎粗增加,抗倒伏能力增强(图5)The results showed that compared with the wild type, the stem diameter of the third node of the transgenic line increased and the lodging resistance was enhanced (Fig. 5).

3.4主穗3.4 Main spike

将四个转基因株系HS-2,HS-9,HS-8,Hs-4与野生型水稻日本晴(NIP)的一级分枝、二级分枝和主穗颖花数进行对比。The primary branches, secondary branches and spikelet numbers of main spikes were compared between the four transgenic lines HS-2, HS-9, HS-8, and Hs-4 with wild-type Nipponbare (NIP).

结果显示:转基因株系相对于野生型一级分枝没有明显变化,二级分枝显著增加,主穗颖花数显著增加(图6,7)The results showed that compared with the wild type, the primary branches of the transgenic lines did not change significantly, the secondary branches increased significantly, and the number of spikelets in the main panicle increased significantly (Figures 6, 7).

3.7主穗结实数3.7 The number of main spikes

将四个转基因株系HS-2,HS-9,HS-8,Hs-4与野生型水稻日本晴(NIP)的主穗结实数进行对比。The number of main panicles of the four transgenic lines HS-2, HS-9, HS-8, and Hs-4 was compared with that of wild-type rice Nipponbare (NIP).

结果显示:转基因株系相对于野生型,HS-9和HS-4主穗的产量显著提高,HS-2和HS-8没有明显变化。(图8)The results showed that compared with the wild type, the yield of the main panicle of HS-9 and HS-4 was significantly improved, but the yield of HS-2 and HS-8 had no obvious change. (Figure 8)

综上,统计显示这些影响水稻的优良产量性状在转基因水稻HS株系中都有着优良的表现。In conclusion, statistics show that these excellent yield traits affecting rice have excellent performance in transgenic rice HS lines.

实施例4荧光定量PCR鉴定HS转基因株系中OsSPL14特异受PXO99A诱导上调表达Example 4 Fluorescence quantitative PCR identification of OsSPL14 in HS transgenic lines is specifically up-regulated by PXO99A induction

本研究以野生型水稻日本晴(NIP)为对照,研究实施例2得到的四个转基因株系HS-2,HS-9,HS-8,Hs-4在分别接种白叶枯病菌PXO99A 3天后的OsSPL14表达情况,以确定OsSPL14是否在PXO99A的特异诱导下受OsHEN1启动子调控表达上调。In this study, wild-type rice Nipponbare (NIP) was used as a control, and the four transgenic lines HS-2, HS-9, HS-8, and Hs-4 obtained in Example 2 were respectively inoculated with bacterial blight PXO99A 3 days later. The expression of OsSPL14 was determined to determine whether OsSPL14 was up-regulated by the OsHEN1 promoter under the specific induction of PXO99A.

四个转基因株系HS-2,HS-9,HS-8,Hs-4,分别在分蘖盛期向不同叶片分别注射接种白叶枯病菌PXO99A(OD值为0.5),分不同时间点(0h、72h)取样接菌的叶片,每个时期的样品混三个叶片,分别提取总RNA,用于鉴定OsSPL14的表达。Four transgenic lines, HS-2, HS-9, HS-8, and Hs-4, were injected and inoculated with bacterial blight PXO99A (OD value 0.5) on different leaves at the peak tillering stage, and were divided into different time points (0 h). , 72h) Sampling the inoculated leaves, the samples of each period were mixed with three leaves, and the total RNA was extracted respectively, which was used to identify the expression of OsSPL14.

4.1PXO99A病菌培养:4.1 PXO99A bacteria culture:

PSA培养基PSA medium

蛋白胨 10g/LPeptone 10g/L

蔗糖 10g/LSucrose 10g/L

谷氨酸钠 1g/LSodium glutamate 1g/L

琼脂粉 12g/LAgar powder 12g/L

在无菌超净台中,病菌菌液均匀的涂在PSA培养基平板中,28℃黑暗培养2-3天后,用无菌水稀释至菌液OD600=0.5,用来接菌实验。In a sterile ultra-clean bench, the bacterial liquid was evenly spread on the PSA medium plate, and after culturing in the dark at 28°C for 2-3 days, it was diluted with sterile water to the bacterial liquid OD600=0.5 for inoculation experiments.

4.2Trizol法提取总RNA4.2 Extraction of total RNA by Trizol method

3个转基因株系和NIP对照在接种PXO99A后的2个接菌时期,取叶片样品分别进行如下操作,得到2个接菌时期的总RNA:Three transgenic lines and NIP control were inoculated with PXO99A in two inoculation periods, and leaf samples were taken for the following operations respectively to obtain the total RNA of the two inoculation periods:

(1)称取0.1g新鲜的叶片,用研钵在液氮中迅速研磨,彻底粉碎后迅速转移到1.5mL的离心管(液氮预冷)中。并在离心管中加入1mL Trizol,冰上放置10min;(1) Weigh 0.1 g of fresh leaves, quickly grind them in liquid nitrogen with a mortar, thoroughly grind them, and quickly transfer them to a 1.5 mL centrifuge tube (precooled with liquid nitrogen). Add 1 mL of Trizol to the centrifuge tube and place on ice for 10 min;

(2)加入100uL氯仿,剧烈震荡30S,冰上放置5min;(2) Add 100uL of chloroform, shake vigorously for 30S, and place on ice for 5min;

(3)4℃,13000rpm,10min;(3) 4℃, 13000rpm, 10min;

(4)转移上清于另一个新1.5ml RNase-Free离心管中,加等体积异丙醇轻轻颠倒混匀,室温放置10min;(4) Transfer the supernatant to another new 1.5ml RNase-Free centrifuge tube, add an equal volume of isopropanol, gently invert and mix, and place at room temperature for 10 minutes;

(5)4℃,13000rpm,15min;(5) 4℃, 13000rpm, 15min;

(6)弃去上清,加入500uL RNase-Free 75%乙醇,洗涤两次;(6) Discard the supernatant, add 500uL RNase-Free 75% ethanol, and wash twice;

(7)倒掉乙醇,室温放置约10min;(7) pour out ethanol, place about 10min at room temperature;

(8)加50uL RNase-Free水,65℃金属浴保温15min后,-80℃保存备用;(8) Add 50uL RNase-Free water, keep it in a metal bath at 65°C for 15 minutes, and store it at -80°C for later use;

4.3RNA逆转录[HiScript II Q RT SuperMix for qPCR(+gDNA wiper)试剂盒]4.3 RNA reverse transcription [HiScript II Q RT SuperMix for qPCR (+gDNA wiper) kit]

1.总RNA 1ng-500ng1. Total RNA 1ng-500ng

2.gDNA wiper 2微升2. 2 microliters of gDNA wiper

3.加无菌水至总体积8微升3. Add sterile water to a total volume of 8 µl

上述混合液置于42摄氏度PCR仪2min后,取出置于冰上。加入2微升HiScript II QRT SuperMix的逆转录酶,在PCR仪中50℃15min,85℃2min后取出,稀释200倍,备用。The above mixture was placed in a PCR machine at 42 degrees Celsius for 2 min, then taken out and placed on ice. Add 2 microliters of HiScript II QRT SuperMix reverse transcriptase, in the PCR machine at 50°C for 15min, take it out after 2min at 85°C, dilute 200 times, and set aside.

4.4荧光定量PCR4.4 Fluorescence quantitative PCR

反应体系配制Reaction system preparation

Figure BDA0001783072430000111
Figure BDA0001783072430000111

Figure BDA0001783072430000121
Figure BDA0001783072430000121

反应程序设置:Reactor setup:

1.预变性:95℃5分钟。1. Pre-denaturation: 95°C for 5 minutes.

2.循环反应:95℃10秒,60℃30秒,40个循环。2. Cyclic reaction: 95°C for 10 seconds, 60°C for 30 seconds, 40 cycles.

3.溶解曲线:95℃15秒,60℃30秒,95℃15秒。3. Dissolution curve: 95°C for 15 seconds, 60°C for 30 seconds, and 95°C for 15 seconds.

其他细节步骤和荧光定量PCR都是常规已知的配方或者市场常用的试剂盒,没有特殊的处理,不做赘述。Other detailed steps and real-time PCR are conventionally known formulas or kits commonly used in the market. There is no special treatment and will not be described in detail.

荧光定量PCR基因编号及引物序列Fluorescence quantitative PCR gene number and primer sequence

Figure BDA0001783072430000122
Figure BDA0001783072430000122

结果显示:在接菌处理3天内,PXO99A可以诱导HS转基因株系中OsSPL14的上调表达,表明OsHen1启动子能够在PXO99A的特异诱导下调控其下游的OsSPL14显著上调表达2.75~3.26倍(图9)。The results showed that within 3 days of inoculation, PXO99A could induce the up-regulated expression of OsSPL14 in the HS transgenic lines, indicating that the OsHen1 promoter could significantly up-regulate the expression of OsSPL14 downstream under the specific induction of PXO99A by 2.75-3.26 times (Figure 9). .

实施例5转基因株系在受诱导状态下抗病性研究Example 5 Study on disease resistance of transgenic lines in induced state

5.1病斑长度5.1 Lesion length

本研究以野生型水稻日本晴(NIP)为对照,研究实施例2得到的四个转基因株系HS-2,HS-9,HS-8,Hs-4在水稻分蘖盛期分别接种白叶枯病菌PXO99A和J18的14天后病斑长度进行对比。In this study, wild-type rice Nipponbare (NIP) was used as a control, and the four transgenic lines HS-2, HS-9, HS-8 and Hs-4 obtained in Example 2 were inoculated with Bacterial blight at the peak tillering stage of rice. The lesion lengths of PXO99A and J18 after 14 days were compared.

结果显示:水稻分蘖盛期对HS转基因株系及其野生型日本晴(NIP)剪叶法接菌PXO99A和J18,统计病斑长度结果显示四个转基因株系HS-2,HS-9,HS-8,Hs-4材料在野生型材料中PXO99A的病斑长度比J18的病斑长度缩短约1.9cm,但在HS转基因株系中PXO99A的病斑长度比J18显著缩短约3.0-3.8cm(图10a、b);研究确定HS转基因株系,对水稻白叶枯病PXO99A存在非常强的特异抗性。The results showed that the HS transgenic lines and their wild-type Nipponbare (NIP) were inoculated with PXO99A and J18 by leaf-cutting method at the peak tillering stage. 8. The lesion length of PXO99A in Hs-4 material was shorter than that of J18 by about 1.9 cm in the wild-type material, but the lesion length of PXO99A in the HS transgenic line was significantly shorter than that of J18 by about 3.0-3.8 cm (Fig. 10a, b); The study confirmed that the HS transgenic line has very strong specific resistance to rice bacterial blight PXO99A.

5.2抗性增加比例5.2 Resistance increase ratio

本研究统计实施例2得到的四个转基因株系HS-2,HS-9,HS-8,Hs-4在水稻分蘖盛期分别接种白叶枯病菌PXO99A和J18的14天后抗性增加比例进行对比。In this study, the four transgenic lines HS-2, HS-9, HS-8, and Hs-4 obtained in Example 2 were inoculated with bacterial blight PXO99A and J18 for 14 days after the rice tillering stage, respectively. Compared.

抗性增加的比例:(野生型PXO99A病斑长度-HS转基因株系PXO99A病斑长度)/野生型PXO99A病斑长度×100%或者(野生型J18病斑长度-HS转基因株系J18病斑长度)/野生型J18病斑长度×100%。The ratio of increased resistance: (the length of the wild-type PXO99A lesions - the length of the lesions of the HS transgenic line PXO99A)/the length of the wild-type PXO99A lesions × 100% or (the length of the wild-type J18 lesions - the length of the lesions of the HS transgenic line J18) )/wild-type J18 lesion length × 100%.

Figure BDA0001783072430000131
Figure BDA0001783072430000131

结果显示:四个转基因株系HS-2,HS-9,HS-8,Hs-4材料对PXO99A的抗性分别增强了35%,29%,32%和20%,而四个转基因株系HS-2,HS-9,HS-8,Hs-4材料对J18的抗性分别增强了约18%,13%,20%和10%,明显低于PXO99A的抗病比例,HS转基因株系对PXO99A增强的抗性比J18显著增高约60~122%,确定转基因株系能够特异受白叶枯病菌PXO99A诱导下显著增加抗病性(图10c)。The results showed that the resistance of the four transgenic lines HS-2, HS-9, HS-8, and Hs-4 to PXO99A was enhanced by 35%, 29%, 32% and 20%, respectively, while the four transgenic lines The resistance of HS-2, HS-9, HS-8, Hs-4 materials to J18 was enhanced by about 18%, 13%, 20% and 10%, respectively, which was significantly lower than that of PXO99A, the HS transgenic line The enhanced resistance to PXO99A was significantly higher than that of J18 by about 60-122%, and it was confirmed that the transgenic line could be specifically induced by Bacterial blight PXO99A to significantly increase the disease resistance (Fig. 10c).

序列表sequence listing

<110> 南京农业大学<110> Nanjing Agricultural University

<120> pOsHEN1::OsSPL14基因表达盒及其构建方法和应用<120> pOsHEN1::OsSPL14 gene expression cassette and its construction method and application

<160> 10<160> 10

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 49<211> 49

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

tatgaccatg attacgaatt cttatgtgca ctagaaacta tctgaggac 49tatgaccatg attacgaatt cttatgtgca ctagaaacta tctgaggac 49

<210> 2<210> 2

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

caaacgccca aaaaaaacaa 20caaacgccca aaaaaaacaa 20

<210> 3<210> 3

<211> 44<211> 44

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

ttgttttttt tgggcgtttg ttccgtctct ttcctctctc ttct 44ttgttttttt tgggcgtttg ttccgtctct ttcctctctc ttct 44

<210> 4<210> 4

<211> 42<211> 42

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

tggtctttgt agtcaagctt cagagaccaa tccatcgtgt tg 42tggtctttgt agtcaagctt cagagaccaa tccatcgtgt tg 42

<210> 5<210> 5

<211> 1894<211> 1894

<212> DNA<212> DNA

<213> 水稻(Oryza sativa)<213> Rice (Oryza sativa)

<400> 5<400> 5

gccactgaag taaacaagat gaaaaggaag catgcaggag gggcaggacc cttctggtgg 60gccactgaag taaacaagat gaaaaggaag catgcaggag gggcaggacc cttctggtgg 60

aaatggggga gtaaaaggct actgtacgaa gtgctatttg agggccgctg tctgaggaaa 120aaatggggga gtaaaaggct actgtacgaa gtgctatttg agggccgctg tctgaggaaa 120

accaaggata caggcaaaga aaaattgaat gatgaagcag agccctaaat gtgttgctgc 180accaaggata caggcaaaga aaaattgaat gatgaagcag agccctaaat gtgttgctgc 180

tgaagcctga ctgctgatct catcaacatc catagtgtag tgggctgact ggggttccct 240tgaagcctga ctgctgatct catcaacatc catagtgtag tgggctgact ggggttccct 240

gaatgtagct tgcatatacc gagccaaatt ttgactggag aattaagatg gtagttcgtg 300gaatgtagct tgcatatacc gagccaaatt ttgactggag aattaagatg gtagttcgtg 300

tttttaggtg aaatttgtga acaaccttgt tgacatgtat tggatgttca gttgtattag 360tttttaggtg aaatttgtga acaaccttgt tgacatgtat tggatgttca gttgtattag 360

aaatagagtc aagtttacca tcctgtcgtc tgtcgaatga tcctgatgtt catttcaccg 420aaatagagtc aagtttacca tcctgtcgtc tgtcgaatga tcctgatgtt catttcaccg 420

cttcatttct gttgcctcgt tatcattttt tatgttaagc ctagcatatg gtattagcaa 480cttcatttct gttgcctcgt tatcattttt tatgttaagc ctagcatatg gtattagcaa 480

accagcttga ttgatttttt gcatctctac tggaaattag gaactcaatt gctcatggag 540accagcttga ttgatttttt gcatctctac tggaaattag gaactcaatt gctcatggag 540

ggaagaactc aaagatttgg gattctagct aactttacac agagtccaag ctgtttagga 600ggaagaactc aaagatttgg gattctagct aactttacac agagtccaag ctgtttagga 600

tcctctgttg tgaactgaag agtattaaag agctaaacat gctcttgatc tgcaacagat 660tcctctgttg tgaactgaag agtattaaag agctaaacat gctcttgatc tgcaacagat 660

cagggcagtg ttgatggctc ctctcaccca ctgacccacc atctgtagtt tgttttgatc 720cagggcagtg ttgatggctc ctctcaccca ctgacccacc atctgtagtt tgttttgatc 720

ttaacctatt catcagcgct ataaagtaga actacggagt actccctcca ttccataata 780ttaacctatt catcagcgct ataaagtaga actacggagt actccctcca ttccataata 780

taaggcataa tttatgttcc ataatataaa acatgtatgt atataggtaa ttaactgtga 840taaggcataa tttatgttcc ataatataaa acatgtatgt atataggtaa ttaactgtga 840

tcccttctcc attaaattat tattttttta aatcctctac ttttatgtta tctaatttta 900tcccttctcc attaaattat tattttttta aatcctctac ttttatgtta tctaatttta 900

ttggatgcat gcattgtatt tattagaatg atcgaaacta caaaataata ataattattt 960ttggatgcat gcattgtatt tattagaatg atcgaaacta caaaataata ataattattt 960

tcttgatctt ttggttaggg tggttatgcc ttatattttg gaatggaggg agtatttcat 1020tcttgatctt ttggttaggg tggttatgcc ttatattttg gaatggaggg agtatttcat 1020

tattaacttc tatgtgcaac taggcaatag catctcagtc catggttttg cttaaactca 1080tattaacttc tatgtgcaac taggcaatag catctcagtc catggttttg cttaaactca 1080

cgttagttca gtttcgttaa tgtaaaatcc aatcaagcaa gagtatatgc atactgcatt 1140cgttagttca gtttcgttaa tgtaaaatcc aatcaagcaa gagtatatgc atactgcatt 1140

cgcaaaaacc acttgaaaaa aaaaactgtg aaatatagag tagtgtttaa cattttactc 1200cgcaaaaacc acttgaaaaa aaaaactgtg aaatatagag tagtgtttaa cattttactc 1200

ccttcggcca tttgacacaa tagttttaga ccatatagtt tgaccgttgc cttattcaaa 1260ccttcggcca tttgacacaa tagttttaga ccatatagtt tgaccgttgc cttattcaaa 1260

agatttatgt aaatatcact tttttaacct attttgttat taaaattagt ttagtatgac 1320agatttatgt aaatatcact ttttttaacct attttgttat taaaattagt ttagtatgac 1320

ttttattttt acatatttgc actaaatttt taaataaaat gttctccctc ttttcttagt 1380ttttatttttt acatatttgc actaaatttt taaataaaat gttctccctc ttttcttagt 1380

aattaacttt taaaaaatgt ttgaccattt atcttattta aaaattttat gcaaatgcat 1440aattaacttt taaaaaatgt ttgaccattt atcttattta aaaattttat gcaaatgcat 1440

atattaaaaa acccagctag tttggtcaaa ctttgatgcg ttaaatattt atatacgagt 1500atattaaaaa acccagctag tttggtcaaa ctttgatgcg ttaaatattt atatacgagt 1500

gaaacgaccg tatttttcag aaaataatat aacaatcgat ttttacggga cataggcccg 1560gaaacgaccg tatttttcag aaaataatat aacaatcgat ttttacggga cataggcccg 1560

agattttctc aagggacact ttaccctcga aagagattct gcatttccgc taacgttaac 1620agattttctc aagggacact ttaccctcga aagagattct gcatttccgc taacgttaac 1620

aagaaggcgt attattggat gcagcgccat caaaaccttc tctccccctt cacacactcc 1680aagaaggcgt attattggat gcagcgccat caaaaccttc tctccccctt cacacactcc 1680

ccctcgcttc ccttccctaa accccacttc acccgactcc tcgaatcctc ctcgcctcgc 1740ccctcgcttc ccttccctaa accccacttc acccgactcc tcgaatcctc ctcgcctcgc 1740

ttccgatttt tctggggggt ttagcgcctc ccccaattcg gcgaccaccc cctcccgatt 1800ttccgatttt tctggggggt ttagcgcctc ccccaattcg gcgaccaccc cctcccgatt 1800

ccgcctcagt tcctgcgtcg atcgattgcg aaaatcccct tcgttaccaa tcgcatttgt 1860ccgcctcagt tcctgcgtcg atcgattgcg aaaatcccct tcgttaccaa tcgcatttgt 1860

ttgtttgttt ttgtttgttt tttttgggcg tttg 1894ttgtttgttt ttgtttgttt tttttgggcg tttg 1894

<210> 6<210> 6

<211> 4770<211> 4770

<212> DNA<212> DNA

<213> 水稻(Oryza sativa)<213> Rice (Oryza sativa)

<400> 6<400> 6

ttccgtctct ttcctctctc ttctctctcc ccctctcctg gaggagagag aggagaagag 60ttccgtctct ttcctctctc ttctctctcc ccctctcctg gaggagagag aggagaagag 60

gagggggggc cgcgccaaga gccacgcgcg ctacagtctc cttcccaccc gcgaccgcga 120gagggggggc cgcgccaaga gccacgcgcg ctacagtctc cttcccaccc gcgaccgcga 120

gcaatggaga tggccagtgg aggaggcgcc gccgccgccg ccggcggcgg agtaggcggc 180gcaatggaga tggccagtgg aggaggcgcc gccgccgccg ccggcggcgg agtaggcggc 180

agcggcggcg gtggtggtgg aggggacgag caccgccagc tgcacggtct caagttcggc 240agcggcggcg gtggtggtgg aggggacgag caccgccagc tgcacggtct caagttcggc 240

aagaagatct acttcgagga cgccgccgcg gcagcaggcg gcggcggcac tggcagtggc 300aagaagatct acttcgagga cgccgccgcg gcagcaggcg gcggcggcac tggcagtggc 300

agtggcagcg cgagcgccgc gccgccgtcc tcgtcttcca aggcggcggg tggtggacgc 360agtggcagcg cgagcgccgc gccgccgtcc tcgtcttcca aggcggcggg tggtggacgc 360

ggcggagggg gcaagaacaa ggggaagggc gtggccgcgg cggcgccacc gccgccgccg 420ggcggagggg gcaagaacaa ggggaagggc gtggccgcgg cggcgccacc gccgccgccg 420

ccgccgccgc ggtgccaggt ggaggggtgc ggcgcggatc tgagcgggat caagaactac 480ccgccgccgc ggtgccaggt ggaggggtgc ggcgcggatc tgagcgggat caagaactac 480

tactgccgcc acaaggtgtg cttcatgcat tccaaggctc cccgcgtcgt cgtcgccggc 540tactgccgcc acaaggtgtg cttcatgcat tccaaggctc cccgcgtcgt cgtcgccggc 540

ctcgagcagc gcttctgcca gcagtgcagc aggtcactct ctcactcacc tcgccattgc 600ctcgagcagc gcttctgcca gcagtgcagc aggtcactct ctcactcacc tcgccattgc 600

tgatgtcacc actgcttttg ctttgctttg cttgctctcc ctcctctttc acctatctct 660tgatgtcacc actgcttttg ctttgctttg cttgctctcc ctcctctttc acctatctct 660

cttgtttatt tgcttcttgt tcttgtttag tgctagtaca tgtgttgtta ttgttgtgcc 720cttgtttatt tgcttcttgt tcttgtttag tgctagtaca tgtgttgtta ttgttgtgcc 720

gttttgtctt ttgggttatt gtgttgttgt tactactcgt tttactatag gtttttaagg 780gttttgtctt ttgggttatt gtgttgttgt tactactcgt tttactatag gtttttaagg 780

tttatgagca cggccaccac attagatgca ctgtcaagtg gtgtgtgtgg gacctttcct 840tttatgagca cggccaccac attagatgca ctgtcaagtg gtgtgtgtgg gacctttcct 840

gctaaaacaa gctgatttca actctctgaa acttcctgca tttcatctat ttttatcttt 900gctaaaacaa gctgatttca actctctgaa acttcctgca tttcatctat ttttatcttt 900

gattgtgttg ggagtactac actagtagtg ttaatatttt gactggtgct tatgagattt 960gattgtgttg ggagtactac actagtagtg ttaatatttt gactggtgct tatgagattt 960

ttaagttggt aggttgatga ggaaaatact cctttatatg gttgagtgat gtgacttgcc 1020ttaagttggt aggttgatga ggaaaatact cctttatatg gttgagtgat gtgacttgcc 1020

tgtctgcctg cctgcctgcc gctttgcata agattcctct gtgttagtaa gagccactgt 1080tgtctgcctg cctgcctgcc gctttgcata agattcctct gtgttagtaa gagccactgt 1080

ttatttgtac tggtgcttac tctacttagt taattagcca ttagctataa aattccgttg 1140ttatttgtac tggtgcttac tctacttagt taattagcca ttagctataa aattccgttg 1140

atgttgcaag cttagcaatg gccacggtaa gaatgggaga gagaagttgg ctaaagctgt 1200atgttgcaag cttagcaatg gccacggtaa gaatgggaga gagaagttgg ctaaagctgt 1200

tgctttgtag tttgtactat atatgtgtct ttgtgttgca agatatgcaa ctcctactat 1260tgctttgtag tttgtactat atatgtgtct ttgtgttgca agatatgcaa ctcctactat 1260

gctgtgactt gagctcaagg ttttcagtta tctatagatc cttactacta ctgagcatac 1320gctgtgactt gagctcaagg ttttcagtta tctatagatc cttactacta ctgagcatac 1320

taccacttct gtatggtagc atatggtagc atagtccaag ttccaacgcc tcgccagttg 1380taccacttct gtatggtagc atatggtagc atagtccaag ttccaacgcc tcgccagttg 1380

ttcataatct atactaccac ttctgtgcat ttgttacttt tatttaatag tttgtctcat 1440ttcataatct atactaccac ttctgtgcat ttgttacttt tatttaatag tttgtctcat 1440

tagctgacaa gcatatgcct gttttgatat ctgcccctct tgtaatagtc tatggatagc 1500tagctgacaa gcatatgcct gttttgatat ctgcccctct tgtaatagtc tatggatagc 1500

ttggactgtt tgatgcttta attttttact agcaacactt agggcccctt tgaaatggag 1560ttggactgtt tgatgcttta attttttact agcaacactt agggcccctt tgaaatggag 1560

gattagcaaa ggaattttgg aggattcatt ttcctaagga ttttttccta tagagccctt 1620gattagcaaa ggaattttgg aggattcatt ttcctaagga ttttttccta tagagccctt 1620

tgattcatag aaagaggata ggaaaacttc cgtaggattg cattcctatg atcaattcca 1680tgattcatag aaagaggata ggaaaacttc cgtaggattg cattcctatg atcaattcca 1680

taggaaaata agcaagaggt tagacctctt gtgaaacttt cctttgttga gtgtatcttg 1740taggaaaata agcaagaggt tagacctctt gtgaaacttt cctttgttga gtgtatcttg 1740

tggtataatc aaagggctct tctctccatt tcatgtgttt tcaattcctg taggattgga 1800tggtataatc aaagggctct tctctccatt tcatgtgttt tcaattcctg taggattgga 1800

aaaacataca acttcaattc ctacgttttt cctattccta tgtttttcct atcctgcgtt 1860aaaacataca acttcaattc ctacgttttt cctattccta tgtttttcct atcctgcgtt 1860

tcaaaggggc ccttaaggat gaagggaagt aagagaaaca tactagagaa tatgtagtag 1920tcaaaggggc ccttaaggat gaagggaagt aagagaaaca tactagagaa tatgtagtag 1920

tatttctaca ttccatattt gtagcactag cccacaaata tctttgcctt gtacttactt 1980tatttctaca ttccatattt gtagcactag cccacaaata tctttgcctt gtacttactt 1980

cataccagtt cccccctttt cagagcaaac caacaatttc tgttgcctta tatatctagt 2040cataccagtt cccccctttt cagagcaaac caacaatttc tgttgcctta tatatctagt 2040

gtcttcgtac taatatatct gttccaaaat gtacctgtcc aaattcatag ctagaaatag 2100gtcttcgtac taatatatct gttccaaaat gtacctgtcc aaattcatag ctagaaatag 2100

ctttatttag gacggaagta ataactgttg ttagagactt ggttcagact tttggttatg 2160ctttatttag gacggaagta ataactgttg ttagagactt ggttcagact tttggttatg 2160

ttgaggctac tatcatttcc tttacgggcc aaattactac aaatgagaat tcataaaaat 2220ttgaggctac tatcatttcc tttacgggcc aaattactac aaatgagaat tcataaaaat 2220

gtcaagattt tatgattgtt gtagctttat ttaggacgga ggtagtaatt gttgttagag 2280gtcaagattt tatgattgtt gtagctttat ttaggacgga ggtagtaatt gttgttagag 2280

acttggttca gacttttggt tacgttgaag ctactatcat ttcctttatg gtcaaattac 2340acttggttca gacttttggt tacgttgaag ctactatcat ttcctttatg gtcaaattac 2340

taacaatgag tattcataaa aatgtcaaga ttttataatt gagctgtgcc agtgctaagt 2400taacaatgag tattcataaa aatgtcaaga ttttataatt gagctgtgcc agtgctaagt 2400

gtgtcactat ctgatgccat aatgcatcat tataaaagcc agatggacca ttagctttta 2460gtgtcactat ctgatgccat aatgcatcat tataaaagcc agatggacca ttagctttta 2460

tgtgtaggac acctgccgtc caattagatg gataaccatc tagtgtttgt gtactgttat 2520tgtgtaggac acctgccgtc caattagatg gataaccatc tagtgtttgt gtactgttat 2520

tttaagcccg acatctcaca actccatgaa tgattacagt cttcctttca catggtgtcc 2580tttaagcccg acatctcaca actccatgaa tgattacagt cttcctttca catggtgtcc 2580

ttttgttgtg ttaggaatag cattttttat ttatgggtgt aattatgaaa ggcactagga 2640ttttgttgtg ttaggaatag cattttttat ttatgggtgt aattatgaaa ggcactagga 2640

gagttgctgc tttatcttga tgggatttgt agtaatacca tctttaggat gacaagaaat 2700gagttgctgc tttatcttga tgggatttgt agtaatacca tctttaggat gacaagaaat 2700

cttgttctga gttagcatgg gctgcctttt gacctgagct acggtttgct atgtttggct 2760cttgttctga gttagcatgg gctgcctttt gacctgagct acggtttgct atgtttggct 2760

tgcatcatgc agatctatta ggataataag catataaaag ttgcttgcat tgtgcattgc 2820tgcatcatgc agatctatta ggataataag catataaaag ttgcttgcat tgtgcattgc 2820

ttgttttacc ttgattcatg taggagtaat ttgctcgcca tgcctcgttt tgctttctga 2880ttgttttacc ttgattcatg taggagtaat ttgctcgcca tgcctcgttt tgctttctga 2880

gtcaacagcc aaatttagat gatgtacctt ctgttgcttc aaaaactcag tcactgcaca 2940gtcaacagcc aaatttagat gatgtacctt ctgttgcttc aaaaactcag tcactgcaca 2940

gcagcagtgg ataggattca gaatcaatct atccatgatt ctctgttcac ataatatgac 3000gcagcagtgg ataggattca gaatcaatct atccatgatt ctctgttcac ataatatgac 3000

aggttccacc tgctgcctga atttgaccaa ggaaaacgca gctgccgcag acgccttgca 3060aggttccacc tgctgcctga atttgaccaa ggaaaacgca gctgccgcag acgccttgca 3060

ggtcataatg agcgccggag gaggccgcaa acccctttgg catcacgcta cggtcgacta 3120ggtcataatg agcgccggag gaggccgcaa acccctttgg catcacgcta cggtcgacta 3120

gctgcatctg ttggtggtat catcagaggc tcttgttttc tttgcatctt gtgtgtttgt 3180gctgcatctg ttggtggtat catcagaggc tcttgttttc tttgcatctt gtgtgtttgt 3180

tggtaactac tggttgcatt cgctgatgtg ttgtttgttg cgattcttga tccagaagag 3240tggtaactac tggttgcatt cgctgatgtg ttgtttgttg cgattcttga tccagaagag 3240

catcgcaggt tcagaagctt tacgttggat ttctcctacc caagggttcc aagcagcgta 3300catcgcaggt tcagaagctt tacgttggat ttctcctacc caagggttcc aagcagcgta 3300

aggaatgcat ggccagcaat tcaaccaggc gatcggatct ccggtggtat ccagtggcac 3360aggaatgcat ggccagcaat tcaaccaggc gatcggatct ccggtggtat ccagtggcac 3360

aggaacgtag ctcctcatgg tcactctagt gcagtggcgg gatatggtgc caacacatac 3420aggaacgtag ctcctcatgg tcactctagt gcagtggcgg gatatggtgc caacacatac 3420

agcggccaag gtagctcttc ttcagggcca ccggtgttcg ctggcccaaa tctccctcca 3480agcggccaag gtagctcttc ttcagggcca ccggtgttcg ctggcccaaa tctccctcca 3480

ggtggatgtc tcgcaggggt cggtgccgcc accgactcga gctgtgctct ctctcttctg 3540ggtggatgtc tcgcaggggt cggtgccgcc accgactcga gctgtgctct ctctcttctg 3540

tcaacccagc catgggatac tactacccac agtgccgctg ccagccacaa ccaggctgca 3600tcaacccagc catgggatac tactacccac agtgccgctg ccagccacaa ccaggctgca 3600

gccatgtcca ctaccaccag ctttgatggc aatcctgtgg caccctccgc catggcgggt 3660gccatgtcca ctaccaccag ctttgatggc aatcctgtgg caccctccgc catggcgggt 3660

agctacatgg caccaagccc ctggacaggt tctcggggcc atgagggtgg tggtcggagc 3720agctacatgg caccaagccc ctggacaggt tctcggggcc atgagggtgg tggtcggagc 3720

gtggcgcacc agctaccaca tgaagtctca cttgatgagg tgcaccctgg tcctagccat 3780gtggcgcacc agctaccaca tgaagtctca cttgatgagg tgcaccctgg tcctagccat 3780

catgcccact tctccggtga gcttgagctt gctctgcagg ggaacggtcc agccccagca 3840catgcccact tctccggtga gcttgagctt gctctgcagg ggaacggtcc agccccagca 3840

ccacgcatcg atcctgggtc cggcagcacc ttcgaccaaa ccagcaacac gatggattgg 3900ccacgcatcg atcctgggtc cggcagcacc ttcgaccaaa ccagcaacac gatggattgg 3900

tctctgtaga ggctgttcca gctgccatcg atctgtcgtc ccgcaaggcg agtcatggaa 3960tctctgtaga ggctgttcca gctgccatcg atctgtcgtc ccgcaaggcg agtcatggaa 3960

ctgaagaacc tcatgctgcc tgcccttatt ttgtgttcaa attttccttt ccagtatgga 4020ctgaagaacc tcatgctgcc tgcccttatt ttgtgttcaa attttccttt ccagtatgga 4020

aaggaaattc taaggtgact ggcgattaat ctccctgtga tgaataataa tgcgcgccct 4080aaggaaattc taaggtgact ggcgattaat ctccctgtga tgaataataa tgcgcgccct 4080

tgaactcaat taattgctgt gccgcatcca tctatgtaac tctccatgaa tttttaagta 4140tgaactcaat taattgctgt gccgcatcca tctatgtaac tctccatgaa tttttaagta 4140

tcagtgttaa tgctgtattg tcgaggactt ctgctcgata tgttatttct cttatgttgt 4200tcagtgttaa tgctgtattg tcgaggactt ctgctcgata tgttatttct cttgttgt 4200

tcatcatgaa tctttttctg cttattattc tggtgccggg ttgtccttac cacagaagat 4260tcatcatgaa tctttttctg cttattattc tggtgccggg ttgtccttac cacagaagat 4260

tcagtttcgg ttggcgagag taaacacctt ccctggttgt gacaaaagct ccaacctttt 4320tcagtttcgg ttggcgagag taaacacctt ccctggttgt gacaaaagct ccaacctttt 4320

cacttctcgg cctgtatttg atcttcccct tctgacgctg ttatactact tttaagcctg 4380cacttctcgg cctgtatttg atcttcccct tctgacgctg ttatactact tttaagcctg 4380

tatgtttcca gccttccagg tgaagggcca tactgaagag aaaacatgct ttcagggttt 4440tatgtttcca gccttccagg tgaagggcca tactgaagag aaaacatgct ttcagggttt 4440

gatgcattgt gtactttaca agtgtactta agattttgta caatttatat atgtacctgc 4500gatgcattgt gtactttaca agtgtactta agattttgta caatttatat atgtacctgc 4500

tctgctgctg agtattgtag gaaagaatca gttcgaaggg cgtgtgttca tgtaaagtga 4560tctgctgctg agtattgtag gaaagaatca gttcgaaggg cgtgtgttca tgtaaagtga 4560

gaccacatgc acagcgtgga tttgcagcat gctctctgca ccagtggtgt tctgttgatg 4620gaccacatgc acagcgtgga tttgcagcat gctctctgca ccagtggtgt tctgttgatg 4620

cctttgatgg gctggctgag gtgagaggag gatgatccat gttggcagct tcttcactct 4680cctttgatgg gctggctgag gtgagaggag gatgatccat gttggcagct tcttcactct 4680

gaaaaataaa agagaagaaa tgttcagatt tgcagacaag tggagagcag tgatatattc 4740gaaaaataaa agagaagaaa tgttcagatt tgcagacaag tggagagcag tgatatattc 4740

tacaataaaa cattaccacc ttgcttttct 4770tacaataaaa cattaccacc ttgcttttct 4770

<210> 7<210> 7

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

cccagccatg ggatactact 20cccagccatg ggatactact 20

<210> 8<210> 8

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

tcaaagctgg tggtagtgga 20tcaaagctgg tggtagtgga 20

<210> 9<210> 9

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

aaccagctga ggcccaaga 19aaccagctga ggcccaaga 19

<210> 10<210> 10

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

acgattgatt taaccagtcc atga 24acgattgatt taaccagtcc atga 24

Claims (6)

1.pOsHen1::OsSPL14基因表达盒,其特征在于,所述pOsHEN1::OsSPL14基因表达盒包括OsHEN1启动子和OsSPL14基因,所述OsSPL14基因连接于OsHEN1启动子下游,所述OsHEN1启动子是以水稻日本晴DNA为模板,以OsHEN1启动子特异引物pOsHEN1-F:tatgaccatgattacgaattcTTATGTGCACTAGAAACTATCTGAGGAC(SEQ ID No.1)和pOsHEN1-R:CAAACGCCCAAAAAAAACAA(SEQ ID No.2)进行PCR扩增,克隆得到的。1. pOsHen1::OsSPL14 gene expression cassette, it is characterized in that, described pOsHEN1::OsSPL14 gene expression cassette comprises OsHEN1 promoter and OsSPL14 gene, and described OsSPL14 gene is connected with OsHEN1 promoter downstream, and described OsHEN1 promoter is based on rice. Nipponbare DNA was used as the template, and PCR amplification was carried out with OsHEN1 promoter-specific primers pOsHEN1-F: tatgaccatgattacgaattcTTATGTGCACTAGAAACTATCTGAGGAC (SEQ ID No. 1) and pOsHEN1-R: CAAACGCCCAAAAAAAACAA (SEQ ID No. 2), and cloned. 2.含有权利要求1所述pOsHEN1::OsSPL14基因表达盒的重组表达载体。2. The recombinant expression vector containing the pOsHEN1::OsSPL14 gene expression cassette of claim 1. 3.根据权利要求2所述的重组表达载体,其特征在于,所述重组表达载体为将权利要求1所述的pOsHen1::OsSPL14基因表达盒插入到pCAMBIA1305.1质粒载体的EcoRI和HindIII位点之间得到。3. The recombinant expression vector according to claim 2, wherein the recombinant expression vector is the EcoRI and HindIII sites that insert the pOsHen1::OsSPL14 gene expression cassette of claim 1 into the pCAMBIA1305.1 plasmid vector obtained in between. 4.权利要求1所述的pOsHEN1::OsSPL14基因表达盒或权利要求2、3所述的任一重组表达载体在改良水稻作物中的应用,其特征在于,所述改良包括:特异提高水稻新品种对水稻白叶枯病菌PXO99A的抗性和/或提高有效分蘖数,和/或增加茎粗增强抗倒伏能力。4. the application of the pOsHEN1::OsSPL14 gene expression cassette described in claim 1 or any recombinant expression vector described in claim 2, 3 in improving rice crops, it is characterized in that, described improvement comprises: specifically improving rice new The resistance of the cultivar to bacterial blight PXO99A and/or increase the effective tiller number, and/or increase the stem diameter to enhance the lodging resistance. 5.权利要求2所述的重组表达载体的构建方法,其特征在于,所述构建方法包括如下步骤:5. the construction method of the recombinant expression vector described in claim 2, is characterized in that, described construction method comprises the steps: S1:以水稻日本晴DNA为模板,以OsHEN1启动子特异引物pOsHEN1-F:tatgaccatgattacgaattcTTATGTGCACTAGAAACTATCTGAGGAC(SEQ ID No.1)和pOsHEN1-R:CAAACGCCCAAAAAAAACAA(SEQ ID No.2)进行PCR扩增,克隆出OsHEN1的启动子扩增产物;S1: Using rice Nipponbare DNA as a template, PCR amplification was performed with OsHEN1 promoter-specific primers pOsHEN1-F: tatgaccatgattacgaattcTTATGTGCACTAGAAACTATCTGAGGAC (SEQ ID No. 1) and pOsHEN1-R: CAAACGCCCAAAAAAAACAA (SEQ ID No. 2), and the promoter of OsHEN1 was cloned sub-amplification product; S2:以水稻日本晴DNA为模板,以OsSPL14基因特异引物OsSPL14-F:ttgttttttttgggcgtttgTTCCGTCTCTTTCCTCTCTCTTCT(SEQ ID No.3)和OsSPL14-R:tggtctttgtagtcaagcttCAGAGACCAATCCATCGTGTTG(SEQ ID No.4)进行PCR扩增,克隆出OsSPL14的基因组DNA扩增产物;S2: Using rice Nipponbare DNA as a template, PCR amplification was performed with OsSPL14 gene-specific primers OsSPL14-F: ttgttttttttgggcgtttgTTCCGTCTCTTTCCTCTCTCTTCT (SEQ ID No. 3) and OsSPL14-R: tggtctttgtagtcaagcttCAGAGACCAATCCATCGTGTTG (SEQ ID No. 4), and the genomic DNA of OsSPL14 was cloned Amplification product; S3:利用同源重组法将S1、S2获得的扩增片段连接到EcoRI和HindIII双酶切的pCAMBIA1305.1的质粒载体,获得含有pOsHEN1::OsSPL14表达盒的重组载体。S3: The amplified fragments obtained from S1 and S2 were connected to the plasmid vector of pCAMBIA1305.1 double digested by EcoRI and HindIII by homologous recombination method to obtain a recombinant vector containing the pOsHEN1::OsSPL14 expression cassette. 6.根据权利要求5的构建方法,其特征在于,所述S3具体操作步骤为:将S1获得的OsHEN1的启动子片段、S2获得的OsSPL14的基因组DNA片段和EcoRI和HindIII双酶切后的pCAMBIA1305.1线性片段连接在一起,经过大肠杆菌转化,单克隆进行菌落PCR鉴定后再测序鉴定,获得含有pOsHEN1::OsSPL14表达盒的重组载体。6. according to the construction method of claim 5, it is characterized in that, described S3 concrete operation steps are: the pCAMBIA1305 after the promoter fragment of the OsHEN1 obtained by S1, the OsSPL14 obtained by S2 and the pCAMBIA1305 after EcoRI and HindIII double digestion .1 The linear fragments were connected together, transformed by E. coli, and the single clone was identified by colony PCR and then sequenced to obtain a recombinant vector containing the pOsHEN1::OsSPL14 expression cassette.
CN201811001480.8A 2018-08-30 2018-08-30 pOsHEN1::OsSPL14 gene expression cassette and its construction method and application Active CN109706155B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811001480.8A CN109706155B (en) 2018-08-30 2018-08-30 pOsHEN1::OsSPL14 gene expression cassette and its construction method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811001480.8A CN109706155B (en) 2018-08-30 2018-08-30 pOsHEN1::OsSPL14 gene expression cassette and its construction method and application

Publications (2)

Publication Number Publication Date
CN109706155A CN109706155A (en) 2019-05-03
CN109706155B true CN109706155B (en) 2022-04-19

Family

ID=66253734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811001480.8A Active CN109706155B (en) 2018-08-30 2018-08-30 pOsHEN1::OsSPL14 gene expression cassette and its construction method and application

Country Status (1)

Country Link
CN (1) CN109706155B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116286965A (en) * 2023-03-02 2023-06-23 深圳大学 Application of SPL23 gene in regulation and control of maize tassel branch number

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695478A (en) * 2014-12-09 2016-06-22 中国科学院上海生命科学研究院 Gene for regulating plant types and yield of plants and application of gene
CN109679949A (en) * 2018-08-30 2019-04-26 南京农业大学 Regulation miR156 and its target gene IPA1 improves the breeding method of paddy disease-resistant and yield simultaneously

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365185B2 (en) * 2000-07-19 2008-04-29 Monsanto Technology Llc Genomic plant sequences and uses thereof
EP3456826B1 (en) * 2009-12-10 2023-06-28 Regents of the University of Minnesota Tal effector-mediated dna modification
CN101921321B (en) * 2010-04-12 2012-11-14 中国科学院遗传与发育生物学研究所 Protein IPA1 relevant with plant types and coding gene and applications thereof
CN104357478B (en) * 2014-11-04 2017-04-12 南京农业大学 Bacterial leaf blight resistant gene engineering application of rice zinc finger protein gene
CN104651395A (en) * 2015-02-10 2015-05-27 中国农业科学院作物科学研究所 Application of rice OsSTAP1 gene in enhancing plant salt tolerance
CN105624188B (en) * 2016-01-18 2019-10-11 浙江大学 Application of a kind of SPL18 gene in improving plant yield
CN106967734B (en) * 2017-04-24 2020-12-01 浙江师范大学 Rice dwarf spikelet gene DSP1 and its application
CN107164347B (en) * 2017-06-16 2020-09-29 中国科学院遗传与发育生物学研究所 An ideal plant type gene NPT1 for controlling rice stem thickness, tiller number, grain number per ear, thousand-grain weight and yield and its application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695478A (en) * 2014-12-09 2016-06-22 中国科学院上海生命科学研究院 Gene for regulating plant types and yield of plants and application of gene
CN109679949A (en) * 2018-08-30 2019-04-26 南京农业大学 Regulation miR156 and its target gene IPA1 improves the breeding method of paddy disease-resistant and yield simultaneously

Also Published As

Publication number Publication date
CN109706155A (en) 2019-05-03

Similar Documents

Publication Publication Date Title
CN105112422B (en) Application of Gene miR408 and UCL in Breeding High-yielding Rice
CN113337520B (en) Upland cotton GhA0749 and GhD0744 transcription factors and their application in regulating flowering
CN112662682B (en) Rice OsFLZ18 gene and its application in regulating plant resistance to flooding stress
CN104829700A (en) Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof
WO2020221029A1 (en) Zea mays receptor-like kinase gene zmrlk7 and use thereof
CN104327173A (en) A Cotton WRKY Transcription Factor GarWRKY22 Regulating Plant Salt Tolerance and Its Application
CN114672511B (en) Application of corn ZmBES1/BZR1-3 gene in increasing plant seed yield
CN104725496A (en) A cotton WRKY transcription factor GarWRKY9 regulating plant flowering and its application
CN116063428A (en) Application of GhABF3 Gene in Regulating Flowering Period of Plants
CN109706155B (en) pOsHEN1::OsSPL14 gene expression cassette and its construction method and application
CN110951771B (en) Chinese cymbidiummiR390aApplication in controlling plant root system development
CN111304198B (en) Application of Chunlan miR390b in the control of plant vegetative organ development
CN110904106B (en) Application of Chunlan miR159b in enhancing plant cold sensitivity
CN116179590B (en) Application of cymbidium miR396 gene in regulation and control of thickening of plant stems
CN115851753B (en) Application of corn ZmBES1/BZR1-1 gene in improving plant yield
CN115851823B (en) Cymbidium CgARF18 gene and application thereof
CN114480422B (en) Application of Maize ZmBES1/BZR1-9 Gene in Breeding Early Flowering Plants
CN113174402B (en) Application of arabidopsis gene in promoting early flowering of plants
CN102925466A (en) Cotton casein kinase gene and its application
CN104789578B (en) Cotton glycosyltransferase gene GhUGT73C6 and its application in plant plant type is regulated and controled
CN104450736A (en) Cucumber AG-like gene CsMADS24 overexpression carrier and application thereof
CN111424041A (en) Cymbidium CgWRKY49 gene and application thereof
CN111304223A (en) Cymbidium CgWRKY24 gene and application thereof
CN116254288B (en) Application of a Chunlan MIR156b gene in regulating plant flowering time
CN116042696B (en) Application of cymbidium MIR156a gene in regulating and controlling plant fruit development

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant