[go: up one dir, main page]

CN109657323B - Wavelet reconstruction accelerating circuit - Google Patents

Wavelet reconstruction accelerating circuit Download PDF

Info

Publication number
CN109657323B
CN109657323B CN201811525560.3A CN201811525560A CN109657323B CN 109657323 B CN109657323 B CN 109657323B CN 201811525560 A CN201811525560 A CN 201811525560A CN 109657323 B CN109657323 B CN 109657323B
Authority
CN
China
Prior art keywords
data
input
reconstruction
selector
input port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811525560.3A
Other languages
Chinese (zh)
Other versions
CN109657323A (en
Inventor
袁庆
张远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC R&D Center Co Ltd
Original Assignee
Shanghai IC R&D Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai IC R&D Center Co Ltd filed Critical Shanghai IC R&D Center Co Ltd
Priority to CN201811525560.3A priority Critical patent/CN109657323B/en
Publication of CN109657323A publication Critical patent/CN109657323A/en
Application granted granted Critical
Publication of CN109657323B publication Critical patent/CN109657323B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)

Abstract

The invention discloses a wavelet reconstruction accelerating circuit, which comprises m reconstruction units, wherein each reconstruction unit comprises a data input port, a data selection signal input port, a high-pass filtering parameter input port, a low-pass filtering parameter input port, a convolution data input port and an output port, the m reconstruction unit is an initial reconstruction unit, and the input data of the corresponding convolution data input port is 0; the 1 st reconstruction unit is a termination reconstruction unit, and the corresponding output port outputs the reconstruction data of the reconstruction acceleration circuit; the output port of the reconstruction unit is connected with the convolution data input port of the next reconstruction unit. The wavelet reconstruction accelerating circuit provided by the invention improves the calculation proportion of useful data calculation in the whole calculation, realizes the sharing of the multiplier and the adder through the control of parameters and data flow, further reduces the circuit area and effectively reduces the power consumption.

Description

一种小波重构加速电路A wavelet reconstruction acceleration circuit

技术领域technical field

本发明属于数字电路领域,具体涉及一种小波重构加速电路。The invention belongs to the field of digital circuits, and in particular relates to a wavelet reconstruction acceleration circuit.

背景技术Background technique

傅立叶变换的基本思想是使用正余弦函数来表示某个函数,从而将一个时域信号映射到频域上,完成对该信号的频域分析。但正余弦函数的周期性导致了傅立叶变换不能很好的体现该信号在时域上的信息。频域的精确导致了时域的模糊,同样,时域的精确也会导致频域的模糊。小波变换,使用基函数的平移和伸缩表示目标信号,能够同时体现信号在时域和频域上的信息,因此渐渐引起重视。The basic idea of Fourier transform is to use sine and cosine functions to represent a certain function, so as to map a time-domain signal to the frequency domain and complete the frequency-domain analysis of the signal. However, the periodicity of the sine and cosine functions makes the Fourier transform unable to reflect the information of the signal in the time domain well. Precision in the frequency domain leads to ambiguity in the time domain, and precision in the time domain also leads to ambiguity in the frequency domain. Wavelet transform, which uses the translation and stretching of basis functions to represent the target signal, can reflect the information of the signal in the time domain and frequency domain at the same time, so it has gradually attracted attention.

小波变换被普遍应用于数字信号处理和图像处理中。其主要步骤分为两个步骤,即信号的分解和重构。在信号的分解过程中,存在卷积和降采样等的基本操作。两个基本运算的性能决定了小波运算的性能。在小波计算硬件加速器的设计过程中,需要同时考虑电路计算的速度、功耗、面积等因素,并适当安排计算的流程和时序,以期得到最优的效果。Wavelet transform is widely used in digital signal processing and image processing. Its main steps are divided into two steps, namely signal decomposition and reconstruction. In the decomposition process of the signal, there are basic operations such as convolution and downsampling. The performance of the two basic operations determines the performance of the wavelet operation. In the design process of the wavelet computing hardware accelerator, factors such as circuit computing speed, power consumption, and area need to be considered at the same time, and the calculation process and timing should be properly arranged in order to obtain the best results.

小波变换的重构与分解过程正好相反,将低通和高通数据分别进行升采样,通过对应的高通和低通重构滤波器,将两者进行相加,最终计算出对应结果。整个数据重构的过程,可以理解为将低通和高通的数据,合成新的数据。如果高通和低通的数据量分别为n,则合成后的数据量为2n。The reconstruction of the wavelet transform is just the opposite of the decomposition process. The low-pass and high-pass data are up-sampled respectively, and the corresponding high-pass and low-pass reconstruction filters are used to add the two to finally calculate the corresponding result. The entire process of data reconstruction can be understood as synthesizing new data from low-pass and high-pass data. If the data volumes of the high-pass and low-pass are n respectively, the combined data volume is 2n.

小波重构的基本流程如图1所示,输入数据x1(n)和x2(n),对这两个信号进行2倍的升采样,并经过对应低频和高频的重构滤波器,产生新的数据流序列为conv1(n)和conv2(n),将两者相加,完成第一层的数据重构。第二层的重构方法和第一层相类似,也分为升采样,滤波和相加几个基本步骤。对于不同层次的小波重构,存在一个基本的结构单元,如虚线标识出的区域所示。对该重复单元的优化决定了电路整体的工作性能。The basic process of wavelet reconstruction is shown in Figure 1. The input data x1(n) and x2(n) are up-sampled by 2 times, and the corresponding low-frequency and high-frequency reconstruction filters are used to generate The new data flow sequence is conv1(n) and conv2(n), and the two are added to complete the data reconstruction of the first layer. The reconstruction method of the second layer is similar to that of the first layer, and is also divided into several basic steps of upsampling, filtering and addition. For wavelet reconstruction at different levels, there is a basic structural unit, as shown by the area marked by the dotted line. Optimization of this repeat unit determines the overall performance of the circuit.

在重构过程中,升采样过程相对简单,但其后紧接着的滤波器将会对所有数据进行滤波。由于升采样后的数据流为0和有效数据相邻的稀疏数据流,导致在滤波过程存在大量的乘法和加法运算是冗余的。因此有必要进一步提高有用数据的计算密度,分担相对计算量,小波重构的数据结构、方法和结构进行调整,完成计算的优化,并设计出对应的硬件加速电路。In the reconstruction process, the upsampling process is relatively simple, but the filter immediately after it will filter all the data. Since the data stream after upsampling is a sparse data stream adjacent to 0 and valid data, a large number of multiplication and addition operations are redundant in the filtering process. Therefore, it is necessary to further increase the calculation density of useful data, share the relative calculation amount, adjust the data structure, method and structure of wavelet reconstruction, complete the calculation optimization, and design the corresponding hardware acceleration circuit.

发明内容Contents of the invention

本发明的目的是提供一种小波重构加速电路,不再对升采样造成冗余数据进行计算,提高了有用数据计算在整体计算中的计算比例,同时通过对参数和数据流的控制,实现了乘法器和加法器的共享,电路面积进一步减少,功耗实现了有效降低。The purpose of the present invention is to provide a wavelet reconstruction acceleration circuit, which no longer calculates redundant data caused by upsampling, improves the calculation ratio of useful data calculation in the overall calculation, and realizes The multiplier and the adder are shared, the circuit area is further reduced, and the power consumption is effectively reduced.

为了实现上述目的,本发明采用如下技术方案:一种小波重构加速电路,包括m个重构单元,所述重构单元包括数据输入端口、数据选择信号输入端口、高通滤波参数输入端口、低通滤波参数输入端口、卷积数据输入端口和输出端口,所述数据输入端口输入数据x(n),所述数据选择信号输入端口输入数据选择信号sel,其中,第m个重构单元为起始重构单元,其对应的卷积数据输入端口的输入数据为0;第1个重构单元为终止重构单元,其对应的输出端口输出所述重构加速电路的重构数据;所述低通滤波参数输入端口输入低通滤波参数,所述高通滤波参数输入端口输入高通滤波参数;所述重构单元的输出端口连接其下一个重构单元的卷积数据输入端口;m为小波基的长度,且2≤m。In order to achieve the above object, the present invention adopts the following technical solution: a wavelet reconstruction acceleration circuit, including m reconstruction units, the reconstruction unit includes a data input port, a data selection signal input port, a high-pass filter parameter input port, a low Through the filter parameter input port, the convolution data input port and the output port, the data input port inputs data x(n), and the data selection signal input port inputs the data selection signal sel, wherein the mth reconstruction unit is The initial reconstruction unit, the input data of its corresponding convolution data input port is 0; the first reconstruction unit is a termination reconstruction unit, and its corresponding output port outputs the reconstruction data of the reconstruction acceleration circuit; The low-pass filter parameter input port inputs the low-pass filter parameter, and the high-pass filter parameter input port inputs the high-pass filter parameter; the output port of the reconstruction unit is connected to the convolution data input port of the next reconstruction unit; m is a wavelet base The length of , and 2≤m.

进一步地,所述重构单元还包括乘法器、第一加法器、第二加法器、第一数据选择器、第二数据选择器、第三数据选择器、第一寄存器和第二寄存器,在第一数据选择器中完成高通滤波参数和低通滤波参数的选择,并与输入数据相乘;在第二数据选择器中完成第一寄存器中上一时钟周期寄存数据和0的选择,并与上述相乘之后的数据进行相加,相加结果存在第一寄存器中,在第三数据选择器中完成上述相加结果和0的选择,并与该重构单元数据输入端口的数据进行再次相加,再次相加结果存储在第二寄存器中,并作为该重构单元的输出数据。Further, the reconstruction unit further includes a multiplier, a first adder, a second adder, a first data selector, a second data selector, a third data selector, a first register, and a second register. In the first data selector, the selection of high-pass filter parameters and low-pass filter parameters is completed, and multiplied with the input data; in the second data selector, the selection of the data registered in the previous clock cycle and 0 in the first register is completed, and combined with The data after the above multiplication are added, and the addition result is stored in the first register, and the selection of the above addition result and 0 is completed in the third data selector, and the data of the data input port of the reconstruction unit is added again. Add, and the result of the addition is stored in the second register and used as the output data of the reconstruction unit.

进一步地,所述第一数据选择器的两个选择端分别连接高通滤波参数和低通滤波参数,所述第一数据选择器的输出端连接所述乘法器的第二输入端口,所述输入数据x(n)连接所述乘法器的第一输入端口,所述乘法器的输出端口连接第一加法器的第一输入端口,所述第一加法器的输出端口连接第一寄存器的输入端口,所述第一寄存器的输出端口同时连接第二数据选择器和第三选择器的一个选择端,所述第二数据选择器和第三选择器的另一选择端接0,所述第二数据选择器的输出端口连接所述第一加法器的第二输入端口,所述第三数据选择器的输出端口连接所述第二加法器的第一输入端口,所述第二加法器的第二输入端口为该重构单元的卷积数据输入端口,所述第二加法器的输出端口连接所述第二寄存器的输入端口,所述第二寄存器的输出端口为该重构单元的输出端口;所述数据选择信号sel同时连接所述第一数据选择器、第二数据选择器和第三数据选择器的使能输入端,其中,当第二数据选择器中选择0时,第三数据选择器选择所述第一寄存器的输出端输出的数据。Further, the two selection ends of the first data selector are respectively connected to the high-pass filter parameters and the low-pass filter parameters, the output end of the first data selector is connected to the second input port of the multiplier, and the input Data x(n) is connected to the first input port of the multiplier, the output port of the multiplier is connected to the first input port of the first adder, and the output port of the first adder is connected to the input port of the first register , the output port of the first register is connected to one selection terminal of the second data selector and the third selector at the same time, the other selection terminal of the second data selector and the third selector is connected to 0, and the second The output port of the data selector is connected to the second input port of the first adder, the output port of the third data selector is connected to the first input port of the second adder, and the first adder of the second adder The second input port is the convolution data input port of the reconstruction unit, the output port of the second adder is connected to the input port of the second register, and the output port of the second register is the output port of the reconstruction unit ; The data selection signal sel is simultaneously connected to the enable input terminals of the first data selector, the second data selector and the third data selector, wherein, when 0 is selected in the second data selector, the third data The selector selects the data output from the output terminal of the first register.

进一步地,所述第一寄存器的输出端口同时连接第二数据选择器的第一选择端和第三数据选择器的第二选择端,且第二数据选择器的第二选择端和第三数据选择器的第一选择端的输入数据为0。Further, the output port of the first register is connected to the first selection terminal of the second data selector and the second selection terminal of the third data selector at the same time, and the second selection terminal of the second data selector is connected to the third data selection terminal The input data of the first selection terminal of the selector is 0.

进一步地,所述数据选择信号sel为0时,控制所述第二数据选择器和第三数据选择器均选择第一选择端连接的数据,所述第一数据选择器选择高通滤波参数或者低通滤波参数,所述输入数据为与所述第一数据选择器对应的高通数据或者低通数据,且第一次输入所述重构加速电路中的数据选择信号sel为1。Further, when the data selection signal sel is 0, both the second data selector and the third data selector are controlled to select the data connected to the first selection end, and the first data selector selects high-pass filter parameters or low-pass filter parameters. Pass filtering parameters, the input data is high-pass data or low-pass data corresponding to the first data selector, and the data selection signal sel input to the reconstruction acceleration circuit for the first time is 1.

进一步地,所述数据选择信号sel为0时,控制所述第二数据选择器和第三数据选择器选择其第二选择端连接的数据,所述第一数据选择器选择高通滤波参数或者低通滤波参数,所述输入数据为与所述第一数据选择器对应的高通数据或者低通数据,且第一次输入所述重构加速电路中的数据选择信号sel为0。Further, when the data selection signal sel is 0, the second data selector and the third data selector are controlled to select the data connected to their second selection terminals, and the first data selector selects high-pass filter parameters or low-pass filter parameters. Pass filtering parameters, the input data is high-pass data or low-pass data corresponding to the first data selector, and the data selection signal sel input to the reconstruction acceleration circuit for the first time is 0.

进一步地,所述输入数据x(n)对应的输出数据延迟两个时钟周期。Further, the output data corresponding to the input data x(n) is delayed by two clock cycles.

进一步地,所述输入数据x(n)中低通输入数据和高通输入数据交错排列。Further, the low-pass input data and the high-pass input data in the input data x(n) are arranged alternately.

本发明的有益效果为:(1)本发明定义了新的数据输入结构,低通和高通滤波结果实现了在同一数据通道中的分时复用。The beneficial effects of the present invention are: (1) The present invention defines a new data input structure, and the low-pass and high-pass filtering results realize time-division multiplexing in the same data channel.

(2)不再对升采样造成冗余数据进行计算,提高了有用数据计算在整体计算中的计算比例,同时通过对参数和数据流的控制,实现了乘法器和加法器的共享,电路面积进一步减少,功耗实现了有效降低。(2) The calculation of redundant data caused by upsampling is no longer performed, and the calculation ratio of useful data calculation in the overall calculation is improved. At the same time, through the control of parameters and data flow, the sharing of multipliers and adders is realized, and the circuit area is reduced. Further reduction, power consumption has been effectively reduced.

(3)合理参数位置,减少了数据计算延迟,使得电路的整体延迟不会由于小波基的扩展而发生变化。(3) The reasonable parameter position reduces the data calculation delay, so that the overall delay of the circuit will not change due to the expansion of the wavelet base.

(4)随着小波基维度的扩展,本专利所示电路能够有效扩展,对不同长度和不同的小波基表现出良好的适应性。(4) With the expansion of the wavelet base dimension, the circuit shown in this patent can be effectively expanded, showing good adaptability to different lengths and different wavelet bases.

附图说明Description of drawings

附图1为现有的小波重构基本流程图。Accompanying drawing 1 is the basic flowchart of existing wavelet reconstruction.

附图2为本发明一种小波重构加速电路的整体图。Accompanying drawing 2 is the overall diagram of a wavelet reconstruction acceleration circuit of the present invention.

附图3为第i个重构单元的电路连接图。Accompanying drawing 3 is the circuit connection diagram of the ith reconstruction unit.

附图4为输入数据的排列顺序。Accompanying drawing 4 is the arrangement sequence of input data.

附图5为实施例中小波基长度为6的重构电路。Accompanying drawing 5 is the reconstruction circuit of wavelet base length 6 in the embodiment.

附图6为实施例中小波重构加速电路的时序图。Accompanying drawing 6 is the timing diagram of the wavelet reconstruction acceleration circuit in the embodiment.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式做进一步的详细说明。In order to make the purpose, technical solution and advantages of the present invention clearer, the specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.

如附图2所示,一种小波重构加速电路,包括m个重构单元,重构单元包括数据输入端口、数据选择信号输入端口、低通滤波参数输入端口、高通滤波参数输入端口、卷积数据输入端口和输出端口,数据输入端口输入数据x(n),数据选择信号输入端口输入数据选择信号sel,其中,第m个重构单元为起始重构单元,其对应的卷积数据输入端口的输入数据为0;第1个重构单元为终止重构单元,其对应的输出端口输出重构加速电路的重构数据,第1个重构单元的低通滤波参数输入端口输入低通滤波参数a1,第1个重构单元的高通滤波参数输入端口输入高通滤波参数b1;第k个重构单元的输出端口连接第k-1个重构单元的卷积数据输入端口;第k个重构单元的低通滤波参数输入端口输入低通滤波参数ak,第k个重构单元的高通滤波参数输入端口输入高通滤波参数bk,其中,k为小波基的长度,m和k均为整数,且2≤m,1<k≤mAs shown in Figure 2, a wavelet reconstruction acceleration circuit includes m reconstruction units, and the reconstruction unit includes a data input port, a data selection signal input port, a low-pass filter parameter input port, a high-pass filter parameter input port, a volume Product data input port and output port, data input port input data x(n), data selection signal input port input data selection signal sel, wherein, the mth reconstruction unit is the initial reconstruction unit, and its corresponding convolution data The input data of the input port is 0; the first reconstruction unit is a terminating reconstruction unit, and its corresponding output port outputs the reconstruction data of the reconstruction acceleration circuit, and the input port of the first reconstruction unit’s low-pass filter parameter input is low Pass filter parameter a 1 , high-pass filter parameter b 1 is input to the high-pass filter parameter input port of the first reconstruction unit; the output port of the k-th reconstruction unit is connected to the convolution data input port of the k-1-th reconstruction unit; The low-pass filter parameter input port of the kth reconstruction unit inputs the low-pass filter parameter a k , and the high-pass filter parameter input port of the kth reconstruction unit inputs the high-pass filter parameter b k , where k is the length of the wavelet basis, m and k are both integers, and 2≤m, 1<k≤m

如附图3所示,第i个重构单元包括乘法器、第一加法器、第二加法器、第一数据选择器mux1、第二数据选择器mux2、第三数据选择器mux3、第一寄存器RA和第二寄存器RB,假设第一数据选择器mux1、第二数据选择器mux2、第三数据选择器mux3相同,均具有两个选择端,分别为第一选择端和第二选择端、使能输入端和输出端口。同一个数据选择信号sel控制第一数据选择器mux1、第二数据选择器mux2、第三数据选择器mux3同时选择其第一选择端或者第二连接端连接输入的数据。As shown in Figure 3, the i-th reconstruction unit includes a multiplier, a first adder, a second adder, a first data selector mux1, a second data selector mux2, a third data selector mux3, a first The register R A and the second register R B assume that the first data selector mux1, the second data selector mux2, and the third data selector mux3 are the same, and each has two selection terminals, which are respectively the first selection terminal and the second selection terminal. terminal, enable input and output ports. The same data selection signal sel controls the first data selector mux1 , the second data selector mux2 , and the third data selector mux3 to simultaneously select the first selection terminal or the second connection terminal to connect to the input data.

本发明中第一数据选择器的两个选择端分别连接高通滤波参数和低通滤波参数,第一数据选择器的输出端连接乘法器的第二输入端口,输入数据x(n)连接乘法器的第一输入端口,乘法器的输出端口连接第一加法器的第一输入端口,第一加法器的输出端口连接第一寄存器的输入端口,第一寄存器的输出端口同时连接第二数据选择器和第三选择器的一个选择端,第二数据选择器和第三选择器的另一选择端接0,第二数据选择器的输出端口连接第一加法器的第二输入端口,第三数据选择器的输出端口连接第二加法器的第一输入端口,第二加法器的第二输入端口为该重构单元的卷积数据输入端口,第二加法器的输出端口连接第二寄存器的输入端口,第二寄存器的输出端口为该重构单元的输出端口;数据选择信号sel同时连接第一数据选择器、第二数据选择器和第三数据选择器的使能输入端。其中,本发明中第二数据选择器和第三数据选择器的两个选择端的关系必须满足:当第二数据选择器中选择0时,第三数据选择器选择第一寄存器的输出端输出的数据。In the present invention, the two selection terminals of the first data selector are respectively connected to the high-pass filter parameters and the low-pass filter parameters, the output terminal of the first data selector is connected to the second input port of the multiplier, and the input data x(n) is connected to the multiplier The first input port of the multiplier, the output port of the multiplier is connected to the first input port of the first adder, the output port of the first adder is connected to the input port of the first register, and the output port of the first register is connected to the second data selector at the same time and one selection terminal of the third selector, the other selection terminal of the second data selector and the third selector is connected to 0, the output port of the second data selector is connected to the second input port of the first adder, and the third data The output port of the selector is connected to the first input port of the second adder, the second input port of the second adder is the convolution data input port of the reconstruction unit, and the output port of the second adder is connected to the input of the second register port, the output port of the second register is the output port of the reconstruction unit; the data selection signal sel is simultaneously connected to the enable input terminals of the first data selector, the second data selector and the third data selector. Among them, the relationship between the two selectors of the second data selector and the third data selector in the present invention must satisfy: when 0 is selected in the second data selector, the third data selector selects the output of the output terminal of the first register data.

假设第一寄存器的输出端口同时连接第二数据选择器的第一选择端和第三数据选择器的第二选择端,且第二数据选择器的第二选择端和第三数据选择器的第一选择端的输入数据为0。则有如下两种情况:(1)数据选择信号sel为0时,控制第二数据选择器和第三数据选择器均选择第一选择端连接的数据,第一数据选择器选择高通滤波参数或者低通滤波参数,输入数据为与第一数据选择器对应的高通数据或者低通数据,且第一次输入重构加速电路中的数据选择信号sel为1。(2)数据选择信号sel为0时,控制第二数据选择器和第三数据选择器选择其第二选择端连接的数据,第一数据选择器选择高通滤波参数或者低通滤波参数,输入数据为与第一数据选择器对应的高通数据或者低通数据,且第一次输入重构加速电路中的数据选择信号sel为0。以下以附图3为例进行说明:Assume that the output port of the first register is connected to the first selection terminal of the second data selector and the second selection terminal of the third data selector at the same time, and the second selection terminal of the second data selector and the second selection terminal of the third data selector The input data of a selection terminal is 0. Then there are the following two situations: (1) when the data selection signal sel is 0, both the second data selector and the third data selector are controlled to select the data connected to the first selection end, and the first data selector selects the high-pass filter parameter or For low-pass filter parameters, the input data is high-pass data or low-pass data corresponding to the first data selector, and the data selection signal sel input to the reconstruction acceleration circuit for the first time is 1. (2) When the data selection signal sel is 0, control the second data selector and the third data selector to select the data connected to its second selection end, the first data selector selects high-pass filter parameters or low-pass filter parameters, and input data It is high-pass data or low-pass data corresponding to the first data selector, and the data selection signal sel input to the reconstruction acceleration circuit for the first time is 0. The following is illustrated by taking accompanying drawing 3 as an example:

请继续参阅附图3,高通滤波参数bi连接第一数据选择器mux1的第一选择端,低通滤波参数ai连接第一数据选择器mux1的第二选择端,第一数据选择器mux1的输出端连接乘法器的第二输入端口,输入数据x(n)连接乘法器的第一输入端口,乘法器的输出端口连接第一加法器的第一输入端口,第一加法器的输出端口连接第一寄存器RA的输入端口,第一寄存器RA的输出端口同时连接第二数据选择器mux2的第一选择端和第三数据选择器mux3的第二选择端,且第二数据选择器mux2的第二选择端和第三数据选择器mux3的第一选择端的输入数据为0,第二数据选择器mux2的输出端口连接第一加法器的第二输入端口,第三数据选择器mux3的输出端口连接第二加法器的第一输入端口,第二加法器的第二输入端口为该重构单元的卷积数据输入端口ci-1,第二加法器的输出端口连接第二寄存器RB的输入端口,第二寄存器RB的输出端口为该重构单元的输出端口convi。其中,数据选择信号sel同时连接第一数据选择器mux1、第二数据选择器mux2和第三数据选择器mux3的使能输入端,其中,i表示第i个重构单元,1≤i≤m。Please continue to refer to accompanying drawing 3, the high-pass filter parameter b i is connected to the first selection terminal of the first data selector mux1, the low-pass filter parameter a i is connected to the second selection terminal of the first data selector mux1, and the first data selector mux1 The output terminal of the multiplier is connected to the second input port of the multiplier, the input data x(n) is connected to the first input port of the multiplier, the output port of the multiplier is connected to the first input port of the first adder, and the output port of the first adder Connect the input port of the first register R A , the output port of the first register R A is connected to the first selection end of the second data selector mux2 and the second selection end of the third data selector mux3 at the same time, and the second data selector The input data of the second selection terminal of mux2 and the first selection terminal of the third data selector mux3 is 0, the output port of the second data selector mux2 is connected with the second input port of the first adder, and the output port of the third data selector mux3 The output port is connected to the first input port of the second adder, the second input port of the second adder is the convolution data input port c i-1 of the reconstruction unit, and the output port of the second adder is connected to the second register R The input port of B , the output port of the second register RB is the output port conv i of the reconstruction unit. Wherein, the data selection signal sel is simultaneously connected to the enable input terminals of the first data selector mux1, the second data selector mux2 and the third data selector mux3, wherein, i represents the i-th reconstruction unit, 1≤i≤m .

请继续参阅附图3,sel=0用来选择第一数据选择器mux1、第二数据选择器mux2和第三数据选择器mux3的第一选择端,sel=1用来选择第一数据选择器mux1、第二数据选择器mux2和第三数据选择器mux3的第二选择端,即当sel=0时,第一数据选择器mux1、第二数据选择器mux2和第三数据选择器mux3选择其第一选择端对应的数据,当sel=1时,第一数据选择器mux1、第二数据选择器mux2和第三数据选择器mux3选择其第二选择端对应的数据,如附图3所示。Please continue to refer to accompanying drawing 3, sel=0 is used for selecting the first selection terminal of the first data selector mux1, the second data selector mux2 and the third data selector mux3, and sel=1 is used for selecting the first data selector The second selection end of mux1, the second data selector mux2 and the third data selector mux3, that is, when sel=0, the first data selector mux1, the second data selector mux2 and the third data selector mux3 select its The data corresponding to the first selection terminal, when sel=1, the first data selector mux1, the second data selector mux2 and the third data selector mux3 select the data corresponding to the second selection terminal, as shown in Figure 3 .

请继续参阅附图3,当输入数据x(n)为低通数据时,选择信号sel为1,第一数据选择器mux1选择低通滤波参数ai,与输入数据x(n)相乘,相乘结果存储在第一寄存器RA中,此时,该重构单元卷积数据输入端口的数据与该重构单元中第一寄存器RA中的存储数据相加,相加结果存储在第二寄存器RB中,并在下一个时钟周期进行输出。当输入数据x(n)为高通数据时,选择信号sel为0,第一数据选择器mux1选择高通滤波参数bi,与输入数据x(n)相乘,相乘结果与第一寄存器RA中存储的上一时钟周期的数据相加,并将相加结果存储在第一寄存器RA中,此时,第一寄存器RA中的数据不被选择,该重构单元卷积数据输入端口的数据作为该重构单元的输出数据,在下一个时钟周期被输出。值得注意的是,在附图3的结构中,第一次输入重构加速电路中的数据选择信号sel为1,其对应的第一选择器选择的为低通滤波参数,因此输入该电路的数据流是以低通数据开始的数据流,如附图4所示。Please continue to refer to accompanying drawing 3, when the input data x(n) is low-pass data, the selection signal sel is 1, the first data selector mux1 selects the low-pass filter parameter a i , and multiplies it with the input data x(n), The multiplication result is stored in the first register RA . At this time, the data at the convolution data input port of the reconstruction unit is added to the stored data in the first register RA in the reconstruction unit, and the addition result is stored in the first register RA. Second register RB , and output on the next clock cycle. When the input data x(n) is high-pass data, the selection signal sel is 0, the first data selector mux1 selects the high-pass filter parameter b i , multiplies it with the input data x(n), and the multiplication result is compared with the first register R A The data of the last clock cycle stored in is added, and the addition result is stored in the first register R A , at this time, the data in the first register R A is not selected, and the reconstruction unit convolution data input port The data of is used as the output data of the reconstruction unit and is output in the next clock cycle. It is worth noting that, in the structure of Fig. 3, the data selection signal sel input to the reconstruction acceleration circuit for the first time is 1, and the corresponding first selector selects the low-pass filter parameter, so the input to the circuit The data stream is a data stream starting with low-pass data, as shown in FIG. 4 .

本发明中,乘法器、加法器和寄存器位宽随输入数据的位宽,参数a、b的位宽及计算要求精度的改变而改变。数据选择信号sel作为控制信号,同时控制三个数据选择器的数据选择。在第一数据选择器中控制参数a,b的选择,完成对应数据和参数的相乘。在第二数据选择器中完成上一时钟周期第一寄存器中的寄存数据和0的选择,完成时域上积分功能是否开启的选择,计算结果存入第一寄存器中。在第三数据选择器中,通过选择0或者第一寄存器中计算结果,完成上一级计算结果与本级计算结果相加功能开启与否的选择,并存入第二寄存器中。In the present invention, the bit width of the multiplier, the adder and the register changes with the bit width of the input data, the bit width of the parameters a, b and the change of the precision required for calculation. The data selection signal sel is used as a control signal to simultaneously control the data selection of the three data selectors. The selection of parameters a and b is controlled in the first data selector to complete the multiplication of corresponding data and parameters. In the second data selector, the selection of the registered data and 0 in the first register in the previous clock cycle is completed, and the selection of whether to enable the integration function in the time domain is completed, and the calculation result is stored in the first register. In the third data selector, by selecting 0 or the calculation result in the first register, the selection of whether to enable or disable the addition function of the calculation result of the previous level and the calculation result of the current level is completed, and stored in the second register.

该电路完成了乘法器和加法器对于参数和数据的共享。完成了对分类数据的分类处理和相加。共消耗了一个乘法器和两个加法器,即使考虑部分数据选择电路,相比于传统分通道计算的方案,电路面积大大缩减。从数据输入到最终数据输出,总体延迟为2个时钟周期。This circuit completes the sharing of parameters and data between the multiplier and the adder. The categorical processing and addition of categorical data is completed. A total of one multiplier and two adders are consumed. Even considering part of the data selection circuit, the circuit area is greatly reduced compared to the traditional split-channel calculation scheme. From data input to final data output, the overall latency is 2 clock cycles.

如附图5所示,为小波基长度为6的电路,输入数据分别为x1,x2,x3,x4……,其中奇数位数据对应低通滤波的输出,偶数位数据对应高通滤波器的输出。对应的重构滤波器系数分别为低通滤波参数{a1,a2,a3,a4,a5,a6}和高通滤波参数{b1,b2,b3,b4,b5,b6}。其中conv6~conv2为第六重构单元到第二重构单元的数据输出。Conv为总体输出。其中,具体该电路进行小波重构过程中的具体运算如表1所示,其最终的输出数据如表2所示,其对应的时序图如附图6所示,其中,附图6中a和b的值请具体参考表1中的数值。当数据选择信号sel=1时,a参数被选择,并与输入数据相乘,并存入第一寄存器RA中。同时,第一寄存器RA中的数据被选定,并与上一级卷积结果相加,存入第二寄存器RB中,并在下一时钟周期输出。当sel=0时,b参数被选择,与输入数据相乘,相乘结果与第一寄存器RA中的数据相加,存入第一寄存器RA中。第一寄存器RA中的数据不被选择,上一级的卷积输入直接作为最后的结果,并在下个时钟周期输出。As shown in Figure 5, it is a circuit with a wavelet base length of 6, and the input data are x1, x2, x3, x4..., where the odd-numbered data corresponds to the output of the low-pass filter, and the even-numbered data corresponds to the output of the high-pass filter . The corresponding reconstruction filter coefficients are low-pass filter parameters {a1, a2, a3, a4, a5, a6} and high-pass filter parameters {b1, b2, b3, b4, b5, b6} respectively. Wherein conv6-conv2 are data outputs from the sixth reconstruction unit to the second reconstruction unit. Conv is the overall output. Wherein, the specific operation of the circuit in the wavelet reconstruction process is shown in Table 1, its final output data is shown in Table 2, and its corresponding timing diagram is shown in Figure 6, wherein, in Figure 6, a Please refer to the values in Table 1 for the values of and b. When the data selection signal sel=1, the parameter a is selected, multiplied by the input data, and stored in the first register R A. At the same time, the data in the first register RA is selected, added to the convolution result of the previous stage, stored in the second register RB , and output in the next clock cycle. When sel=0, parameter b is selected and multiplied with the input data, and the multiplication result is added to the data in the first register R A and stored in the first register R A. The data in the first register R A is not selected, and the convolution input of the upper stage is directly used as the final result and output in the next clock cycle.

表1长度为6的小波基在数据重构过程中的具体计算结果Table 1 The specific calculation results of the wavelet base with length 6 in the process of data reconstruction

Figure GDA0004110653930000081
Figure GDA0004110653930000081

表2长度为6的小波基在数据重构过程中的输出数据Table 2 The output data of the wavelet base with length 6 in the process of data reconstruction

inputinput outputoutput x1x1 00 x2x2 a1*x1+b1*x2a1*x1+b1*x2 x3x3 a2*x2+b2*x2a2*x2+b2*x2 x4x4 a3*x1+a1*x3+b3*x2+b1*x4a3*x1+a1*x3+b3*x2+b1*x4 x5x5 a4*x1+a2*x3+b4*x2+b2*x4a4*x1+a2*x3+b4*x2+b2*x4 x6x6 a5*x1+a3*x3+a1*x5+b5*x2+b3*x4+b1*x6a5*x1+a3*x3+a1*x5+b5*x2+b3*x4+b1*x6 x7x7 a6*x1+a4*x3+a2*x5+b6*x2+b4*x4+b2*x6a6*x1+a4*x3+a2*x5+b6*x2+b4*x4+b2*x6 x8x8 a5*x3+a3*x5+a1*x7+b5*x4+b3*x6+b1*x8a5*x3+a3*x5+a1*x7+b5*x4+b3*x6+b1*x8 x9x9 a6*x3+a4*x5+a2*x7+b6*x3+b4*x6+b2*x8a6*x3+a4*x5+a2*x7+b6*x3+b4*x6+b2*x8 x10x10 a5*x5+a3*x7+a1*x9+b5*x6+b3*x8+b1*x10a5*x5+a3*x7+a1*x9+b5*x6+b3*x8+b1*x10 x11x11 a6*x5+a4*x7+a2*x9+b6*x6+b4*x8+b2*x10a6*x5+a4*x7+a2*x9+b6*x6+b4*x8+b2*x10 x12x12 a5*x7+a3*x9+a1*x11+b5*x8+b3*x10+b1*x12a5*x7+a3*x9+a1*x11+b5*x8+b3*x10+b1*x12 x13x13 a6*x7+a4*x9+a2*x11+b6*x8+b4*x10+b2*x12a6*x7+a4*x9+a2*x11+b6*x8+b4*x10+b2*x12 ……... ……...

以上所述仅为本发明的优选实施例,所述实施例并非用于限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明所附权利要求的保护范围内。The above are only preferred embodiments of the present invention, and the embodiments are not intended to limit the scope of patent protection of the present invention, so all equivalent structural changes made by using the description and drawings of the present invention should be included in the same reason Within the protection scope of the appended claims of the present invention.

Claims (8)

1.一种小波重构加速电路,其特征在于,包括m个重构单元,所述重构单元包括数据输入端口、数据选择信号输入端口、高通滤波参数输入端口、低通滤波参数输入端口、卷积数据输入端口和输出端口,所述数据输入端口输入数据x(n),所述数据选择信号输入端口输入数据选择信号sel,其中,第m个重构单元为起始重构单元,其对应的卷积数据输入端口的输入数据为0;第1个重构单元为终止重构单元,其对应的输出端口输出所述重构加速电路的重构数据;所述低通滤波参数输入端口输入低通滤波参数,所述高通滤波参数输入端口输入高通滤波参数;所述重构单元的输出端口连接其下一个重构单元的卷积数据输入端口;m为小波基的长度,且2≤m。1. A wavelet reconstruction acceleration circuit, characterized in that, comprises m reconstruction units, and the reconstruction unit comprises a data input port, a data selection signal input port, a high-pass filter parameter input port, a low-pass filter parameter input port, Convolution data input port and output port, the data input port input data x(n), the data selection signal input port input data selection signal sel, wherein, the mth reconstruction unit is the initial reconstruction unit, its The input data of the corresponding convolution data input port is 0; the first reconstruction unit is a termination reconstruction unit, and its corresponding output port outputs the reconstruction data of the reconstruction acceleration circuit; the low-pass filter parameter input port Input low-pass filter parameters, the high-pass filter parameter input port input high-pass filter parameters; the output port of the reconstruction unit is connected to the convolution data input port of the next reconstruction unit; m is the length of the wavelet base, and 2≤ m. 2.根据权利要求1所述的一种小波重构加速电路,其特征在于,所述重构单元还包括乘法器、第一加法器、第二加法器、第一数据选择器、第二数据选择器、第三数据选择器、第一寄存器和第二寄存器,在第一数据选择器中完成高通滤波参数和低通滤波参数的选择,并与输入数据相乘;在第二数据选择器中完成第一寄存器中上一时钟周期寄存数据和0的选择,并与上述相乘之后的数据进行相加,相加结果存在第一寄存器中,在第三数据选择器中完成上述相加结果和0的选择,并与该重构单元数据输入端口的数据进行再次相加,再次相加结果存储在第二寄存器中,并作为该重构单元的输出数据。2. A wavelet reconstruction acceleration circuit according to claim 1, wherein the reconstruction unit further comprises a multiplier, a first adder, a second adder, a first data selector, a second data Selector, the third data selector, the first register and the second register, complete the selection of high-pass filter parameters and low-pass filter parameters in the first data selector, and multiply with the input data; in the second data selector Complete the selection of the registered data and 0 in the previous clock cycle in the first register, and add the data after the above multiplication, the addition result is stored in the first register, and the above addition result and sum are completed in the third data selector 0, and add it again to the data at the data input port of the reconstruction unit, and the result of the addition is stored in the second register as the output data of the reconstruction unit. 3.根据权利要求2所述的一种小波重构加速电路,其特征在于,所述第一数据选择器的两个选择端分别连接高通滤波参数和低通滤波参数,所述第一数据选择器的输出端连接所述乘法器的第二输入端口,所述输入数据x(n)连接所述乘法器的第一输入端口,所述乘法器的输出端口连接第一加法器的第一输入端口,所述第一加法器的输出端口连接第一寄存器的输入端口,所述第一寄存器的输出端口同时连接第二数据选择器和第三选择器的一个选择端,所述第二数据选择器和第三选择器的另一选择端接0,所述第二数据选择器的输出端口连接所述第一加法器的第二输入端口,所述第三数据选择器的输出端口连接所述第二加法器的第一输入端口,所述第二加法器的第二输入端口为该重构单元的卷积数据输入端口,所述第二加法器的输出端口连接所述第二寄存器的输入端口,所述第二寄存器的输出端口为该重构单元的输出端口;所述数据选择信号sel同时连接所述第一数据选择器、第二数据选择器和第三数据选择器的使能输入端,其中,当第二数据选择器中选择0时,第三数据选择器选择所述第一寄存器的输出端输出的数据。3. A kind of wavelet reconstruction acceleration circuit according to claim 2, characterized in that, the two selection terminals of the first data selector are respectively connected with a high-pass filter parameter and a low-pass filter parameter, and the first data selector The output terminal of the multiplier is connected to the second input port of the multiplier, the input data x(n) is connected to the first input port of the multiplier, and the output port of the multiplier is connected to the first input of the first adder Port, the output port of the first adder is connected to the input port of the first register, and the output port of the first register is connected to a selection terminal of the second data selector and the third selector at the same time, and the second data selection The other selection terminal of the third selector and the third selector is connected to 0, the output port of the second data selector is connected to the second input port of the first adder, and the output port of the third data selector is connected to the The first input port of the second adder, the second input port of the second adder is the convolution data input port of the reconstruction unit, the output port of the second adder is connected to the input of the second register Port, the output port of the second register is the output port of the reconstruction unit; the data selection signal sel is simultaneously connected to the enable input of the first data selector, the second data selector and the third data selector terminal, wherein, when 0 is selected in the second data selector, the third data selector selects the data output from the output terminal of the first register. 4.根据权利要求3所述的一种小波重构加速电路,其特征在于,所述第一寄存器的输出端口同时连接第二数据选择器的第一选择端和第三数据选择器的第二选择端,且第二数据选择器的第二选择端和第三数据选择器的第一选择端的输入数据为0。4. A wavelet reconstruction acceleration circuit according to claim 3, wherein the output port of the first register is simultaneously connected to the first selection end of the second data selector and the second selection end of the third data selector. The input data of the second selection terminal of the second data selector and the first selection terminal of the third data selector are 0. 5.根据权利要求4所述的一种小波重构加速电路,其特征在于,所述数据选择信号sel为0时,控制所述第二数据选择器和第三数据选择器均选择第一选择端连接的数据,所述第一数据选择器选择高通滤波参数或者低通滤波参数,所述输入数据为与所述第一数据选择器对应的高通数据或者低通数据,且第一次输入所述重构加速电路中的数据选择信号sel为1。5. A wavelet reconstruction acceleration circuit according to claim 4, characterized in that, when the data selection signal sel is 0, both the second data selector and the third data selector are controlled to select the first selection The first data selector selects high-pass filter parameters or low-pass filter parameters, the input data is high-pass data or low-pass data corresponding to the first data selector, and the first input The data selection signal sel in the reconstruction acceleration circuit is 1. 6.根据权利要求4所述的一种小波重构加速电路,其特征在于,所述数据选择信号sel为0时,控制所述第二数据选择器和第三数据选择器选择其第二选择端连接的数据,所述第一数据选择器选择高通滤波参数或者低通滤波参数,所述输入数据为与所述第一数据选择器对应的高通数据或者低通数据,且第一次输入所述重构加速电路中的数据选择信号sel为0。6. A wavelet reconstruction acceleration circuit according to claim 4, wherein when the data selection signal sel is 0, the second data selector and the third data selector are controlled to select their second selection The first data selector selects high-pass filter parameters or low-pass filter parameters, the input data is high-pass data or low-pass data corresponding to the first data selector, and the first input The data selection signal sel in the reconstruction acceleration circuit is 0. 7.根据权利要求2所述的一种小波重构加速电路,其特征在于,所述输入数据x(n)对应的输出数据延迟两个时钟周期。7. The wavelet reconstruction acceleration circuit according to claim 2, wherein the output data corresponding to the input data x(n) is delayed by two clock cycles. 8.根据权利要求1所述的一种小波重构加速电路,其特征在于,所述输入数据x(n)中低通输入数据和高通输入数据交错排列。8 . The wavelet reconstruction acceleration circuit according to claim 1 , wherein the low-pass input data and high-pass input data in the input data x(n) are arranged alternately.
CN201811525560.3A 2018-12-13 2018-12-13 Wavelet reconstruction accelerating circuit Active CN109657323B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811525560.3A CN109657323B (en) 2018-12-13 2018-12-13 Wavelet reconstruction accelerating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811525560.3A CN109657323B (en) 2018-12-13 2018-12-13 Wavelet reconstruction accelerating circuit

Publications (2)

Publication Number Publication Date
CN109657323A CN109657323A (en) 2019-04-19
CN109657323B true CN109657323B (en) 2023-06-02

Family

ID=66113131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811525560.3A Active CN109657323B (en) 2018-12-13 2018-12-13 Wavelet reconstruction accelerating circuit

Country Status (1)

Country Link
CN (1) CN109657323B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111814972B (en) * 2020-07-08 2024-02-02 上海雪湖科技有限公司 Neural network convolution operation acceleration method based on FPGA

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222018A (en) * 2011-05-19 2011-10-19 西南交通大学 Pthreads-based wavelet and wavelet packet multi-core parallel computing method
CN103135959A (en) * 2011-11-22 2013-06-05 上海华魏光纤传感技术有限公司 Data acquisition accumulator with wavelet filtering function and achieving method thereof

Also Published As

Publication number Publication date
CN109657323A (en) 2019-04-19

Similar Documents

Publication Publication Date Title
Cheng et al. High-speed VLSI implementation of 2-D discrete wavelet transform
CN104202016B (en) A kind of any variable signal again based on look-up table rises sampling realization method and system
CN103369326B (en) Be suitable to the transform coder of high-performance video coding standard HEVC
WO2010108371A1 (en) Circuit and method for implementing fft/ifft transform
CN111507465B (en) A Configurable Convolutional Neural Network Processor Circuit
WO2013097217A1 (en) Multi-granularity parallel fft butterfly calculation method and corresponding device
CN109657323B (en) Wavelet reconstruction accelerating circuit
CN111737638A (en) Data processing method based on Fourier transform and related device
CN101430737B (en) Wavelet transformation-improved VLSI structure design method
CN112446330A (en) Solar radio frequency spectrum analysis method and system based on multichannel FFT algorithm
CN102572429B (en) Hardware framework for two-dimensional discrete wavelet transformation
CN110414672B (en) Convolution operation method, device and system
CN110377874B (en) Convolution operation method and system
TWI444837B (en) Fixed-coefficient variable prime length recursive discrete fourier transform system
CN100517382C (en) A VLSI Structure of Parallel Lifting 9/7 Wavelet Base
CN102751963B (en) Based on configurable wavelet transform circuit and its implementation of multiply-accumulator ring
CN101534439A (en) Low power consumption parallel wavelet transforming VLSI structure
CN107092462B (en) 64-bit asynchronous multiplier based on FPGA
CN114007079A (en) Conversion circuit, method, device and encoder
CN102541813B (en) Method and corresponding device for multi-granularity parallel FFT (Fast Fourier Transform) butterfly computation
CN1295653C (en) Circuit for realizing direct two dimension discrete small wave change
CN113434811B (en) A 2048-point FFT processor IP core
JPH08320858A (en) Unit and method for fourier transformation arithmetic operation
TWI220716B (en) Method and apparatus of constructing a hardware architecture for transfer functions
CN108616265A (en) A kind of circuit structure of the RNS DWT filter groups based on five mould remainder bases

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant