[go: up one dir, main page]

CN109657273B - Bayesian parameter estimation method based on noise enhancement - Google Patents

Bayesian parameter estimation method based on noise enhancement Download PDF

Info

Publication number
CN109657273B
CN109657273B CN201811365349.XA CN201811365349A CN109657273B CN 109657273 B CN109657273 B CN 109657273B CN 201811365349 A CN201811365349 A CN 201811365349A CN 109657273 B CN109657273 B CN 109657273B
Authority
CN
China
Prior art keywords
noise
nonlinear system
bayesian
square error
mean square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811365349.XA
Other languages
Chinese (zh)
Other versions
CN109657273A (en
Inventor
刘书君
杨婷
周喜川
张奎
李东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Nanao Technology Co ltd
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201811365349.XA priority Critical patent/CN109657273B/en
Publication of CN109657273A publication Critical patent/CN109657273A/en
Application granted granted Critical
Publication of CN109657273B publication Critical patent/CN109657273B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The invention discloses a Bayesian parameter estimation method based on noise enhancement. Belonging to the field of signal processing. The method is a method for improving parameter estimation performance under the Bayesian rule by utilizing noise enhancement characteristics. Adding independent additive noise to a nonlinear system input signal, establishing a noise enhancement Bayesian parameter estimation model, carrying out Bayesian estimation on the input parameter by utilizing the nonlinear system output signal, finally solving the optimal additive noise under the model, and obtaining the optimal noise enhancement Bayesian estimation performance. The invention improves the Bayesian parameter estimation performance by utilizing noise enhancement, and can further reduce the corresponding mean square error when carrying out Bayesian estimation on the input parameters based on the nonlinear system output signals by adding proper noise to the nonlinear system input signals.

Description

一种基于噪声增强的贝叶斯参数估计方法A Bayesian Parameter Estimation Method Based on Noise Enhancement

技术领域technical field

本发明属于信号处理领域,具体涉及噪声增强和贝叶斯参数估计。The invention belongs to the field of signal processing, in particular to noise enhancement and Bayesian parameter estimation.

背景技术Background technique

在传统的信号处理中,噪声通常被视作为不想要的信号,不仅没有益处反而会对系统造成干扰。事实上,噪声总是与有用信号同时存在,系统中过多的噪声通常会使得传输信道容量变小,在导致信号检测正确性降低的同时,也令参数估计的性能变得糟糕,严重影响了系统的工作。为了提高系统性能,通常会尽可能地将噪声除去或将其与有用信号分开。然而,噪声对系统的影响并不都是负面的。在一定条件下,噪声可通过非线性系统对信号产生积极的增强作用,此现象即为噪声增强现象。已有研究表明,给一些非线性系统的输入加入噪声或调整背景噪声水平,可使得系统检测和/或估计性能得到明显的改善。使得平均代价最小的估计为贝叶斯估计,所得估计量即为贝叶斯估计量。参数估计值与真实值之间的平方误差是贝叶斯估计最常见的代价函数之一。在利用非线性系统输出信号对输入信号中未知参数作贝叶斯估计时,结合噪声增强理论可知,一定情况下,给非线性系统输入信号加入噪声时对应的最优贝叶斯估计均方误差有可能小于未给输入信号加入任何噪声时对应的原最优贝叶斯估计均方误差。In traditional signal processing, noise is generally regarded as an unwanted signal that is not only of no benefit but a disturbance to the system. In fact, noise always exists with useful signals at the same time. Too much noise in the system usually reduces the capacity of the transmission channel, which not only reduces the accuracy of signal detection, but also deteriorates the performance of parameter estimation, which seriously affects the system work. To improve system performance, noise is usually removed or separated from useful signals as much as possible. However, the effects of noise on a system are not all negative. Under certain conditions, noise can positively enhance the signal through a nonlinear system, and this phenomenon is called noise enhancement. It has been shown that adding noise to the input of some nonlinear systems or adjusting the background noise level can significantly improve the detection and/or estimation performance of the system. The estimate that minimizes the average cost is the Bayesian estimate, and the resulting estimator is the Bayesian estimator. The squared error between the parameter estimate and the true value is one of the most common cost functions for Bayesian estimation. When using the output signal of the nonlinear system to make Bayesian estimation of the unknown parameters in the input signal, combined with the theory of noise enhancement, it can be known that under certain circumstances, the corresponding optimal Bayesian estimation mean square error when noise is added to the input signal of the nonlinear system It may be smaller than the corresponding original optimal Bayesian estimation mean square error when no noise is added to the input signal.

发明内容Contents of the invention

本发明的目的是在以参数估计值与真实值之间的平方误差作为代价函数的贝叶斯估计的基础上,结合噪声增强原理,提出一种基于噪声增强的贝叶斯参数估计方法。给非线性系统输入信号加入适当的噪声后,利用非线性系统输出信号对输入参数进行贝叶斯估计时,进一步降低参数估计值与真实值之间的均方误差。The purpose of the present invention is to propose a Bayesian parameter estimation method based on noise enhancement based on the Bayesian estimation with the square error between the parameter estimated value and the true value as the cost function and in combination with the principle of noise enhancement. After adding appropriate noise to the input signal of the nonlinear system, the mean square error between the estimated value and the true value of the parameter can be further reduced when the output signal of the nonlinear system is used to estimate the input parameters.

本发明具体包括以下步骤:The present invention specifically comprises the following steps:

1)构建噪声增强非线性系统:1) Build a noise-enhanced nonlinear system:

所述非线性系统包括三个部分:非线性系统输入信号、非线性系统和非线性系统输出信号;非线性系统输入信号x与参数θ密切相关,而θ的值由其概率密度函数pθ(θ)确定;给非线性系统输入信号x加入与之独立的加性噪声n,经过非线性系统后,获得噪声修正非线性系统输出信号y=T(x+n),其中T(·)表示非线性系统的传递函数;Described nonlinear system comprises three parts: nonlinear system input signal, nonlinear system and nonlinear system output signal; nonlinear system input signal x is closely related to parameter θ, and the value of θ is determined by its probability density function p θ ( θ) is determined; add an independent additive noise n to the input signal x of the nonlinear system, and after passing through the nonlinear system, obtain the output signal y=T(x+n) of the noise-corrected nonlinear system, where T( ) represents The transfer function of the nonlinear system;

2)建立噪声增强贝叶斯参数估计模型:2) Establish a noise-enhanced Bayesian parameter estimation model:

利用所述非线性系统输出信号y对输入参数θ进行估计;当y值一定时,使得输入参数θ与其估计量

Figure BDA0001868375210000021
之间均方误差最小的贝叶斯估计为The input parameter θ is estimated by using the output signal y of the nonlinear system; when the value of y is constant, the input parameter θ and its estimator
Figure BDA0001868375210000021
The Bayesian estimate with the smallest mean square error between

Figure BDA0001868375210000022
Figure BDA0001868375210000022

对应的均方误差为The corresponding mean square error is

εMMSE(y)=E(θ2|y)-E2(θ|y) (2)式ε MMSE (y)=E(θ 2 |y)-E 2 (θ|y) (2) Formula

其中E(θ|y)和E(θ2|y)分别表示y值一定时θ和θ2的期望;进一步地,

Figure BDA0001868375210000023
也是使得平均均方误差最小的估计,对应的最小平均均方误差为Where E(θ|y) and E(θ 2 |y) respectively represent the expectation of θ and θ 2 when the value of y is certain; further,
Figure BDA0001868375210000023
It is also an estimate that minimizes the average mean square error, and the corresponding minimum average mean square error is

Figure BDA0001868375210000024
Figure BDA0001868375210000024

其中py(y)为非线性系统输出信号y的概率密度函数;py(y)、E(θ|y)和E(θ2|y)分别计算为:where p y (y) is the probability density function of the output signal y of the nonlinear system; p y (y), E(θ|y) and E(θ 2 |y) are calculated as:

Figure BDA0001868375210000025
Figure BDA0001868375210000025

Figure BDA0001868375210000026
Figure BDA0001868375210000026

Figure BDA0001868375210000027
Figure BDA0001868375210000027

其中

Figure BDA0001868375210000028
Figure BDA0001868375210000029
pn(n)为加性噪声n的概率密度函数,而px(x|θ)表示θ的值一定时非线性系统输入信号x的条件概率密度函数;in
Figure BDA0001868375210000028
Figure BDA0001868375210000029
p n (n) is the probability density function of additive noise n, and p x (x|θ) represents the conditional probability density function of the nonlinear system input signal x when the value of θ is certain;

3)求解最小化贝叶斯代价所需的加性噪声:3) Solve for the additive noise needed to minimize the Bayesian cost:

将(4)式、(5)式和(6)式代入(3)式可知,给非线性系统输入信号x加入概率密度函数为pn(n)的加性噪声n时,利用噪声修正非线性系统输出信号y对输入参数θ作贝叶斯估计时,对应的平均均方误差为Substituting equations (4), (5) and (6) into equation (3), it can be seen that when adding additive noise n with probability density function p n (n) to the input signal x of the nonlinear system, the noise is used to correct the nonlinear When the output signal y of the linear system is Bayesian estimated for the input parameter θ, the corresponding average mean square error is

Figure BDA0001868375210000031
Figure BDA0001868375210000031

为获得(7)式中最小MMSE(pn(n))对应的最优加性噪声,构建以下噪声增强优化问题:In order to obtain the optimal additive noise corresponding to the minimum MMSE(p n (n)) in (7), the following noise enhancement optimization problem is constructed:

Figure BDA0001868375210000032
Figure BDA0001868375210000032

结合

Figure BDA0001868375210000033
的特性,可知一定有/>
Figure BDA0001868375210000034
Figure BDA0001868375210000035
成立,从而可将(8)式模型中多元函数求极值问题等价为(9)式中关于参数n的一元函数求极值问题:combine
Figure BDA0001868375210000033
The characteristics of , it can be seen that there must be />
Figure BDA0001868375210000034
Figure BDA0001868375210000035
established, so that the problem of finding the extreme value of the multivariate function in the model (8) can be equivalent to the problem of finding the extreme value of the one-variable function with respect to the parameter n in the model of (9):

Figure BDA0001868375210000036
Figure BDA0001868375210000036

其中

Figure BDA0001868375210000037
表示当所加噪声n为常向量时,对应的平均最小均方误差;获得上述一元函数的优化解后,即可获得使均方误差最小时所需的加性噪声nopt;in
Figure BDA0001868375210000037
Indicates the corresponding average minimum mean square error when the added noise n is a constant vector; after obtaining the optimal solution of the above-mentioned unary function, the additive noise n opt required to minimize the mean square error can be obtained;

4)最优噪声增强贝叶斯估计:4) Optimal noise-enhanced Bayesian estimation:

利用噪声增强的非线性系统输出信号y=T(x+nopt)对输入参数θ进行估计时,使得均方误差最小的贝叶斯估计为:When using the noise-enhanced nonlinear system output signal y=T(x+n opt ) to estimate the input parameter θ, the Bayesian estimate that minimizes the mean square error is:

Figure BDA0001868375210000038
Figure BDA0001868375210000038

输入参数θ与其贝叶斯估计量

Figure BDA0001868375210000039
之间的均方误差为:Input parameter θ and its Bayesian estimator
Figure BDA0001868375210000039
The mean square error between is:

Figure BDA00018683752100000310
Figure BDA00018683752100000310

本发明将噪声增强与贝叶斯估计方法相结合,在给非线性系统输入信号加入噪声后,利用非线性系统输出信号对输入参数进行贝叶斯估计时,可使得参数估计值与真实值之间的最小均方误差进一步减小。The present invention combines the noise enhancement and the Bayesian estimation method. After adding noise to the input signal of the nonlinear system, and using the output signal of the nonlinear system to perform Bayesian estimation on the input parameters, the difference between the estimated value of the parameter and the real value can be made The minimum mean square error between is further reduced.

本发明主要采用仿真实验的方法进行验证,所有步骤、结论都在MATLAB R2016a上验证正确。The present invention mainly adopts the method of simulation experiment for verification, and all steps and conclusions are verified correctly on MATLAB R2016a.

附图说明Description of drawings

图1是本发明的工作流程框图。Fig. 1 is the workflow block diagram of the present invention.

图2是本发明仿真中不同t值对应的噪声增强和原最优贝叶斯估计均方误差。Fig. 2 is the noise enhancement corresponding to different t values in the simulation of the present invention and the original optimal Bayesian estimation mean square error.

图3是本发明仿真中不同A值对应的噪声增强和原最优贝叶斯估计均方误差。Fig. 3 is the noise enhancement corresponding to different A values in the simulation of the present invention and the mean square error of the original optimal Bayesian estimation.

图4是本发明仿真中不同μθ值对应的噪声增强和原最优贝叶斯估计均方误差。Fig. 4 is the corresponding noise enhancement and original optimal Bayesian estimation mean square error of different μ θ values in the simulation of the present invention.

图5是本发明仿真中不同σθ值对应的噪声增强和原最优贝叶斯估计均方误差。Fig. 5 is the noise enhancement corresponding to different σ θ values in the simulation of the present invention and the original optimal Bayesian estimation mean square error.

具体实施方式Detailed ways

下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。The present invention will be further described below in conjunction with the examples, but it should not be understood that the scope of the subject of the present invention is limited to the following examples. Without departing from the above-mentioned technical ideas of the present invention, various replacements and changes made according to common technical knowledge and conventional means in this field shall be included in the protection scope of the present invention.

本实施例公开了一种基于噪声增强的贝叶斯参数估计方法,包括以下步骤:This embodiment discloses a Bayesian parameter estimation method based on noise enhancement, comprising the following steps:

1)构建噪声增强非线性系统:1) Build a noise-enhanced nonlinear system:

所述非线性系统包括三个部分:非线性系统输入信号、非线性系统和非线性系统输出信号;非线性系统输入信号x与参数θ密切相关,而θ的值由其概率密度函数pθ(θ)确定;给非线性系统输入信号x加入与之独立的加性噪声n,经过非线性系统后,获得噪声修正非线性系统输出信号y=T(x+n),其中T(·)表示非线性系统的传递函数;Described nonlinear system comprises three parts: nonlinear system input signal, nonlinear system and nonlinear system output signal; nonlinear system input signal x is closely related to parameter θ, and the value of θ is determined by its probability density function p θ ( θ) is determined; add an independent additive noise n to the input signal x of the nonlinear system, and after passing through the nonlinear system, obtain the output signal y=T(x+n) of the noise-corrected nonlinear system, where T( ) represents The transfer function of the nonlinear system;

2)建立噪声增强贝叶斯参数估计模型:2) Establish a noise-enhanced Bayesian parameter estimation model:

利用所述非线性系统输出信号y对输入参数θ进行估计。当y值一定时,输入参数θ与其估计量

Figure BDA0001868375210000041
之间的均方误差ε(y)为The input parameter θ is estimated using the nonlinear system output signal y. When the value of y is constant, the input parameter θ and its estimator
Figure BDA0001868375210000041
The mean square error ε(y) between

Figure BDA0001868375210000042
Figure BDA0001868375210000042

其中

Figure BDA0001868375210000051
和/>
Figure BDA0001868375210000052
分别表示在非线性系统输出信号y一定的情况下输入参数θ的条件均值和条件方差。此外,p(θ|y)表示输入参数θ的后验概率,由(13)式可得in
Figure BDA0001868375210000051
and />
Figure BDA0001868375210000052
Respectively represent the conditional mean and conditional variance of the input parameter θ when the output signal y of the nonlinear system is constant. In addition, p(θ|y) represents the posterior probability of the input parameter θ, which can be obtained from formula (13)

Figure BDA0001868375210000053
Figure BDA0001868375210000053

其中py(y)表示非线性系统输出信号y的概率密度函数,而py(y|θ)表示参数θ值一定的情况下非线性系统输出信号y的条件概率密度函数。Where p y (y) represents the probability density function of the output signal y of the nonlinear system, and p y (y|θ) represents the conditional probability density function of the output signal y of the nonlinear system when the value of parameter θ is constant.

根据(12)式可知,由于var(θ|y)是非负的且与估计量

Figure BDA0001868375210000054
无关,所以当y值一定时使得均方误差ε(y)最小的贝叶斯估计为According to formula (12), since var(θ|y) is non-negative and is related to the estimator
Figure BDA0001868375210000054
irrelevant, so when the value of y is constant, the Bayesian estimate that minimizes the mean square error ε(y) is

Figure BDA0001868375210000055
Figure BDA0001868375210000055

即意味着,当y值一定时贝叶斯估计对应的最小均方误差εMMSE(y)即为输入参数θ的条件方差:That is to say, when the value of y is constant, the minimum mean square error ε MMSE (y) corresponding to Bayesian estimation is the conditional variance of the input parameter θ:

Figure BDA0001868375210000056
Figure BDA0001868375210000056

其中

Figure BDA0001868375210000057
表示在非线性系统输出信号y一定的情况下θ2的期望。进一步地,对任意非线性系统输出信号y而言,使得均方误差最小的贝叶斯估计均为(14)式中的/>
Figure BDA0001868375210000058
因此,使得所有可能的非线性系统输出信号y的平均均方误差最小的估计同样为/>
Figure BDA0001868375210000059
即/>
Figure BDA00018683752100000510
是使得∫ε(y)py(y)dy最小的估计,对应的平均均方误差为in
Figure BDA0001868375210000057
Indicates the expectation of θ 2 when the output signal y of the nonlinear system is constant. Furthermore, for any nonlinear system output signal y, the Bayesian estimate that minimizes the mean square error is the formula (14)
Figure BDA0001868375210000058
Therefore, the estimate that minimizes the average mean square error of the output signal y of all possible nonlinear systems is also />
Figure BDA0001868375210000059
i.e. />
Figure BDA00018683752100000510
is the estimate that makes ∫ε(y)p y (y)dy the smallest, and the corresponding average mean square error is

Figure BDA00018683752100000511
Figure BDA00018683752100000511

给非线性系统输入信号x加入概率密度函数为pn(n)的加性噪声n时,在参数θ值一定的情况下,非线性系统输出信号y的条件概率密度函数可以计算为When the additive noise n with probability density function p n (n) is added to the input signal x of the nonlinear system, the conditional probability density function of the output signal y of the nonlinear system can be calculated as

Figure BDA00018683752100000512
Figure BDA00018683752100000512

进一步地,非线性系统输出信号y的概率密度函数计算如下Further, the probability density function of the output signal y of the nonlinear system is calculated as follows

Figure BDA0001868375210000061
Figure BDA0001868375210000061

其中in

Figure BDA0001868375210000062
Figure BDA0001868375210000062

可以看作所加噪声n为常向量时非线性系统输出信号y的概率密度函数,且由概率密度函数的定义可知0≤Ry(n)≤1。It can be regarded as the probability density function of the output signal y of the nonlinear system when the added noise n is a constant vector, and the definition of the probability density function shows that 0≤R y (n)≤1.

进一步地,E(θ|y)和E(θ2|y)分别计算为:Further, E(θ|y) and E(θ 2 |y) are calculated as:

Figure BDA0001868375210000063
Figure BDA0001868375210000063

Figure BDA0001868375210000064
Figure BDA0001868375210000064

其中in

Figure BDA0001868375210000065
Figure BDA0001868375210000065

Figure BDA0001868375210000066
Figure BDA0001868375210000066

3)求解最小化贝叶斯代价所需的加性噪声:3) Solve for the additive noise needed to minimize the Bayesian cost:

将(18)式、(20)式和(21)式代入(16)式可知,给非线性系统输入信号x加入概率密度函数为pn(n)的加性噪声n时,利用噪声修正非线性系统输出信号y对输入参数θ作贝叶斯估计时,对应的最小平均均方误差为εMMSE=MMSE(pn(n)),其中Substituting equations (18), (20) and (21) into equation (16), it can be seen that when adding additive noise n with probability density function p n (n) to the input signal x of the nonlinear system, the non-linear When the output signal y of the linear system is Bayesian estimated for the input parameter θ, the corresponding minimum mean square error is ε MMSE = MMSE(p n (n)), where

Figure BDA0001868375210000071
Figure BDA0001868375210000071

(24)式中En表示基于pn(n)的期望。(24) where E n represents the expectation based on p n (n).

为获得(24)式中噪声增强最小平均均方误差MMSE(pn(n))对应的最优加性噪声,构建以下噪声增强优化模型:In order to obtain the optimal additive noise corresponding to the noise-enhanced minimum mean square error MMSE(p n (n)) in (24), the following noise-enhanced optimization model is constructed:

Figure BDA0001868375210000072
Figure BDA0001868375210000072

为求解(25)式中优化问题,首先引入函数

Figure BDA0001868375210000073
当z2≥0时,函数F(z)的黑塞矩是半正定的,从而可得F(z)是凸函数。反之,当z2≥0时,函数/>
Figure BDA0001868375210000074
为凹函数,则有(26)式成立In order to solve the optimization problem in (25), first introduce the function
Figure BDA0001868375210000073
When z 2 ≥ 0, the Hessian moment of the function F(z) is positive semi-definite, so it can be obtained that F(z) is a convex function. Conversely, when z 2 ≥ 0, the function />
Figure BDA0001868375210000074
is a concave function, then formula (26) holds

Figure BDA0001868375210000075
Figure BDA0001868375210000075

令z1=Gy(n),z2=Ry(n)和z3=Jy(n)。因为Ry(n)≥0,所以对任意非线性系统输出信号y以及任意可能的噪声概率密度函数pn(n)来讲,均可知Let z 1 =G y (n), z 2 =R y (n) and z 3 =J y (n). Because R y (n)≥0, so for any nonlinear system output signal y and any possible noise probability density function p n (n), it is known that

Figure BDA0001868375210000076
Figure BDA0001868375210000076

对(27)式不等式两边积分有如下结果The integral on both sides of the inequality (27) has the following results

Figure BDA0001868375210000081
Figure BDA0001868375210000081

其中

Figure BDA0001868375210000082
表示当所加噪声n为常向量时,对应的平均最小均方误差。由于/>
Figure BDA0001868375210000083
从而一定有/>
Figure BDA0001868375210000084
Figure BDA0001868375210000085
进一步地,in
Figure BDA0001868375210000082
Indicates the corresponding average minimum mean square error when the added noise n is a constant vector. due to />
Figure BDA0001868375210000083
so there must be />
Figure BDA0001868375210000084
Figure BDA0001868375210000085
further,

Figure BDA0001868375210000086
Figure BDA0001868375210000086

综上,可将(25)式中多元函数求极值问题等价为(29)式中关于参数n的一元函数求极值问题:To sum up, the problem of finding the extreme value of the multivariate function in formula (25) can be equivalent to the problem of finding the extreme value of the one-variable function with respect to the parameter n in formula (29):

Figure BDA0001868375210000087
Figure BDA0001868375210000087

求得上述一元函数的优化解后,即可获得使均方误差最小的加性噪声noptAfter obtaining the optimal solution of the above-mentioned unary function, the additive noise n opt that minimizes the mean square error can be obtained;

4)最优噪声增强贝叶斯估计:4) Optimal noise-enhanced Bayesian estimation:

利用噪声增强的非线性系统输出信号y=T(x+nopt)对输入参数θ进行估计,使得均方误差最小的贝叶斯估计为:The input parameter θ is estimated by using the noise-enhanced nonlinear system output signal y=T(x+n opt ), so that the Bayesian estimate with the smallest mean square error is:

Figure BDA0001868375210000088
Figure BDA0001868375210000088

输入参数θ与其贝叶斯估计量

Figure BDA0001868375210000089
之间的均方误差为:Input parameter θ and its Bayesian estimator
Figure BDA0001868375210000089
The mean square error between is:

Figure BDA00018683752100000810
Figure BDA00018683752100000810

本发明的效果可以通过以下仿真实验进一步说明:Effect of the present invention can be further illustrated by following simulation experiments:

假设非线性系统输入信号为x=θ+v,其中θ为未知参数,对应的概率密度函数为

Figure BDA00018683752100000811
即θ服从均值为μθ、方差为/>
Figure BDA0001868375210000091
的高斯分布。此外,v为零均值的非对称高斯混合背景噪声,其概率密度函数表示为pv(v)=tγ(v;(1-t)μbb 2)+(1-t)γ(v;-tμbb 2),其中0<t<1。当θ值一定时,非线性系统输入信号x的条件概率密度函数为px(x|θ)=pv(x-θ)。假设非线性系统为限幅系统,给非线性系统输入信号x加入常量n作为噪声时,对应的非线性系统输出信号y为:Assuming that the input signal of the nonlinear system is x=θ+v, where θ is an unknown parameter, the corresponding probability density function is
Figure BDA00018683752100000811
That is, θ obeys the mean value μ θ and the variance is />
Figure BDA0001868375210000091
Gaussian distribution. In addition, v is an asymmetric Gaussian mixture background noise with zero mean, and its probability density function is expressed as p v (v)=tγ(v; (1-t)μ bb 2 )+(1-t)γ( v; -tμ bb 2 ), where 0<t<1. When the θ value is constant, the conditional probability density function of the nonlinear system input signal x is p x (x|θ) = p v (x-θ). Assuming that the nonlinear system is a limiting system, when adding a constant n as noise to the input signal x of the nonlinear system, the corresponding output signal y of the nonlinear system is:

Figure BDA0001868375210000092
Figure BDA0001868375210000092

利用MATLAB语言编程实现对nopt的求解,

Figure BDA0001868375210000093
的估计和LMMSE(nopt)的获取。以t=0.75、A=3、μθ=3、σθ=1、μb=3和σb=1为例,在没有给非线性系统输入信号x加任何噪声时,对应的原贝叶斯估计的最小均方误差为0.8067,通过给非线性系统输入信号x加入常量nopt=-2.75可使得贝叶斯估计的最小均方误差降至0.7003,与原贝叶斯估计相比性能提升了13.2%。Using MATLAB language programming to realize the solution to n opt ,
Figure BDA0001868375210000093
Estimation of and acquisition of LMMSE(n opt ). Taking t=0.75, A=3, μ θ =3, σ θ =1, μ b =3 and σ b =1 as an example, when no noise is added to the input signal x of the nonlinear system, the corresponding original Bayes The minimum mean square error of the Bayesian estimate is 0.8067, and the minimum mean square error of the Bayesian estimate can be reduced to 0.7003 by adding a constant n opt = -2.75 to the input signal x of the nonlinear system, which improves performance compared with the original Bayesian estimate up 13.2%.

表1给出了当A=3、μθ=3、σθ=1、μb=3和σb=1时,分别在t值为0.075、0.75和0.9的情况下给非线性系统输入信号加入常量nopt时,加噪前后贝叶斯估计对应的最小均方误差。Table 1 shows that when A=3, μ θ =3, σ θ =1, μ b =3 and σ b =1, the input signals to the nonlinear system are respectively in the case of t values of 0.075, 0.75 and 0.9 When the constant n opt is added, the minimum mean square error corresponding to Bayesian estimation before and after adding noise.

表1加噪前后贝叶斯估计对应的最小均方误差Table 1 The minimum mean square error corresponding to Bayesian estimation before and after adding noise

Figure BDA0001868375210000094
Figure BDA0001868375210000094

由表1可知,一定情况下给非线性系统输入信号加入适当的常量,可使得最优贝叶斯估计的性能进一步提升。It can be seen from Table 1 that under certain circumstances, adding appropriate constants to the input signal of the nonlinear system can further improve the performance of the optimal Bayesian estimation.

为了进一步研究通过给非线性系统输入信号加入不同噪声实现的估计性能,接下来通过先后改变背景噪声参数t、非线性系统门限A、输入参数θ的均值μθ和标准差σθ,来比较不同条件下加噪前后最优贝叶斯估计的均方误差,具体如下:In order to further study the estimation performance achieved by adding different noises to the input signal of the nonlinear system, the background noise parameter t, the nonlinear system threshold A, the mean value μ θ and the standard deviation σ θ of the input parameter θ are successively changed to compare different The mean square error of the optimal Bayesian estimation before and after adding noise under the condition is as follows:

保持A=3、μθ=3、σθ=1、μb=3和σb=1不变,将t以0.05的间隔从0增至1。针对每个t值,给非线性系统输入信号x加入相应的最优加性噪声nopt,获得对应加噪后的噪声增强贝叶斯估计的最小均方误差,并与未加噪时原贝叶斯估计的最小均方误差进行对比,结果如图2。随着t值的增加,噪声增强贝叶斯估计和原贝叶斯估计对应的最小均方误差均先增大后减小,且前者关于t=0.5对称。此外,针对任意可能的t值而言,噪声增强贝叶斯估计对应的最小均方误差均小于原贝叶斯估计对应的最小均方误差。Keep A=3, μ θ =3, σ θ =1, μ b =3 and σ b =1, and increase t from 0 to 1 at an interval of 0.05. For each value of t, add the corresponding optimal additive noise n opt to the input signal x of the nonlinear system, and obtain the minimum mean square error of the noise-enhanced Bayesian estimation corresponding to the added noise, and compare with the original noise without adding noise The minimum mean square error of Yeesian estimation is compared, and the results are shown in Figure 2. As the value of t increases, the minimum mean square error corresponding to the noise-enhanced Bayesian estimation and the original Bayesian estimation first increases and then decreases, and the former is symmetrical about t=0.5. In addition, for any possible value of t, the minimum mean square error corresponding to the noise-enhanced Bayesian estimation is smaller than that corresponding to the original Bayesian estimation.

保持t=0.75、μθ=3、σθ=1、μb=3和σb=1不变,将A以0.5的间隔从0增至10,对每个A值求解对应的噪声增强最优贝叶斯估计的均方误差,并与未加噪的情况进行对比,结果如图3。当A值从零逐渐增大时,原贝叶斯估计最小均方误差从0.9358逐渐减小,且当A值大于5.75时保持恒定值0.6895。当0<A<7.5时,噪声增强贝叶斯估计最小均方误差小于原贝叶斯估计最小均方误差,而当A>7.5时,无论加入任何噪声均不能使得贝叶斯估计对应的均方误差减小。Keep t = 0.75, μ θ = 3, σ θ = 1, μ b = 3 and σ b = 1, increase A from 0 to 10 at an interval of 0.5, and solve the corresponding noise enhancement maximum value for each value of A The mean square error of Bayesian estimation is compared with that without noise, and the results are shown in Figure 3. When the value of A gradually increases from zero, the minimum mean square error of the original Bayesian estimation gradually decreases from 0.9358, and when the value of A is greater than 5.75, it remains constant at 0.6895. When 0<A<7.5, the minimum mean square error of the noise-enhanced Bayesian estimation is smaller than that of the original Bayesian estimation, and when A>7.5, no matter what noise is added, the corresponding mean square error of the Bayesian estimation cannot be made The square error is reduced.

保持t=0.75、A=3、σθ=1μb=3和σb=1不变,将μθ以0.25的间隔从0增至5,对每个μθ值求解对应的噪声增强最优贝叶斯估计的均方误差,并与未加噪的情况进行对比,结果如图4。原贝叶斯估计对应的最小均方误差随着μθ值的增大而增大,而最优噪声增强贝叶斯估计对应的最小均方误差一直保持常量0.7003。这表明,μθ>0噪声增强贝叶斯估计的性能与μθ=0时原贝叶斯估计的性能一样。此外,贝叶斯估计对应的最小均方误差的改善程度随着μθ值的增大而增大。Keep t = 0.75, A = 3, σ θ = 1 μ b = 3 and σ b = 1, increase μ θ from 0 to 5 at an interval of 0.25, and solve the corresponding optimal noise enhancement for each value of μ θ The mean square error of Bayesian estimation is compared with that without noise, and the results are shown in Figure 4. The minimum mean square error corresponding to the original Bayesian estimation increases with the increase of μ θ , while the minimum mean square error corresponding to the optimal noise-enhanced Bayesian estimation remains constant at 0.7003. This shows that the performance of the noise-enhanced Bayesian estimation for μ θ > 0 is the same as that of the original Bayesian estimation for μ θ = 0. In addition, the degree of improvement of the minimum mean square error corresponding to Bayesian estimation increases as the value of μ θ increases.

保持t=0.75、A=3、μθ=3、μb=3和σb=1不变,将σθ以0.1的间隔从0增至2,对每个σθ值求解对应的噪声增强最优贝叶斯估计的均方误差,并与未加噪的情况进行对比,结果如图5。噪声增强贝叶斯估计和原贝叶斯估计对应的最小均方误差均为关于σθ单调递增的函数。当σθ值趋近于零时,无论加入任何噪声均不可能使得贝叶斯估计性能得到提升。当σθ值增大到一定程度时,贝叶斯估计对应的最小均方误差通过加噪实现的改善程度随着σθ的增大而增大。Keeping t = 0.75, A = 3, μ θ = 3, μ b = 3, and σ b = 1, increase σ θ from 0 to 2 at intervals of 0.1, and solve for each value of σ θ the corresponding noise enhancement The mean square error of the optimal Bayesian estimation is compared with that without noise, and the results are shown in Figure 5. The minimum mean square error corresponding to the noise-enhanced Bayesian estimation and the original Bayesian estimation is a monotonically increasing function of σ θ . When the value of σ θ approaches zero, it is impossible to improve the performance of Bayesian estimation no matter what noise is added. When the value of σ θ increases to a certain extent, the degree of improvement of the minimum mean square error corresponding to Bayesian estimation through adding noise increases with the increase of σ θ .

Claims (1)

1.一种基于噪声增强的贝叶斯参数估计方法,其特征在于,包括以下步骤:1. a Bayesian parameter estimation method based on noise enhancement, is characterized in that, comprises the following steps: 1)构建噪声增强非线性系统:1) Build a noise-enhanced nonlinear system: 所述非线性系统包括三个部分:非线性系统输入信号、非线性系统和非线性系统输出信号;非线性系统输入信号x与输入参数θ密切相关,而θ的值由其概率密度函数pθ(θ)确定;给非线性系统输入信号x加入与之独立的加性噪声n,经过非线性系统后,获得噪声修正非线性系统输出信号y=T(x+n),其中T(·)表示非线性系统的传递函数;The nonlinear system includes three parts: the nonlinear system input signal, the nonlinear system and the nonlinear system output signal; the nonlinear system input signal x is closely related to the input parameter θ, and the value of θ is determined by its probability density function p θ (θ) is determined; add an independent additive noise n to the input signal x of the nonlinear system, and after passing through the nonlinear system, obtain the output signal y=T(x+n) of the noise-corrected nonlinear system, where T( ) Represents the transfer function of the nonlinear system; 2)建立噪声增强贝叶斯参数估计模型:2) Establish a noise-enhanced Bayesian parameter estimation model: 利用所述非线性系统输出信号y对输入参数θ进行估计;当y值一定时,使得输入参数θ与其估计量
Figure FDA0004243007420000011
之间均方误差最小的贝叶斯估计为
The input parameter θ is estimated by using the output signal y of the nonlinear system; when the value of y is constant, the input parameter θ and its estimator
Figure FDA0004243007420000011
The Bayesian estimate with the smallest mean square error between
Figure FDA0004243007420000012
式对应的均方误差为
Figure FDA0004243007420000012
The mean square error corresponding to the formula is
εMMSE(y)=E(θ2|y)-E2(θ|y) (2)式ε MMSE (y)=E(θ 2 |y)-E 2 (θ|y) (2) Formula 其中E(θ|y)和E(θ2|y)分别表示y值一定时θ和θ2的期望;进一步地,
Figure FDA0004243007420000013
也是使得平均均方误差最小的估计,对应的最小平均均方误差为
Where E(θ|y) and E(θ 2 |y) respectively represent the expectation of θ and θ 2 when the value of y is certain; further,
Figure FDA0004243007420000013
It is also an estimate that minimizes the average mean square error, and the corresponding minimum average mean square error is
Figure FDA0004243007420000014
Figure FDA0004243007420000014
Mode
其中py(y)为非线性系统输出信号y的概率密度函数;py(y)、E(θ|y)和E(θ2|y)分别计算为:where p y (y) is the probability density function of the output signal y of the nonlinear system; p y (y), E(θ|y) and E(θ 2 |y) are calculated as:
Figure FDA0004243007420000015
Figure FDA0004243007420000015
Figure FDA00042430074200000110
Figure FDA00042430074200000110
Figure FDA0004243007420000017
Figure FDA0004243007420000017
其中
Figure FDA0004243007420000018
Figure FDA0004243007420000019
pn(n)为加性噪声n的概率密度函数,而px(x|θ)表示θ的值一定时非线性系统输入信号x的条件概率密度函数;
in
Figure FDA0004243007420000018
Figure FDA0004243007420000019
p n (n) is the probability density function of additive noise n, and p x (x|θ) represents the conditional probability density function of the nonlinear system input signal x when the value of θ is certain;
3)求解最小化贝叶斯代价所需的加性噪声:3) Solve for the additive noise needed to minimize the Bayesian cost: 将(4)式、(5)式和(6)式代入(3)式可知,给非线性系统输入信号x加入概率密度函数为pn(n)的加性噪声n时,利用噪声修正非线性系统输出信号y对输入参数θ作贝叶斯估计时,对应的平均均方误差为Substituting equations (4), (5) and (6) into equation (3), it can be seen that when adding additive noise n with probability density function p n (n) to the input signal x of the nonlinear system, the noise is used to correct the nonlinear When the output signal y of the linear system is Bayesian estimated for the input parameter θ, the corresponding average mean square error is
Figure FDA00042430074200000211
Figure FDA00042430074200000211
为获得(7)式中最小MMSE(pn(n))对应的最优加性噪声,构建以下噪声增强优化问题:In order to obtain the optimal additive noise corresponding to the minimum MMSE(p n (n)) in (7), the following noise enhancement optimization problem is constructed:
Figure FDA00042430074200000212
Figure FDA00042430074200000212
结合
Figure FDA0004243007420000023
的特性,可知一定有/>
Figure FDA0004243007420000024
Figure FDA0004243007420000025
成立,从而可将(8)式模型中多元函数求极值问题等价为(9)式中关于参数n的一元函数求极值问题:
combine
Figure FDA0004243007420000023
The characteristics of , it can be seen that there must be />
Figure FDA0004243007420000024
Figure FDA0004243007420000025
established, so that the problem of finding the extreme value of the multivariate function in the model (8) can be equivalent to the problem of finding the extreme value of the one-variable function with respect to the parameter n in the model of (9):
Figure FDA00042430074200000213
Figure FDA00042430074200000213
其中
Figure FDA0004243007420000027
表示当加性噪声n为常向量时,对应的平均最小均方误差;获得上述一元函数的优化解后,即可获得使均方误差最小时所需的加性噪声nopt
in
Figure FDA0004243007420000027
Indicates the corresponding average minimum mean square error when the additive noise n is a constant vector; after obtaining the optimal solution of the above-mentioned unary function, the additive noise n opt required to minimize the mean square error can be obtained;
4)最优噪声增强贝叶斯估计:4) Optimal noise-enhanced Bayesian estimation: 利用噪声增强的非线性系统输出信号y=T(x+nopt)对输入参数θ进行估计时,使得均方误差最小的贝叶斯估计为:When using the noise-enhanced nonlinear system output signal y=T(x+n opt ) to estimate the input parameter θ, the Bayesian estimate that minimizes the mean square error is:
Figure FDA00042430074200000214
Figure FDA00042430074200000214
输入参数θ与其贝叶斯估计量
Figure FDA0004243007420000029
之间的均方误差为:
Input parameter θ and its Bayesian estimator
Figure FDA0004243007420000029
The mean square error between is:
Figure FDA00042430074200000215
Figure FDA00042430074200000215
CN201811365349.XA 2018-11-16 2018-11-16 Bayesian parameter estimation method based on noise enhancement Active CN109657273B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811365349.XA CN109657273B (en) 2018-11-16 2018-11-16 Bayesian parameter estimation method based on noise enhancement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811365349.XA CN109657273B (en) 2018-11-16 2018-11-16 Bayesian parameter estimation method based on noise enhancement

Publications (2)

Publication Number Publication Date
CN109657273A CN109657273A (en) 2019-04-19
CN109657273B true CN109657273B (en) 2023-07-04

Family

ID=66110952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811365349.XA Active CN109657273B (en) 2018-11-16 2018-11-16 Bayesian parameter estimation method based on noise enhancement

Country Status (1)

Country Link
CN (1) CN109657273B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113837782B (en) * 2020-06-24 2024-04-19 上海顺如丰来技术有限公司 Periodic term parameter optimization method and device of time sequence model and computer equipment
CN114520757A (en) * 2020-11-20 2022-05-20 富士通株式会社 Device and method for estimating performance of nonlinear communication system, and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185661A (en) * 2010-12-31 2011-09-14 哈尔滨工业大学深圳研究生院 Noise enhancement distributed detection method and system based on Bayes criterion of gradient method
CN106683122A (en) * 2016-12-16 2017-05-17 华南理工大学 Particle filtering method based on Gaussian mixture model and variational Bayes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7047047B2 (en) * 2002-09-06 2006-05-16 Microsoft Corporation Non-linear observation model for removing noise from corrupted signals
US7165026B2 (en) * 2003-03-31 2007-01-16 Microsoft Corporation Method of noise estimation using incremental bayes learning
CN102075268B (en) * 2010-12-31 2013-10-23 哈尔滨工业大学深圳研究生院 Noise enhancement distribution detection method and system based on particle swarm optimization method
TWI487336B (en) * 2012-04-24 2015-06-01 Mstar Semiconductor Inc Apparatus and method for correcting phase error
CN107832268B (en) * 2017-11-22 2020-11-03 重庆大学 A Linear Minimum Mean Square Error Estimation Method Based on Noise Enhancement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185661A (en) * 2010-12-31 2011-09-14 哈尔滨工业大学深圳研究生院 Noise enhancement distributed detection method and system based on Bayes criterion of gradient method
CN106683122A (en) * 2016-12-16 2017-05-17 华南理工大学 Particle filtering method based on Gaussian mixture model and variational Bayes

Also Published As

Publication number Publication date
CN109657273A (en) 2019-04-19

Similar Documents

Publication Publication Date Title
Fletcher et al. Expectation consistent approximate inference: Generalizations and convergence
CN109657273B (en) Bayesian parameter estimation method based on noise enhancement
CN108957421B (en) Radar radiation source individual identification method and system based on Bezier curve fitting
Dalang et al. Hitting properties of parabolic spde’s with reflection
CN107832268B (en) A Linear Minimum Mean Square Error Estimation Method Based on Noise Enhancement
Fu et al. An averaging principle for two-scale stochastic partial differential equations
CN109635349B (en) Method for minimizing claramelteon boundary by noise enhancement
Masuda et al. Moment convergence in regularized estimation under multiple and mixed-rates asymptotics
CN106059531A (en) A Non-Negative Adaptive Filter
CN102622729A (en) Spatial self-adaptive block-matching image denoising method based on fuzzy set theory
CN105372651A (en) Adaptive maneuvering target tracking method on the basis of optimal AR (Autoregressive) model
CN108599884B (en) A Signal Detection Method with Noise Enhancement to Minimize Error Probability
Girard Approximately bisimilar abstractions of incrementally stable finite or infinite dimensional systems
Khmaladze et al. Goodness-of-fit problem for errors in nonparametric regression: Distribution free approach
Barakat et al. Comparison between the rates of convergence of extremes under linear and under power normalization
CN110190831B (en) Mixed norm non-negative adaptive filter
Bradic Robustness in sparse high-dimensional linear models: Relative efficiency and robust approximate message passing
Azizan et al. A stochastic interpretation of stochastic mirror descent: Risk-sensitive optimality
CN110633516A (en) A Method for Predicting the Performance Degradation Trend of Electronic Devices
Wei et al. A compressive sensing recovery algorithm based on sparse Bayesian learning for block sparse signal
CN104820788A (en) Fractional order extended Kalman filtering method considering Levy noise
CN108732432A (en) Constrained Noise enhancement signal detecting method under a kind of maximum posteriori criterion
CN105676201A (en) Radial length extraction method of radar object distance image based on sliding average
Barbu et al. FIRST ORDER ASYMPTOTIC EXPANSION FOR A SINGULARLY PERTURBED, COUPLED PARABOLIC-PARABOLIC PROBLEM
CN104992224B (en) A kind of Pulse Coupled Neural Network extends system and method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240718

Address after: No. 319, North Huafu Road, Jiulongpo District, Chongqing (No. 6, Building 4, Shilong Community, Jiulong Park)

Patentee after: Chongqing Nanao Technology Co.,Ltd.

Country or region after: China

Address before: 400044 No. 174 Sha Jie street, Shapingba District, Chongqing

Patentee before: Chongqing University

Country or region before: China

TR01 Transfer of patent right