CN109657273B - Bayesian parameter estimation method based on noise enhancement - Google Patents
Bayesian parameter estimation method based on noise enhancement Download PDFInfo
- Publication number
- CN109657273B CN109657273B CN201811365349.XA CN201811365349A CN109657273B CN 109657273 B CN109657273 B CN 109657273B CN 201811365349 A CN201811365349 A CN 201811365349A CN 109657273 B CN109657273 B CN 109657273B
- Authority
- CN
- China
- Prior art keywords
- noise
- nonlinear system
- bayesian
- square error
- mean square
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000000654 additive Substances 0.000 claims abstract description 22
- 230000000996 additive effect Effects 0.000 claims abstract description 22
- 238000005457 optimization Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 34
- 238000004088 simulation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Filters That Use Time-Delay Elements (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于信号处理领域,具体涉及噪声增强和贝叶斯参数估计。The invention belongs to the field of signal processing, in particular to noise enhancement and Bayesian parameter estimation.
背景技术Background technique
在传统的信号处理中,噪声通常被视作为不想要的信号,不仅没有益处反而会对系统造成干扰。事实上,噪声总是与有用信号同时存在,系统中过多的噪声通常会使得传输信道容量变小,在导致信号检测正确性降低的同时,也令参数估计的性能变得糟糕,严重影响了系统的工作。为了提高系统性能,通常会尽可能地将噪声除去或将其与有用信号分开。然而,噪声对系统的影响并不都是负面的。在一定条件下,噪声可通过非线性系统对信号产生积极的增强作用,此现象即为噪声增强现象。已有研究表明,给一些非线性系统的输入加入噪声或调整背景噪声水平,可使得系统检测和/或估计性能得到明显的改善。使得平均代价最小的估计为贝叶斯估计,所得估计量即为贝叶斯估计量。参数估计值与真实值之间的平方误差是贝叶斯估计最常见的代价函数之一。在利用非线性系统输出信号对输入信号中未知参数作贝叶斯估计时,结合噪声增强理论可知,一定情况下,给非线性系统输入信号加入噪声时对应的最优贝叶斯估计均方误差有可能小于未给输入信号加入任何噪声时对应的原最优贝叶斯估计均方误差。In traditional signal processing, noise is generally regarded as an unwanted signal that is not only of no benefit but a disturbance to the system. In fact, noise always exists with useful signals at the same time. Too much noise in the system usually reduces the capacity of the transmission channel, which not only reduces the accuracy of signal detection, but also deteriorates the performance of parameter estimation, which seriously affects the system work. To improve system performance, noise is usually removed or separated from useful signals as much as possible. However, the effects of noise on a system are not all negative. Under certain conditions, noise can positively enhance the signal through a nonlinear system, and this phenomenon is called noise enhancement. It has been shown that adding noise to the input of some nonlinear systems or adjusting the background noise level can significantly improve the detection and/or estimation performance of the system. The estimate that minimizes the average cost is the Bayesian estimate, and the resulting estimator is the Bayesian estimator. The squared error between the parameter estimate and the true value is one of the most common cost functions for Bayesian estimation. When using the output signal of the nonlinear system to make Bayesian estimation of the unknown parameters in the input signal, combined with the theory of noise enhancement, it can be known that under certain circumstances, the corresponding optimal Bayesian estimation mean square error when noise is added to the input signal of the nonlinear system It may be smaller than the corresponding original optimal Bayesian estimation mean square error when no noise is added to the input signal.
发明内容Contents of the invention
本发明的目的是在以参数估计值与真实值之间的平方误差作为代价函数的贝叶斯估计的基础上,结合噪声增强原理,提出一种基于噪声增强的贝叶斯参数估计方法。给非线性系统输入信号加入适当的噪声后,利用非线性系统输出信号对输入参数进行贝叶斯估计时,进一步降低参数估计值与真实值之间的均方误差。The purpose of the present invention is to propose a Bayesian parameter estimation method based on noise enhancement based on the Bayesian estimation with the square error between the parameter estimated value and the true value as the cost function and in combination with the principle of noise enhancement. After adding appropriate noise to the input signal of the nonlinear system, the mean square error between the estimated value and the true value of the parameter can be further reduced when the output signal of the nonlinear system is used to estimate the input parameters.
本发明具体包括以下步骤:The present invention specifically comprises the following steps:
1)构建噪声增强非线性系统:1) Build a noise-enhanced nonlinear system:
所述非线性系统包括三个部分:非线性系统输入信号、非线性系统和非线性系统输出信号;非线性系统输入信号x与参数θ密切相关,而θ的值由其概率密度函数pθ(θ)确定;给非线性系统输入信号x加入与之独立的加性噪声n,经过非线性系统后,获得噪声修正非线性系统输出信号y=T(x+n),其中T(·)表示非线性系统的传递函数;Described nonlinear system comprises three parts: nonlinear system input signal, nonlinear system and nonlinear system output signal; nonlinear system input signal x is closely related to parameter θ, and the value of θ is determined by its probability density function p θ ( θ) is determined; add an independent additive noise n to the input signal x of the nonlinear system, and after passing through the nonlinear system, obtain the output signal y=T(x+n) of the noise-corrected nonlinear system, where T( ) represents The transfer function of the nonlinear system;
2)建立噪声增强贝叶斯参数估计模型:2) Establish a noise-enhanced Bayesian parameter estimation model:
利用所述非线性系统输出信号y对输入参数θ进行估计;当y值一定时,使得输入参数θ与其估计量之间均方误差最小的贝叶斯估计为The input parameter θ is estimated by using the output signal y of the nonlinear system; when the value of y is constant, the input parameter θ and its estimator The Bayesian estimate with the smallest mean square error between
对应的均方误差为The corresponding mean square error is
εMMSE(y)=E(θ2|y)-E2(θ|y) (2)式ε MMSE (y)=E(θ 2 |y)-E 2 (θ|y) (2) Formula
其中E(θ|y)和E(θ2|y)分别表示y值一定时θ和θ2的期望;进一步地,也是使得平均均方误差最小的估计,对应的最小平均均方误差为Where E(θ|y) and E(θ 2 |y) respectively represent the expectation of θ and θ 2 when the value of y is certain; further, It is also an estimate that minimizes the average mean square error, and the corresponding minimum average mean square error is
其中py(y)为非线性系统输出信号y的概率密度函数;py(y)、E(θ|y)和E(θ2|y)分别计算为:where p y (y) is the probability density function of the output signal y of the nonlinear system; p y (y), E(θ|y) and E(θ 2 |y) are calculated as:
其中 pn(n)为加性噪声n的概率密度函数,而px(x|θ)表示θ的值一定时非线性系统输入信号x的条件概率密度函数;in p n (n) is the probability density function of additive noise n, and p x (x|θ) represents the conditional probability density function of the nonlinear system input signal x when the value of θ is certain;
3)求解最小化贝叶斯代价所需的加性噪声:3) Solve for the additive noise needed to minimize the Bayesian cost:
将(4)式、(5)式和(6)式代入(3)式可知,给非线性系统输入信号x加入概率密度函数为pn(n)的加性噪声n时,利用噪声修正非线性系统输出信号y对输入参数θ作贝叶斯估计时,对应的平均均方误差为Substituting equations (4), (5) and (6) into equation (3), it can be seen that when adding additive noise n with probability density function p n (n) to the input signal x of the nonlinear system, the noise is used to correct the nonlinear When the output signal y of the linear system is Bayesian estimated for the input parameter θ, the corresponding average mean square error is
为获得(7)式中最小MMSE(pn(n))对应的最优加性噪声,构建以下噪声增强优化问题:In order to obtain the optimal additive noise corresponding to the minimum MMSE(p n (n)) in (7), the following noise enhancement optimization problem is constructed:
结合的特性,可知一定有/> 成立,从而可将(8)式模型中多元函数求极值问题等价为(9)式中关于参数n的一元函数求极值问题:combine The characteristics of , it can be seen that there must be /> established, so that the problem of finding the extreme value of the multivariate function in the model (8) can be equivalent to the problem of finding the extreme value of the one-variable function with respect to the parameter n in the model of (9):
其中表示当所加噪声n为常向量时,对应的平均最小均方误差;获得上述一元函数的优化解后,即可获得使均方误差最小时所需的加性噪声nopt;in Indicates the corresponding average minimum mean square error when the added noise n is a constant vector; after obtaining the optimal solution of the above-mentioned unary function, the additive noise n opt required to minimize the mean square error can be obtained;
4)最优噪声增强贝叶斯估计:4) Optimal noise-enhanced Bayesian estimation:
利用噪声增强的非线性系统输出信号y=T(x+nopt)对输入参数θ进行估计时,使得均方误差最小的贝叶斯估计为:When using the noise-enhanced nonlinear system output signal y=T(x+n opt ) to estimate the input parameter θ, the Bayesian estimate that minimizes the mean square error is:
输入参数θ与其贝叶斯估计量之间的均方误差为:Input parameter θ and its Bayesian estimator The mean square error between is:
本发明将噪声增强与贝叶斯估计方法相结合,在给非线性系统输入信号加入噪声后,利用非线性系统输出信号对输入参数进行贝叶斯估计时,可使得参数估计值与真实值之间的最小均方误差进一步减小。The present invention combines the noise enhancement and the Bayesian estimation method. After adding noise to the input signal of the nonlinear system, and using the output signal of the nonlinear system to perform Bayesian estimation on the input parameters, the difference between the estimated value of the parameter and the real value can be made The minimum mean square error between is further reduced.
本发明主要采用仿真实验的方法进行验证,所有步骤、结论都在MATLAB R2016a上验证正确。The present invention mainly adopts the method of simulation experiment for verification, and all steps and conclusions are verified correctly on MATLAB R2016a.
附图说明Description of drawings
图1是本发明的工作流程框图。Fig. 1 is the workflow block diagram of the present invention.
图2是本发明仿真中不同t值对应的噪声增强和原最优贝叶斯估计均方误差。Fig. 2 is the noise enhancement corresponding to different t values in the simulation of the present invention and the original optimal Bayesian estimation mean square error.
图3是本发明仿真中不同A值对应的噪声增强和原最优贝叶斯估计均方误差。Fig. 3 is the noise enhancement corresponding to different A values in the simulation of the present invention and the mean square error of the original optimal Bayesian estimation.
图4是本发明仿真中不同μθ值对应的噪声增强和原最优贝叶斯估计均方误差。Fig. 4 is the corresponding noise enhancement and original optimal Bayesian estimation mean square error of different μ θ values in the simulation of the present invention.
图5是本发明仿真中不同σθ值对应的噪声增强和原最优贝叶斯估计均方误差。Fig. 5 is the noise enhancement corresponding to different σ θ values in the simulation of the present invention and the original optimal Bayesian estimation mean square error.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。The present invention will be further described below in conjunction with the examples, but it should not be understood that the scope of the subject of the present invention is limited to the following examples. Without departing from the above-mentioned technical ideas of the present invention, various replacements and changes made according to common technical knowledge and conventional means in this field shall be included in the protection scope of the present invention.
本实施例公开了一种基于噪声增强的贝叶斯参数估计方法,包括以下步骤:This embodiment discloses a Bayesian parameter estimation method based on noise enhancement, comprising the following steps:
1)构建噪声增强非线性系统:1) Build a noise-enhanced nonlinear system:
所述非线性系统包括三个部分:非线性系统输入信号、非线性系统和非线性系统输出信号;非线性系统输入信号x与参数θ密切相关,而θ的值由其概率密度函数pθ(θ)确定;给非线性系统输入信号x加入与之独立的加性噪声n,经过非线性系统后,获得噪声修正非线性系统输出信号y=T(x+n),其中T(·)表示非线性系统的传递函数;Described nonlinear system comprises three parts: nonlinear system input signal, nonlinear system and nonlinear system output signal; nonlinear system input signal x is closely related to parameter θ, and the value of θ is determined by its probability density function p θ ( θ) is determined; add an independent additive noise n to the input signal x of the nonlinear system, and after passing through the nonlinear system, obtain the output signal y=T(x+n) of the noise-corrected nonlinear system, where T( ) represents The transfer function of the nonlinear system;
2)建立噪声增强贝叶斯参数估计模型:2) Establish a noise-enhanced Bayesian parameter estimation model:
利用所述非线性系统输出信号y对输入参数θ进行估计。当y值一定时,输入参数θ与其估计量之间的均方误差ε(y)为The input parameter θ is estimated using the nonlinear system output signal y. When the value of y is constant, the input parameter θ and its estimator The mean square error ε(y) between
其中和/>分别表示在非线性系统输出信号y一定的情况下输入参数θ的条件均值和条件方差。此外,p(θ|y)表示输入参数θ的后验概率,由(13)式可得in and /> Respectively represent the conditional mean and conditional variance of the input parameter θ when the output signal y of the nonlinear system is constant. In addition, p(θ|y) represents the posterior probability of the input parameter θ, which can be obtained from formula (13)
其中py(y)表示非线性系统输出信号y的概率密度函数,而py(y|θ)表示参数θ值一定的情况下非线性系统输出信号y的条件概率密度函数。Where p y (y) represents the probability density function of the output signal y of the nonlinear system, and p y (y|θ) represents the conditional probability density function of the output signal y of the nonlinear system when the value of parameter θ is constant.
根据(12)式可知,由于var(θ|y)是非负的且与估计量无关,所以当y值一定时使得均方误差ε(y)最小的贝叶斯估计为According to formula (12), since var(θ|y) is non-negative and is related to the estimator irrelevant, so when the value of y is constant, the Bayesian estimate that minimizes the mean square error ε(y) is
即意味着,当y值一定时贝叶斯估计对应的最小均方误差εMMSE(y)即为输入参数θ的条件方差:That is to say, when the value of y is constant, the minimum mean square error ε MMSE (y) corresponding to Bayesian estimation is the conditional variance of the input parameter θ:
其中表示在非线性系统输出信号y一定的情况下θ2的期望。进一步地,对任意非线性系统输出信号y而言,使得均方误差最小的贝叶斯估计均为(14)式中的/>因此,使得所有可能的非线性系统输出信号y的平均均方误差最小的估计同样为/>即/>是使得∫ε(y)py(y)dy最小的估计,对应的平均均方误差为in Indicates the expectation of θ 2 when the output signal y of the nonlinear system is constant. Furthermore, for any nonlinear system output signal y, the Bayesian estimate that minimizes the mean square error is the formula (14) Therefore, the estimate that minimizes the average mean square error of the output signal y of all possible nonlinear systems is also /> i.e. /> is the estimate that makes ∫ε(y)p y (y)dy the smallest, and the corresponding average mean square error is
给非线性系统输入信号x加入概率密度函数为pn(n)的加性噪声n时,在参数θ值一定的情况下,非线性系统输出信号y的条件概率密度函数可以计算为When the additive noise n with probability density function p n (n) is added to the input signal x of the nonlinear system, the conditional probability density function of the output signal y of the nonlinear system can be calculated as
进一步地,非线性系统输出信号y的概率密度函数计算如下Further, the probability density function of the output signal y of the nonlinear system is calculated as follows
其中in
可以看作所加噪声n为常向量时非线性系统输出信号y的概率密度函数,且由概率密度函数的定义可知0≤Ry(n)≤1。It can be regarded as the probability density function of the output signal y of the nonlinear system when the added noise n is a constant vector, and the definition of the probability density function shows that 0≤R y (n)≤1.
进一步地,E(θ|y)和E(θ2|y)分别计算为:Further, E(θ|y) and E(θ 2 |y) are calculated as:
其中in
3)求解最小化贝叶斯代价所需的加性噪声:3) Solve for the additive noise needed to minimize the Bayesian cost:
将(18)式、(20)式和(21)式代入(16)式可知,给非线性系统输入信号x加入概率密度函数为pn(n)的加性噪声n时,利用噪声修正非线性系统输出信号y对输入参数θ作贝叶斯估计时,对应的最小平均均方误差为εMMSE=MMSE(pn(n)),其中Substituting equations (18), (20) and (21) into equation (16), it can be seen that when adding additive noise n with probability density function p n (n) to the input signal x of the nonlinear system, the non-linear When the output signal y of the linear system is Bayesian estimated for the input parameter θ, the corresponding minimum mean square error is ε MMSE = MMSE(p n (n)), where
(24)式中En表示基于pn(n)的期望。(24) where E n represents the expectation based on p n (n).
为获得(24)式中噪声增强最小平均均方误差MMSE(pn(n))对应的最优加性噪声,构建以下噪声增强优化模型:In order to obtain the optimal additive noise corresponding to the noise-enhanced minimum mean square error MMSE(p n (n)) in (24), the following noise-enhanced optimization model is constructed:
为求解(25)式中优化问题,首先引入函数当z2≥0时,函数F(z)的黑塞矩是半正定的,从而可得F(z)是凸函数。反之,当z2≥0时,函数/>为凹函数,则有(26)式成立In order to solve the optimization problem in (25), first introduce the function When z 2 ≥ 0, the Hessian moment of the function F(z) is positive semi-definite, so it can be obtained that F(z) is a convex function. Conversely, when z 2 ≥ 0, the function /> is a concave function, then formula (26) holds
令z1=Gy(n),z2=Ry(n)和z3=Jy(n)。因为Ry(n)≥0,所以对任意非线性系统输出信号y以及任意可能的噪声概率密度函数pn(n)来讲,均可知Let z 1 =G y (n), z 2 =R y (n) and z 3 =J y (n). Because R y (n)≥0, so for any nonlinear system output signal y and any possible noise probability density function p n (n), it is known that
对(27)式不等式两边积分有如下结果The integral on both sides of the inequality (27) has the following results
其中表示当所加噪声n为常向量时,对应的平均最小均方误差。由于/>从而一定有/> 进一步地,in Indicates the corresponding average minimum mean square error when the added noise n is a constant vector. due to /> so there must be /> further,
综上,可将(25)式中多元函数求极值问题等价为(29)式中关于参数n的一元函数求极值问题:To sum up, the problem of finding the extreme value of the multivariate function in formula (25) can be equivalent to the problem of finding the extreme value of the one-variable function with respect to the parameter n in formula (29):
求得上述一元函数的优化解后,即可获得使均方误差最小的加性噪声nopt;After obtaining the optimal solution of the above-mentioned unary function, the additive noise n opt that minimizes the mean square error can be obtained;
4)最优噪声增强贝叶斯估计:4) Optimal noise-enhanced Bayesian estimation:
利用噪声增强的非线性系统输出信号y=T(x+nopt)对输入参数θ进行估计,使得均方误差最小的贝叶斯估计为:The input parameter θ is estimated by using the noise-enhanced nonlinear system output signal y=T(x+n opt ), so that the Bayesian estimate with the smallest mean square error is:
输入参数θ与其贝叶斯估计量之间的均方误差为:Input parameter θ and its Bayesian estimator The mean square error between is:
本发明的效果可以通过以下仿真实验进一步说明:Effect of the present invention can be further illustrated by following simulation experiments:
假设非线性系统输入信号为x=θ+v,其中θ为未知参数,对应的概率密度函数为即θ服从均值为μθ、方差为/>的高斯分布。此外,v为零均值的非对称高斯混合背景噪声,其概率密度函数表示为pv(v)=tγ(v;(1-t)μb,σb 2)+(1-t)γ(v;-tμb,σb 2),其中0<t<1。当θ值一定时,非线性系统输入信号x的条件概率密度函数为px(x|θ)=pv(x-θ)。假设非线性系统为限幅系统,给非线性系统输入信号x加入常量n作为噪声时,对应的非线性系统输出信号y为:Assuming that the input signal of the nonlinear system is x=θ+v, where θ is an unknown parameter, the corresponding probability density function is That is, θ obeys the mean value μ θ and the variance is /> Gaussian distribution. In addition, v is an asymmetric Gaussian mixture background noise with zero mean, and its probability density function is expressed as p v (v)=tγ(v; (1-t)μ b ,σ b 2 )+(1-t)γ( v; -tμ b ,σ b 2 ), where 0<t<1. When the θ value is constant, the conditional probability density function of the nonlinear system input signal x is p x (x|θ) = p v (x-θ). Assuming that the nonlinear system is a limiting system, when adding a constant n as noise to the input signal x of the nonlinear system, the corresponding output signal y of the nonlinear system is:
利用MATLAB语言编程实现对nopt的求解,的估计和LMMSE(nopt)的获取。以t=0.75、A=3、μθ=3、σθ=1、μb=3和σb=1为例,在没有给非线性系统输入信号x加任何噪声时,对应的原贝叶斯估计的最小均方误差为0.8067,通过给非线性系统输入信号x加入常量nopt=-2.75可使得贝叶斯估计的最小均方误差降至0.7003,与原贝叶斯估计相比性能提升了13.2%。Using MATLAB language programming to realize the solution to n opt , Estimation of and acquisition of LMMSE(n opt ). Taking t=0.75, A=3, μ θ =3, σ θ =1, μ b =3 and σ b =1 as an example, when no noise is added to the input signal x of the nonlinear system, the corresponding original Bayes The minimum mean square error of the Bayesian estimate is 0.8067, and the minimum mean square error of the Bayesian estimate can be reduced to 0.7003 by adding a constant n opt = -2.75 to the input signal x of the nonlinear system, which improves performance compared with the original Bayesian estimate up 13.2%.
表1给出了当A=3、μθ=3、σθ=1、μb=3和σb=1时,分别在t值为0.075、0.75和0.9的情况下给非线性系统输入信号加入常量nopt时,加噪前后贝叶斯估计对应的最小均方误差。Table 1 shows that when A=3, μ θ =3, σ θ =1, μ b =3 and σ b =1, the input signals to the nonlinear system are respectively in the case of t values of 0.075, 0.75 and 0.9 When the constant n opt is added, the minimum mean square error corresponding to Bayesian estimation before and after adding noise.
表1加噪前后贝叶斯估计对应的最小均方误差Table 1 The minimum mean square error corresponding to Bayesian estimation before and after adding noise
由表1可知,一定情况下给非线性系统输入信号加入适当的常量,可使得最优贝叶斯估计的性能进一步提升。It can be seen from Table 1 that under certain circumstances, adding appropriate constants to the input signal of the nonlinear system can further improve the performance of the optimal Bayesian estimation.
为了进一步研究通过给非线性系统输入信号加入不同噪声实现的估计性能,接下来通过先后改变背景噪声参数t、非线性系统门限A、输入参数θ的均值μθ和标准差σθ,来比较不同条件下加噪前后最优贝叶斯估计的均方误差,具体如下:In order to further study the estimation performance achieved by adding different noises to the input signal of the nonlinear system, the background noise parameter t, the nonlinear system threshold A, the mean value μ θ and the standard deviation σ θ of the input parameter θ are successively changed to compare different The mean square error of the optimal Bayesian estimation before and after adding noise under the condition is as follows:
保持A=3、μθ=3、σθ=1、μb=3和σb=1不变,将t以0.05的间隔从0增至1。针对每个t值,给非线性系统输入信号x加入相应的最优加性噪声nopt,获得对应加噪后的噪声增强贝叶斯估计的最小均方误差,并与未加噪时原贝叶斯估计的最小均方误差进行对比,结果如图2。随着t值的增加,噪声增强贝叶斯估计和原贝叶斯估计对应的最小均方误差均先增大后减小,且前者关于t=0.5对称。此外,针对任意可能的t值而言,噪声增强贝叶斯估计对应的最小均方误差均小于原贝叶斯估计对应的最小均方误差。Keep A=3, μ θ =3, σ θ =1, μ b =3 and σ b =1, and increase t from 0 to 1 at an interval of 0.05. For each value of t, add the corresponding optimal additive noise n opt to the input signal x of the nonlinear system, and obtain the minimum mean square error of the noise-enhanced Bayesian estimation corresponding to the added noise, and compare with the original noise without adding noise The minimum mean square error of Yeesian estimation is compared, and the results are shown in Figure 2. As the value of t increases, the minimum mean square error corresponding to the noise-enhanced Bayesian estimation and the original Bayesian estimation first increases and then decreases, and the former is symmetrical about t=0.5. In addition, for any possible value of t, the minimum mean square error corresponding to the noise-enhanced Bayesian estimation is smaller than that corresponding to the original Bayesian estimation.
保持t=0.75、μθ=3、σθ=1、μb=3和σb=1不变,将A以0.5的间隔从0增至10,对每个A值求解对应的噪声增强最优贝叶斯估计的均方误差,并与未加噪的情况进行对比,结果如图3。当A值从零逐渐增大时,原贝叶斯估计最小均方误差从0.9358逐渐减小,且当A值大于5.75时保持恒定值0.6895。当0<A<7.5时,噪声增强贝叶斯估计最小均方误差小于原贝叶斯估计最小均方误差,而当A>7.5时,无论加入任何噪声均不能使得贝叶斯估计对应的均方误差减小。Keep t = 0.75, μ θ = 3, σ θ = 1, μ b = 3 and σ b = 1, increase A from 0 to 10 at an interval of 0.5, and solve the corresponding noise enhancement maximum value for each value of A The mean square error of Bayesian estimation is compared with that without noise, and the results are shown in Figure 3. When the value of A gradually increases from zero, the minimum mean square error of the original Bayesian estimation gradually decreases from 0.9358, and when the value of A is greater than 5.75, it remains constant at 0.6895. When 0<A<7.5, the minimum mean square error of the noise-enhanced Bayesian estimation is smaller than that of the original Bayesian estimation, and when A>7.5, no matter what noise is added, the corresponding mean square error of the Bayesian estimation cannot be made The square error is reduced.
保持t=0.75、A=3、σθ=1μb=3和σb=1不变,将μθ以0.25的间隔从0增至5,对每个μθ值求解对应的噪声增强最优贝叶斯估计的均方误差,并与未加噪的情况进行对比,结果如图4。原贝叶斯估计对应的最小均方误差随着μθ值的增大而增大,而最优噪声增强贝叶斯估计对应的最小均方误差一直保持常量0.7003。这表明,μθ>0噪声增强贝叶斯估计的性能与μθ=0时原贝叶斯估计的性能一样。此外,贝叶斯估计对应的最小均方误差的改善程度随着μθ值的增大而增大。Keep t = 0.75, A = 3, σ θ = 1 μ b = 3 and σ b = 1, increase μ θ from 0 to 5 at an interval of 0.25, and solve the corresponding optimal noise enhancement for each value of μ θ The mean square error of Bayesian estimation is compared with that without noise, and the results are shown in Figure 4. The minimum mean square error corresponding to the original Bayesian estimation increases with the increase of μ θ , while the minimum mean square error corresponding to the optimal noise-enhanced Bayesian estimation remains constant at 0.7003. This shows that the performance of the noise-enhanced Bayesian estimation for μ θ > 0 is the same as that of the original Bayesian estimation for μ θ = 0. In addition, the degree of improvement of the minimum mean square error corresponding to Bayesian estimation increases as the value of μ θ increases.
保持t=0.75、A=3、μθ=3、μb=3和σb=1不变,将σθ以0.1的间隔从0增至2,对每个σθ值求解对应的噪声增强最优贝叶斯估计的均方误差,并与未加噪的情况进行对比,结果如图5。噪声增强贝叶斯估计和原贝叶斯估计对应的最小均方误差均为关于σθ单调递增的函数。当σθ值趋近于零时,无论加入任何噪声均不可能使得贝叶斯估计性能得到提升。当σθ值增大到一定程度时,贝叶斯估计对应的最小均方误差通过加噪实现的改善程度随着σθ的增大而增大。Keeping t = 0.75, A = 3, μ θ = 3, μ b = 3, and σ b = 1, increase σ θ from 0 to 2 at intervals of 0.1, and solve for each value of σ θ the corresponding noise enhancement The mean square error of the optimal Bayesian estimation is compared with that without noise, and the results are shown in Figure 5. The minimum mean square error corresponding to the noise-enhanced Bayesian estimation and the original Bayesian estimation is a monotonically increasing function of σ θ . When the value of σ θ approaches zero, it is impossible to improve the performance of Bayesian estimation no matter what noise is added. When the value of σ θ increases to a certain extent, the degree of improvement of the minimum mean square error corresponding to Bayesian estimation through adding noise increases with the increase of σ θ .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811365349.XA CN109657273B (en) | 2018-11-16 | 2018-11-16 | Bayesian parameter estimation method based on noise enhancement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811365349.XA CN109657273B (en) | 2018-11-16 | 2018-11-16 | Bayesian parameter estimation method based on noise enhancement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109657273A CN109657273A (en) | 2019-04-19 |
CN109657273B true CN109657273B (en) | 2023-07-04 |
Family
ID=66110952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811365349.XA Active CN109657273B (en) | 2018-11-16 | 2018-11-16 | Bayesian parameter estimation method based on noise enhancement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109657273B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113837782B (en) * | 2020-06-24 | 2024-04-19 | 上海顺如丰来技术有限公司 | Periodic term parameter optimization method and device of time sequence model and computer equipment |
CN114520757A (en) * | 2020-11-20 | 2022-05-20 | 富士通株式会社 | Device and method for estimating performance of nonlinear communication system, and electronic equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185661A (en) * | 2010-12-31 | 2011-09-14 | 哈尔滨工业大学深圳研究生院 | Noise enhancement distributed detection method and system based on Bayes criterion of gradient method |
CN106683122A (en) * | 2016-12-16 | 2017-05-17 | 华南理工大学 | Particle filtering method based on Gaussian mixture model and variational Bayes |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7047047B2 (en) * | 2002-09-06 | 2006-05-16 | Microsoft Corporation | Non-linear observation model for removing noise from corrupted signals |
US7165026B2 (en) * | 2003-03-31 | 2007-01-16 | Microsoft Corporation | Method of noise estimation using incremental bayes learning |
CN102075268B (en) * | 2010-12-31 | 2013-10-23 | 哈尔滨工业大学深圳研究生院 | Noise enhancement distribution detection method and system based on particle swarm optimization method |
TWI487336B (en) * | 2012-04-24 | 2015-06-01 | Mstar Semiconductor Inc | Apparatus and method for correcting phase error |
CN107832268B (en) * | 2017-11-22 | 2020-11-03 | 重庆大学 | A Linear Minimum Mean Square Error Estimation Method Based on Noise Enhancement |
-
2018
- 2018-11-16 CN CN201811365349.XA patent/CN109657273B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185661A (en) * | 2010-12-31 | 2011-09-14 | 哈尔滨工业大学深圳研究生院 | Noise enhancement distributed detection method and system based on Bayes criterion of gradient method |
CN106683122A (en) * | 2016-12-16 | 2017-05-17 | 华南理工大学 | Particle filtering method based on Gaussian mixture model and variational Bayes |
Also Published As
Publication number | Publication date |
---|---|
CN109657273A (en) | 2019-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fletcher et al. | Expectation consistent approximate inference: Generalizations and convergence | |
CN109657273B (en) | Bayesian parameter estimation method based on noise enhancement | |
CN108957421B (en) | Radar radiation source individual identification method and system based on Bezier curve fitting | |
Dalang et al. | Hitting properties of parabolic spde’s with reflection | |
CN107832268B (en) | A Linear Minimum Mean Square Error Estimation Method Based on Noise Enhancement | |
Fu et al. | An averaging principle for two-scale stochastic partial differential equations | |
CN109635349B (en) | Method for minimizing claramelteon boundary by noise enhancement | |
Masuda et al. | Moment convergence in regularized estimation under multiple and mixed-rates asymptotics | |
CN106059531A (en) | A Non-Negative Adaptive Filter | |
CN102622729A (en) | Spatial self-adaptive block-matching image denoising method based on fuzzy set theory | |
CN105372651A (en) | Adaptive maneuvering target tracking method on the basis of optimal AR (Autoregressive) model | |
CN108599884B (en) | A Signal Detection Method with Noise Enhancement to Minimize Error Probability | |
Girard | Approximately bisimilar abstractions of incrementally stable finite or infinite dimensional systems | |
Khmaladze et al. | Goodness-of-fit problem for errors in nonparametric regression: Distribution free approach | |
Barakat et al. | Comparison between the rates of convergence of extremes under linear and under power normalization | |
CN110190831B (en) | Mixed norm non-negative adaptive filter | |
Bradic | Robustness in sparse high-dimensional linear models: Relative efficiency and robust approximate message passing | |
Azizan et al. | A stochastic interpretation of stochastic mirror descent: Risk-sensitive optimality | |
CN110633516A (en) | A Method for Predicting the Performance Degradation Trend of Electronic Devices | |
Wei et al. | A compressive sensing recovery algorithm based on sparse Bayesian learning for block sparse signal | |
CN104820788A (en) | Fractional order extended Kalman filtering method considering Levy noise | |
CN108732432A (en) | Constrained Noise enhancement signal detecting method under a kind of maximum posteriori criterion | |
CN105676201A (en) | Radial length extraction method of radar object distance image based on sliding average | |
Barbu et al. | FIRST ORDER ASYMPTOTIC EXPANSION FOR A SINGULARLY PERTURBED, COUPLED PARABOLIC-PARABOLIC PROBLEM | |
CN104992224B (en) | A kind of Pulse Coupled Neural Network extends system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240718 Address after: No. 319, North Huafu Road, Jiulongpo District, Chongqing (No. 6, Building 4, Shilong Community, Jiulong Park) Patentee after: Chongqing Nanao Technology Co.,Ltd. Country or region after: China Address before: 400044 No. 174 Sha Jie street, Shapingba District, Chongqing Patentee before: Chongqing University Country or region before: China |
|
TR01 | Transfer of patent right |