CN109651582B - Waterborne polyurethane ink binder and preparation method thereof - Google Patents
Waterborne polyurethane ink binder and preparation method thereof Download PDFInfo
- Publication number
- CN109651582B CN109651582B CN201811422822.3A CN201811422822A CN109651582B CN 109651582 B CN109651582 B CN 109651582B CN 201811422822 A CN201811422822 A CN 201811422822A CN 109651582 B CN109651582 B CN 109651582B
- Authority
- CN
- China
- Prior art keywords
- parts
- water
- diisocyanate
- polyurethane ink
- ink binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004814 polyurethane Substances 0.000 title claims abstract description 64
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 64
- 239000011230 binding agent Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229920000909 polytetrahydrofuran Polymers 0.000 claims abstract description 16
- 239000004970 Chain extender Substances 0.000 claims abstract description 14
- 229920005906 polyester polyol Polymers 0.000 claims abstract description 14
- 229920005862 polyol Polymers 0.000 claims abstract description 14
- 150000003077 polyols Chemical class 0.000 claims abstract description 14
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 9
- 229920000570 polyether Polymers 0.000 claims abstract description 9
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 8
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 claims abstract description 6
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 claims abstract description 6
- 125000005442 diisocyanate group Chemical group 0.000 claims abstract description 6
- 229920000642 polymer Polymers 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 38
- KXBFLNPZHXDQLV-UHFFFAOYSA-N [cyclohexyl(diisocyanato)methyl]cyclohexane Chemical compound C1CCCCC1C(N=C=O)(N=C=O)C1CCCCC1 KXBFLNPZHXDQLV-UHFFFAOYSA-N 0.000 claims description 20
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 14
- 229920001223 polyethylene glycol Polymers 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 10
- 238000004945 emulsification Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 235000011037 adipic acid Nutrition 0.000 claims description 5
- 239000001361 adipic acid Substances 0.000 claims description 5
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 5
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 claims description 3
- YRTNMMLRBJMGJJ-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;hexanedioic acid Chemical compound OCC(C)(C)CO.OC(=O)CCCCC(O)=O YRTNMMLRBJMGJJ-UHFFFAOYSA-N 0.000 claims description 3
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 claims description 3
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 claims description 3
- 229920001634 Copolyester Polymers 0.000 claims description 3
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 claims description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 claims description 3
- CUUNWWCQMKJKRR-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;hexanedioic acid;hexane-1,1-diol Chemical compound OCC(C)(C)CO.CCCCCC(O)O.OC(=O)CCCCC(O)=O CUUNWWCQMKJKRR-UHFFFAOYSA-N 0.000 claims description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 2
- PBKFPDHTSQEJEJ-UHFFFAOYSA-N 2-benzofuran-1,3-dione;hexane-1,6-diol Chemical compound OCCCCCCO.C1=CC=C2C(=O)OC(=O)C2=C1 PBKFPDHTSQEJEJ-UHFFFAOYSA-N 0.000 claims description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 239000012298 atmosphere Substances 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- GPCIDUIBGGUBJG-UHFFFAOYSA-N hexanedioic acid;hexane-1,1-diol Chemical compound CCCCCC(O)O.OC(=O)CCCCC(O)=O GPCIDUIBGGUBJG-UHFFFAOYSA-N 0.000 claims description 2
- 238000006116 polymerization reaction Methods 0.000 claims description 2
- 238000007639 printing Methods 0.000 abstract description 16
- 239000000853 adhesive Substances 0.000 abstract description 12
- 230000001070 adhesive effect Effects 0.000 abstract description 12
- 238000004806 packaging method and process Methods 0.000 abstract description 8
- 230000007613 environmental effect Effects 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 230000002035 prolonged effect Effects 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract description 2
- 239000000976 ink Substances 0.000 description 60
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 18
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 238000010907 mechanical stirring Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 230000018044 dehydration Effects 0.000 description 8
- 238000006297 dehydration reaction Methods 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000000576 coating method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- 229920006255 plastic film Polymers 0.000 description 5
- 239000002985 plastic film Substances 0.000 description 5
- -1 polyhexamethylene adipate Polymers 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229920006264 polyurethane film Polymers 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- NNOZGCICXAYKLW-UHFFFAOYSA-N 1,2-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC=C1C(C)(C)N=C=O NNOZGCICXAYKLW-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 238000007171 acid catalysis Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009459 flexible packaging Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6603—Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6607—Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4202—Two or more polyesters of different physical or chemical nature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4205—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
- C08G18/4208—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4236—Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
- C08G18/4238—Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4804—Two or more polyethers of different physical or chemical nature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5072—Polyethers having heteroatoms other than oxygen containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/102—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
The invention discloses a water-based polyurethane ink binder and a preparation method thereof, wherein the water-based polyurethane ink binder is prepared from the following components in parts by weight: 20-40 parts of diisocyanate, 20-30 parts of polymer polyol, 20-30 parts of polytetramethylene ether glycol, 20-30 parts of phthalic anhydride polyester polyol, 10-20 parts of sulfonate polyether polyol, 10-20 parts of nonionic chain extender, 0.5-2.0 parts of small molecular chain extender, 0.1-0.5 part of catalyst and 150-250 parts of water; the water resistance of the invention can be fundamentally solved, the blending stability is ensured, the adhesive force with a printing substrate can be improved, the energy consumption is low, the efficiency is high, the water resistance and the environmental protection performance can be fundamentally solved, the service life of the water-based polyurethane ink binder is prolonged, the application range of the binder is expanded, and the invention has very important significance for the polyurethane industry, the ink industry and the packaging industry.
Description
Technical Field
The invention relates to a polyurethane ink binder and a preparation method thereof.
Background
Ink is an important material for printing, and it represents patterns and characters on a printing material by printing. Inks are generally composed of pigments, binders, solvents, and adjuvants, which are uniformly mixed and repeatedly rolled to form a viscous colloidal fluid. The ink is widely used for various printings such as books and periodicals, packaging decoration, building decoration and the like, and along with the increase of social demands, the variety and the yield of the ink are correspondingly expanded and increased.
The traditional solvent type ink, such as the technical scheme related to the invention with the application number of 200710027060.2, needs toluene, has great harm to human bodies due to toluene residues, and has great potential safety hazard when being used for packaging in food or medical industries. The invention creation with the application number of 200910044647.3 discloses an alcohol-soluble ink formula, which uses alcohol as a solvent, does not use benzene and ketone which are extremely harmful to human bodies as the solvent, and has low product stability.
The water-based ink takes water as a solvent, and compared with solvent-based ink, the water-based ink greatly improves the working environment of ink manufacturers and printing operators, thereby reducing the harm of harmful substances to the bodies of the ink manufacturers and the printing operators, and solving the problems of emission and pollution existing in the current packaging and printing industries. As a key component of the ink, the ink vehicle directly affects the performance properties of the ink, such as viscosity, adhesion, gloss, and drying speed. The waterborne polyurethane is formed by dispersing polyurethane in water, is nontoxic, pollution-free and non-combustible, meets the requirement of environmental protection, and is widely applied to the fields of coatings, adhesives and the like. As a binder of the water-based ink, the water-based polyurethane has the advantages of good adhesive force, good flexibility, high tensile strength, friction resistance and the like, and the water-based polyurethane with excellent performance plays an increasingly important role in the field of the water-based ink. The invention with the application number of 200910044561.0 discloses an environment-friendly water-based polyurethane ink and a preparation method thereof, and the product can be applied to the requirements of paper, plastics, card making and the like. The invention with application number 201410684355.7 provides a high-performance water-based polyurethane ink scheme, which has excellent adhesive force, good stability, fast drying speed and strong film-forming performance on flexible packaging films. The invention of application number 201610577065.1 discloses an environment-friendly hydrophobic waterborne polyurethane ink and a preparation method thereof, and the prepared ink has strong adhesive force, good water resistance and environmental protection, can remarkably improve the water resistance of printing ink and expand the application range thereof. However, the aqueous polyurethanes described in the currently published reports have some problems: the hydrophilic group is mainly carboxyl, the hydrophilicity of the carboxylate is relatively poor, the use amount is large, compared with solvent type polyurethane, the water resistance is difficult to solve fundamentally, the reaction time of the hydrophilic chain extender is long, and the production efficiency is not high; the ionic stability of the carboxylate is not good enough, more auxiliaries are required to be added for preparing the ink, and the stability of the ink is not guaranteed; triethylamine used for neutralizing carboxyl has strong toxicity, is applied to the field of food packaging, has safety risk, and can cause instability of pH of the emulsion due to volatilization of triethylamine and influence storage stability of the polyurethane emulsion due to catalytic hydrolysis of the carboxyl; in the synthetic process of the waterborne polyurethane, the used organic solvent acetone is flammable and explosive, and the acetone needs to be removed, so that the preparation process is increased, and the time and the energy are consumed; in the process of removing acetone, the aqueous polyurethane has the possibility of unstable agglomeration. A new preparation method of the waterborne polyurethane is found, so that the water resistance and the environmental protection performance of the waterborne polyurethane are fundamentally improved, the service life of the waterborne polyurethane ink is prolonged, the application range of the waterborne polyurethane ink is expanded, and the waterborne polyurethane ink has very important significance for the polyurethane industry, the ink industry and the packaging industry.
Disclosure of Invention
The invention aims to disclose a polyurethane ink binder and a preparation method thereof, which are used for overcoming the defects of the existing water-based polyurethane ink binder,
the aqueous polyurethane ink binder is prepared from the following components in parts by weight:
the diisocyanate is selected from at least two of Toluene Diisocyanate (TDI), 1, 6-Hexamethylene Diisocyanate (HDI), isophorone diisocyanate (IPDI), diphenylmethane 4, 4-diisocyanate (MDI), dicyclohexylmethane diisocyanate (HMDI) and tetramethylxylylene diisocyanate (TMXDI);
preferably:
the diisocyanate is a mixture of isophorone diisocyanate (IPDI) and dicyclohexylmethane diisocyanate (HMDI), and the weight ratio of isophorone diisocyanate to dicyclohexylmethane diisocyanate is 1: 0.2-5; preferably: isophorone diisocyanate, dicyclohexylmethane diisocyanate, 1: 0.5-2;
the polymer polyol is at least one selected from adipic acid type polyester polyol with the number average molecular weight of 1000-3000, polycaprolactone and polycarbonate; wherein, the micromolecular alcohol in the polyester polyol synthetic raw material is selected from one or more of 2-methyl-1, 3-propylene glycol, 3-methyl-1, 5-pentanediol, 2, 4-trimethyl-1, 3-pentanediol, neopentyl glycol, 1, 6-hexanediol, 1, 4-cyclohexanedimethanol and diethylene glycol;
preferably, the adipic acid type polyester polyol is selected from one or more of polyhexamethylene adipate (PHA), neopentyl glycol adipate (PNA), and hexanediol-neopentyl glycol adipate copolyester (PHNA);
the phthalic anhydride polyester polyol is polyester polyol based on phthalic anhydride-1, 6 hexanediol;
the structural general formula of the sulfonate polyether polyol is as follows:
wherein n is1+n2=3~10。
The sulfonate polyether polyol can be prepared by adopting a method reported in a patent CN 200580023287;
the nonionic chain extender is polyethylene glycol monomethyl ether with single functionality based on ethylene oxide polymerization;
the chain extender is at least one selected from 2-methyl-1, 3-propanediol, 3-methyl-1, 5-pentanediol, 2, 4-trimethyl-1, 3-pentanediol, neopentyl glycol or 1, 6-hexanediol;
the catalyst is selected from environment-friendly organic bismuth catalysts;
the weight solid content of the aqueous polyurethane ink binder is 35-50%;
the preparation method of the waterborne polyurethane ink binder comprises the following steps:
in an inert atmosphere, mixing the polymer polyol, polytetramethylene ether glycol, phthalic anhydride polyester polyol, sulfonate polyether polyol, a nonionic chain extender, a micromolecule chain extender and a catalyst, adding the diisocyanate, and reacting at 80-100 ℃ for 3-4h to obtain a prepolymerization reaction system;
and (3) reducing the temperature of the prepolymerization reaction system to below 50 ℃, and adding water for emulsification to obtain the aqueous polyurethane ink binder.
The inert gas may be, for example, nitrogen gas;
the aqueous polyurethane ink binder provided by the invention is widely applied to the field of aqueous ink.
Compared with the prior art, the invention has the following beneficial effects:
(1) the invention adopts the polyether polyol grafted with sulfonate groups and the nonionic chain extender as the structures for providing the hydrophilicity of polyurethane, and compared with the water-based polyurethane ink connecting material adopting carboxylic acid type hydrophilic groups in the prior art, the water resistance can be fundamentally solved because no carboxyl is available; the ionic stability of the carboxylate is poor, more auxiliaries are required to be added for preparing the ink, the stability of the ink is not guaranteed, and the stability of the prepared auxiliaries can be ensured by using ions and non-ions of the sulfonate as hydrophilic groups; the strong polarity of the sulfonate can improve the adhesive force with a printing substrate, and the adhesive fastness of the product is obvious; does not need to use a triethylamine neutralizing agent with strong toxicity, is applied to the field of food packaging, and is safe and environment-friendly to use; meanwhile, the product does not cause instability due to the change of the pH value of the polyurethane emulsion due to the volatilization of the neutralizing agent, the carboxyl has obvious acid catalysis hydrolysis characteristics, the storage stability of the polyurethane emulsion is influenced, the storage period of the product is seriously reduced, and the comprehensive performance of the polyurethane emulsion is obviously reduced.
(2) The invention adopts a solvent-free one-step method for preparation, in the synthesis process of the waterborne polyurethane, all processes are carried out in one reactor, and a flammable and explosive organic solvent acetone is not used, so that the emulsion does not need to be transferred to desolventizing equipment for desolventizing, the production safety operation risk is reduced, the preparation process flow is simple, the production efficiency is greatly improved, and the energy consumption is reduced; because acetone does not need to be removed, the problem of agglomeration instability possibly generated in the desolventizing process of the waterborne polyurethane does not occur.
The aqueous polyurethane ink binder prepared by the invention has low production energy consumption and high efficiency, can fundamentally solve the problems of water resistance and environmental protection, prolongs the service life of the aqueous polyurethane ink binder and expands the application range of the aqueous polyurethane ink binder, and has very important significance for polyurethane industry, ink and packaging industry.
Detailed Description
The invention will be further illustrated with reference to the following specific examples. It should be understood that these examples are only for illustrating the present invention and are not intended to limit the scope of the present invention. In practice, the technical personnel according to the invention make improvements and modifications, which still belong to the protection scope of the invention.
The following examples of the invention use the following starting materials:
adipic acid type polyester polyol:
PHA, poly (hexanediol adipate), hydroxyl value 56mg KOH/g, number average molecular weight 2000 g/mol;
PNA, poly neopentyl glycol adipate, hydroxyl value 56mg KOH/g, number average molecular weight 2000 g/mol;
PHNA, polyhexamethylene adipate-neopentyl glycol copolyester with a hydroxyl value of 56mg KOH/g and a number average molecular weight of 2000 g/mol;
PTMEG, polytetramethylene ether glycol, hydroxyl value 56mg KOH/g, number average molecular weight 2000 g/mol;
PHPA, phthalic anhydride polyester polyol, hydroxyl value of 56mg KOH/g, number average molecular weight of 2000 g/mol;
PolyES, sulfonate polyether polyol, n1+n2=5~7。
M-PEG, a non-ionic chain extender, a hydroxyl value of 56mg KOH/g and a number average molecular weight of 1000 g/mol;
The starting materials in the following examples which are not mentioned above are all commercially available.
Example 1
50g PHA, 50g PTMEG, 50g PHPA, 25g PolyES, 25g M-PEG, 25g isophorone diisocyanate, 25g dicyclohexylmethane diisocyanate, 1.25g 1, 6-ethanediol, 0.25g dicyclohexylmethane diisocyanate after vacuum dehydration under the protection of dry nitrogen8108 adding the mixture into a reaction vessel, and reacting for 3.5 hours at the temperature of 98 ℃ under mechanical stirring to obtain a prepolymerization reaction system; and (3) reducing the temperature of the prepolymerization reaction system to be below 50 ℃, and then adding 375g of water for emulsification to obtain the aqueous polyurethane ink binder with the solid content of 40 percent by weight.
Example 2
25g PHA, 25g PNA, 50g PTMEG, 50g PHPA, 20g PolyES, 25g M-PEG, 35g isophorone diisocyanate, 40g dicyclohexylmethane diisocyanate, 4.5g 1, 6-ethanediol, 0.25g 1, 6-ethanediol8108 adding the mixture into a reaction vessel, and reacting for 4 hours at the temperature of 98 ℃ under mechanical stirring to obtain a prepolymerization reaction system; and (3) reducing the temperature of the prepolymerization reaction system to be below 50 ℃, and then adding 375g of water for emulsification to obtain the aqueous polyurethane ink binder with the solid content of 42 percent.
Example 3
Under the protection of dry nitrogen, 35g PHA, 15g PNA, 50g PTMEG and 50g PTMEG after vacuum dehydration were added20g of PolyES, 25g of M-PEG, 30g of isophorone diisocyanate, 40g of dicyclohexylmethane diisocyanate, 2.5g of 1, 6-ethanediol, 0.25g of8108 adding the mixture into a reaction vessel, and reacting for 4 hours at the temperature of 98 ℃ under mechanical stirring to obtain a prepolymerization reaction system; and (3) reducing the temperature of the prepolymerization reaction system to be below 50 ℃, and then adding 375g of water for emulsification to obtain the aqueous polyurethane ink binder with the solid content of 41 percent by weight.
Example 4
75g PHA, 75g PTMEG, 75g PHPA, 45g PolyES, 45g M-PEG, 45g isophorone diisocyanate, 45g dicyclohexylmethane diisocyanate, 3g 1, 6-ethanediol and 1g dicyclohexylmethane diisocyanate after vacuum dehydration are added under the protection of dry nitrogen8108 adding the mixture into a reaction vessel, and reacting for 3.5 hours at the temperature of 98 ℃ under mechanical stirring to obtain a prepolymerization reaction system; and (3) reducing the temperature of the prepolymerization reaction system to be below 50 ℃, and then adding 580g of water for emulsification to obtain the aqueous polyurethane ink binder with the solid content of 41 percent by weight.
Example 5
75g of PHNA, 75g of PTMEG, 75g of PHPA, 35g of PolyES, 45g of M-PEG, 45g of isophorone diisocyanate, 55g of dicyclohexylmethane diisocyanate, 6g of 1, 6-ethanediol and 1g of ethylene glycol after vacuum dehydration are added under the protection of dry nitrogen8108 adding the mixture into a reaction vessel, and reacting for 4 hours at the temperature of 98 ℃ under mechanical stirring to obtain a prepolymerization reaction system; and (3) reducing the temperature of the prepolymerization reaction system to be below 50 ℃, and adding 545g of water for emulsification to obtain the aqueous polyurethane ink binder with the solid content of 43 percent by weight.
Example 6
Under the protection of dry nitrogen, 75g of PHNA, 75g of PTMEG, 75g of PHPA, 40g of PolyES,45g of M-PEG, 45g of isophorone diisocyanate, 50g of dicyclohexylmethane diisocyanate, 4.5g of 1, 6-ethanediol, 1g of8108 adding the mixture into a reaction vessel, and reacting for 4 hours at the temperature of 98 ℃ under mechanical stirring to obtain a prepolymerization reaction system; and (3) reducing the temperature of the prepolymerization reaction system to be below 50 ℃, and adding 560g of water for emulsification to obtain the aqueous polyurethane ink binder with the solid content of 42 percent by weight.
Example 7
60g PHA, 60g PTMEG, 60g PHPA, 40g PolyES, 40g M-PEG, 40g isophorone diisocyanate, 40g dicyclohexylmethane diisocyanate, 4g 1, 6-ethanediol and 1g dicyclohexylmethane diisocyanate after vacuum dehydration are added under the protection of dry nitrogen8108 adding the mixture into a reaction vessel, and reacting for 3.5 hours at the temperature of 98 ℃ under mechanical stirring to obtain a prepolymerization reaction system; and (3) reducing the temperature of the prepolymerization reaction system to be below 50 ℃, and then adding 500g of water for emulsification to obtain the aqueous polyurethane ink binder with the solid content of 41 percent by weight.
Example 8
30g PHA, 30g PNA, 60g PTMEG, 60g PHPA, 30g PolyES, 40g M-PEG, 40g isophorone diisocyanate, 30g dicyclohexylmethane diisocyanate, 4g 1, 6-ethanediol, 1g 1 after vacuum dehydration under the protection of dry nitrogen8108 adding the mixture into a reaction vessel, and reacting for 4 hours at the temperature of 98 ℃ under mechanical stirring to obtain a prepolymerization reaction system; and (3) reducing the temperature of the prepolymerization reaction system to be below 50 ℃, and then adding 430g of water for emulsification to obtain the aqueous polyurethane ink binder with the solid content of 43 percent by weight.
Comparative example 1
This comparative example is based on example 1, with all the PolyES replaced by dimethylolpropionic acid:
under the protection of dry nitrogen, adding 50g of PHA, 50g of PTMEG, 50g of PHPA, 25g of M-PEG, 25g of isophorone diisocyanate and 25g of dicyclohexylmethane diisocyanate which are subjected to vacuum dehydration into a reaction vessel, and reacting at 90 ℃ for 3 hours under mechanical stirring to obtain a prepolymerization reaction system; the prepolymerization reaction system is cooled to below 60 ℃, and 7.5g of dimethylolpropionic acid, 1.25g of 1, 6-ethanediol, 200g of acetone and 0.5g of8108, reacting for 3 hours at 60 ℃ under mechanical stirring to obtain a chain extension reaction system; reducing the temperature of a chain extension reaction system to below 50 ℃, adding 5.6g of triethylamine to react for 30min, adding 445g of water to emulsify to obtain polyurethane emulsion, and removing the solvent acetone by reduced pressure distillation to obtain the water-based polyurethane ink binder with the weight solid content of 35%.
Comparative example 2
This comparative example was based on comparative example 1, replacing all the PolyES and M-PEG with dimethylolpropionic acid:
under the protection of dry nitrogen, adding 50g of PHA, 50g of PTMEG, 50g of PHPA, 25g of isophorone diisocyanate and 25g of dicyclohexylmethane diisocyanate which are subjected to vacuum dehydration into a reaction vessel, and reacting at 90 ℃ for 2.5 hours under mechanical stirring to obtain a prepolymerization reaction system; the prepolymerization reaction system is cooled to below 60 ℃, and 9.2g of dimethylolpropionic acid, 1.25g of 1, 6-ethanediol, 200g of acetone and 1.0g of8108, reacting for 4 hours at 60 ℃ under mechanical stirring to obtain a chain extension reaction system; reducing the temperature of a chain extension reaction system to below 50 ℃, adding 6.9g of triethylamine to react for 30min, adding 438g of water to emulsify to obtain polyurethane emulsion, and removing solvent acetone through reduced pressure distillation to obtain the aqueous polyurethane ink binder with the weight solid content of 33%.
The aqueous polyurethane ink vehicles obtained in examples 1-8 and comparative example 1/2 were tested for properties and the results are shown in Table 1 below.
Adhesion force: the test is carried out according to GB/T13217.7-1991, the judgment standard is that more than 90% of the printing coating is remained on the plastic film, and the adhesive force is good; the printing coating remains 80-90% on the plastic film, and has good adhesive force; 70-80% of printing coating remains on the plastic film, and the adhesive force is good; 60-70% of printing coating is remained on the plastic film, and the adhesive force is general; the printing coating remains less than 60% on the plastic film, and the adhesion is poor.
Water resistance: w is to be1Pouring water-based polyurethane ink binder on a polytetrafluoroethylene plate, drying at 120 ℃ for 2h, soaking in distilled water for 24h, taking out and wiping off water attached to the surface of the polytetrafluoroethylene plate, weighing W2Water resistance is characterized by the water absorption,% water absorption (W)2-W1)/W1The lower the water absorption, the better the water resistance, the lower the X100%.
Tensile property: pouring a certain amount of aqueous polyurethane ink binder on a polytetrafluoroethylene plate, naturally drying for 3 days at room temperature to obtain a polyurethane film with the thickness of about 1mm, placing the film in a vacuum drying oven at 50 ℃ to dry until the quality does not change any more, and then testing the tensile strength of the polyurethane film; placing the film in an environment with 70 ℃/95% humidity for three weeks, taking out and wiping off water attached to the surface of the film, and measuring the hydrolysis tensile strength, wherein the higher the hydrolysis tensile strength is, the better the hydrolysis performance is; the aqueous polyurethane ink binder is placed for six months and then made into a polyurethane film, and the tensile strength of the polyurethane film is tested, wherein the higher the tensile strength is, the better the storage stability is.
TABLE 1
In conclusion, in the embodiment of the invention, the polyether polyol grafted with the sulfonate group and the nonionic chain extender are used as structures for providing hydrophilicity of polyurethane, a solvent-free one-step production process is adopted, the preparation process is simple and convenient, the production efficiency is high, the process is non-toxic and pollution-free, and the obtained ink binder has strong adhesive force, good water resistance, high mechanical property and good storage stability, and can obviously improve the comprehensive performance of printing ink.
In light of the above teachings, those skilled in the art will readily appreciate that the materials and their equivalents, the processes and their equivalents, as listed or exemplified herein, are capable of performing the invention in any of its several forms, and that the upper and lower limits of the parameters of the materials and processes, and the ranges of values between these limits are not specifically enumerated herein.
Claims (2)
1. The aqueous polyurethane ink binder is characterized by being prepared from the following components in parts by weight:
the diisocyanate is a mixture of isophorone diisocyanate (IPDI) and dicyclohexylmethane diisocyanate (HMDI), and the weight ratio of isophorone diisocyanate to dicyclohexylmethane diisocyanate is 1: 0.2-5;
the polymer polyol is selected from adipic acid type polyester polyol with the number average molecular weight of 1000-3000, and the adipic acid type polyester polyol is selected from one or more of poly (hexanediol adipate) (PHA), poly (neopentyl glycol adipate) (PNA) and poly (hexanediol adipate-neopentyl glycol) copolyester (PHNA);
the phthalic anhydride polyester polyol is polyester polyol based on phthalic anhydride-1, 6 hexanediol;
the structural general formula of the sulfonate polyether polyol is as follows:
The nonionic chain extender is polyethylene glycol monomethyl ether with single functionality based on ethylene oxide polymerization;
the chain extender is at least one selected from 2-methyl-1, 3-propanediol, 3-methyl-1, 5-pentanediol, 2, 4-trimethyl-1, 3-pentanediol, neopentyl glycol or 1, 6-hexanediol;
the preparation method of the aqueous polyurethane ink binder adopts a solvent-free one-step method and comprises the following steps: in an inert atmosphere, mixing the polymer polyol, polytetramethylene ether glycol, phthalic anhydride polyester polyol, sulfonate polyether polyol, a nonionic chain extender, a micromolecule chain extender and a catalyst, adding diisocyanate, and reacting at 80-100 ℃ for 3-4h to obtain a prepolymerization reaction system; reducing the temperature of the prepolymerization reaction system to below 50 ℃, and adding water for emulsification to obtain the aqueous polyurethane ink binder; the catalyst is selected from environment-friendly organic bismuth catalysts.
2. The aqueous polyurethane ink vehicle of claim 1, wherein the isophorone diisocyanate and dicyclohexylmethane diisocyanate are 1: 0.5-2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811422822.3A CN109651582B (en) | 2018-11-27 | 2018-11-27 | Waterborne polyurethane ink binder and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811422822.3A CN109651582B (en) | 2018-11-27 | 2018-11-27 | Waterborne polyurethane ink binder and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109651582A CN109651582A (en) | 2019-04-19 |
CN109651582B true CN109651582B (en) | 2022-02-01 |
Family
ID=66111465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811422822.3A Active CN109651582B (en) | 2018-11-27 | 2018-11-27 | Waterborne polyurethane ink binder and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109651582B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110330618B (en) * | 2019-07-30 | 2021-05-18 | 嘉兴学院 | Aqueous polyurethane emulsion, its preparation method and application |
CN110804157B (en) * | 2019-11-26 | 2022-03-08 | 南通高盟新材料有限公司 | Quick-drying waterborne polyurethane ink binder and preparation method thereof |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101787242A (en) * | 2010-01-19 | 2010-07-28 | 华南师范大学 | Wear-resistant waterborne two-component polyurethane coating and preparation method thereof |
CN102086258A (en) * | 2009-12-05 | 2011-06-08 | 中国航天科技集团公司第四研究院第四十二所 | Water-borne polyurethane used for silk-screen printing ink binder and preparation method thereof |
CN102212311A (en) * | 2011-05-09 | 2011-10-12 | 中国工程物理研究院化工材料研究所 | Colorful ultraviolet (UV) light solidifying paint |
WO2011144532A1 (en) * | 2010-05-17 | 2011-11-24 | Bayer Materialscience Ag | Polyurethane dispersions with an acid-base mixture as an additive |
CN102675553A (en) * | 2012-05-31 | 2012-09-19 | 北京化工大学 | Method for preparing polyurethane/polyacrylate core-shell emulsion |
CN102977327A (en) * | 2012-11-26 | 2013-03-20 | 青岛文创科技有限公司 | Waterborne polyurethane sizing reinforcing agent |
CN103242794A (en) * | 2013-04-07 | 2013-08-14 | 武汉工程大学 | Method for preparing high-solid-content sulfonic-acid waterborne polyurethane adhesive |
CN103570915A (en) * | 2013-11-25 | 2014-02-12 | 武汉工程大学 | Preparation method of high-solid-content hydroxyl waterborne polyurethane resin |
CN103910851A (en) * | 2013-12-02 | 2014-07-09 | 华南理工大学 | Waterborne polyurethane ink vehicle and preparation method thereof |
CN104341574A (en) * | 2013-08-07 | 2015-02-11 | 上海思盛聚合物材料有限公司 | Waterborne polyurethane with solid content of 60% |
CN104497261A (en) * | 2014-11-25 | 2015-04-08 | 苏州中亚油墨有限公司 | Preparation method of novel water-based polyurethane printing ink binder |
CN104513522A (en) * | 2014-11-25 | 2015-04-15 | 苏州中亚油墨有限公司 | New water-based polyurethane printing ink connection material |
CN104559460A (en) * | 2014-12-31 | 2015-04-29 | 黎晚清 | Waterborne polyurethane printing ink and preparing technology thereof |
CN106188476A (en) * | 2016-07-21 | 2016-12-07 | 淄博德信联邦化学工业有限公司 | Aqueous printing ink polyurethane and preparation method thereof |
CN106432679A (en) * | 2016-09-05 | 2017-02-22 | 华南理工大学 | Waterborne polyurethane printing ink connecting material and preparation method thereof |
CN106753160A (en) * | 2016-11-29 | 2017-05-31 | 上海华峰材料科技研究院(有限合伙) | Aqueous polyurethane Flock Adhesive and preparation method thereof |
CN107446105A (en) * | 2017-07-28 | 2017-12-08 | 高鼎精细化工(昆山)有限公司 | A kind of sulfonic waterborne polyurethane emulsion, its product and preparation method thereof |
-
2018
- 2018-11-27 CN CN201811422822.3A patent/CN109651582B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102086258A (en) * | 2009-12-05 | 2011-06-08 | 中国航天科技集团公司第四研究院第四十二所 | Water-borne polyurethane used for silk-screen printing ink binder and preparation method thereof |
CN101787242A (en) * | 2010-01-19 | 2010-07-28 | 华南师范大学 | Wear-resistant waterborne two-component polyurethane coating and preparation method thereof |
WO2011144532A1 (en) * | 2010-05-17 | 2011-11-24 | Bayer Materialscience Ag | Polyurethane dispersions with an acid-base mixture as an additive |
CN102212311A (en) * | 2011-05-09 | 2011-10-12 | 中国工程物理研究院化工材料研究所 | Colorful ultraviolet (UV) light solidifying paint |
CN102675553A (en) * | 2012-05-31 | 2012-09-19 | 北京化工大学 | Method for preparing polyurethane/polyacrylate core-shell emulsion |
CN102977327A (en) * | 2012-11-26 | 2013-03-20 | 青岛文创科技有限公司 | Waterborne polyurethane sizing reinforcing agent |
CN103242794A (en) * | 2013-04-07 | 2013-08-14 | 武汉工程大学 | Method for preparing high-solid-content sulfonic-acid waterborne polyurethane adhesive |
CN104341574A (en) * | 2013-08-07 | 2015-02-11 | 上海思盛聚合物材料有限公司 | Waterborne polyurethane with solid content of 60% |
CN103570915A (en) * | 2013-11-25 | 2014-02-12 | 武汉工程大学 | Preparation method of high-solid-content hydroxyl waterborne polyurethane resin |
CN103910851A (en) * | 2013-12-02 | 2014-07-09 | 华南理工大学 | Waterborne polyurethane ink vehicle and preparation method thereof |
CN104497261A (en) * | 2014-11-25 | 2015-04-08 | 苏州中亚油墨有限公司 | Preparation method of novel water-based polyurethane printing ink binder |
CN104513522A (en) * | 2014-11-25 | 2015-04-15 | 苏州中亚油墨有限公司 | New water-based polyurethane printing ink connection material |
CN104559460A (en) * | 2014-12-31 | 2015-04-29 | 黎晚清 | Waterborne polyurethane printing ink and preparing technology thereof |
CN106188476A (en) * | 2016-07-21 | 2016-12-07 | 淄博德信联邦化学工业有限公司 | Aqueous printing ink polyurethane and preparation method thereof |
CN106432679A (en) * | 2016-09-05 | 2017-02-22 | 华南理工大学 | Waterborne polyurethane printing ink connecting material and preparation method thereof |
CN106753160A (en) * | 2016-11-29 | 2017-05-31 | 上海华峰材料科技研究院(有限合伙) | Aqueous polyurethane Flock Adhesive and preparation method thereof |
CN107446105A (en) * | 2017-07-28 | 2017-12-08 | 高鼎精细化工(昆山)有限公司 | A kind of sulfonic waterborne polyurethane emulsion, its product and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
He Lina,等.Synthesis of High-Solid Content Sulfonate-Type Polyurethane Dispersion by Pellet Process.《JOURNAL OF APPLIED POLYMER SCIENCE》.2012,第127卷(第4期),第2823-2831页. * |
基于磺酸盐的阴/非离子型高固含量聚氨酯分散体的合成与表征;孙东成,等;《化工学报》;20090228;第60卷(第2期);第496-501页 * |
基于芳香族聚酯的磺酸盐型聚氨酯分散体的合成与表征;朱黎,等;《精细化工》;20150630;第32卷(第6期);第691-694、720页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109651582A (en) | 2019-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100483170B1 (en) | Aqueous coating composition for the manufacture of precoated metal | |
CN102924689B (en) | Waterborne hyper-branched polyurethane coating agent | |
WO2021103376A1 (en) | Non-ionic waterborne polyurethane, preparation method therefor and application thereof | |
CN109293866B (en) | A kind of humic acid modified water-based polyurethane material and preparation method thereof | |
CN114736596B (en) | Quick-drying type single-component polyurethane waterproof coating and preparation method thereof | |
CN109651582B (en) | Waterborne polyurethane ink binder and preparation method thereof | |
CN105924616A (en) | Biomass-resource-modified water-based polyurethane emulsion and preparation method thereof | |
CN107903358A (en) | Solvent-free self-crosslinking modified aqueous polyurethane resin for printing in textiles | |
CN110483728A (en) | A kind of preparation method of strippable water-soluble polyurethane resin and the application in coating | |
CN116355249A (en) | Self-repairing aqueous polyurethane film and preparation method thereof | |
CN110862509A (en) | Water-based solvent-free polyurethane resin and preparation method thereof | |
JPH11228655A (en) | Polyurethane emulsion for water-based printing ink and water-based printing ink using the same | |
WO2004022627A1 (en) | Liquid carboxy-containing polyester oligomer, water-compatible polyurethane resin, and process for producing the same | |
CN107868204B (en) | Anionic waterborne polyurethane resin, its preparation method and its application | |
CN110358048B (en) | Preparation method of waterborne polyurethane emulsion for temperature-resistant transfer coating | |
CN114057980B (en) | Self-dispersible ester-soluble polyurethane ink resin, preparation method and ink | |
CN111019074B (en) | Self-extinction resin emulsion, preparation method and application thereof in water-based matte ink | |
CN104592469A (en) | Anionic polyurethane aqueous dispersion, prepolymer monomer and preparation process thereof | |
CN108409933A (en) | A method of aqueous polyurethane is prepared for dispersant with snow | |
CN112552499A (en) | Block polyester polyol, preparation method thereof and waterborne polyurethane | |
CN115806766B (en) | Water-based cold-stamping protective layer coating and preparation method thereof | |
AU2020103155A4 (en) | Non-ionic water based polyurethane and preparation method and use thereof | |
TWI819291B (en) | Waterborne polyurethane | |
CN110092883B (en) | Corrosion-resistant water-based supramolecular polyurethane resin and preparation method and application thereof | |
CN115073914B (en) | A kind of blue water-based polyurethane color paste and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |