CN109622377B - Reducing atmosphere microparticle sorting unit - Google Patents
Reducing atmosphere microparticle sorting unit Download PDFInfo
- Publication number
- CN109622377B CN109622377B CN201811523008.0A CN201811523008A CN109622377B CN 109622377 B CN109622377 B CN 109622377B CN 201811523008 A CN201811523008 A CN 201811523008A CN 109622377 B CN109622377 B CN 109622377B
- Authority
- CN
- China
- Prior art keywords
- sorting
- air
- gas
- air flotation
- reducing atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001603 reducing effect Effects 0.000 title claims abstract description 79
- 239000011859 microparticle Substances 0.000 title claims abstract description 32
- 238000005188 flotation Methods 0.000 claims abstract description 120
- 238000000926 separation method Methods 0.000 claims abstract description 102
- 238000012216 screening Methods 0.000 claims abstract description 96
- 239000002245 particle Substances 0.000 claims abstract description 62
- 238000010168 coupling process Methods 0.000 claims abstract description 52
- 238000005859 coupling reaction Methods 0.000 claims abstract description 52
- 239000010419 fine particle Substances 0.000 claims abstract description 13
- 239000007789 gas Substances 0.000 claims description 108
- 230000005540 biological transmission Effects 0.000 claims description 22
- 239000000428 dust Substances 0.000 claims description 20
- 238000005192 partition Methods 0.000 claims description 17
- 230000009471 action Effects 0.000 claims description 13
- 239000002699 waste material Substances 0.000 claims description 8
- 239000006096 absorbing agent Substances 0.000 claims description 7
- 239000012159 carrier gas Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000007873 sieving Methods 0.000 claims description 3
- 230000035939 shock Effects 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 239000000126 substance Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B9/00—Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B1/00—Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
- B07B1/28—Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B11/00—Arrangement of accessories in apparatus for separating solids from solids using gas currents
- B07B11/02—Arrangement of air or material conditioning accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B11/00—Arrangement of accessories in apparatus for separating solids from solids using gas currents
- B07B11/04—Control arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B7/00—Selective separation of solid materials carried by, or dispersed in, gas currents
- B07B7/01—Selective separation of solid materials carried by, or dispersed in, gas currents using gravity
Landscapes
- Combined Means For Separation Of Solids (AREA)
Abstract
本发明公开了一种还原氛围微颗粒分选装置,适用于具有强还原性碳粉及金属粉末的分选。装置包括还原氛围自耦合恒态供气模组、气浮分选模组、气震荡筛分模组三个组成部分,还原氛围自耦合恒态供气模组经布气路管与气浮分选模组和气震荡筛分模组相连通,通过还原氛围自耦合恒态供气模组的控制,向气浮分选模组内完成进料并提供恒流气流;在还原氛围条件下,通过气浮分选完成进料颗粒的一级分选,再现还原氛围微颗粒的二级分选。分选与传送过程均采用还原氛围风力传送,从而实现对20‑20000目具有强还原性碳粉及金属粉末的还原氛围微颗粒分选。
The invention discloses a reducing atmosphere fine particle sorting device, which is suitable for sorting carbon powder and metal powder with strong reducing properties. The device consists of three components: reducing atmosphere self-coupling constant-state gas supply module, air flotation separation module, and air vibration screening module. The reducing atmosphere self-coupling constant-state gas supply The selection module is connected with the air vibration screening module, and through the control of the reducing atmosphere self-coupling constant-state air supply module, the feed to the air flotation separation module is completed and a constant flow of air is provided; under reducing atmosphere conditions, through The air flotation sorting completes the primary sorting of the feed particles, and reproduces the secondary sorting of the reducing atmosphere micro-particles. The sorting and conveying process adopts reducing atmosphere wind power conveying, so as to realize the reducing atmosphere fine particle sorting of 20-20000 mesh with strong reducing carbon powder and metal powder.
Description
技术领域technical field
本发明涉及一种微颗粒分选装置,尤其是一种适用于20-20000目具有强还原性碳粉及金属粉末的还原氛围微颗粒分选装置,属于风选筛分领域。The invention relates to a microparticle sorting device, in particular to a reducing atmosphere microparticle sorting device suitable for 20-20000 mesh carbon powder and metal powder with strong reducibility, and belongs to the field of winnowing and screening.
背景技术Background technique
以20-20000目碳粉和金属粉末为代表的强还原性粉体由于其粒度小,化学性质活泼,极易因与空气中氧化性气体组分反应而变质。目前市场上的筛选装置大多为开放式,粉体在其中筛分时,极易因摩擦、氧化反应、急剧升温等等因素导致微颗粒物化特性的变化,甚至引发危险。现有的分选装置存在以下问题:1、不能实现还原性筛分目标,防止微颗粒因氧化导致物化特性的变化;2、不能保障筛分过程中颗粒不会出现激烈的机械摩擦;3、不能保障筛分颗粒温度的相对稳定性,防止有可能出现的急剧升温的问题。为此,开发一种还原氛围微颗粒分选装置对于强氧化粉体的筛分具有积极意义。Strongly reducing powder represented by 20-20000 mesh carbon powder and metal powder is easy to deteriorate due to reaction with oxidizing gas components in the air due to its small particle size and active chemical properties. At present, most of the screening devices on the market are open. When the powder is screened in it, it is very easy to change the physical and chemical properties of the micro-particles due to factors such as friction, oxidation reaction, and rapid temperature rise, and even cause danger. The existing sorting device has the following problems: 1. It is impossible to achieve the goal of reductive screening and prevent the change of the physical and chemical properties of the micro-particles due to oxidation; 2. It cannot guarantee that the particles will not undergo intense mechanical friction during the screening process; 3. The relative stability of the temperature of the sieved particles cannot be guaranteed to prevent the possible problem of rapid temperature rise. For this reason, the development of a reducing atmosphere microparticle sorting device is of positive significance for the screening of strong oxidizing powders.
发明内容Contents of the invention
技术问题:本发明的目的是要克服现有技术中的不足之处,提供一种结构简单、性能可靠、效果好的还原氛围微颗粒分选装置。Technical problem: The purpose of the present invention is to overcome the deficiencies in the prior art and provide a reducing atmosphere microparticle sorting device with simple structure, reliable performance and good effect.
技术方案:为实现上述目的,本发明的一种还原氛围微颗粒分选装置,包括还原氛围自耦合恒态供气模组、气浮分选模组、气震荡筛分模组三个组成部分,所述还原氛围自耦合恒态供气模组经布气路管与气浮分选模组和气震荡筛分模组相连通,通过还原氛围自耦合恒态供气模组的控制,向气浮分选模组内完成进料并提供恒流气流,为运行提供稳定的还原性环境、温度场与载流气体;利用气浮分选模组对微颗粒进行初次筛分,通过动态浮力控制实现进料颗粒物料的一级气浮分选;之后,利用气震荡筛分模组以高频往复气流为载体,对一级气浮分选后的颗粒按照设定的筛分粒径实现还原氛围微颗粒的二级分选。Technical solution: In order to achieve the above purpose, a reducing atmosphere microparticle sorting device of the present invention includes three components: a reducing atmosphere self-coupling constant-state air supply module, an air flotation sorting module, and an air vibration screening module , the reducing atmosphere self-coupling constant-state gas supply module is connected to the air flotation sorting module and the gas vibration screening module through the gas distribution pipe, and is controlled by the reducing atmosphere self-coupling constant-state gas supply module to the gas The flotation separation module completes the feeding and provides a constant flow of air to provide a stable reducing environment, temperature field and carrier gas for the operation; the air flotation separation module is used to screen the micro particles for the first time, and the dynamic buoyancy control Realize the first-level air flotation separation of the feed particle material; after that, use the air vibration screening module to use the high-frequency reciprocating air flow as the carrier, and realize the reduction of the particles after the first-level air flotation separation according to the set screening particle size Secondary Sorting of Atmospheric Microparticles.
所述的还原氛围自耦合恒态供气模组包括依次连接的废料吸收器、还原氛围保持器、干燥器和自耦和气循环动力装置,通过依次连接的废料吸收器、还原氛围保持器、干燥器和自耦和气循环动力装置完成回流气体的悬浮颗粒清除、杂质气体清除、悬浮液体清除、温度控制与流速。The reducing atmosphere self-coupling constant-state air supply module includes sequentially connected waste absorber, reducing atmosphere retainer, drier and auto-coupling and gas circulation power device, through sequentially connected waste absorber, reducing atmosphere retainer, drying The device and auto-coupling and gas cycle power device complete the removal of suspended particles, impurity gas, suspended liquid, temperature control and flow rate of the return gas.
所述的自耦和气循环动力装置包括依次连接的调压控制器、温度控制器和气体流速控制器。The self-coupling and gas cycle power device includes a pressure regulating controller, a temperature controller and a gas flow rate controller connected in sequence.
所述气浮分选模组包括分选舱、第一控流组、气浮分选上栅板、气浮分选下栅板、粉尘传感器、分区导流器、进料布气端口、分选颗粒传送通道;所述的第一控流组设在分选舱内的一侧,所述分区导流器设在分选舱内的另一侧,分区导流器与分选颗粒传送通道相连相通;分区导流器靠近分选舱侧设置有轨道,与气浮分选上栅板、气浮分选下栅板相连通;分选舱的底部设有与还原氛围自耦合恒态供气模组相连接的进料布气端口,通过自耦和气循环动力装置的控制,向分选舱内完成进料并提供恒流气流;分选舱的顶部出气管和进料布气端口的进气管分别与布气路管相连通,所述的气浮分选上栅板和气浮分选下栅板间隔设置在分选舱内,气浮分选上栅板的上下方和气浮分选下栅板的下方均设有用于监测各自区间的粉尘量的粉尘传感器;所述的气浮分选上栅板和气浮分选下栅板的位置可通过设置在分区导流器侧面的轨道进行上下调节,所述气浮分选上栅板能独立闭合栅板孔,封闭向上气流;所述分选舱一侧的气浮分选下栅板与分选颗粒传送通道的气浮分选下栅板同步动作,气浮分选下栅板通过伺服电机驱动执行栅板的打开与闭合,与自耦和气循环动力装置提供恒流气体配合,在气浮分选上栅板和气浮分选下栅板之间形成脉冲高压气流,提高气浮分选模组分选微颗粒的传送效率;所述分选颗粒传送通道一侧的气浮分选下栅板起导流作用,用于阻隔气体向下流动。The air flotation separation module includes a separation cabin, a first flow control group, an upper grid for air flotation separation, a lower grid for air flotation separation, a dust sensor, a partition deflector, a feed air distribution port, a distribution Particle selection transmission channel; the first flow control group is set on one side of the sorting cabin, the partition deflector is set on the other side of the sorting cabin, the partition deflector and the sorting particle transmission channel They are connected to each other; track is provided on the side of partition deflector close to the sorting cabin, which communicates with the upper grid plate of air flotation separation and the lower grid plate of air flotation separation; the bottom of the sorting cabin is equipped with a self-coupling constant state supply The feed air distribution port connected to the air module, through the control of the auto-coupling and air circulation power device, completes the feed into the sorting cabin and provides a constant flow of air; the top outlet pipe of the sorting cabin and the feed air distribution port The air intake pipes are respectively connected with the air distribution pipes, and the air flotation separation upper grid and the air flotation separation lower grid are arranged at intervals in the sorting cabin, and the upper and lower sides of the air flotation separation upper grid and the air flotation separation Dust sensors for monitoring the amount of dust in each section are provided below the lower grid; the positions of the upper grid for air flotation separation and the lower grid for air flotation separation can be determined by the track arranged on the side of the partition deflector. Adjust up and down, the upper grid plate of the air flotation sorting can independently close the grid hole and close the upward airflow; The grids act synchronously. The lower grid of air flotation separation is driven by a servo motor to open and close the grid, and cooperates with the auto-coupling and air circulation power device to provide constant flow of gas. A pulsed high-pressure airflow is formed between the grids to improve the transmission efficiency of the air flotation separation module to separate the micro particles; flow down.
所述的第一控流组由多个立柱排列组成,每一个立柱在伺服马达驱动下均能够在分选舱内滑移,通过改变第一控流组中多个立柱的位置,即可改变分选舱任意不同断面的截面积。The first flow control group is composed of a plurality of columns, and each column can slide in the sorting cabin under the drive of the servo motor. By changing the positions of the plurality of columns in the first flow control group, the The cross-sectional area of any different sections of the sorting cabin.
所述的分区导流器由多个导流片组成,每个导流片在伺服马达控制下能分区域打开位于气浮分选上栅板和气浮分选下栅板之间的导流片,联通分选舱与分选颗粒传送通道。The partition deflector is composed of a plurality of deflectors, and each deflector can open the deflector between the upper grid plate of air flotation separation and the lower grid plate of air flotation separation in different regions under the control of the servo motor , connecting the sorting cabin with the sorting particle delivery channel.
所述气震荡筛分模组包括筛选舱、第二控流器、气震荡筛分上栅板、气震荡筛分下栅板、震荡气体发生器、分选颗粒接收器;所述的第二控流器设在筛选舱的一侧,通过伺服马达的控制可向筛选舱内滑动,改变筛选舱控制断面区域的截面积;所述的气震荡筛分上栅板和气震荡筛分下栅板间隔设置在分选舱的上下两侧壁内,根据气震荡筛分上栅板和气震荡筛分下栅板装配的筛筛网目数差值完成待筛分颗粒的筛选;所述的震荡气体发生器分别与还原氛围自耦合恒态供气模组、筛选舱的上下流气布气管和分选颗粒接收器连接管相连,为气震荡筛分模组提供震荡气流;所述的分选颗粒接收器与第二控流器对称布置,实现筛分后颗粒的收集;所述的气震荡筛分上栅板和气震荡筛分下栅板各自独立执行栅板的打开与闭合动作,气震荡筛分下栅板栅板闭合动作联动震荡气体发生器关闭动作,使气震荡筛分模组由筛分模式进入微颗粒传送模式,气震荡筛分上栅板通过伺服电机驱动执行栅板的打开与闭合,与自耦和气循环动力装置提供恒流气体配合,在气震荡筛分上栅板和气震荡筛分下栅板之间形成脉冲高压气流,提高气震荡筛模组分选微颗粒的传送效率。The gas vibration screening module includes a screening cabin, a second flow controller, an upper grid plate for gas vibration screening, a lower grid plate for gas vibration screening, a vibration gas generator, and a sorting particle receiver; the second The flow controller is arranged on one side of the screening cabin, and can slide into the screening cabin through the control of the servo motor to change the cross-sectional area of the control section area of the screening cabin; The intervals are arranged in the upper and lower side walls of the sorting cabin, and the screening of the particles to be screened is completed according to the mesh number difference between the upper grid plate of the gas vibration screening and the lower grid plate of the gas vibration screening; the vibration gas The generator is respectively connected with the reducing atmosphere self-coupling constant-state air supply module, the upper and lower flow air distribution pipes of the screening cabin, and the connecting pipe of the sorting particle receiver, so as to provide the oscillating air flow for the air vibration screening module; the sorting particle receiving The device and the second flow controller are symmetrically arranged to realize the collection of particles after screening; the upper grid plate of the air vibration screening and the lower grid plate of the air vibration screening respectively perform the opening and closing actions of the grid plates independently, and the air vibration screening The closing action of the lower grid plate is linked to the closing action of the oscillating gas generator, so that the air vibration screening module enters the micro particle transmission mode from the screening mode, and the upper grid plate of the gas vibration screening is driven by a servo motor to open and close the grid plate Cooperating with the auto-coupling and gas circulation power device to provide constant flow of gas, a pulsed high-pressure airflow is formed between the upper grid plate of the gas vibration screen and the lower grid plate of the gas vibration screen to improve the transmission efficiency of the gas vibration screen module for separating fine particles.
有益效果:由于采用了上述技术方案,本发明通过在气浮分选模组、气震荡筛分模组创造一个还原氛围,并借助自耦和气循环动力装置对流出气流的温度控制,完成对强还原性碳粉及金属粉末的保护式筛分,使筛分后的微颗粒保持原有物化性质。能够可靠的在还原性氛围内实现易氧化微颗粒的筛分,并保持原有物化特性。通过还原氛围自耦合恒态供气模组、气浮分选模组和气震荡筛分模组三个组成部分。为装置运行提供稳定的还原性环境、温度场与载流气体。利用还原氛围自耦合恒态供气模组、综合气浮分选模组中设置的气浮分选下栅板和粉尘传感器、气震荡筛分模组中设置的控流器和震荡气体发生器的信号反馈,完成自主调压、调温和调流。在气浮分选模组与气震荡筛分模组中设置包括至少一个还原氛围自耦合恒态供气模组,为气浮分选或气震荡筛分模提供稳定的还原性环境、温度场与载流气体。原料在气浮分选模组中根据颗粒比重与大小不同,利用浮力原理分布在气浮分选模组不同层位,实现第一级分选,之后特定层位微颗粒利用载气送至气震荡筛分模组,通过高频往复气体震荡与筛网的联合作用,完成对特定粒径微颗粒的筛选。由于分选过程中机械摩擦力小,环境能够保持在还原氛围条件、温度可控等,能可靠的将易氧化颗粒进行筛分,并保持原有物化特性。分选与传送过程均采用还原氛围风力传送,从而实现对20-20000目具有强还原性碳粉及金属粉末的还原氛围微颗粒分选。其结构简单,可靠性强,使用效果好,在本技术领域中具有广泛的实用性。主要优点如下:Beneficial effects: due to the adoption of the above-mentioned technical scheme, the present invention creates a reducing atmosphere in the air flotation sorting module and the air vibration screening module, and controls the temperature of the outflowing airflow by means of the autocoupling and air circulation power device to complete the strong Protective sieving of reductive carbon powder and metal powder keeps the sieved micro-particles to maintain their original physical and chemical properties. It can reliably realize the screening of easily oxidized micro-particles in a reducing atmosphere, and maintain the original physical and chemical characteristics. Through the reduction atmosphere self-coupling constant gas supply module, air flotation separation module and air vibration screening module are three components. Provide a stable reducing environment, temperature field and carrier gas for the operation of the device. Self-coupling constant air supply module using reducing atmosphere, air flotation sorting lower grid and dust sensor set in the integrated air flotation sorting module, flow controller and oscillating gas generator set in the gas shock screening module Signal feedback to complete independent pressure regulation, temperature regulation and flow regulation. The air flotation separation module and the air vibration screening module are provided with at least one reducing atmosphere self-coupling constant air supply module to provide a stable reducing environment and temperature field for the air flotation separation or air vibration screening module with carrier gas. In the air flotation separation module, according to the specific gravity and size of the particles, the raw materials are distributed in different layers of the air flotation separation module using the principle of buoyancy to achieve the first stage of separation. The vibrating screening module, through the joint action of high-frequency reciprocating gas oscillation and the screen, completes the screening of micro-particles with specific particle sizes. Due to the small mechanical friction during the sorting process, the environment can be kept in reducing atmosphere conditions, and the temperature can be controlled, etc., which can reliably screen easily oxidized particles and maintain the original physical and chemical properties. The sorting and conveying process adopts reducing atmosphere wind conveying, so as to realize the reducing atmosphere fine particle sorting of 20-20000 mesh with strong reducing carbon powder and metal powder. The utility model has the advantages of simple structure, strong reliability and good use effect, and has wide practicability in the technical field. The main advantages are as follows:
1)实现还原性筛分目标,防止微颗粒因氧化导致物化特性的变化;1) Realize the goal of reductive screening and prevent changes in the physicochemical properties of micro-particles due to oxidation;
2)保障筛分过程中颗粒不会出现激烈的机械摩擦;2) Ensure that the particles will not experience severe mechanical friction during the screening process;
3)能保障筛分颗粒温度的相对稳定性,防止有可能出现的急剧升温,具备清洁、还原氛围保持、干燥、气压气流自耦合平衡特征。3) It can ensure the relative stability of the temperature of the sieved particles, prevent possible sharp temperature rise, and has the characteristics of cleaning, maintaining a reducing atmosphere, drying, and self-coupling balance of air pressure and airflow.
附图说明Description of drawings
图1是本发明的还原氛围微颗粒分选装置结构示意图。Fig. 1 is a schematic diagram of the structure of the reducing atmosphere fine particle sorting device of the present invention.
图2是本发明的还原氛围微颗粒分选装置气浮分选工作示意图。Fig. 2 is a working schematic diagram of air flotation sorting of the reducing atmosphere fine particle sorting device of the present invention.
图3是本发明的气浮分选完毕物料传送至气震荡筛分模组示意图。Fig. 3 is a schematic diagram of the air flotation sorting finished material transported to the air vibration screening module of the present invention.
图4是本发明的还原氛围微颗粒分选装置气震荡筛工作组示意图。Fig. 4 is a schematic diagram of the working group of the gas vibrating sieve of the reducing atmosphere fine particle sorting device of the present invention.
图5是本发明的气震荡筛分选完毕物料传送至分选颗粒接收器工作组示意图。Fig. 5 is a schematic diagram of the working group for conveying the air-oscillated and screened materials to the sorting particle receiver in the present invention.
图中:还原氛围自耦合恒态供气模组-1,气浮分选模组-2,气震荡筛分模组-3,废料吸收器-11,还原氛围保持器-12,干燥器-13,自耦和气循环动力装置-14,分选舱-20,第一控流组-21,气浮分选上栅板-22,气浮分选下栅板-23,粉尘传感器-24,分区导流器-25,进料布气端口-26,分选颗粒传送通道-27,筛选舱-30,第二控流器-31,气震荡筛分上栅板-32,气震荡筛分下栅板-33,震荡气体发生器-34,分选颗粒接收器-35。In the figure: reducing atmosphere self-coupling constant air supply module-1, air flotation separation module-2, air vibration screening module-3, waste absorber-11, reducing atmosphere retainer-12, dryer- 13. Self-coupling and air circulation power unit-14, sorting cabin-20, first flow control group-21, upper grid for air flotation separation-22, lower grid for air flotation separation-23, dust sensor-24, Partition deflector-25, feeding air distribution port-26, sorting particle transmission channel-27, screening cabin-30, second flow controller-31, upper grid plate for air vibration screening-32, air vibration screening Lower grid plate-33, oscillating gas generator-34, sorting particle receiver-35.
具体实施方案specific implementation plan
下面结合附图中的实施例对本发明作进一步的描述:The present invention will be further described below in conjunction with the embodiment in the accompanying drawings:
如图1所示,本发明的还原氛围微颗粒分选装置,主要由还原氛围自耦合恒态供气模组1、气浮分选模组2、气震荡筛分模组3三个部分组成,所述还原氛围自耦合恒态供气模组1经布气路管与气浮分选模组2和气震荡筛分模组3相连通,还原氛围自耦合恒态供气模组1的出口分别与气浮分选模组2的入口和气震荡筛分模组3的入口相连接,还原氛围自耦合恒态供气模组1的入口分别与气浮分选模组2的出口和气震荡筛分模组3的出口相连接;通过还原氛围自耦合恒态供气模组1的控制,向气浮分选模组2内完成进料并提供恒流气流。为运行提供稳定的还原性环境、温度场与载流气体;利用气浮分选模组2对微颗粒进行初次筛分,通过动态浮力控制实现进料颗粒物料的一级气浮分选;之后,利用气震荡筛分模组3以高频往复气流为载体,对一级气浮分选后的颗粒按照设定的筛分粒径实现还原氛围微颗粒的二级分选。As shown in Figure 1, the reducing atmosphere microparticle sorting device of the present invention is mainly composed of three parts: reducing atmosphere self-coupling constant-state
所述的还原氛围自耦合恒态供气模组1包括依次连接的废料吸收器11、还原氛围保持器12、干燥器13和自耦和气循环动力装置14,通过依次连接的废料吸收器11、还原氛围保持器12、干燥器13和自耦和气循环动力装置14完成回流气体的悬浮颗粒清除、杂质气体清除、悬浮液体清除、温度控制与流速。还原氛围自耦合恒态供气模组1利用废料吸收器11将分选过程中被气流带出来的微颗粒进行去除;通过还原氛围保持器12对回流气体中存在的氧化性气体进行吸收与清除,保障系统还原气气氛的稳定性;通过干燥器13清除回流气体中的液体颗粒、保障回流气体的干燥度;借助自耦和气循环动力装置14为回流气体提供动力并控制气体温度。回流气体分别送往气浮分选模组2、气震荡筛分模组3。The reducing atmosphere self-coupling constant-state
所述的自耦和气循环动力装置14包括依次连接的调压控制器、温度控制器和气体流速控制器。所述还原氛围自耦合恒态供气模组1综合气浮分选模组2中设置的气浮分选下栅板23和粉尘传感器24、气震荡筛分模组3中设置的第二控流器31和震荡气体发生器34的信号反馈,完成自主调压、调温和调流。所述的还原氛围自耦合恒态供气模组1可根据装置对还原氛围的严格程度与控制要求,设置多个还原氛围自耦合恒态供气模组1串联使用。The self-coupling and gas
所述气浮分选模组2包括分选舱20、第一控流组21、气浮分选上栅板22、气浮分选下栅板23、粉尘传感器24、分区导流器25、进料布气端口26、分选颗粒传送通道27;所述的第一控流组21设在分选舱20内的一侧,所述分区导流器25设在分选舱20内的另一侧,分区导流器25与分选颗粒传送通道27相连相通;分区导流器25靠近分选舱20一侧设置有轨道,与气浮分选上栅板22、气浮分选下栅板23相连通;分选舱20的底部设有与还原氛围自耦合恒态供气模组1相连接的进料布气端口26,通过气循环动力模块14的控制,向分选舱20内完成进料并提供恒流气流;分选舱20的顶部出气管和进料布气端口26的进气管分别与布气路管相连通,所述的气浮分选上栅板22和气浮分选下栅板23间隔设置在分选舱20内,气浮分选上栅板22的上下方和气浮分选下栅板23的下方均设有用于监测各自区间的粉尘量的粉尘传感器24;所述的气浮分选上栅板22和气浮分选下栅板23的位置可通过设置在分区导流器25侧面的轨道进行上下调节,所述气浮分选上栅板22能独立闭合栅板孔,封闭向上气流;所述分选舱20一侧的气浮分选下栅板23与分选颗粒传送通道27的气浮分选下栅板23同步动作,气浮分选下栅板23通过伺服电机驱动执行栅板的打开与闭合,与自耦和气循环动力装置14提供恒流气体配合,在气浮分选上栅板22和气浮分选下栅板23之间形成脉冲高压气流,提高气浮分选模组2分选微颗粒的传送效率;所述分选颗粒传送通道27一侧的气浮分选下栅板23起导流作用,用于阻隔气体向下流动。The air
如图2所示,所述的第一控流组21由多个立柱排列组成,每一个立柱在伺服马达驱动下均能够在分选舱内滑移,通过改变第一控流组21中多个立柱的位置,即可改变分选舱20任意不同断面的截面积,进而改变该截面气体流速,形成不同的浮力区。带分选颗粒根据密度与粒径不同,分布在不同截面下,实现气浮分选。As shown in Figure 2, the first
如图3所示,当气浮分选稳定,气浮分选上栅板22、所述分选舱20一侧的气浮分选下栅板23与分选颗粒传送通道27的气浮分选下栅板23同步动作分别滑动到待收集颗粒层的上方与下方,气浮分选上栅板22上方的控流组21向内收缩,进一步增大气浮分选上栅板22上方气流速度,使上方微颗粒通过气流回流带出分选舱20;气浮分选下栅板23下方的控流组21向外动作,减小气浮分选下栅板23下方气流速度,使下方微颗粒产生沉降;这两个区域动作直到位于气浮分选上栅板22上方和位于气浮分选下栅板23下方的粉尘传感器24给出清除完毕信号。如果气浮分选上栅板22上方粉尘传感器24设定时间内未给出清除完毕信号,还原氛围自耦合恒态供气模组1配合气浮分选上栅板22动作增加供气流量,提高清除能力;当还原氛围自耦合恒态供气模组1增大供气流量时,气浮分选下栅板23下方的控流组21跟随动作,保障该区域浮力不变。As shown in Figure 3, when the air flotation separation is stable, the air flotation separation of the
当气浮分选上栅板22上方和位于气浮分选下栅板23下方的粉尘传感器24给出清除完毕信号,气浮分选上栅板22闭合;分区导流器25由多个导流片组成,每个导流片在伺服马达控制下能分区域打开位于气浮分选上栅板22和气浮分选下栅板23之间的导流片,联通分选舱20与分选颗粒传送通道27,使气流从分选舱20上方排出改为从分选颗粒传送通道27排出;所述气浮分选上栅板22闭合栅板孔,封闭向上气流;气浮分选下栅板23通过伺服电机驱动执行栅板的打开与闭合,与自耦和气循环动力装置14提供恒流气体配合,在气浮分选上栅板2和气浮分选下栅板23之间形成脉冲高压气流,提高气浮分选模组2分选微颗粒的传送效率;所述分选颗粒传送通道27一侧的气浮分选下栅板23起导流作用,用于阻隔气体向下流动。该过程中粉尘传感器24严格监控气浮分选下栅板23上下的粉尘含量。如果气浮分选下栅板23下方传感器监测到粉尘浓度上升,则还原氛围自耦合恒态供气模组1配合气浮分选下栅板23动作,降低气浮分选下栅板23下方气体流速,控制粉尘上浮。When the
如图4所示,所述气震荡筛分模组3包括筛选舱30、第二控流器31、气震荡筛分上栅板32、气震荡筛分下栅板33、震荡气体发生器34、分选颗粒接收器35;所述的震荡气体发生器34分别与还原氛围自耦合恒态供气模组1、筛选舱30的上下流气布气管和分选颗粒接收器35连接管相连,分别为气震荡筛分模组3提供震荡气流;所述的气震荡筛分上栅板32和气震荡筛分下栅板33间隔设置在分选舱30的上下两侧壁内,根据气震荡筛分上栅板和气震荡筛分下栅板装配的筛筛网目数差值完成待筛分颗粒的筛选。As shown in Figure 4, the gas
如图5所示,所述的第二控流器31设在筛选舱30的一侧,通过伺服马达的控制可向筛选舱30内滑动,改变筛选舱30控制断面区域的截面积;所述的分选颗粒接收器35与第二控流器31对称布置,实现筛分后颗粒的收集;所述的气震荡筛分上栅板32和气震荡筛分下栅板33各自独立执行栅板的打开与闭合动作,气震荡筛分下栅板33栅板闭合动作联动震荡气体发生器34动作,使气震荡筛分模组3由筛分模式进入微颗粒传送模式;气震荡筛分上栅板32通过伺服电机驱动执行栅板的打开与闭合,与自耦和气循环动力装置14提供恒流气体配合,在气震荡筛分上栅板32和气震荡筛分下栅板33之间形成脉冲高压气流,提高气震荡筛模组3分选微颗粒的传送效率,将完成筛分的微颗粒传送至分选颗粒接收器35完成动作。As shown in Figure 5, the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811523008.0A CN109622377B (en) | 2018-12-13 | 2018-12-13 | Reducing atmosphere microparticle sorting unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811523008.0A CN109622377B (en) | 2018-12-13 | 2018-12-13 | Reducing atmosphere microparticle sorting unit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109622377A CN109622377A (en) | 2019-04-16 |
CN109622377B true CN109622377B (en) | 2023-03-31 |
Family
ID=66073399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811523008.0A Expired - Fee Related CN109622377B (en) | 2018-12-13 | 2018-12-13 | Reducing atmosphere microparticle sorting unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109622377B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1063830A (en) * | 1991-02-01 | 1992-08-26 | 中南工业大学 | The method and apparatus of tungsten powder or tungsten carbide powder dry classification |
US5676734A (en) * | 1994-03-24 | 1997-10-14 | Voest-Alpine Industrieanlagenbau Gmbh | Method of treating fine ore |
CN102652940A (en) * | 2012-05-14 | 2012-09-05 | 中国矿业大学 | Gas-solid fluidized bed sorting machine based on pulse airflow |
CN105013704A (en) * | 2015-06-30 | 2015-11-04 | 中国矿业大学 | Air jet stream mineral particle separation method and device |
-
2018
- 2018-12-13 CN CN201811523008.0A patent/CN109622377B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1063830A (en) * | 1991-02-01 | 1992-08-26 | 中南工业大学 | The method and apparatus of tungsten powder or tungsten carbide powder dry classification |
US5676734A (en) * | 1994-03-24 | 1997-10-14 | Voest-Alpine Industrieanlagenbau Gmbh | Method of treating fine ore |
CN102652940A (en) * | 2012-05-14 | 2012-09-05 | 中国矿业大学 | Gas-solid fluidized bed sorting machine based on pulse airflow |
CN105013704A (en) * | 2015-06-30 | 2015-11-04 | 中国矿业大学 | Air jet stream mineral particle separation method and device |
Also Published As
Publication number | Publication date |
---|---|
CN109622377A (en) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103406267B (en) | Smalls jigging dry-dressing machine | |
CN101829653B (en) | Separating method of fly ash and device thereof | |
CN205802535U (en) | A kind of unpowered dust-arrest device | |
CN102921635B (en) | Screw air elutriation fine-coal remover for dry classification before fine coal preparation | |
CN102716857A (en) | Pneumatic particle size classifying device for solid particles | |
CN102921636A (en) | Authigenic medium vibrated fluidized bed dry separating method and separating machine | |
CN111804422A (en) | A stepped fluidized mineral separator and separation method | |
CN108499863A (en) | A kind of fluidization dry-type separation equipment for solid particle material sorting | |
CN102019275B (en) | Airflow Classification and Airflow Drying Process of Coking Coal Material | |
CN214440915U (en) | Adjustable nodal pattern air separator | |
RU2577343C2 (en) | Dry separation and dressing and system to this end | |
CN109663447A (en) | A kind of dry separation system and dry dressing method of the underground based on circulating current | |
CN201560175U (en) | Airflow grading and airflow drying device for coking coal | |
CN202845332U (en) | Spiral flow powder removing machine for dry grading of fine coal before selection | |
CN109622377B (en) | Reducing atmosphere microparticle sorting unit | |
CN103100483B (en) | Fine stuff material separation and classifying device | |
CN207271637U (en) | A kind of dry separation machine tool surface | |
CN203678524U (en) | Deep separation equipment for coarse coal slime | |
CN203327932U (en) | Tobacco stem and tobacco flake multi-level separating air separator | |
CN212651968U (en) | Stepped fluidized mineral separator | |
CN209476718U (en) | A sorting device for particulate spores in reducing environment | |
CN107876204A (en) | A kind of manifold type multi-stage separation ore-sorting system and method | |
CN209646992U (en) | A kind of vibration winnowing device | |
CN202962210U (en) | Dust removal equipment | |
CN102049350A (en) | Air dense medium dry separation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230331 |
|
CF01 | Termination of patent right due to non-payment of annual fee |