CN109617615B - Microwave quadruple frequency-based up-conversion photon method and system - Google Patents
Microwave quadruple frequency-based up-conversion photon method and system Download PDFInfo
- Publication number
- CN109617615B CN109617615B CN201811579572.4A CN201811579572A CN109617615B CN 109617615 B CN109617615 B CN 109617615B CN 201811579572 A CN201811579572 A CN 201811579572A CN 109617615 B CN109617615 B CN 109617615B
- Authority
- CN
- China
- Prior art keywords
- optical
- dual
- parallel mach
- signal
- modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5165—Carrier suppressed; Single sideband; Double sideband or vestigial
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
- H04B10/556—Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
- H04B10/5563—Digital frequency modulation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
基于微波四倍频的上转换光子方法及系统,属于微波光子学领域。首先,激光器产生的光载波输入第一个双平行马赫‑曾德尔调制器中,本振信号调制上臂子调制器,通过调整调制器的直流偏置使其工作在载波抑制的最大传输点。随后,被调制的光信号经过光环形器进入光纤光栅,利用光纤光栅的波长选择性将本振的+2阶光边带透射并作为载波进入第二个双平行马赫‑曾德尔调制器中,将本振的‑2阶光边带反射通过光环形器收集。然后,中频信号通过90度电桥加载到第二个双平行马赫‑曾德尔调制器中,通过直流偏置实现载波抑制单边带调制。最后,两路光路合路对光信号进行功率放大,补偿调制器的插入损耗。并利用光电探测器拍频得到四倍频上转换信号。
The up-conversion photonic method and system based on microwave quadrupling belong to the field of microwave photonics. First, the optical carrier generated by the laser is input into the first dual-parallel Mach-Zehnder modulator, and the local oscillator signal modulates the upper-arm sub-modulator, and adjusts the DC bias of the modulator to make it work at the maximum transmission point of carrier suppression. Then, the modulated optical signal enters the fiber grating through the optical circulator, and the +2-order optical sideband of the local oscillator is transmitted by the wavelength selectivity of the fiber grating and enters the second double-parallel Mach-Zehnder modulator as a carrier wave. The ‑2nd order optical sideband reflection of the LO is collected through an optical circulator. The IF signal is then loaded into a second dual-parallel Mach-Zehnder modulator through a 90-degree bridge for carrier-suppressed single-sideband modulation with DC bias. Finally, the two optical paths are combined to amplify the power of the optical signal to compensate for the insertion loss of the modulator. And use the photodetector beat frequency to get the quadruple frequency up-conversion signal.
Description
技术领域technical field
本发明提出了一种基于微波四倍频的上转换光子方法及系统,该方法及系统属于微波光子学领域。The invention provides an up-conversion photonic method and system based on microwave quadruple frequency, which belong to the field of microwave photonics.
背景技术Background technique
频率上转换器作为发射机的重要组成部分,通常采用将一个低频的中频信号与一个高频的本振信号混频的方法来实现频率上转换。实现微波信号上转换的方法有许多,其中包括利用不同调制器件的上转换技术,例如两个强度调制器级联,双平行马赫曾德调制器(DPMZM)和双偏振双平行马赫曾德调制器等上转换方法与系统。但是在这些方法中,只用到了本振和中频信号的一阶边带,只能产生频率为ωLO+ωIF的上转换信号。在这种情况下,如果要更高的射频信号产生,就需要频率更高的本振信号发生器。此外,由于调制器的带宽一般不超过40GHz,输出的上转换信号频率还会受到调制器自身带宽的影响。As an important part of the transmitter, the frequency up-converter usually adopts the method of mixing a low-frequency intermediate frequency signal and a high-frequency local oscillator signal to realize the frequency up-conversion. There are many ways to achieve microwave signal up-conversion, including up-conversion techniques using different modulation devices, such as two intensity modulators cascaded, dual-parallel Mach-Zehnder modulators (DPMZM), and dual-polarization dual-parallel Mach-Zehnder modulators Up-conversion method and system. However, in these methods, only the first-order sidebands of the LO and IF signals are used, and only an upconverted signal of frequency ω LO + ω IF can be generated. In this case, if a higher RF signal is to be generated, a higher frequency local oscillator signal generator is required. In addition, since the bandwidth of the modulator generally does not exceed 40 GHz, the frequency of the output up-converted signal is also affected by the bandwidth of the modulator itself.
为了减少上转换系统对本振信号频率的需求以及突破调制器自身带宽的限制,可以通过将中频信号与本振信号的高阶边带混频来实现上转换。其中包括使用集成调制器或多个调制器级联的方法来实现本振多倍频的频率上转换。目前的主要本振倍频的微波光子上转换技术,其主要方法为在调制中利用本振信号的高阶边带或者利用多个调制器的二次调制实现本振倍频的微波光子上转换。2014年,Gao等人提出了一种基于双平行马赫增德尔调制器的本振倍频的微波光子混频器,该方法通过控制电压实现2阶本振信号的双边带调制。由于双平行马赫曾德调制器工作在载波抑制双边带调制模式,拍频得到的混频信号包含很多其他杂散信号例如2ωLO,2ωRF等。另外该系统在混频过程中只能同时输出上转换与下转换信号,但是在实际的变频系统(如接收机或发射机)中,仅需要上转换或下转换信号中的一个,而多余的信号将成为杂散信号。Yin等人提出了基于马赫曾德调制器与双平行马赫曾德调制器级联的本振倍频上转换方法,马赫曾德调制器输出本振信号的±1阶边带,将马赫曾德调制器输出的本振信号作为载波加载到双平行马赫曾德调制器上进行二次调制,最终实现本振倍频上转换。其主要优点为可以在实现上转换的同时补偿远距离传输所带来的色散损耗,但是由于在二次调制过程中还是采用了双边带调制,得到的上转换信号还是会有很多杂散。Chi等人提出了利用三个马赫曾德调制器级联实现本振四倍频上转换的方法,通过前两个马赫曾德调制器产生本振信号的±2阶边带,将输出的本振信号作为载波进入第三个马赫曾德调制器实现本振四倍频的上转换。由于同样采用双边带调制,系统的杂散信号强度甚至高过上转换信号强度。In order to reduce the frequency requirement of the local oscillator signal in the up-conversion system and break through the bandwidth limitation of the modulator, the up-conversion can be achieved by mixing the intermediate frequency signal with the high-order sidebands of the local oscillator signal. These include the use of an integrated modulator or a cascade of multiple modulators to achieve frequency up-conversion for multiples of the local oscillator. At present, the main microwave photonic up-conversion technology of LO frequency doubling is mainly used to realize the microwave photon up-conversion of LO frequency doubling by using the high-order sideband of the local oscillator signal or using the secondary modulation of multiple modulators in the modulation. . In 2014, Gao et al. proposed a microwave photonic mixer based on double-parallel Mach-Zehnder modulators for frequency doubling of the local oscillator. This method realizes the double-sideband modulation of the second-order local oscillator signal by controlling the voltage. Since the dual-parallel Mach-Zehnder modulator works in the carrier-suppressed double-sideband modulation mode, the mixing signal obtained by the beat frequency contains many other spurious signals such as 2ω LO , 2ω RF and so on. In addition, the system can only output up-conversion and down-conversion signals at the same time during the mixing process, but in an actual frequency conversion system (such as a receiver or transmitter), only one of the up-conversion or down-conversion signals is required, and the redundant The signal will become a spurious signal. Yin et al. proposed a LO frequency doubling up-conversion method based on the cascade of Mach-Zehnder modulators and dual parallel Mach-Zehnder modulators. The local oscillator signal output by the modulator is loaded on the dual-parallel Mach-Zehnder modulator as a carrier for secondary modulation, and finally the local oscillator frequency double-up conversion is realized. Its main advantage is that it can compensate for the dispersion loss caused by long-distance transmission while realizing up-conversion. However, since the double-sideband modulation is still used in the secondary modulation process, the obtained up-conversion signal will still have a lot of spurs. Chi et al. proposed a method of cascading three Mach-Zehnder modulators to realize the quadruple frequency up-conversion of the local oscillator. The first two Mach-Zehnder modulators are used to generate the ±2 order sidebands of the local oscillator signal, and the output local The oscillator signal enters the third Mach-Zehnder modulator as a carrier to realize the up-conversion of the local oscillator quadruple frequency. Since the double-sideband modulation is also used, the spurious signal strength of the system is even higher than that of the up-conversion signal.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明提供一种利用集成调制器与光纤光栅实现微波四倍频上转换的光子方法和系统。In order to solve the above problems, the present invention provides a photonic method and system for realizing microwave quadruple frequency up-conversion by using an integrated modulator and a fiber grating.
利用集成器件同时实现微波上转换和本振信号四倍频的光子系统,由激光器、双平行马赫-曾德尔调制器、光环行器、光纤光栅、掺铒光纤放大器、光电探测器组成,其特征在于:所述激光器发出光波频段的连续光载波,将已知的本振信号加载到双平行马赫-曾德尔调制器的上臂,调节相应的直流偏置电压DC1,DC2以及DC3,使其工作在抑制载波的最大传输点,留下本振信号的±2阶边带;随后将输出的±2阶本振边带通过光环形器以及光纤光栅将+2阶的本振反射同时将-2阶本振透射作为载波进入第二个双平行马赫-曾德尔调制器。通过90度电桥将需要上转换的中频信号加载到双平行马赫-曾德尔调制器的两臂,调节相应的直流偏置电压DC4,DC5及DC6,使其工作在抑制载波的单边带调制点,留下经过二次调制的中频信号的-1阶边带;然后通过耦合器将两束光信号合路,采用掺铒光纤放大器对光信号进行功率放大,用于补偿双平行马赫-曾德尔调制器、光环行器和光纤光栅引入的插入损耗;最后使用光电探测器对调制过的-1阶中频和本振的+2阶边带光信号进行拍频,得到本振四倍频的上变频信号。A photonic system that utilizes integrated devices to simultaneously realize microwave up-conversion and frequency quadrupling of local oscillator signals is composed of lasers, dual-parallel Mach-Zehnder modulators, optical circulators, fiber gratings, erbium-doped fiber amplifiers, and photodetectors. It is: the laser emits a continuous optical carrier in the light wave frequency band, loads the known local oscillator signal to the upper arm of the double parallel Mach-Zehnder modulator, and adjusts the corresponding DC bias voltages DC1, DC2 and DC3 to make it work at The maximum transmission point of the carrier is suppressed, leaving the ±2-order sideband of the local oscillator signal; then the output ±2-order LO sideband is passed through the optical circulator and the fiber grating to reflect the +2-order local oscillator and at the same time the -2-order local oscillator is reflected. The local oscillator transmits as a carrier into the second dual parallel Mach-Zehnder modulator. The intermediate frequency signal that needs to be up-converted is loaded into the two arms of the dual parallel Mach-Zehnder modulator through a 90-degree bridge, and the corresponding DC bias voltages DC4, DC5 and DC6 are adjusted to make it work in the single-sideband modulation that suppresses the carrier. point, leaving the -1-order sideband of the secondary modulated IF signal; then the two optical signals are combined through a coupler, and an erbium-doped fiber amplifier is used to amplify the power of the optical signal to compensate for the double-parallel Mach-Zeng The insertion loss introduced by the Del modulator, optical circulator and fiber grating; finally, the modulated -1-order intermediate frequency and +2-order sideband optical signals of the local oscillator are beat frequency by the photodetector, and the quadruple frequency of the local oscillator is obtained. up-converted signal.
所述光载波为由分布反馈式激光器输出的中心频率为1550.31nm,功率为16dBm,线宽为500kHz的光载波。The optical carrier is an optical carrier with a center frequency of 1550.31 nm output by a distributed feedback laser, a power of 16 dBm, and a line width of 500 kHz.
所述第一双平行马赫-曾德尔调制器和第二双平行马赫-曾德尔调制器的半波电压为3.5V,3dB带宽为22GHz;所述直流偏置电压DC1,DC2和DC3分别为1.8V,1.7V和8.4V;所述直流偏置电压DC4,DC5和DC6分别为14.9V,1.4V和7.5V。The half-wave voltage of the first dual parallel Mach-Zehnder modulator and the second dual parallel Mach-Zehnder modulator is 3.5V, and the 3dB bandwidth is 22GHz; the DC bias voltages DC1, DC2 and DC3 are respectively 1.8 V, 1.7V and 8.4V; the DC bias voltages DC4, DC5 and DC6 are 14.9V, 1.4V and 7.5V, respectively.
所述掺铒光纤放大器设置为APC模式(automatic power control mode,自动功率控制模式),使输出光功率恒为5dBm。The erbium-doped fiber amplifier is set to APC mode (automatic power control mode, automatic power control mode), so that the output optical power is always 5dBm.
所述光电探测器采用带宽为40GHz,响应度为0.65A/W的光电探测器。The photodetector adopts a photodetector with a bandwidth of 40 GHz and a responsivity of 0.65 A/W.
本发明采用双平行马赫-曾德尔调制器和光环行器及光纤光栅结构同时实现微波上转换和本振四倍频的功能集成,调整双平行马赫-曾德尔调制器电压使其工作在抑制载波的最大传输点。随后将输出的本振边带通过光环形器以及光纤光栅将+2阶的本振反射同时将-2阶本振透射作为载波进入第二个双平行马赫-曾德尔调制器。通过90度电桥将需要上转换的中频信号加载到双平行马赫-曾德尔调制器的两臂,调节相应的直流偏置电压使其工作在抑制载波的单边带调制点,留下经过二次调制的中频信号;最后使用光电探测器对调制过的中频和本振光信号进行拍频,得到本振四倍频的上变频信号。该方法的优势在于可以利用双平行马赫-曾德尔调制器以及光纤光栅将本振信号进行边带分离,结合90度电桥对中频信号进行单边带调制,最终输出十分纯净的四倍频上转换信号,同时降低了上转换系统对本振信号的需求。The invention adopts the double-parallel Mach-Zehnder modulator, the optical circulator and the fiber grating structure to realize the functional integration of microwave up-conversion and local oscillator quadruple frequency at the same time, and adjusts the voltage of the double-parallel Mach-Zehnder modulator to make it work in suppressing the carrier wave the maximum transmission point. Then the output LO sidebands are passed through the optical circulator and fiber grating to reflect the +2-order LO and transmit the -2-order LO as a carrier wave into the second dual-parallel Mach-Zehnder modulator. The intermediate frequency signal that needs to be up-converted is loaded into the two arms of the dual-parallel Mach-Zehnder modulator through a 90-degree bridge, and the corresponding DC bias voltage is adjusted to make it work at the single-sideband modulation point of the suppressed carrier. Finally, the modulated intermediate frequency and the local oscillator optical signal are beat frequency by the photodetector, and the up-conversion signal of the local oscillator quadruple frequency is obtained. The advantage of this method is that it can use dual parallel Mach-Zehnder modulators and fiber gratings to separate the local oscillator signal from sidebands, and combine with a 90-degree bridge to perform single-sideband modulation on the intermediate frequency signal, and finally output a very pure quadruple frequency. Convert the signal, while reducing the need for the local oscillator signal in the up-conversion system.
附图说明Description of drawings
图1为基于微波四倍频的上转换光子方法及系统的链路结构示意图。FIG. 1 is a schematic diagram of a link structure of a method and system for up-conversion photonics based on microwave quadrupling.
图2为图1中(s1)、(s2)、(s3)、(s4)处的光谱示意图。FIG. 2 is a schematic diagram of spectra at (s1), (s2), (s3), and (s4) in FIG. 1 .
图中,1、激光器,2、第一双平行马赫-曾德尔调制器,3、光环行器,4、光纤光栅,5、第二双平行马赫-曾德尔调制器,6、掺铒光纤放大器,7、光电探测器。In the figure, 1. Laser, 2. First dual parallel Mach-Zehnder modulator, 3. Optical circulator, 4. Fiber grating, 5. Second dual parallel Mach-Zehnder modulator, 6. Erbium-doped fiber amplifier , 7, photodetector.
具体实施方式Detailed ways
下面结合实施例及附图和数学推导对本发明做进一步说明。The present invention will be further described below with reference to the embodiments, accompanying drawings and mathematical derivation.
本实施例的基于微波四倍频的上转换光子方法及系统的结构如图1所示。The structure of the method and system for up-conversion photon based on frequency quadrupling of microwave in this embodiment is shown in FIG. 1 .
激光器1采用分布反馈式激光器(RIO,ORION),输出中心波长为1550.31nm的光载波,其功率为16dBm,线宽为500kHz。光载波进入第一双平行马赫-曾德尔调制器2(Fujitsu,FTM7962EP),这个双平行马赫-曾德尔调制器的半波电压为3.5V,3dB带宽为22GHz。双平行马赫-曾德尔调制器2是由两个子强度调制器(上臂子强度调制器、下臂子强度调制器)和一个主强度调制器组成,这三个强度调制器又各自由对应的三个直流偏置电压(DC1、DC2、DC3)控制。将已知的本振信号加载到双平行马赫-曾德尔调制器的上臂,调节相应的直流偏置电压DC1,DC2以及DC3,使其工作在抑制载波的最大传输点,留下本振信号的±2阶边带,其光谱图如图2中的(s1);随后将输出的±2阶本振边带通过光环形器3以及光纤光栅4将+2阶的本振反射,光纤光栅的中心波长以及带宽分别为1550.2nm以及0.4nm,其光谱图如图2中的(s2);同时将-2阶本振透射作为载波进入第二双平行马赫-曾德尔调制器5(Fujitsu,FTM7962EP),其光谱图如图2中的(s3)。通过90度电桥(Marki Microwave QH-0226)将需要上转换的中频信号加载到双平行马赫-曾德尔调制器的两臂,调节相应的直流偏置电压DC4,DC5及DC6,使其工作在抑制载波的单边带调制点,留下经过二次调制的中频信号的-1阶边带,其光谱图如图2中的(s4);然后通过耦合器将两束光信号合路,采用掺铒光纤放大器6(Golight,C-M-C-P-FA)对光信号进行功率放大,用于补偿双平行马赫-曾德尔调制器、光环行器和光纤光栅引入的插入损耗;最后使用带宽为40GHz,响应度为0.65A/W的光电探测器7(FINISAR,XPDV2120R)对调制过的-1阶中频和本振的+2阶边带光信号进行拍频,得到本振四倍频的上变频信号。Laser 1 uses a distributed feedback laser (RIO, ORION), and outputs an optical carrier with a center wavelength of 1550.31 nm, a power of 16 dBm, and a line width of 500 kHz. The optical carrier enters the first dual-parallel Mach-Zehnder modulator 2 (Fujitsu, FTM7962EP), which has a half-wave voltage of 3.5V and a 3dB bandwidth of 22GHz. The dual-parallel Mach-Zehnder modulator 2 is composed of two sub-intensity modulators (upper arm sub-intensity modulator, lower arm sub-intensity modulator) and a main intensity modulator, and each of these three intensity modulators corresponds to three A DC bias voltage (DC1, DC2, DC3) control. Load the known local oscillator signal into the upper arm of the dual parallel Mach-Zehnder modulator, adjust the corresponding DC bias voltages DC1, DC2 and DC3 to make it work at the maximum transmission point of the suppressed carrier, leaving the local oscillator signal at the maximum transmission point. The ±2-order sidebands, whose spectrum is shown in Figure 2 (s 1 ); then the output ±2-order LO sidebands are reflected by the
本发明基于集成调制器与光纤光栅实现微波四倍频上转换的光子系统方法的原理如下,步骤一:The principle of the photonic system method for realizing microwave quadruple frequency up-conversion based on the integrated modulator and fiber grating of the present invention is as follows, step 1:
激光器输出连续光作为载波,可表示为The laser outputs continuous light as a carrier, which can be expressed as
式中,E0为载波的光功率,ω0为载波的中心角频率。激光器输出作为光载波输入双平行马赫-曾德尔调制器,将已知的本振信号加载到双平行马赫-曾德尔调制器的上臂,双平行马赫-曾德尔调制器的输出光场为In the formula, E0 is the optical power of the carrier, and ω0 is the center angular frequency of the carrier. The laser output is input to the dual parallel Mach-Zehnder modulator as an optical carrier, and the known local oscillator signal is loaded into the upper arm of the dual-parallel Mach-Zehnder modulator. The output light field of the dual-parallel Mach-Zehnder modulator is
式中,LDPMZM为双平行马赫-曾德尔调制器的插损,VLO和ωLO为本振信号的幅度与角频率,mLO=πVLO/Vπ为本振信号的调制度,为直流偏置引入的相位差,Vπ是双平行马赫-曾德尔调制器的半波电压。基于雅可比-安格尔公式对上式展开,令使上臂的子强度调制器工作在最大传输点,同时满足与将输出信号的载波抑制,最终仅留下本振信号的正负二阶边带,第一个双平行马赫-曾德尔调制器输出的光场表达式为:In the formula, LDPMZM is the insertion loss of the dual parallel Mach-Zehnder modulator, VLO and ωLO are the amplitude and angular frequency of the local oscillator signal, mLO=πVLO/Vπ The modulation degree of the local oscillator signal, The phase difference introduced for the DC bias, Vπ is the half-wave voltage of the dual parallel Mach-Zehnder modulator. Based on the Jacobi-Ingres formula, the above formula is expanded, let Make the sub-intensity modulator of the upper arm work at the maximum transmission point, while satisfying and Suppressing the carrier of the output signal, and finally leaving only the positive and negative second-order sidebands of the local oscillator signal, the light field output by the first dual-parallel Mach-Zehnder modulator is expressed as:
式中,Jn(g)为第一类n阶贝塞尔函数。In the formula, J n (g) is the first kind of n-order Bessel function.
步骤二:Step 2:
将第一个双平行马赫-曾德尔调制器的输出信号通过光环行器与光纤光栅使其分离,并将本振信号的正二阶边带作为载波输入到第二个双平行马赫-曾德尔调制器中,然后通过90度电桥将中频信号加载到第二个双平行马赫-曾德尔调制器的两臂中,使其工作在载波抑制的单边带调制状态,只留下中频信号的负一阶边带,第二个双平行马赫-曾德尔调制器的输出光场可表示为:The output signal of the first double-parallel Mach-Zehnder modulator is separated from the fiber grating by an optical circulator, and the positive second-order sideband of the local oscillator signal is input as a carrier to the second double-parallel Mach-Zehnder modulator. Then, the IF signal is loaded into the two arms of the second dual parallel Mach-Zehnder modulator through a 90-degree bridge to make it work in the single-sideband modulation state of carrier suppression, leaving only the negative side of the IF signal. The first-order sideband, the output light field of the second dual-parallel Mach-Zehnder modulator can be expressed as:
其中VIF和ωIF为中频信号的幅度与角频率,mIF=πVIF/Vπ为中频信号的调制度,为直流偏置引入的相位差。基于雅可比-安格尔公式对上式展开,令使双平行马赫-曾德尔调制器的上下两个子强度调制器工作在最小传输点,同时满足使其工作在载波抑制单边带调制状态,留下中频信号的负一阶边带,这时的光场可表示为:Where VIF and ωIF are the amplitude and angular frequency of the intermediate frequency signal, mIF=πVIF/Vπ is the modulation degree of the intermediate frequency signal, Phase difference introduced for DC bias. Based on the Jacobi-Ingres formula, the above formula is expanded, let Make the upper and lower sub-intensity modulators of the dual-parallel Mach-Zehnder modulator work at the minimum transmission point, while satisfying Make it work in the carrier-suppressed single-sideband modulation state, leaving the negative first-order sideband of the IF signal, the light field at this time can be expressed as:
通过耦合器将上下两路光路合路,此时的光场表示为:The upper and lower optical paths are combined by the coupler, and the optical field at this time is expressed as:
步骤三:Step 3:
用掺铒光纤放大器实现对合路后的光信号的功率放大,放大后的光信号为:An erbium-doped fiber amplifier is used to amplify the power of the combined optical signal, and the amplified optical signal is:
式中,G为掺铒光纤放大器对光信号的增益。In the formula, G is the gain of the erbium-doped fiber amplifier to the optical signal.
步骤四:Step 4:
使用光电探测器对+2阶本振信号和经过二次调制的中频信号进行拍频,即可得到角频率为4ωLO+ωIF的上变频信号Using a photodetector to beat the +2-order local oscillator signal and the secondary-modulated intermediate frequency signal, an up-conversion signal with an angular frequency of 4ωLO+ωIF can be obtained.
其中代表探测器的响应度。可见,本系统可以实现本振信号四倍频的上转换,其产生的信号较为纯净。in Represents the responsivity of the detector. It can be seen that the system can realize the up-conversion of the quadruple frequency of the local oscillator signal, and the generated signal is relatively pure.
综上所述,我们提出了一种基于微波四倍频的上转换光子方法及系统的链路,该链路可以实现纯净的本振信号四倍频上转换。In conclusion, we propose a link of upconversion photonic method and system based on microwave quadrupling, which can realize quadrupling frequency upconversion of pure local oscillator signal.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811579572.4A CN109617615B (en) | 2018-12-24 | 2018-12-24 | Microwave quadruple frequency-based up-conversion photon method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811579572.4A CN109617615B (en) | 2018-12-24 | 2018-12-24 | Microwave quadruple frequency-based up-conversion photon method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109617615A CN109617615A (en) | 2019-04-12 |
CN109617615B true CN109617615B (en) | 2020-07-03 |
Family
ID=66009112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811579572.4A Active CN109617615B (en) | 2018-12-24 | 2018-12-24 | Microwave quadruple frequency-based up-conversion photon method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109617615B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110061783A (en) * | 2019-04-22 | 2019-07-26 | 中山大学 | A kind of optical-fiber wireless Transmission system for completing I/Q modulation based on both arms MZ Mach-Zehnder |
CN110220540A (en) * | 2019-05-10 | 2019-09-10 | 中国船舶重工集团公司第七一五研究所 | A kind of detection light generation system applied to distributive fiber optic strain demodulation |
CN110595527B (en) * | 2019-09-10 | 2021-04-20 | 中国人民解放军国防科技大学 | Calibration method of controllable phase shifter in multi-level interleaved Mach-Zehnder interferometer on optical chip |
CN111130643B (en) * | 2019-12-06 | 2022-08-12 | 广东工业大学 | Microwave photonic phase shifting device and method with no optical filtering and adjustable frequency doubling factor |
CN111596278A (en) * | 2019-12-24 | 2020-08-28 | 北京理工大学 | Multi-band coherent swept-frequency radar system based on dual-drive Mach-Zehnder modulators |
CN113162693B (en) * | 2021-01-08 | 2022-10-11 | 北京工业大学 | A full-duplex communication system and method for eliminating radio frequency self-interference |
CN113419229B (en) * | 2021-06-04 | 2023-07-25 | 广东工业大学 | Phase-adjustable microwave photon frequency conversion system and implementation method thereof |
CN115524664B (en) * | 2021-06-25 | 2025-04-04 | 西安电子科技大学 | A method for quadrupling the frequency of linear frequency modulation signals based on cascade modulators |
CN113489551B (en) * | 2021-07-05 | 2022-09-20 | 吉林大学 | Centimeter wave/millimeter wave ultra-wideband signal generating device |
CN114114531B (en) * | 2021-11-03 | 2023-02-28 | 上海交通大学 | Silicon-based single-sideband modulator chip with high rejection ratio |
CN114696909B (en) * | 2022-03-10 | 2023-08-11 | 江苏南方通信科技有限公司 | Photon generating device and method for frequency-doubling microwave frequency-hopping FH signal |
CN115015953B (en) * | 2022-06-06 | 2023-02-28 | 长沙思木锐信息技术有限公司 | Microwave-driven FMCW laser radar detection device and detection method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102324979A (en) * | 2011-09-09 | 2012-01-18 | 东华大学 | An Optical Quadruple Frequency Millimeter Wave Optical Carrier Wireless Communication System |
CN102403644A (en) * | 2011-06-30 | 2012-04-04 | 南京航空航天大学 | Photonic high order frequency doubling optoelectronic oscillator |
CN106027152A (en) * | 2016-05-12 | 2016-10-12 | 西安电子科技大学 | Method for generating 120GHz millimeter waves based on octuple frequency of Mach-Zehnder modulator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2688771A1 (en) * | 2007-05-18 | 2008-11-27 | Gsi Group Corporation | Laser processing of conductive links |
CN101833221B (en) * | 2010-04-02 | 2011-06-29 | 上海交通大学 | All-optical single-sideband up-conversion device based on silicon-based microring resonator |
-
2018
- 2018-12-24 CN CN201811579572.4A patent/CN109617615B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102403644A (en) * | 2011-06-30 | 2012-04-04 | 南京航空航天大学 | Photonic high order frequency doubling optoelectronic oscillator |
CN102324979A (en) * | 2011-09-09 | 2012-01-18 | 东华大学 | An Optical Quadruple Frequency Millimeter Wave Optical Carrier Wireless Communication System |
CN106027152A (en) * | 2016-05-12 | 2016-10-12 | 西安电子科技大学 | Method for generating 120GHz millimeter waves based on octuple frequency of Mach-Zehnder modulator |
Non-Patent Citations (1)
Title |
---|
基于双通道马赫-曾德尔调制器调制边带滤波的微波光子移相器;郑鑫;《光学学报》;20121231;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109617615A (en) | 2019-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109617615B (en) | Microwave quadruple frequency-based up-conversion photon method and system | |
CN108667517B (en) | A microwave photonic mixing method and system based on local oscillator frequency doubling | |
CN107846254B (en) | Photonic method and system for realizing microwave down-conversion and phase shift by utilizing integrated device | |
US10659162B2 (en) | Photonic microwave down-conversion system and method | |
CN110233675B (en) | Multifunctional microwave photonic module and signal processing method and device based thereon | |
CN108199776B (en) | Microwave photon up-conversion device and method based on photoelectric oscillator | |
US6535328B2 (en) | Methods and devices based on brillouin selective sideband amplification | |
US8135288B2 (en) | System and method for a photonic system | |
US10193629B2 (en) | Optical-signal processing apparatus, optical transmission method, receiver, and optical network system | |
US6211996B1 (en) | Angle modulator | |
US7937000B2 (en) | Optical receiver and optical transceiver using the same | |
US8693875B2 (en) | Method and apparatus for optimized analog RF optical links | |
CN113162693B (en) | A full-duplex communication system and method for eliminating radio frequency self-interference | |
US6538789B2 (en) | Optical linearizer for fiber communications | |
CN107340666B (en) | A Vector Signal Up-conversion Device Based on Photoelectric Oscillator | |
CN106961252A (en) | Microwave photon mirror image suppresses down-conversion device and method | |
US20230261758A1 (en) | Signal receiving apparatus and method | |
JPH11205240A (en) | Optical transmitter | |
CN110336611A (en) | Image Interference Suppression Mixer Based on Fiber Dispersion Effect | |
US8000612B2 (en) | Optical transmission device | |
CN113726444B (en) | Array microwave signal optical domain down-conversion method and device | |
CN104597686B (en) | microwave photon cascade system | |
US20080292326A1 (en) | Optical Voltage Controlled Oscillator for an Optical Phase Locked Loop | |
CN107026382A (en) | A kind of optical-electronic oscillator | |
CN112311469B (en) | A Microwave Photonic Downconverter and Microwave Receiver System Based on DPMZM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |