CN109613337B - Quantity measuring method based on measuring resistance - Google Patents
Quantity measuring method based on measuring resistance Download PDFInfo
- Publication number
- CN109613337B CN109613337B CN201910024782.5A CN201910024782A CN109613337B CN 109613337 B CN109613337 B CN 109613337B CN 201910024782 A CN201910024782 A CN 201910024782A CN 109613337 B CN109613337 B CN 109613337B
- Authority
- CN
- China
- Prior art keywords
- resistance
- coating
- measuring
- frame
- grooves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000000576 coating method Methods 0.000 claims abstract description 39
- 239000011248 coating agent Substances 0.000 claims abstract description 36
- 239000011231 conductive filler Substances 0.000 claims abstract description 27
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 9
- 238000012545 processing Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 7
- 239000002985 plastic film Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
A quantity measuring method based on measuring resistance belongs to the field of electrical measurement. In the processes of processing, maintaining, repairing and using electrical equipment, the measured quantity often makes mistakes, and the manual counting quantity also influences the automation process. In order to measure the quantity conveniently and provide a foundation for automation of electrical processing, maintenance and use, the invention provides that: quantity measuring method based on measuring resistance, characterized in that the method is implemented based on a device for measuring resistance, the method comprises the following steps: the method comprises the following steps of firstly, placing a frame on an object placing plate, secondly, pouring conductive fillers into the frame, filling the conductive fillers into grooves, keeping the conductive fillers level with the frame, thirdly, measuring the resistance between a coating and b coating, and then obtaining the number of the grooves according to the resistance value of the resistance. The invention can measure the quantity in batches, improves the working efficiency and improves the working accuracy.
Description
Technical Field
The invention belongs to the field of electrical measurement.
Background
In the process of processing, maintaining, repairing and using the electrical equipment, the measurement of the number of devices is often involved, sometimes, the shape of the devices is a column with a small diameter and a long length, and the devices can also be called a needle shape or a pen core shape, and the devices are sometimes placed in a groove of a storage plate. The number of measurements is often erroneous and is a time consuming task. Moreover, the number of manual inventories also affects the automation process.
Disclosure of Invention
In order to measure the quantity conveniently and provide a foundation for automation of electrical processing, maintenance and use, the invention provides that:
quantity measuring method based on measuring resistance, characterized in that it is based on a device for measuring resistance comprising a frame in the shape of a rectangle made of insulating material, four side plates constituting the frame having the same height, two opposite side plates having an inner surface provided with a conductive coating, these two conductive coatings being named a-coating and b-coating,
the quantity measuring method based on the measuring resistance comprises the following steps:
firstly, placing the frame on the object placing plate,
secondly, pouring conductive filler into the frame, filling the conductive filler into the groove, keeping the conductive filler and the frame flat,
and thirdly, measuring the resistance between the coating a and the coating b, and then obtaining the number of grooves according to the resistance value of the resistance.
The invention can measure the quantity in batches, improves the working efficiency and improves the working accuracy.
Drawings
Fig. 1 is a schematic view of a conventional storage board structure.
Fig. 2 is a partial structural schematic diagram of the present invention.
FIG. 3 is a schematic diagram of the method of use of the present invention.
FIG. 4 is a schematic diagram of the method of use of the present invention.
Fig. 5 is a schematic diagram of the present invention.
Fig. 6 is a schematic diagram of the present invention.
Fig. 7 is a schematic reference diagram of the present invention.
Fig. 8 is a partial structural schematic of the present invention.
Fig. 9 is a schematic diagram of the present invention.
In the figure: 1-a storage plate; 2-a frame; 3-conductive filler.
Detailed Description
Referring to fig. 1, fig. 1 is a prior art and fig. 1 is a side view. The object placing plate 1 is usually made of transparent plastic, the transparent plastic is an insulator, and the object placing plate 1 is provided with grooves at equal intervals, and the grooves are used for placing electrical equipment components with small diameters and long lengths. The cross-sectional shape of the groove is rectangular or: the upper part is rectangular, and the lower part is semicircular. The number of measuring grooves is the number of measuring parts of the electrical apparatus, since one groove accommodates one part.
It is particularly emphasized that the grooves of the same object placing plate 1 are all the same in shape and are all arranged in parallel, the sizes of the grooves are all the same, the intervals between adjacent grooves are all the same, and the cross-sectional views of all the grooves are the same in shape and size.
The width of different object placing plates 1 is the same, but the number of the arranged grooves is different, so the length is different.
Referring to fig. 2, fig. 2 shows a frame 2, which is rectangular, the frame 2 is composed of four side plates, each of which is rectangular, so-called frame 2, which is a structure without a bottom and without a top cover, the heights of the four side plates are the same, the frame 2 is made of an insulating material, such as glass, acrylic, or plastic, preferably transparent, and conductive coatings are provided on the inner surfaces of two opposite side plates, which are named as a coating and b coating, and are provided according to the prior art, such as copper foil or gold foil. It can also be said that: and metal foils are applied to the inner surfaces of two opposite side plates. It can also be said that: the extending direction of the coating a, the extending direction of the coating b and the extending direction of the grooves are parallel to each other.
Referring to fig. 3, the quantity measuring method based on the measured resistance includes placing the frame 2 on the placing plate 1. When the frame 2 is placed on the object placing plate 1, the side plate where the coating a is located and the groove direction are parallel, and certainly, the side plate where the coating b is located and the groove are also parallel. Because the storage plate 1 is flat except the groove, the plane of the frame 2 and the upper surface of the storage plate 1 can be well attached.
The conductive filler 3 is then poured into the frame 2, filling the grooves and keeping the conductive filler 3 level with the top of the frame 2, as shown in fig. 4. Fig. 4 means that the upper surface of the conductive filler 3 and the upper surface of the object placing plate 1 are two parallel surfaces, and the conductive filler 3 is not recessed in the frame 2, does not protrude from the frame 2, and is filled but does not overflow. The conductive filler 3 belongs to the prior art, and in the present invention, the conductive filler 3 includes but is not limited to: conductive paste, conductive gel, conductive adhesive, graphite conductive adhesive, conductive paint, conductive silver paint, conductive powder, conductive particles and metal particles.
If a conductive adhesive is used, it is preferred to first coat the shelf 1 with a release agent, such as liquid paraffin, which has the advantage of facilitating removal of the conductive adhesive. However, the application of a layer of release agent is not an essential feature, since the conductive glue does not set so fast and can be removed before it has set, which is very convenient. And the mold release agent is very thin and has a negligible influence on the size, and in fact, even if the size is thick, it does not matter, because it is only necessary to have the same size every time.
And thirdly, measuring the resistance between the coating a and the coating b, and then obtaining the number of grooves according to the resistance value of the resistance.
The resistance between the a-coating and the b-coating was measured, i.e., the resistance as shown in fig. 5. The equivalent circuit is shown in fig. 6. R1 is equivalent to the resistance of the conductive filler 3 without the groove, R2 is equivalent to the resistance of the conductive filler 3 with the groove, and R1 and R2 are arranged at intervals and connected in series. If there is no recess, the equivalent circuit is as shown in FIG. 7. It also needs to be explained that: usually, the numbers 1 and 2 in the resistors R1 and R2 are corner marks at the lower right of the letter R, but in different text editing software, the corner marks are often displayed by mistake, and in order to ensure that the numbers can be displayed correctly in different text editing software, the corner marks in the description are not put at the lower right corner, and the meaning of the expression in this paragraph is known to a person skilled in the art.
Why can the present invention provide a basis for automation? Since the former purely manual measurement is an obstacle to automation, it is only possible to automate the entire work if the count number realizes a conversion between "number" and "physical quantity".
How the quantities are learned by resistance is further described below: the first method is such that: in the first step, the number of grooves is manually counted, assuming the number is N, and in the second step, the resistance between the a coating and the b coating is measured in the manner described in the specification, assuming R3, and if the resistance is measured at a time as R3, then the number of grooves is known as N. That is, there is a one-to-one correspondence between the number of grooves and the resistance between the a coating and the b coating, and mathematically, this is a mapping relationship, and knowing the resistance between the a coating and the b coating also knows the number of grooves. Specifically, it is to be noted that: those skilled in the art will appreciate that: in order to ensure that there is a one-to-one correspondence between the number of grooves and the resistance between the a-coating and the b-coating, the starting point of the placement plate 1 where the frame 2 is placed is the same, in other words, the projection of the a-coating on the placement plate 1 is always the same position, or the projection of the b-coating on the placement plate 1 is always the same position. Similarly, the position of the b coating can be determined to be positioned at a certain position.
In order to accommodate storage trays 1 of different lengths, the frame 2 can be designed to be fixed in three side panels, one of which is translationally movable (e.g., b-coat), as shown in fig. 8, which is a top view in fig. 8. It will be appreciated by those skilled in the art that the translation described herein, with the direction of movement perpendicular to the plane of the coating b, can accommodate shelves 1 of different lengths (i.e., with different numbers of pockets).
Let us make a theoretical analysis first: in the frame 2 and in the vertical direction, the conductive filler 3 is cut into pieces, as shown in fig. 9, the part of the conductive filler 3 not above the groove has a resistance of R1, and the part of the conductive filler 3 containing the embedded groove has a resistance of R2, and those skilled in the art should know that the measured resistance should be measured along the direction of the line from the a coat to the b coat. Since the height of the frame 2 is fixed and constant, each shelf 1 is only different in length, and the groove pitch and the size of the groove are the same for different shelves 1, for the same conductive filler 3, R1 and R2 are fixed, and R1 and R2 can be measured in advance, or R1 and R2 can be calculated by searching relevant parameters. That is, based on the previously obtained R1 and R2, one skilled in the art would recognize that R1 and R2 are known.
We can make the number of R1 and the number of R2 have a certain relationship by locating the frame 2, for example, R1 is always one more than R2 (for example, as shown in fig. 4), and if the number of R2 is x, then the number of R1 is x +1, the following equation:
(x+1)R1+xR2=R
in the above equation where R, which is equal to the sign to the right, is the resistance between the a-coat and the b-coat, R1 is known, R2 is known, and R is known from measurement, x is solvable.
Of course, we can also adjust the position of the frame 2 to make the number of R1 equal to the number of R2, then the equation is:
xR1+xR2=R
x in the above formula is also solvable.
The resistance value of the resistor is one of the most skilled skills mastered by human beings, and the human beings have good means to measure the resistance value of the resistor regardless of the extremely large resistance or the extremely small resistance. How to measure the resistance is not described in detail here.
Those skilled in the art will appreciate that: the measurement is completed by removing the conductive filler 3, and the operation of removing some filler material is a conventional technical means and will not be described in detail.
The preferred mode is: on the surface of the object placing plate 1 (the surface is the surface provided with the groove), a flexible plastic film is laid, and then, the conductive filler 3 is filled, so that the filler is very convenient to remove. It should be noted that, after the plastic film is laid, when the conductive filler 3 is filled, the plastic film is soft and can be deformed moderately, so that the plastic film can be closely attached to the surface of the storage board 1 and the groove. Also, the plastic film is very thin and has a negligible effect on the groove size.
It will also be appreciated by those skilled in the art that when using different conductive fillers 3, care should be taken that the conductivity is different and that modifications should be made to the adaptability. Furthermore, it will be understood by those skilled in the art that even though the same conductive filler 3 is used, the filling is consistent, which means that the resistivity is consistent. Resistivity is known to be a property of a material, but may be affected by factors such as temperature, pressure, humidity, etc. Those skilled in the art will appreciate that where there are factors that affect changes in resistivity, these factors are either kept consistent from measurement to measurement or modified in response to changes in these factors. For example, the resistance value measured in the environment of 20 degrees celsius is Ra, the resistance value measured in the environment of 25 degrees celsius is Rb, and looking up the relevant manual, it can know that Rb measured in the environment of 25 degrees celsius should be Ra in the environment of 20 degrees celsius. The above are merely examples, in actual operation, factors affecting the resistivity change may be very many, some factors may be negligible, and some factors may be difficult to ignore, and for those skilled in the art, measuring the resistance is a very mature technology, and thus is not described herein again.
The invention adopts a new technical means to measure the quantity, is convenient to measure the quantity and provides a foundation for the automation of electric processing, maintenance and use.
Claims (1)
1. Quantity measuring method based on measuring resistance, characterized in that it is based on a device for measuring resistance comprising a frame in the shape of a rectangle made of insulating material, four side plates constituting the frame having the same height, two opposite side plates having an inner surface provided with a conductive coating, these two conductive coatings being named a-coating and b-coating,
the object placing plate is made of insulated transparent plastic, grooves are arranged at equal intervals on the object placing plate and used for placing electrical equipment components, the cross section of each groove is rectangular, one groove is used for placing one electrical equipment component, the number of the measuring grooves is the number of the measuring electrical equipment components,
the same storage plate groove is in the same shape, the same storage plate groove is arranged in parallel, the sizes of the same storage plate groove are equal,
the pitch of adjacent grooves is the same as each other,
the four side plates of the frame are fixed by three side plates, one side plate with the coating can translate, the moving direction of the translation is vertical to the plane of the coating, the translation can be suitable for the storage plates with different numbers of grooves,
the quantity measuring method based on the measuring resistance comprises the following steps:
firstly, placing the frame on the object placing plate,
secondly, pouring conductive filler into the frame, filling the conductive filler into the groove, keeping the conductive filler and the frame flat,
and thirdly, measuring the resistance between the coating a and the coating b, and then obtaining the number of grooves, namely obtaining the number of the electrical equipment parts from the resistance value of the resistance.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910024782.5A CN109613337B (en) | 2019-01-10 | 2019-01-10 | Quantity measuring method based on measuring resistance |
CN202011315871.4A CN112462144B (en) | 2019-01-10 | 2019-01-10 | Quantity measuring device and measuring method based on measuring resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910024782.5A CN109613337B (en) | 2019-01-10 | 2019-01-10 | Quantity measuring method based on measuring resistance |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011315871.4A Division CN112462144B (en) | 2019-01-10 | 2019-01-10 | Quantity measuring device and measuring method based on measuring resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109613337A CN109613337A (en) | 2019-04-12 |
CN109613337B true CN109613337B (en) | 2021-01-15 |
Family
ID=66016993
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910024782.5A Active CN109613337B (en) | 2019-01-10 | 2019-01-10 | Quantity measuring method based on measuring resistance |
CN202011315871.4A Active CN112462144B (en) | 2019-01-10 | 2019-01-10 | Quantity measuring device and measuring method based on measuring resistance |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011315871.4A Active CN112462144B (en) | 2019-01-10 | 2019-01-10 | Quantity measuring device and measuring method based on measuring resistance |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN109613337B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268566A (en) * | 1990-01-31 | 1993-12-07 | Nec Corporation | Bar code label |
CN101191805B (en) * | 2006-11-30 | 2011-01-26 | 富士通株式会社 | Resistance measurement method and component inspection process |
CN207623412U (en) * | 2017-12-08 | 2018-07-17 | 常州九天新能源科技有限公司 | A kind of instant measuring device of welding resistance |
CN207717863U (en) * | 2018-01-30 | 2018-08-10 | 兰州大学 | The contact resistance that holding area and quantity are adjusted based on pressure tests clamping device |
CN108519519A (en) * | 2018-04-11 | 2018-09-11 | 京东方科技集团股份有限公司 | A resistance measuring method and a resistance measuring device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003322665A (en) * | 2002-05-01 | 2003-11-14 | Jsr Corp | Connector for electric resistance measurement and device and method for measuring electric resistance of circuit board |
JP2007042326A (en) * | 2005-08-01 | 2007-02-15 | Nichias Corp | Fuel cell separator and method for producing the same |
GB2449933B (en) * | 2007-06-08 | 2013-01-09 | Sondex Ltd | Apparatus for determining the concentration of a conductive fluid present in a fluid filled borehole |
EP2381233B1 (en) * | 2009-11-24 | 2016-11-16 | Sumitomo Riko Company Limited | Bend sensor and method of measuring deformed shape |
US9102851B2 (en) * | 2011-09-15 | 2015-08-11 | Trillion Science, Inc. | Microcavity carrier belt and method of manufacture |
CN102820240B (en) * | 2012-08-01 | 2014-10-22 | 上海交通大学 | Chip-on-glass (COG) interconnection resistance prediction method based on machine vision |
CN105136559B (en) * | 2015-08-14 | 2018-01-23 | 中国科学院武汉岩土力学研究所 | A kind of high-efficiency dual-purpose superminiature injection probe apparatus |
CN108318713B (en) * | 2018-01-30 | 2020-11-03 | 兰州大学 | Contact resistance test clamping device based on pressure adjustment of clamping area and quantity |
-
2019
- 2019-01-10 CN CN201910024782.5A patent/CN109613337B/en active Active
- 2019-01-10 CN CN202011315871.4A patent/CN112462144B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268566A (en) * | 1990-01-31 | 1993-12-07 | Nec Corporation | Bar code label |
CN101191805B (en) * | 2006-11-30 | 2011-01-26 | 富士通株式会社 | Resistance measurement method and component inspection process |
CN207623412U (en) * | 2017-12-08 | 2018-07-17 | 常州九天新能源科技有限公司 | A kind of instant measuring device of welding resistance |
CN207717863U (en) * | 2018-01-30 | 2018-08-10 | 兰州大学 | The contact resistance that holding area and quantity are adjusted based on pressure tests clamping device |
CN108519519A (en) * | 2018-04-11 | 2018-09-11 | 京东方科技集团股份有限公司 | A resistance measuring method and a resistance measuring device |
Also Published As
Publication number | Publication date |
---|---|
CN112462144A (en) | 2021-03-09 |
CN112462144B (en) | 2022-09-30 |
CN109613337A (en) | 2019-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104698276A (en) | Resistor verifying system | |
CN109613337B (en) | Quantity measuring method based on measuring resistance | |
CN204115616U (en) | A kind of 3 D measuring instrument | |
CN203719599U (en) | Measuring apparatus for measuring gap width | |
CN203595646U (en) | Liquid viscosity detector | |
CN109738116A (en) | A method and device for calibrating a flexible pressure sensor | |
CN107228982A (en) | The device of conducting resinl volume resistivity measurement | |
CN202547636U (en) | Warp measuring device of membrane | |
CN102621390A (en) | Method and device for measuring square resistance | |
CN105758902A (en) | Water content measuring probe based on PCB and electric field marginal effect, and manufacturing method of water content measuring probe | |
CN205300830U (en) | Air heat engine torgue measurement display device | |
CN215067215U (en) | Circuit connectivity detection device for electronic component test | |
CN209961132U (en) | Coating thickness measuring device | |
CN221175624U (en) | Graphite setting-out conductivity measurement teaching presentation device | |
US3308376A (en) | Area measurement of irregular shapes | |
CN208282713U (en) | Measure jig | |
CN206322391U (en) | A kind of hydroelectric analoguesi-mulation experimental provision of hydraulics teaching seepage flow under pressure | |
CN206584643U (en) | A kind of Experiments of Electricity instruments used for education | |
US2802272A (en) | Area calculator | |
CN215984295U (en) | Measurement frock of SMT paster processing usefulness | |
CN219503129U (en) | Crystal dot glue jig and crystal dot glue device | |
CN206510569U (en) | Printing platform and silk-screen printing device | |
CN213638381U (en) | Film layer processing platform convenient to cut and compare | |
CN207556501U (en) | A kind of battery core thickness testing device | |
CN110672823A (en) | Method and tool for testing shrinkage rate of silica gel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: State Grid Jiangsu Electric Power Co., Ltd. Yancheng Dafeng district power supply branch Applicant after: Wang Jiuyu Address before: Room 1005, 10th floor, 303 Huanghai East Road, Ganyu District, Lianyungang City, Jiangsu Province Applicant before: Wang Jiuyu |
|
GR01 | Patent grant | ||
GR01 | Patent grant |