CN109599434B - Semiconductor device with a semiconductor layer having a plurality of semiconductor layers - Google Patents
Semiconductor device with a semiconductor layer having a plurality of semiconductor layers Download PDFInfo
- Publication number
- CN109599434B CN109599434B CN201811597948.4A CN201811597948A CN109599434B CN 109599434 B CN109599434 B CN 109599434B CN 201811597948 A CN201811597948 A CN 201811597948A CN 109599434 B CN109599434 B CN 109599434B
- Authority
- CN
- China
- Prior art keywords
- layer
- type drift
- drift region
- region
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/852—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs being Group III-V materials comprising three or more elements, e.g. AlGaN or InAsSbP
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明提供一种半导体器件,包括依次层叠设置的第一电极层、衬底层、N‑型漂移区、源极结构及第二电极层;源极结构包括相互独立的N+掺杂区,以及环绕每个N+掺杂区设置的P基区,相邻的P基区彼此间隔;第二电极层包括源电极及栅电极,源电极对应并连接N+掺杂区及P基区设置,栅电极对应N+掺杂区、P基区及相邻P基区之间的N‑型漂移区设置,且栅电极与N‑型漂移区及源极结构之间通过栅氧化层连接;在栅氧化层与N‑型漂移区之间设置有AlxGa1‑xN层,AlxGa1‑xN层对应并连接N‑型漂移区,0<x≤1。本发明提供的半导体器件具有改善的积累层电阻及较高的工作效率。
The present invention provides a semiconductor device, comprising a first electrode layer, a substrate layer, an N-type drift region, a source structure and a second electrode layer which are stacked in sequence; the source structure comprises independent N+ doped regions, and a P base region arranged around each N+ doped region, and adjacent P base regions are spaced apart from each other; the second electrode layer comprises a source electrode and a gate electrode, the source electrode is arranged corresponding to and connected to the N+ doped region and the P base region, the gate electrode is arranged corresponding to the N+ doped region, the P base region and the N-type drift region between the adjacent P base regions, and the gate electrode is connected to the N-type drift region and the source structure through a gate oxide layer; an AlxGa1 -xN layer is arranged between the gate oxide layer and the N-type drift region, the AlxGa1 -xN layer corresponds to and connects the N-type drift region, and 0<x≤1. The semiconductor device provided by the present invention has improved accumulation layer resistance and high working efficiency.
Description
技术领域Technical Field
本发明涉及一种半导体器件。The present invention relates to a semiconductor device.
背景技术Background technique
金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field EffectTransistor,MOSFET)因具有开关速度快、功耗低的优点,而被广泛应用于各个领域。但是MOSFET存在电流密度小、导通电阻大的缺点。Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is widely used in various fields due to its advantages of fast switching speed and low power consumption. However, MOSFET has the disadvantages of low current density and large on-resistance.
发明内容Summary of the invention
鉴于背景技术中存在的问题,本发明实施例提供了一种半导体器件,以提高电流密度,降低导通电阻。In view of the problems existing in the background technology, an embodiment of the present invention provides a semiconductor device to improve current density and reduce on-resistance.
为了解决上述技术问题,本发明实施例提供一种半导体器件,半导体器件包括依次层叠设置的第一电极层、衬底层、N-型漂移区、源极结构及第二电极层;源极结构包括相互独立的N+掺杂区,以及环绕每个N+掺杂区设置的P基区,相邻的P基区彼此间隔;第二电极层包括源电极及栅电极,源电极对应并连接N+掺杂区及P基区设置,栅电极对应N+掺杂区、P基区及相邻P基区之间的N-型漂移区设置,且栅电极与N-型漂移区及源极结构之间通过栅氧化层连接;在栅氧化层与N-型漂移区之间设置有AlxGa1-xN层,AlxGa1-xN层对应并连接所述N-型漂移区,0<x≤1。In order to solve the above technical problems, an embodiment of the present invention provides a semiconductor device, which includes a first electrode layer, a substrate layer, an N-type drift region, a source structure and a second electrode layer which are stacked in sequence; the source structure includes independent N+ doping regions, and a P base region arranged around each N+ doping region, and adjacent P base regions are spaced apart from each other; the second electrode layer includes a source electrode and a gate electrode, the source electrode is arranged corresponding to and connected to the N+ doping region and the P base region, the gate electrode is arranged corresponding to the N+ doping region, the P base region and the N-type drift region between adjacent P base regions, and the gate electrode is connected to the N-type drift region and the source structure through a gate oxide layer; an AlxGa1 -xN layer is arranged between the gate oxide layer and the N-type drift region, the AlxGa1 -xN layer corresponds to and connects the N-type drift region, 0<x≤1.
根据本发明实施例的一个方面,AlxGa1-xN层的厚度为5nm~500nm。According to one aspect of the embodiment of the present invention, the thickness of the AlxGa1 -xN layer is 5nm-500nm.
根据本发明实施例的一个方面,AlxGa1-xN层的厚度为10nm~100nm。According to one aspect of the embodiment of the present invention, the thickness of the AlxGa1 -xN layer is 10 nm to 100 nm.
根据本发明实施例的一个方面,AlxGa1-xN层的厚度为10nm~50nm。According to one aspect of the embodiment of the present invention, the thickness of the AlxGa1 -xN layer is 10 nm to 50 nm.
根据本发明实施例的一个方面,AlxGa1-xN层中,0.1≤x≤0.5。According to one aspect of an embodiment of the present invention, in the AlxGa1 -xN layer, 0.1≤x≤0.5.
根据本发明实施例的一个方面,相邻的P基区通过N-型漂移区间隔,AlxGa1-xN层对应并设置于相邻P基区之间的N-型漂移区的表面。According to one aspect of an embodiment of the present invention, adjacent P-base regions are separated by an N-type drift region, and the AlxGa1 -xN layer corresponds to and is disposed on the surface of the N-type drift region between adjacent P-base regions.
根据本发明实施例的一个方面,AlxGa1-xN层的朝向N-型漂移区的表面与栅氧化层的朝向N-型漂移区的表面齐平。According to one aspect of an embodiment of the present invention, a surface of the AlxGa1 -xN layer facing the N-type drift region is flush with a surface of the gate oxide layer facing the N-type drift region.
根据本发明实施例的一个方面,AlxGa1-xN层的长度等于或小于相邻P基区之间的距离。According to one aspect of an embodiment of the present invention, the length of the AlxGa1 -xN layer is equal to or less than the distance between adjacent P-base regions.
根据本发明实施例的一个方面,半导体器件为平面式的金属氧化物半导体场效应晶体管MOSFET或绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)。According to one aspect of the embodiments of the present invention, the semiconductor device is a planar metal oxide semiconductor field effect transistor MOSFET or an insulated gate bipolar transistor (IGBT).
根据本发明实施例的一个方面,相邻的P基区通过沟槽间隔,P基区与N-型漂移区之间的界面高于沟槽的底面;栅电极、栅氧化层及AlxGa1-xN层设置于沟槽内;栅电极与源电极之间通过绝缘氧化层隔离。According to one aspect of an embodiment of the present invention, adjacent P base regions are separated by a trench, and the interface between the P base region and the N-type drift region is higher than the bottom surface of the trench; the gate electrode, the gate oxide layer and the AlxGa1 -xN layer are arranged in the trench; the gate electrode and the source electrode are isolated by an insulating oxide layer.
根据本发明实施例的一个方面,AlxGa1-xN层设置于沟槽的位于界面以下的壁面。According to one aspect of the embodiments of the present invention, the AlxGa1 -xN layer is disposed on the wall surface of the trench below the interface.
根据本发明实施例的一个方面,半导体器件为沟槽式的金属氧化物半导体场效应晶体管MOSFET或绝缘栅双极型晶体管IGBT。According to one aspect of the embodiments of the present invention, the semiconductor device is a trench metal oxide semiconductor field effect transistor MOSFET or an insulated gate bipolar transistor IGBT.
本发明实施例提供的半导体器件在导通状态下,栅氧化层与N-型漂移区之间形成积累层,电子可以通过源极结构并经积累层到达N-型漂移区,通过在栅氧化层与N-型漂移区之间设置AlxGa1-xN层,并使AlxGa1-xN层对应并连接N-型漂移区,能够显著提高积累层的电流密度,降低导通电阻,提高半导体器件的工作效率。In the semiconductor device provided by the embodiment of the present invention, when in the on state, an accumulation layer is formed between the gate oxide layer and the N-type drift region, and electrons can pass through the source structure and reach the N-type drift region through the accumulation layer. By arranging an AlxGa1 -xN layer between the gate oxide layer and the N-type drift region, and making the AlxGa1 -xN layer correspond to and connect to the N-type drift region, the current density of the accumulation layer can be significantly increased, the on-resistance can be reduced, and the working efficiency of the semiconductor device can be improved.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。附图并未按照真实比例绘制。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following briefly introduces the drawings required for use in the embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work. The drawings are not drawn according to the true scale.
图1为本发明一个实施例提供的半导体器件的结构示意图。FIG. 1 is a schematic diagram of the structure of a semiconductor device provided by an embodiment of the present invention.
图2为本发明一个实施例提供的平面式MOSFET的结构示意图。FIG. 2 is a schematic diagram of the structure of a planar MOSFET provided by an embodiment of the present invention.
图3为图2中平面式MOSFET的导通电阻示意图。FIG. 3 is a schematic diagram of the on-resistance of the planar MOSFET in FIG. 2 .
图4为本发明一个实施例提供的平面式IGBT的结构示意图。FIG. 4 is a schematic diagram of the structure of a planar IGBT provided by an embodiment of the present invention.
图5为本发明一个实施例提供的沟槽式MOSFET的结构示意图。FIG. 5 is a schematic diagram of the structure of a trench MOSFET provided by an embodiment of the present invention.
图6为本发明另一个实施例提供的沟槽式IGBT的结构示意图。FIG6 is a schematic diagram of the structure of a trench IGBT provided by another embodiment of the present invention.
标号说明:Description of labels:
110、第一电极层;110. a first electrode layer;
120、衬底层;121、N+型衬底层;122、N+型缓冲层;123、P+型集电层;120, substrate layer; 121, N+ type substrate layer; 122, N+ type buffer layer; 123, P+ type collector layer;
130、N-型漂移区;131、积累层;130, N-type drift region; 131, accumulation layer;
140、源极结构;141、P基区;142、N+掺杂区;140. Source structure; 141. P base region; 142. N+ doped region;
150、第二电极层;151、源电极;152、栅电极;153、栅氧化层;154、AlxGa1-xN层;155、绝缘氧化层。150, second electrode layer; 151, source electrode; 152, gate electrode; 153, gate oxide layer; 154, AlxGa1 -xN layer; 155, insulating oxide layer.
具体实施方式Detailed ways
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本发明,并不被配置为限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。The features and exemplary embodiments of various aspects of the present invention will be described in detail below. In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and Examples. It should be understood that the specific embodiments described herein are only configured to explain the present invention and are not configured to limit the present invention. For those skilled in the art, the present invention can be implemented without the need for some of these specific details. The following description of the embodiments is only to provide a better understanding of the present invention by illustrating examples of the present invention.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。另外,在本文中,“多个”的意思为两个以上,“以上”、“以下”为包括本数。It should be noted that, in this article, relational terms such as first and second, etc. are only used to distinguish an entity or operation from another entity or operation, and do not necessarily require or imply that there is any such actual relationship or order between these entities or operations. Moreover, the term "include", "comprise" or any other variant thereof is intended to cover non-exclusive inclusion, so that the process, method, article or equipment including a series of elements not only include those elements, but also include other elements not clearly listed, or also include elements inherent to such process, method, article or equipment. In the absence of more restrictions, the elements limited by the sentence "include..." do not exclude the existence of other identical elements in the process, method, article or equipment including the elements. In addition, in this article, the meaning of "multiple" is more than two, and "above" and "below" include the number.
图1示意性地显示了本发明实施例提供的一种半导体器件。请参照图1,本发明一个实施例提供的一种半导体器件包括依次层叠设置的第一电极层110、衬底层120、N-型漂移区130、源极结构140及第二电极层150;源极结构140包括相互独立的N+掺杂区142,以及环绕每个N+掺杂区142设置的P基区141,相邻的P基区141彼此间隔;第二电极层150包括源电极151及栅电极152,源电极151对应并连接N+掺杂区142及P基区141设置,栅电极152对应N+掺杂区142、P基区141及相邻P基区141之间的N-型漂移区130设置,且栅电极152与N-型漂移区130及源极结构140之间通过栅氧化层153连接;栅氧化层153与N-型漂移区130之间设置有AlxGa1-xN层154,0<x≤1,AlxGa1-xN层154对应并连接N-型漂移区130,栅氧化层153覆盖AlxGa1-xN层154设置。FIG. 1 schematically shows a semiconductor device provided by an embodiment of the present invention. Referring to FIG. 1 , a semiconductor device provided by an embodiment of the present invention includes a first electrode layer 110, a substrate layer 120, an N-type drift region 130, a source structure 140 and a second electrode layer 150 which are sequentially stacked; the source structure 140 includes mutually independent N+ doping regions 142 and a P base region 141 which is arranged around each N+ doping region 142, and adjacent P base regions 141 are spaced apart from each other; the second electrode layer 150 includes a source electrode 151 and a gate electrode 152, the source electrode 151 is arranged corresponding to and connected to the N+ doping region 142 and the P base region 141, the gate electrode 152 is arranged corresponding to the N+ doping region 142, the P base region 141 and the N-type drift region 130 between the adjacent P base region 141, and the gate electrode 152 is connected to the N-type drift region 130 and the source structure 140 through a gate oxide layer 153; an AlxGa1 -xO2 is arranged between the gate oxide layer 153 and the N-type drift region 130 N layer 154 , 0<x≤1, Al x Ga 1-x N layer 154 corresponds to and is connected to the N-type drift region 130 , and the gate oxide layer 153 is disposed to cover the Al x Ga 1-x N layer 154 .
本发明实施例提供的半导体器件在导通状态下,栅氧化层153与N-型漂移区130之间形成积累层131,电子可以通过源极结构140并经积累层131到达N-型漂移区130,通过在栅氧化层153与N-型漂移区130之间设置AlxGa1-xN层154,并使AlxGa1-xN层154对应并连接N-型漂移区130,AlxGa1-xN层154会产生高浓度的二维电子气(two-dimensional electrongas,2DEG),从而显著提高积累层131的电流密度,降低半导体器件的导通电阻,提高半导体器件的工作效率。In the semiconductor device provided by the embodiment of the present invention, when in the on state, an accumulation layer 131 is formed between the gate oxide layer 153 and the N-type drift region 130, and electrons can pass through the source structure 140 and reach the N-type drift region 130 through the accumulation layer 131. By arranging an AlxGa1 -xN layer 154 between the gate oxide layer 153 and the N-type drift region 130, and making the AlxGa1 -xN layer 154 correspond to and connect to the N-type drift region 130, the AlxGa1 -xN layer 154 will generate a high concentration of two-dimensional electron gas (2DEG), thereby significantly improving the current density of the accumulation layer 131, reducing the on-resistance of the semiconductor device, and improving the working efficiency of the semiconductor device.
进一步地,AlxGa1-xN层154的厚度可以根据半导体器件的具体指标要求,通过理论计算,使用SENTAURUS或SILVACO等仿真软件确定,达到最佳改善积累层电阻的目的。Furthermore, the thickness of the AlxGa1 -xN layer 154 can be determined according to specific specifications of the semiconductor device through theoretical calculation using simulation software such as SENTAURUS or SILVACO, so as to achieve the purpose of optimally improving the resistance of the accumulation layer.
在一些实施例中,AlxGa1-xN层154的厚度上限可以为30nm、50nm、70nm、100nm、120nm、150nm、200nm、300nm、400nm、500nm;AlxGa1-xN层154的厚度下限可以为5nm、8nm、10nm、15nm、20nm、30nm、50nm、80nm、100nm、130nm、180nm、200nm。AlxGa1-xN层154的厚度可以是上限或下限的任意组合。In some embodiments, the upper limit of the thickness of the AlxGa1 -xN layer 154 may be 30 nm, 50 nm, 70 nm, 100 nm, 120 nm, 150 nm, 200 nm, 300 nm, 400 nm, 500 nm; the lower limit of the thickness of the AlxGa1 -xN layer 154 may be 5 nm, 8 nm, 10 nm, 15 nm, 20 nm, 30 nm, 50 nm, 80 nm, 100 nm, 130 nm, 180 nm, 200 nm. The thickness of the AlxGa1 -xN layer 154 may be any combination of the upper limit or the lower limit.
可选地,AlxGa1-xN层154的厚度为5nm~500nm。Optionally, the thickness of the AlxGa1 -xN layer 154 is 5 nm to 500 nm.
可选地,AlxGa1-xN层154的厚度为10nm~100nm。Optionally, the thickness of the AlxGa1 -xN layer 154 is 10 nm to 100 nm.
可选地,AlxGa1-xN层154的厚度为10nm~50nm。Optionally, the thickness of the AlxGa1 -xN layer 154 is 10 nm to 50 nm.
可选地,AlxGa1-xN层154中,0.1≤x≤0.5。Optionally, in the AlxGa1 -xN layer 154, 0.1≤x≤0.5.
可选地,N-型漂移区130的材料为Si、SiC、GaAs、GaN或其它半导体材料。Optionally, the material of the N-type drift region 130 is Si, SiC, GaAs, GaN or other semiconductor materials.
AlxGa1-xN层154可以是在P基区141和N+掺杂区142形成之后,通过淀积或其它工艺形成。The AlxGa1 -xN layer 154 may be formed by deposition or other processes after the P-base region 141 and the N+ doping region 142 are formed.
在一些实施例中,相邻的P基区141之间通过N-型漂移区130间隔,AlxGa1-xN层154对应并设置于相邻P基区141之间的N-型漂移区130的表面。In some embodiments, adjacent P-base regions 141 are separated by an N-type drift region 130 , and the Al x Ga 1-x N layer 154 corresponds to and is disposed on the surface of the N-type drift region 130 between adjacent P-base regions 141 .
进一步地,AlxGa1-xN层154的朝向N-型漂移区130的表面与栅氧化层153的朝向N-型漂移区130的表面齐平。Furthermore, a surface of the Al x Ga 1-x N layer 154 facing the N-type drift region 130 is flush with a surface of the gate oxide layer 153 facing the N-type drift region 130 .
进一步地,AlxGa1-xN层154的长度可以是等于或小于相邻P基区141之间的距离L。例如AlxGa1-xN层154的长度等于相邻P基区141之间的距离L,可以更好地提高积累层131的电流密度,降低半导体器件的导通电阻。Furthermore, the length of the AlxGa1 -xN layer 154 may be equal to or less than the distance L between adjacent P base regions 141. For example, the length of the AlxGa1 -xN layer 154 is equal to the distance L between adjacent P base regions 141, which can better improve the current density of the accumulation layer 131 and reduce the on-resistance of the semiconductor device.
半导体器件可以为平面式MOSFET。作为一个示例,请一并参照图2,平面式MOSFET包括依次层叠设置的第一电极层110、衬底层120、N-型漂移区130、源极结构140及第二电极层150;源极结构140包括相互独立的N+掺杂区142,以及环绕每个N+掺杂区142设置的P基区141,相邻的P基区141之间通过N-型漂移区130间隔;第二电极层150包括源电极151及栅电极152,源电极151对应并连接N+掺杂区142及P基区141设置,栅电极152对应N+掺杂区142、P基区141及相邻P基区141之间的N-型漂移区130设置,且栅电极152与N-型漂移区130及源极结构140之间通过栅氧化层153连接;在栅氧化层153与N-型漂移区130之间设置有AlxGa1-xN层154,AlxGa1-xN层154对应并连接N-型漂移区130,栅氧化层153覆盖AlxGa1-xN层154设置。The semiconductor device may be a planar MOSFET. As an example, please refer to FIG. 2 , the planar MOSFET includes a first electrode layer 110, a substrate layer 120, an N-type drift region 130, a source structure 140 and a second electrode layer 150 which are stacked in sequence; the source structure 140 includes mutually independent N+ doping regions 142, and a P base region 141 which is arranged around each N+ doping region 142, and adjacent P base regions 141 are spaced apart by the N-type drift region 130; the second electrode layer 150 The invention comprises a source electrode 151 and a gate electrode 152. The source electrode 151 is arranged corresponding to and connected to the N+ doping region 142 and the P base region 141. The gate electrode 152 is arranged corresponding to the N+ doping region 142, the P base region 141 and the N-type drift region 130 between the adjacent P base regions 141. The gate electrode 152 is connected to the N-type drift region 130 and the source structure 140 through a gate oxide layer 153. An AlxGa1 -xN layer 154 is arranged between the gate oxide layer 153 and the N-type drift region 130. The AlxGa1 -xN layer 154 corresponds to and is connected to the N-type drift region 130. The gate oxide layer 153 covers the AlxGa1 -xN layer 154.
其中,第一电极层110为漏电极。The first electrode layer 110 is a drain electrode.
衬底层120为N+型衬底层121。可选地,N+型衬底层121的材料为Si、SiC、GaAs、GaN或其它半导体材料。The substrate layer 120 is an N+ type substrate layer 121. Optionally, the material of the N+ type substrate layer 121 is Si, SiC, GaAs, GaN or other semiconductor materials.
可选地,N-型漂移区130的材料为Si、SiC、GaAs、GaN或其它半导体材料。Optionally, the material of the N-type drift region 130 is Si, SiC, GaAs, GaN or other semiconductor materials.
如图3所示,平面式MOSFET的导通电阻包括源极接触电阻RCS、源极电阻RN+、沟道电阻RCH、积累层电阻RA、JFET区域电阻RJFET、漂移区电阻RD、衬底电阻RSUB、漏极接触电阻RCD。由于该平面式MOSFET在栅氧化层153与N-型漂移区130之间设置有AlxGa1-xN层154,AlxGa1-xN层154会产生高浓度的二维电子气,显著提高积累层131的电流密度,使积累层电阻RA显著降低,从而降低半导体器件的导通电阻,提高半导体器件的工作效率。As shown in Fig. 3, the on-resistance of the planar MOSFET includes source contact resistance RCS , source resistance RN+ , channel resistance RCH , accumulation layer resistance RA , JFET region resistance RJFET , drift region resistance RD , substrate resistance RSUB , and drain contact resistance RCD . Since the planar MOSFET is provided with AlxGa1 -xN layer 154 between gate oxide layer 153 and N-type drift region 130, AlxGa1 -xN layer 154 will generate high-concentration two-dimensional electron gas, significantly increase the current density of accumulation layer 131, and significantly reduce the accumulation layer resistance RA , thereby reducing the on-resistance of the semiconductor device and improving the working efficiency of the semiconductor device.
为了更清楚地显示AlxGa1-xN层154的有益效果,提供在栅氧化层153与N-型漂移区130之间未设置有AlxGa1-xN层154的常规平面式MOSFET与在栅氧化层153与N-型漂移区130之间设置有AlxGa1-xN层154的平面式MOSFET作为对比,常规平面式MOSFET与本发明实施例的平面式MOSFET的其他特征相同。其中,常规平面式MOSFET与本发明实施例的平面式MOSFET的元胞尺寸(cell pitch)宽度W均为20μm,相邻P基区141之间的距离L均为6μm,本发明实施例的平面式MOSFET中AlxGa1-xN层154的厚度为30nm,x=0.3。In order to more clearly show the beneficial effect of the AlxGa1 -xN layer 154, a conventional planar MOSFET without the AlxGa1 -xN layer 154 between the gate oxide layer 153 and the N-type drift region 130 and a planar MOSFET with the AlxGa1 -xN layer 154 between the gate oxide layer 153 and the N-type drift region 130 are provided for comparison, and other features of the conventional planar MOSFET and the planar MOSFET of the embodiment of the present invention are the same. Among them, the cell pitch width W of the conventional planar MOSFET and the planar MOSFET of the embodiment of the present invention is 20μm, the distance L between adjacent P base regions 141 is 6μm, and the thickness of the AlxGa1 -xN layer 154 in the planar MOSFET of the embodiment of the present invention is 30nm, and x=0.3.
常规平面式MOSFET,额定电压为50V下积累层电阻RA为0.66mΩ·cm2,在其导通电阻中的占比为29.5%,仅次于沟道电阻RCH。根据公式RA=ρ×L=L/(q×μn×n),可以得到该常规平面式MOSFET的积累层中的电子数量为n=L/(q×μn×RA)。将相邻P基区141之间的距离L=6μm,电荷量q=1.6×10-19C,积累层电阻RA=0.66mΩ·cm2,其积累层电子迁移率μn=200cm2/(V·s)带入公式可以得到,积累层电子数量n=2.84×1016cm-3。For a conventional planar MOSFET, the resistance RA of the accumulation layer is 0.66mΩ·cm 2 at a rated voltage of 50V, accounting for 29.5% of its on-resistance, second only to the channel resistance RC H . According to the formula RA =ρ×L=L/(q×μ n ×n), the number of electrons in the accumulation layer of the conventional planar MOSFET can be obtained as n=L/(q×μ n × RA ). The distance between adjacent P base regions 141 is L=6μm, the charge is q=1.6×10 -19 C, the resistance RA of the accumulation layer is 0.66mΩ·cm 2 , and the electron mobility μ n =200cm 2 /(V·s) of the accumulation layer is substituted into the formula to obtain the number of electrons in the accumulation layer n=2.84×10 16 cm -3 .
而本发明实施例的平面式MOSFET,由于在栅氧化层153与N-型漂移区130之间设置有AlxGa1-xN层154,AlxGa1-xN层154产生的二维电子气高达5×1019cm-3,显著提高了积累层131的电流密度,使积累层电阻RA显著降低,仅约为6.6×10-4mΩ·cm2,降低了3个数量级,相比其他导通电阻的组成部分基本可以忽略不计,因此,显著降低了半导体器件的导通电阻,提高了半导体器件的工作效率。In the planar MOSFET of the embodiment of the present invention, since an AlxGa1 -xN layer 154 is disposed between the gate oxide layer 153 and the N-type drift region 130, the two-dimensional electron gas generated by the AlxGa1 -xN layer 154 is as high as 5× 1019cm -3 , which significantly increases the current density of the accumulation layer 131, and significantly reduces the accumulation layer resistance RA to only about 6.6× 10-4mΩ · cm2 , which is reduced by 3 orders of magnitude and is basically negligible compared with other components of the on-resistance. Therefore, the on-resistance of the semiconductor device is significantly reduced, and the working efficiency of the semiconductor device is improved.
半导体器件可以为平面式IGBT。作为一个示例,请一并参照图4,平面式IGBT包括依次层叠设置的第一电极层110、衬底层120、N-型漂移区130、源极结构140及第二电极层150;源极结构140包括相互独立的N+掺杂区142,以及环绕每个N+掺杂区142设置的P基区141,相邻的P基区141之间通过N-型漂移区130间隔;第二电极层150包括源电极151及栅电极152,源电极151对应并连接N+掺杂区142及P基区141设置,栅电极152对应N+掺杂区142、P基区141及相邻P基区141之间的N-型漂移区130设置,且栅电极152与N-型漂移区130及源极结构140之间通过栅氧化层153连接;在栅氧化层153与N-型漂移区130之间设置有AlxGa1-xN层154,AlxGa1-xN层154对应并连接N-型漂移区130,栅氧化层153覆盖AlxGa1-xN层154设置。The semiconductor device may be a planar IGBT. As an example, please refer to FIG. 4 , the planar IGBT includes a first electrode layer 110, a substrate layer 120, an N-type drift region 130, a source structure 140 and a second electrode layer 150 which are stacked in sequence; the source structure 140 includes mutually independent N+ doping regions 142, and a P base region 141 which is arranged around each N+ doping region 142, and adjacent P base regions 141 are spaced apart by the N-type drift region 130; the second electrode layer 150 includes a first electrode layer 110, a substrate layer 120, an N-type drift region 130, a source structure 140 and a second electrode layer 150 ... a first electrode layer 110, a substrate layer 120, an N-type drift region 130, a source structure 140 and a second electrode layer 150; the source structure 140 includes a first electrode layer 110, a substrate layer 120, an N-type drift region 130, a source structure 140 and a second electrode layer 150; the source structure 140 includes a first electrode layer 110, a substrate layer 120, an N-type drift region 130, a source structure 140 and a second electrode layer 150; the source structure 140 includes a first electrode layer 110, a substrate layer 12 The source electrode 151 and the gate electrode 152 are provided. The source electrode 151 is provided corresponding to and connected to the N+ doped region 142 and the P base region 141. The gate electrode 152 is provided corresponding to the N+ doped region 142, the P base region 141 and the N-type drift region 130 between the adjacent P base regions 141. The gate electrode 152 is connected to the N-type drift region 130 and the source structure 140 through a gate oxide layer 153. An AlxGa1 -xN layer 154 is provided between the gate oxide layer 153 and the N-type drift region 130. The AlxGa1 -xN layer 154 corresponds to and is connected to the N-type drift region 130. The gate oxide layer 153 covers the AlxGa1 -xN layer 154.
其中,第一电极层110为集电极。The first electrode layer 110 is a collector.
衬底层120包括层叠设置的N+型缓冲层122和P+型集电层123,其中,N+型缓冲层122与N-型漂移区130相邻接,P+型集电层123与第一电极层110相邻接。The substrate layer 120 includes an N+ type buffer layer 122 and a P+ type collector layer 123 which are stacked, wherein the N+ type buffer layer 122 is adjacent to the N− type drift region 130 , and the P+ type collector layer 123 is adjacent to the first electrode layer 110 .
可选地,N-型漂移区130的材料为Si、SiC、GaAs、GaN或其它半导体材料。Optionally, the material of the N-type drift region 130 is Si, SiC, GaAs, GaN or other semiconductor materials.
在一些实施例中,相邻的P基区141通过沟槽间隔,P基区141与N-型漂移区130之间的界面高于沟槽的底面;栅电极152、栅氧化层153及AlxGa1-xN层154设置于沟槽内;栅电极152与源电极151之间通过绝缘氧化层154隔离。In some embodiments, adjacent P-base regions 141 are separated by trenches, and the interface between the P-base region 141 and the N-type drift region 130 is higher than the bottom surface of the trenches; the gate electrode 152 , the gate oxide layer 153 and the Al x Ga 1-x N layer 154 are disposed in the trenches; and the gate electrode 152 and the source electrode 151 are isolated by an insulating oxide layer 154 .
进一步地,AlxGa1-xN层154设置于沟槽的位于P基区141与N-型漂移区130之间的界面以下的壁面。即AlxGa1-xN层154位于P基区141与N-型漂移区130之间的界面以下,达到改善积累层电阻RA的效果。Furthermore, the AlxGa1 -xN layer 154 is disposed on the wall of the trench below the interface between the P-base region 141 and the N-type drift region 130. That is, the AlxGa1 -xN layer 154 is located below the interface between the P-base region 141 and the N-type drift region 130, thereby achieving the effect of improving the resistance RA of the accumulation layer.
可选地,AlxGa1-xN层154设置于沟槽的底壁面及与底壁面连接的部分侧壁面上,AlxGa1-xN层154的顶面与P基区141和N-型漂移区130之间的界面齐平。在其他的实施例中,AlxGa1-xN层154的顶面还可以低于与P基区141和N-型漂移区130之间的界面。均可以起到较好地改善积累层电阻RA的效果。Optionally, the AlxGa1 -xN layer 154 is disposed on the bottom wall surface of the trench and a portion of the side wall surface connected to the bottom wall surface, and the top surface of the AlxGa1 -xN layer 154 is flush with the interface between the P base region 141 and the N-type drift region 130. In other embodiments, the top surface of the AlxGa1 -xN layer 154 may also be lower than the interface between the P base region 141 and the N-type drift region 130. Both can play a good effect of improving the accumulation layer resistance RA .
可以理解的是,还可以是在沟槽的位于P基区141与N-型漂移区130之间的界面以下的部分壁面上设置AlxGa1-xN层154,例如在沟槽的位于P基区141与N-型漂移区130之间的界面以下的侧壁面上设置AlxGa1-xN层154,在沟槽的底壁面上设置AlxGa1-xN层154,或者在沟槽的位于P基区141与N-型漂移区130之间的界面以下的侧壁面上及部分底壁面上设置AlxGa1-xN层154,均可以起到改善积累层电阻RA的效果。It can be understood that the AlxGa1 -xN layer 154 can also be disposed on a portion of the wall surface of the trench below the interface between the P-base region 141 and the N-type drift region 130, for example, the AlxGa1-xN layer 154 can be disposed on the side wall surface of the trench below the interface between the P-base region 141 and the N-type drift region 130, the AlxGa1 -xN layer 154 can be disposed on the bottom wall surface of the trench, or the AlxGa1 - xN layer 154 can be disposed on the side wall surface and a portion of the bottom wall surface of the trench below the interface between the P - base region 141 and the N-type drift region 130, all of which can have the effect of improving the accumulation layer resistance RA .
进一步地,当沟槽的侧壁面上设置有AlxGa1-xN层154时,AlxGa1-xN层154的朝向N-型漂移区130的表面与栅氧化层153的朝向源极结构140的表面齐平。Further, when the AlxGa1 -xN layer 154 is disposed on the sidewall surface of the trench, the surface of the AlxGa1 -xN layer 154 facing the N-type drift region 130 is flush with the surface of the gate oxide layer 153 facing the source structure 140 .
半导体器件可以为沟槽式MOSFET。作为一个示例,请一并参照图5,沟槽式MOSFET包括依次层叠设置的第一电极层110、衬底层120、N-型漂移区130、源极结构140及第二电极层150;源极结构140包括相互独立的N+掺杂区142,以及环绕每个N+掺杂区142设置的P基区141,相邻的P基区141之间通过沟槽间隔,且P基区141与N-型漂移区130之间的界面高于沟槽的底面;第二电极层150包括源电极151及栅电极152,栅电极152设置于沟槽内,且栅电极152与N-型漂移区130及源极结构140之间通过栅氧化层153连接;在沟槽的槽口覆盖有绝缘氧化层155,源电极151覆盖绝缘氧化层155设置,且源电极151对应并连接N+掺杂区142及P基区141设置;在栅氧化层153与N-型漂移区130之间设置有AlxGa1-xN层154,AlxGa1-xN层154对应并连接N-型漂移区130,栅氧化层153覆盖AlxGa1-xN层154设置。The semiconductor device may be a trench MOSFET. As an example, please refer to FIG. 5 , the trench MOSFET includes a first electrode layer 110, a substrate layer 120, an N-type drift region 130, a source structure 140 and a second electrode layer 150 which are stacked in sequence; the source structure 140 includes mutually independent N+ doping regions 142, and a P base region 141 arranged around each N+ doping region 142, adjacent P base regions 141 are spaced by trenches, and the interface between the P base region 141 and the N-type drift region 130 is higher than the bottom of the trench. The second electrode layer 150 includes a source electrode 151 and a gate electrode 152, the gate electrode 152 is arranged in the groove, and the gate electrode 152 is connected to the N-type drift region 130 and the source structure 140 through a gate oxide layer 153; the notch of the groove is covered with an insulating oxide layer 155, the source electrode 151 is arranged to cover the insulating oxide layer 155, and the source electrode 151 is arranged corresponding to and connected to the N+ doped region 142 and the P base region 141; an AlxGa1 -xN layer 154 is arranged between the gate oxide layer 153 and the N-type drift region 130, the AlxGa1 -xN layer 154 corresponds to and connects the N-type drift region 130, and the gate oxide layer 153 covers the AlxGa1 -xN layer 154.
其中,第一电极层110为漏电极。The first electrode layer 110 is a drain electrode.
衬底层120为N+型衬底层121。可选地,N+型衬底层121的材料为Si、SiC、GaAs、GaN或其它半导体材料。The substrate layer 120 is an N+ type substrate layer 121. Optionally, the material of the N+ type substrate layer 121 is Si, SiC, GaAs, GaN or other semiconductor materials.
可选地,N-型漂移区130的材料为Si、SiC、GaAs、GaN或其它半导体材料。Optionally, the material of the N-type drift region 130 is Si, SiC, GaAs, GaN or other semiconductor materials.
半导体器件可以为沟槽式IGBT。作为一个示例,请一并参照图6,沟槽式IGBT包括依次层叠设置的第一电极层110、衬底层120、N-型漂移区130、源极结构140及第二电极层150;源极结构140包括相互独立的N+掺杂区142,以及环绕每个N+掺杂区142设置的P基区141,相邻的P基区141之间通过沟槽间隔,且P基区141与N-型漂移区130之间的界面高于沟槽的底面;第二电极层150包括源电极151及栅电极152,栅电极152设置于沟槽内,且栅电极152与N-型漂移区130及源极结构140之间通过栅氧化层153连接;在沟槽的槽口覆盖有绝缘氧化层155,源电极151覆盖绝缘氧化层155设置,且源电极151对应并连接N+掺杂区142及P基区141设置;在栅氧化层153与N-型漂移区130之间设置有AlxGa1-xN层154,AlxGa1-xN层154对应并连接N-型漂移区130,栅氧化层153覆盖AlxGa1-xN层154设置。The semiconductor device may be a trench IGBT. As an example, please refer to FIG. 6 , the trench IGBT includes a first electrode layer 110, a substrate layer 120, an N-type drift region 130, a source structure 140 and a second electrode layer 150 which are stacked in sequence; the source structure 140 includes mutually independent N+ doping regions 142, and a P base region 141 arranged around each N+ doping region 142, adjacent P base regions 141 are separated by trenches, and the interface between the P base region 141 and the N-type drift region 130 is higher than the bottom surface of the trench The second electrode layer 150 includes a source electrode 151 and a gate electrode 152. The gate electrode 152 is arranged in the groove, and the gate electrode 152 is connected to the N-type drift region 130 and the source structure 140 through a gate oxide layer 153. The notch of the groove is covered with an insulating oxide layer 155. The source electrode 151 is arranged to cover the insulating oxide layer 155, and the source electrode 151 is arranged to correspond to and connect the N+ doped region 142 and the P base region 141. An AlxGa1 -xN layer 154 is arranged between the gate oxide layer 153 and the N-type drift region 130. The AlxGa1 -xN layer 154 corresponds to and connects the N-type drift region 130, and the gate oxide layer 153 covers the AlxGa1 -xN layer 154.
其中,第一电极层110为集电极。The first electrode layer 110 is a collector.
衬底层120包括层叠设置的N+型缓冲层122和P+型集电层123,其中,N+型缓冲层122与N-型漂移区130相邻接,P+型集电层123与第一电极层110相邻接。The substrate layer 120 includes an N+ type buffer layer 122 and a P+ type collector layer 123 which are stacked, wherein the N+ type buffer layer 122 is adjacent to the N− type drift region 130 , and the P+ type collector layer 123 is adjacent to the first electrode layer 110 .
可选地,N-型漂移区130的材料为Si、SiC、GaAs、GaN或其它半导体材料。Optionally, the material of the N-type drift region 130 is Si, SiC, GaAs, GaN or other semiconductor materials.
以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统的具体工作过程,可以参考前述系统实施例中的对应连接结构,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。The above is only a specific implementation of the present invention. Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working process of the system described above can refer to the corresponding connection structure in the aforementioned system embodiment, and will not be repeated here. It should be understood that the protection scope of the present invention is not limited to this. Any technician familiar with the technical field can easily think of various equivalent modifications or replacements within the technical scope disclosed by the present invention, and these modifications or replacements should be covered within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811597948.4A CN109599434B (en) | 2018-12-26 | 2018-12-26 | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811597948.4A CN109599434B (en) | 2018-12-26 | 2018-12-26 | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109599434A CN109599434A (en) | 2019-04-09 |
CN109599434B true CN109599434B (en) | 2024-07-26 |
Family
ID=65963331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811597948.4A Active CN109599434B (en) | 2018-12-26 | 2018-12-26 | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109599434B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110021660B (en) * | 2019-04-16 | 2022-04-01 | 西安电子科技大学 | AlGaN/GaN heterojunction vertical field effect transistor and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209328904U (en) * | 2018-12-26 | 2019-08-30 | 瑞能半导体科技股份有限公司 | Semiconductor devices |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4645034B2 (en) * | 2003-02-06 | 2011-03-09 | 株式会社豊田中央研究所 | Semiconductor device having group III nitride semiconductor |
JP4645753B2 (en) * | 2003-02-06 | 2011-03-09 | 株式会社豊田中央研究所 | Semiconductor device having group III nitride semiconductor |
CN103855197B (en) * | 2012-11-29 | 2016-12-21 | 中国科学院微电子研究所 | IGBT device and forming method thereof |
US10199465B2 (en) * | 2014-06-24 | 2019-02-05 | General Electric Company | Cellular layout for semiconductor devices |
-
2018
- 2018-12-26 CN CN201811597948.4A patent/CN109599434B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209328904U (en) * | 2018-12-26 | 2019-08-30 | 瑞能半导体科技股份有限公司 | Semiconductor devices |
Also Published As
Publication number | Publication date |
---|---|
CN109599434A (en) | 2019-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10692861B2 (en) | Method of manufacturing a semiconductor device | |
CN109155337B (en) | Electric Field Shielding in Silicon Carbide Metal Oxide Semiconductor (MOS) Device Cells Using Channel Region Extensions | |
KR101562879B1 (en) | Semiconductor device | |
CN100385676C (en) | Silicon carbide horizontal channel buffer gate semiconductor device | |
CN203659877U (en) | Super junction device and semiconductor structure comprising same | |
CN106653837B (en) | A kind of gallium nitride bidirectional switch device | |
TW201806165A (en) | Group III nitride device containing a graded depletion layer | |
EP3540782A2 (en) | Semiconductor devices having a recessed electrode structure | |
US10217830B2 (en) | Semiconductor device having trenches with enlarged width regions | |
CN108028273A (en) | The method of semiconductor device and manufacture semiconductor device | |
CN106571363A (en) | Semiconductor device | |
CN103426910B (en) | Power semiconductor element and edge termination structure thereof | |
CN108598163A (en) | A kind of GaN hetero-junctions longitudinal direction power device | |
CN116581150B (en) | Asymmetric double-groove SiC MOSFET cell structure, device and preparation method | |
CN108899363B (en) | Trench gate IGBT device capable of reducing on-voltage drop and turn-off loss | |
CN103872097B (en) | Power semiconductor device and its manufacture method | |
CN106876455A (en) | A kind of double trench gate SOI LIGBT device architectures of low turn-off power loss | |
CN112786680B (en) | Cell structure of silicon carbide MOSFET device and power semiconductor device | |
CN110190128B (en) | MOSFET device with silicon carbide double-side deep L-shaped base region structure and preparation method thereof | |
CN104810388A (en) | Enhancement mode device | |
CN103296062A (en) | Semiconductor device | |
CN209328904U (en) | Semiconductor devices | |
CN109599434B (en) | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers | |
CN118136676B (en) | A silicon carbide metal-oxide field effect transistor and a power device | |
CN114551586A (en) | Silicon carbide split gate MOSFET cell integrated with grid-controlled diode and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 330200 Jiangxi city of Nanchang Province, Nanchang County Blue Road Economic Development Zone No. 266 Building 2 Applicant after: Ruineng Semiconductor Technology Co.,Ltd. Address before: 330200 Jiangxi city of Nanchang Province, Nanchang County Blue Road Economic Development Zone No. 266 Building 2 Applicant before: WEEN SEMICONDUCTORS CO.,LTD. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |