CN109580035B - Sapphire fiber high temperature sensor with high fringe visibility and its temperature measurement method - Google Patents
Sapphire fiber high temperature sensor with high fringe visibility and its temperature measurement method Download PDFInfo
- Publication number
- CN109580035B CN109580035B CN201811479759.7A CN201811479759A CN109580035B CN 109580035 B CN109580035 B CN 109580035B CN 201811479759 A CN201811479759 A CN 201811479759A CN 109580035 B CN109580035 B CN 109580035B
- Authority
- CN
- China
- Prior art keywords
- sapphire
- temperature
- optical fiber
- fiber
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明公开了一种高条纹对比度的蓝宝石光纤法珀高温传感器,包括蓝宝石晶片(1)、蓝宝石插芯(2)及构成高温区和常温区光信号传输波导的蓝宝石‑石英光纤,LED光源(9)发出的光进入高温传感器(8),从蓝宝石光纤端面(15)出射,发散后的光照射到蓝宝石晶片(1)第一反射面(16)上发生第一次反射;其余部分光透射到晶片第二反射表面(17)上发生第二次反射;在法珀干涉腔的两表面产生的第一束反射光(11)、第一束反射光(12)被耦合到蓝宝石光纤(4)中,形成法珀双光纤干涉信号,通过光谱法解调干涉信号得到法珀光程差,进而反推温度。本发明极大地提高了法珀传感器干涉信号的条纹可见度,同时提高了传感器的温度灵敏度和测温分辨率。
The invention discloses a sapphire fiber Faber high temperature sensor with high fringe contrast, comprising a sapphire wafer (1), a sapphire ferrule (2), a sapphire-quartz fiber constituting an optical signal transmission waveguide in a high temperature region and a normal temperature region, an LED light source ( 9) The emitted light enters the high temperature sensor (8), exits from the end face of the sapphire optical fiber (15), and the diffused light irradiates the first reflection surface (16) of the sapphire wafer (1) for the first reflection; the rest of the light transmits The second reflection occurs on the second reflection surface (17) of the wafer; the first reflected light (11) and the first reflected light (12) generated on the two surfaces of the Fa-Per interference cavity are coupled to the sapphire fiber (4 ), the Fa-Pert double fiber interference signal is formed, and the Fa-Per optical path difference is obtained by demodulating the interference signal by spectroscopic method, and then the temperature is reversed. The invention greatly improves the fringe visibility of the interference signal of the Faber sensor, and simultaneously improves the temperature sensitivity and temperature measurement resolution of the sensor.
Description
技术领域technical field
本发明涉及光纤传感领域,特别是涉及一种蓝宝石光纤高温传感器具有光纤耦合分束设计、高条纹可见度的蓝宝石光纤高温传感器,可实现在复杂测试环境下的极端温度监测。The invention relates to the field of optical fiber sensing, in particular to a sapphire optical fiber high-temperature sensor with a fiber-coupled beam splitting design and high stripe visibility, which can realize extreme temperature monitoring in a complex test environment.
背景技术Background technique
随着航空航天、内燃机工业的飞速发展,对极端条件下的高温监测技术提出了更高的要求。传统的电气传感器在导电、易燃、易爆和腐蚀性强的恶劣环境下不能满足测量要求。基于蓝宝石光纤的高温传感技术以其耐氧化、高精度、抗电磁干扰等特性,在高温监测领域中发挥着重要作用。With the rapid development of aerospace and internal combustion engine industries, higher requirements have been placed on high temperature monitoring technology under extreme conditions. Traditional electrical sensors cannot meet the measurement requirements in the harsh environment of conductive, flammable, explosive and corrosive. High-temperature sensing technology based on sapphire fiber plays an important role in the field of high-temperature monitoring due to its oxidation resistance, high precision, and resistance to electromagnetic interference.
近年来,已经提出了多种类型的蓝宝石光纤传感器来实现极高温度(1000℃以上)测量,如蓝宝石光纤光栅型、黑体辐射型和法珀型传感器。但是,蓝宝石光纤光栅型的蓝宝石光纤传感器需要使用昂贵的飞秒激光器刻制,造价高,且受限于蓝宝石光纤较大的数值孔径、模式干扰严重以及测量精度相对其他方法较低。黑体辐射型蓝宝石光纤传感器基于普朗克黑体辐射定律,在高温区(600-1600℃)具有很好的测温精度;但是由于低温段辐射功率显著降低,在600℃以下,信噪比极速衰减,测温范围受限,只能用于高温段的温度监测。法珀型的蓝宝石光纤传感器具有极宽的测量范围,可根据要求灵活设计,采用传统研磨工艺制作,可批量生产、成本较低,因此具有广泛的应用范围。但是,由于蓝宝石光纤采用晶体生长方式制作,在长度上受限,国际上一般是通过蓝宝石光纤与石英光纤熔接的方式来实现远距离传感,即高温区使用蓝宝石光纤,常温区使用石英光纤加长传输距离。在异质光纤耦合过程中,为了达到尽可能高的耦合效率,需要对蓝宝石光纤和石英光纤端面进行抛光处理以减少熔接点的散射损耗。这有利于提高光能耦合率,但是精密抛光的光纤截面会在传输光路中引入一个背景反射光,叠加在传感器的输出信号里,降低了传感器的干涉条纹可见度,进而对解调精度造成影响。同时,为了保证较高的条纹可见度,对传感器制作工艺要求很高,晶片与光纤端面必须严格平行,这对夹持固定原件的精度提出了很高要求。In recent years, various types of sapphire fiber sensors have been proposed to achieve extremely high temperature (above 1000°C) measurement, such as sapphire fiber grating type, blackbody radiation type, and Faber-Perth type sensors. However, the sapphire fiber grating type sapphire fiber sensor needs to be engraved with an expensive femtosecond laser, which is expensive, and is limited by the large numerical aperture of the sapphire fiber, severe mode interference and lower measurement accuracy than other methods. The black body radiation type sapphire fiber sensor is based on Planck's law of black body radiation, and has good temperature measurement accuracy in the high temperature region (600-1600 ℃); however, due to the significant reduction of radiation power in the low temperature section, the signal-to-noise ratio decays rapidly below 600 ℃ , the temperature measurement range is limited, and it can only be used for temperature monitoring in the high temperature section. Faber-type sapphire optical fiber sensor has an extremely wide measurement range, can be flexibly designed according to requirements, and is produced by traditional grinding process, which can be mass-produced and low cost, so it has a wide range of applications. However, because sapphire fiber is made by crystal growth, its length is limited. Internationally, long-distance sensing is generally realized by splicing sapphire fiber and silica fiber, that is, sapphire fiber is used in high temperature area, and quartz fiber is used in normal temperature area. Transmission distance. In the process of hetero-fiber coupling, in order to achieve the highest possible coupling efficiency, the end faces of the sapphire fiber and the silica fiber need to be polished to reduce the scattering loss at the splice point. This is beneficial to improve the optical energy coupling rate, but the precisely polished optical fiber section will introduce a background reflected light into the transmission optical path, which will be superimposed on the output signal of the sensor, reducing the visibility of the interference fringes of the sensor, and thus affecting the demodulation accuracy. At the same time, in order to ensure high fringe visibility, the sensor manufacturing process is very demanding, and the wafer and the fiber end face must be strictly parallel, which puts forward high requirements for the accuracy of clamping and fixing the original.
发明内容SUMMARY OF THE INVENTION
针对传统蓝宝石光纤传感器存在条纹对比度与耦合质量不可兼得的不足,本发明提出了高条纹可见度的蓝宝石光纤高温传感器及其温度测量方法,通过双光路分离输入与输出信号光,将反射信号光中的直流背景量滤除,解决了异质光纤耦合质量与高条纹可见度之间的矛盾,提高了传感器有效耦合强度和干涉条纹可见度。Aiming at the shortcomings of the traditional sapphire optical fiber sensor that the fringe contrast and coupling quality cannot be achieved simultaneously, the present invention proposes a sapphire optical fiber high temperature sensor with high fringe visibility and a temperature measurement method thereof. The direct current background amount of the filter is filtered out, which solves the contradiction between the coupling quality of the heterogeneous fiber and the high fringe visibility, and improves the effective coupling strength of the sensor and the visibility of the interference fringe.
本发明的高条纹对比度的蓝宝石光纤法珀高温传感器,该传感器包括蓝宝石晶片1、蓝宝石插芯2以及构成高温区和常温区光信号传输波导的蓝宝石-石英光纤;其中,蓝宝石晶片1和蓝宝石插芯2的圆截面贴紧且使用高温陶瓷胶3固定;所述蓝宝石-石英光纤由蓝宝石光纤4和切平的所述石英光纤5通过端面间的光纤熔接点6熔接而形成;所述蓝宝石-石英光纤从蓝宝石光纤4一端插入所述蓝宝石插芯2的中孔,在蓝宝石光纤4与蓝宝石晶片1之间传感信号最佳处使用高温陶瓷胶3固定;所述蓝宝石-石英光纤由蓝宝石光纤4和切平的所述石英光纤5通过端面间的光纤熔接点6熔接而形成,并形成了输入波导21与输出波导22;所述蓝宝石-石英光纤从蓝宝石光纤4一端插入所述蓝宝石插芯2的中孔,在蓝宝石光纤4与蓝宝石晶片1之间传感信号最佳处使用高温陶瓷胶3固定;所述蓝宝石-石英光纤从石英光纤5一端通过光纤跳线7分别连接LED光源9、光谱仪10,实现输入波导21与输出波导22的分路传输,并最终将干涉信号传递到光谱仪中;所述蓝宝石晶片1的两个反射面构成法珀干涉腔,发散后的光照射到所述蓝宝石晶片1的第一反射面16上发生第一次反射,形成第一束反射光11;其余部分光透射到蓝宝石晶片1的第二反射表面17上发生第二次反射,形成携带光程差信息的第二束反射光12,输入波导21将LED光源9发出的原始光信号投射到蓝宝石晶片1上,而输出波导22接收从蓝宝石晶片1两个反射表面反射回的干涉信号,实现双光路分离输入与输出信号光The high fringe contrast sapphire fiber Faber high temperature sensor of the present invention comprises a
本发明的利用高条纹对比度的蓝宝石光纤法珀高温传感器实现的温度测量方法,该方法包括以下步骤:The temperature measurement method realized by the sapphire fiber Faber high temperature sensor with high fringe contrast of the present invention, the method comprises the following steps:
将处于工作状态的高温传感器8通过光纤跳线7与LED光源9、光谱仪10相连接;LED光源9发出的光经过光纤跳线7进入高温传感器8,通过异质光纤熔接点6从蓝宝石光纤端面15出射,发散后的光照射到蓝宝石晶片1第一反射面16上发生第一次反射,形成第一束反射光11;其余部分光透射到晶片第二反射表面17上发生第二次反射,形成携带光程差信息的第二束反射光12;在法珀干涉腔的两表面产生的第一束反射光11、第一束反射光11被耦合到蓝宝石光纤4中输出,形成法珀双光纤干涉信号18,即第一束反射光11、第二束反射光12两束反射光之间的光程差随之发生变化,从而导致干涉信号的变化;所述干涉信号18通过蓝宝石光纤4、石英光纤5、光纤跳线7再传回光谱仪10;The
从光谱仪采集到的干涉光谱信号表示为:The interference spectrum signal collected from the spectrometer is expressed as:
其中,k=2π/λ;IB(k)表示干涉光谱信号中的直流背景量,S1(k),S2(k)表示光纤接收到的两束反射光,Δ表示两束相干光之间的光程差,表示初始光程差,L、n表示蓝宝石晶片的厚度和折射率;Among them, k=2π/λ; I B (k) represents the DC background amount in the interference spectral signal, S 1 (k), S 2 (k) represent the two beams of reflected light received by the fiber, and Δ represents the two beams of coherent light The optical path difference between, represents the initial optical path difference, L and n represent the thickness and refractive index of the sapphire wafer;
当所处的环境温度发生变化时,蓝宝石晶片的厚度和材料折射率发生变化:When the ambient temperature changes, the thickness of the sapphire wafer and the refractive index of the material change:
蓝宝石晶片折射率随温度变化的公式表示为:The formula for the change of refractive index of a sapphire wafer with temperature is expressed as:
n(T)850nm=a0+a1T+a2T2 n(T) 850nm =a 0 +a 1 T+a 2 T 2
其中,T为摄氏温度,n(T)850nm为850nm下的蓝宝石晶片材料折射率;Wherein, T is the temperature in degrees Celsius, and n(T) 850nm is the refractive index of the sapphire wafer material at 850nm;
蓝宝石材料沿C轴的热膨胀函数表示为:The thermal expansion function of sapphire material along the C axis is expressed as:
L(T)=[b0+b1T+b2T2+b3T3]×L0 L(T)=[b 0 +b 1 T+b 2 T 2 +b 3 T 3 ]×L 0
其中,T表示开尔文温度,L(T)表示在温度T和初始长度L0条件下的初始长度;where T represents the Kelvin temperature, and L(T) represents the initial length under the condition of temperature T and initial length L 0 ;
由以上可知,光程差Δ=2n(T)L(T)表示为温度T的五次多项式关系,通过光谱法解调干涉信号得到法珀光程差,进而反推回蓝宝石晶片所处的温度。From the above, it can be seen that the optical path difference Δ=2n(T)L(T) is expressed as the fifth-order polynomial relationship of the temperature T, and the Fa-Per optical path difference is obtained by demodulating the interference signal by spectroscopic method, and then back to the position where the sapphire wafer is located. temperature.
所述通过光谱法解调干涉信号得到法珀光程差的信息的步骤中,解调精度取决于干涉光谱的采集分辨率和条纹峰值位置的准确寻取:光谱采集分辨率由光谱仪分辨率决定,峰值位置准确寻取与干涉光谱条纹可见度密切相关,因而,在实际测量中,干涉光谱条纹可见度进一步表示为:其中FV表示在背景光信号中干涉条纹的可见度。In the step of obtaining the information of the Faber-Perspective optical path difference by demodulating the interference signal by the spectroscopic method, the demodulation accuracy depends on the acquisition resolution of the interference spectrum and the accurate finding of the fringe peak position: the spectrum acquisition resolution is determined by the resolution of the spectrometer. , the accurate finding of the peak position is closely related to the visibility of the interference spectral fringes. Therefore, in the actual measurement, the visibility of the interference spectral fringes is further expressed as: where F V represents the visibility of interference fringes in the background light signal.
本发明具有以下积极效果:The present invention has the following positive effects:
1、通过对光纤耦合分束模型的运用,将输入光纤端面和异质光纤熔接点引入的反射背景光从输出信号中滤除,实现输入光信号与输出干涉信号的充分剥离,消除了直流背景项和异质光纤熔接点处散射光对干涉信号的影响,极大地提高了法珀传感器干涉信号的条纹可见度,克服了熔接点耦合质量与高条纹可见度的互相制约,提高了传感器的温度灵敏度和测温分辨率;1. Through the application of the fiber-coupled beam splitting model, the reflected background light introduced by the input fiber end face and the fusion point of the heterogeneous fiber is filtered from the output signal, so that the input optical signal and the output interference signal are fully stripped, and the DC background is eliminated. The effect of scattered light on the interference signal at the fusion splicing point and the hetero-optical fiber greatly improves the fringe visibility of the interference signal of the Fa-Per sensor, overcomes the mutual restriction between the coupling quality of the fusion splicing point and the high fringe visibility, and improves the temperature sensitivity of the sensor. temperature measurement resolution;
2、通过优化法珀传感器光路结构,在根本上滤除输出信号中的直流背景光和散射干扰光,提高了传感器在恶劣环境下的稳定性和分辨率,为极端高环境光影响条件下的高温监测提供了有效手段;2. By optimizing the optical path structure of the Faber sensor, the DC background light and scattered interference light in the output signal are fundamentally filtered, and the stability and resolution of the sensor in harsh environments are improved. High temperature monitoring provides an effective means;
3、当测量温度升高,环境杂散光对传感器信号影响较大时,更高的条纹可见度可以提高峰值准确识别的噪声耐受度。对复杂测量环境下,提高传感器的准确度和分辨率有重要意义。3. When the measurement temperature increases and the ambient stray light has a greater impact on the sensor signal, the higher fringe visibility can improve the noise tolerance for accurate peak identification. It is of great significance to improve the accuracy and resolution of the sensor in the complex measurement environment.
附图说明Description of drawings
图1为本发明的高条纹可见度的蓝宝石光纤法珀高温传感器结构示意图;1 is a schematic structural diagram of a sapphire fiber Faber high temperature sensor with high fringe visibility of the present invention;
图2为本发明的高条纹可见度的蓝宝石光纤法珀高温传感器的光路传输示意图;Fig. 2 is the optical path transmission schematic diagram of the sapphire fiber Faber high temperature sensor of high fringe visibility of the present invention;
图3为将本发明的高条纹可见度的蓝宝石光纤法珀高温传感头部分空间光路扩束(a)、光纤耦合模型示意图(b);Fig. 3 is the beam expansion (a) of the partial space optical path of the sapphire fiber Faber high temperature sensor head with high fringe visibility of the present invention, and the schematic diagram of the fiber coupling model (b);
图4为本发明的高条纹可见度的蓝宝石光纤法珀高温传感器的实验室测试系统图Fig. 4 is the laboratory test system diagram of the high fringe visibility sapphire fiber Faber high temperature sensor of the present invention
图5为本发明的高条纹可见度的蓝宝石光纤法珀高温传感器与传统单光纤法珀高温传感器对比实验室测试结果,其中(a)为测温分辨率,(b)为测量误差;Fig. 5 is the sapphire fiber Faber high temperature sensor of high fringe visibility of the present invention and traditional single fiber Faber high temperature sensor contrast laboratory test result, wherein (a) is temperature measurement resolution, (b) is measurement error;
图6为本发明的高条纹可见度的蓝宝石光纤法珀高温传感器与传统单光纤传感器测温稳定性对比试验结果图。6 is a graph showing the results of a comparison test of the temperature measurement stability of the sapphire fiber Faber high temperature sensor with high fringe visibility of the present invention and the traditional single fiber sensor.
图中:1、蓝宝石晶片,2、蓝宝石插芯,3、高温陶瓷胶,4、蓝宝石光纤,5、石英光纤,6、异质光纤熔接点,7、光纤跳线,8、高温传感器,9、LED光源,10、光谱仪,11、第一束反射光,12、第二束反射光,13、输入光束,14、熔接点散射光,15、蓝宝石光纤端面,16、第一反射表面,17、第二反射表面,18、干涉信号,19、直流背景光,20、高温马弗炉,21、输入波导,22、输出波导。In the picture: 1. Sapphire wafer, 2. Sapphire ferrule, 3. High temperature ceramic glue, 4. Sapphire fiber, 5. Silica fiber, 6. Heterogeneous fiber splicing point, 7. Fiber patch cord, 8. High temperature sensor, 9 , LED light source, 10, Spectrometer, 11, First reflected light, 12, Second reflected light, 13, Input beam, 14, Splice scattered light, 15, Sapphire fiber end face, 16, First reflective surface, 17 , the second reflecting surface, 18, the interference signal, 19, the DC background light, 20, the high temperature muffle furnace, 21, the input waveguide, 22, the output waveguide.
具体实施方式Detailed ways
下面将结合示例对本发明的技术方案作进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to examples.
如图1所示,该传感器的结构包括蓝宝石晶片1、蓝宝石插芯2、蓝宝石光纤4及石英光纤5;其中,蓝宝石晶片1和蓝宝石插芯2的圆截面贴紧,通过高温陶瓷胶3固定,使用光纤研磨机研磨蓝宝石光纤3的两端面,使其达到一定的光洁度。然后和切平的石英光纤5的端面进行熔接,用来构造高温区和常温区光信号传输波导。将两支熔接好的蓝宝石-石英光纤端面对齐靠拢,从蓝宝石光纤4一端插入蓝宝石插芯2中孔,两只石英光纤5端面分别通过光纤跳线7连接LED光源9和光谱仪10,实现输入波导与输出波导的分路传输。通过精密位移控制台实现两支蓝宝石光纤4与蓝宝石晶片1之间的相对位置,寻找传感其信号最佳处,并使用高温陶瓷胶3固定。蓝宝石晶片1的两个反射面构成法珀干涉腔,作为温度敏感元件实现传感;As shown in FIG. 1 , the structure of the sensor includes a
传感器工作时,将高温传感器8通过光纤跳线7与LED光源9、光谱仪10相连接。LED光源9发出的光经过光纤跳线7进入传感器,通过异质光纤熔接点6,从蓝宝石光纤端面15出射,发散后的光照射到蓝宝石晶片1第一反射面16上发生第一次反射,形成第一束反射光11;其余部分光透射到晶片第二反射表面17上发生第二次反射,形成携带光程差信息的第二束反射光12;由法珀晶片两表面产生的第一束、第二束反射光11、12耦合到输出蓝宝石光纤中,形成法珀双光纤干涉。干涉信号18通过蓝宝石光纤4、石英光纤5、光纤跳线7传回光谱仪10。当传感器所处的环境温度发生变化时,感温晶片的厚度和材料折射率发生变化,两束反射光之间的光程差就会发生变化,从而导致干涉信号的变化。通过解调干涉信号可以得到法珀光程差的信息。进而反推回蓝宝石晶片所处的温度信息;When the sensor is working, the
从光谱仪采集到的干涉光谱信号表示为:The interference spectrum signal collected from the spectrometer is expressed as:
其中,k=2π/λ;IB(k)表示信号中的直流背景量,主要由熔接点散射和蓝宝石光纤端面背景反射构成;S1(k),S2(k)表示光纤接收到的两束反射光;Δ表示两束相干光之间的光程差,也就是2nL;表示初始光程差。其中,由于法珀晶片的厚度L和折射率n都是温度的函数,所以Δ表示温度的函数。Among them, k=2π/λ; I B (k) represents the DC background amount in the signal, which is mainly composed of splice point scattering and sapphire fiber end-face background reflection; S 1 (k), S 2 (k) represent the received Two beams of reflected light; Δ represents the optical path difference between the two beams of coherent light, that is, 2nL; Indicates the initial optical path difference. Among them, since the thickness L and the refractive index n of the Fa-Per wafer are both functions of temperature, Δ represents a function of temperature.
蓝宝石法珀晶片随温度变化的公式表示为:The formula for the change of sapphire Faber wafer with temperature is expressed as:
n(T)850nm=a0+a1T+a2T2 n(T) 850nm =a 0 +a 1 T+a 2 T 2
其中,T表示摄氏温度,n(T)850nm表示850nm下的蓝宝石晶片材料折射率.蓝宝石材料沿C轴的热膨胀函数可以表示为:Among them, T represents the temperature in Celsius, and n(T) 850nm represents the refractive index of the sapphire wafer material at 850nm. The thermal expansion function of the sapphire material along the C-axis can be expressed as:
L(T)=[b0+b1T+b2T2+b3T3]×L0 L(T)=[b 0 +b 1 T+b 2 T 2 +b 3 T 3 ]×L 0
其中,T表示开尔文温度,L(T)表示在温度T和初始长度L0条件下的初始长度。由以上可知,光程差Δ=2n(T)L(T)可以表示为温度T的五次多项式关系。因此可以通过测量光程差,反推出测量目标温度。where T represents the temperature in Kelvin, and L(T) represents the initial length at the temperature T and the initial length L 0 . It can be seen from the above that the optical path difference Δ=2n(T)L(T) can be expressed as a fifth-order polynomial relationship of the temperature T. Therefore, the target temperature can be deduced by measuring the optical path difference.
光谱法解调干涉光程差的精度取决于干涉光谱的采集分辨率和条纹峰值位置的准确寻取。光谱采集分辨率由光谱仪分辨率决定,峰值位置准确寻取与干涉光谱条纹可见度密切相关。条纹可见度FV通常用来表示在背景光信号中干涉条纹的可见度,并定义如下:The precision of the spectroscopic method to demodulate the interference optical path difference depends on the acquisition resolution of the interference spectrum and the accurate finding of the fringe peak position. The spectral acquisition resolution is determined by the spectrometer resolution, and the accurate finding of the peak position is closely related to the visibility of the interference spectral fringes. The fringe visibility F V is commonly used to represent the visibility of interference fringes in the background light signal and is defined as follows:
在实际测量中,条纹可见度可以进一步表示为:In practical measurements, the fringe visibility can be further expressed as:
因为S1(k),S2(k)的变化相对较小,通过光纤光路分路传输,合理的应用耦合技术,可以有效的滤除接收端干涉信号中的直流背景光IB(k),显著提高干涉条纹可见度。根据白光法珀光程差解调原理可知,高条纹可见度有助于提高寻峰精度,进而提高测温精度和测温分辨率。Because the changes of S 1 (k) and S 2 (k) are relatively small, the DC background light I B (k) in the interference signal at the receiving end can be effectively filtered out through the optical fiber branch transmission and the reasonable application of coupling technology. , significantly improving the visibility of interference fringes. According to the demodulation principle of white light Faroese optical path difference, the high fringe visibility helps to improve the peak-finding accuracy, thereby improving the temperature measurement accuracy and temperature measurement resolution.
实施例1:Example 1:
如图4所示,由LED宽带光源9输出的宽谱光经光纤跳线7、多模石英光纤5、异质光纤熔接点6、蓝宝石光纤4导入高温传感器中8,反射信号光依次经过蓝宝石光纤4、异质光纤熔接点6、石英光纤5、光纤跳线7由光谱仪接收。高温传感器8放置在高温马弗炉20的管式腔内,通过调节马弗炉腔内温度为传感器施加一个温度变量,测量范围为100-1080℃。温度的变化引起蓝宝石晶片1光学折射率和材料膨胀收缩,引起法珀光程差的变化,通过对光谱仪10接收的干涉光谱信息进行计算,就可以获得测量环境温度下的传感器光程差。由于传感器光程差与蓝宝石晶片折射率和晶片热膨胀长度具有固定关系Δ=2n(T)L(T),通过反推就可以获得传感实时温度。As shown in FIG. 4, the broad-spectrum light output by the LED
图5为实验室环境下的测试结果,图5(a)为高条纹可见度传感器与传统蓝宝石光纤法珀传感器以100℃为步进,每个温度下分别采集100帧数据,做标准差后获得的各个温度下的光程差波动量,也被称为温度传感器的测温分辨率。可见高条纹可见度的温度传感器由于更高的信号质量具有更高的测温分辨率。图5(b)显示了高条纹可见度传感器与传统蓝宝石光纤法珀传感器在各个温度下测温结果与高温马弗炉内设置温度的区别,也是传感器的测温误差。高条纹可见度传感器测温精度为±1℃,对比传统传感器具有更高的测量精度。Figure 5 shows the test results in the laboratory environment. Figure 5(a) shows the high fringe visibility sensor and the traditional sapphire fiber Faber sensor with a step of 100 °C, and 100 frames of data were collected at each temperature, and the standard deviation was obtained. The fluctuation amount of the optical path difference at each temperature is also called the temperature measurement resolution of the temperature sensor. Visible temperature sensors with high fringe visibility have higher temperature measurement resolution due to higher signal quality. Figure 5(b) shows the difference between the temperature measurement results of the high fringe visibility sensor and the traditional sapphire fiber Faber sensor at various temperatures and the temperature set in the high temperature muffle furnace, which is also the temperature measurement error of the sensor. The temperature measurement accuracy of the high stripe visibility sensor is ±1°C, which is higher than the traditional sensor.
实施例2:Example 2:
将高温马弗炉设置为1000℃,将高条纹可见度传感器与传统蓝宝石光纤法珀传感器依次放置在高温炉腔内相同位置,待环境温度稳定后连续采集1小时数据,分析传感器测温稳定性,实验结果如图6所示。从图中可以看出,相对于传统单光纤传感器,高条纹可见度蓝宝石光纤法珀传感器具有更好的温度稳定性。Set the high-temperature muffle furnace to 1000℃, place the high-stripe visibility sensor and the traditional sapphire fiber Faber sensor in the same position in the high-temperature furnace chamber in turn, collect data continuously for 1 hour after the ambient temperature is stable, and analyze the temperature measurement stability of the sensor. The experimental results are shown in Figure 6. It can be seen from the figure that the high fringe visibility sapphire fiber Fa-Per sensor has better temperature stability than the traditional single fiber sensor.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811479759.7A CN109580035B (en) | 2018-12-05 | 2018-12-05 | Sapphire fiber high temperature sensor with high fringe visibility and its temperature measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811479759.7A CN109580035B (en) | 2018-12-05 | 2018-12-05 | Sapphire fiber high temperature sensor with high fringe visibility and its temperature measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109580035A CN109580035A (en) | 2019-04-05 |
CN109580035B true CN109580035B (en) | 2020-08-18 |
Family
ID=65927041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811479759.7A Active CN109580035B (en) | 2018-12-05 | 2018-12-05 | Sapphire fiber high temperature sensor with high fringe visibility and its temperature measurement method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109580035B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111982346B (en) * | 2019-05-24 | 2022-05-03 | 武汉理工大学 | A high-sensitivity fiber-optic temperature sensor |
CN110501090B (en) * | 2019-08-12 | 2020-11-10 | 北京航空航天大学 | Sapphire wafer-boron nitride film-based optical fiber F-P high-temperature sensor, preparation method and temperature sensing device |
CN110617901A (en) * | 2019-09-25 | 2019-12-27 | 北京航空航天大学 | Sapphire optical fiber F-P high-temperature sensor with inclined reflection surface, preparation method and temperature sensing system |
CN111175253B (en) * | 2020-01-08 | 2022-08-23 | 天津大学 | Mixed sapphire crystal double-Fabry-Perot cavity optical fiber refractive index sensor and measuring method |
CN113624362B (en) * | 2021-08-16 | 2024-06-07 | 哈尔滨工程大学 | Optical fiber Fabry-Perot interference high-temperature sensor based on silicon carbide microcavity |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103913254A (en) * | 2014-04-28 | 2014-07-09 | 武汉理工大学 | Sapphire optical fiber high-temperature sensor and manufacturing method thereof |
CN105806414A (en) * | 2016-04-26 | 2016-07-27 | 浙江大学 | Optical fiber temperature and humidity sensor, temperature and humidity sensing system and temperature and humidity regulating method |
CN106066215A (en) * | 2016-07-29 | 2016-11-02 | 武汉理工大学 | A kind of sapphire pyrostat |
CN206618510U (en) * | 2017-04-11 | 2017-11-07 | 湖北师范大学 | A kind of transmission-type fibre optic temperature sensor of multi-core fiber dislocation welding |
CN108332876A (en) * | 2018-01-30 | 2018-07-27 | 华中科技大学 | A kind of fibre optic temperature sensor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0408073D0 (en) * | 2004-04-08 | 2004-05-12 | Council Cent Lab Res Councils | Optical sensor |
JP5591565B2 (en) * | 2010-03-12 | 2014-09-17 | 東京エレクトロン株式会社 | Temperature measuring probe, temperature measuring system, and temperature measuring method using the same |
US9804033B2 (en) * | 2013-04-25 | 2017-10-31 | Sentek Instrument LLC | Sapphire sensor for measuring pressure and temperature |
-
2018
- 2018-12-05 CN CN201811479759.7A patent/CN109580035B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103913254A (en) * | 2014-04-28 | 2014-07-09 | 武汉理工大学 | Sapphire optical fiber high-temperature sensor and manufacturing method thereof |
CN105806414A (en) * | 2016-04-26 | 2016-07-27 | 浙江大学 | Optical fiber temperature and humidity sensor, temperature and humidity sensing system and temperature and humidity regulating method |
CN106066215A (en) * | 2016-07-29 | 2016-11-02 | 武汉理工大学 | A kind of sapphire pyrostat |
CN206618510U (en) * | 2017-04-11 | 2017-11-07 | 湖北师范大学 | A kind of transmission-type fibre optic temperature sensor of multi-core fiber dislocation welding |
CN108332876A (en) * | 2018-01-30 | 2018-07-27 | 华中科技大学 | A kind of fibre optic temperature sensor |
Also Published As
Publication number | Publication date |
---|---|
CN109580035A (en) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109580035B (en) | Sapphire fiber high temperature sensor with high fringe visibility and its temperature measurement method | |
US11112316B2 (en) | Optical fiber temperature sensor | |
CN110726374B (en) | Optical fiber Fabry-Perot strain sensor based on single-mode optical fiber, manufacturing method and measuring method | |
WO2022160822A1 (en) | High-sensitivity high-temperature sensor based on suspended optical fiber dislocation fusion splicing | |
CN108844656B (en) | Optical fiber temperature sensing probe and demodulation method | |
CN106197492B (en) | Fa-Po cavity length and refractive index computational methods based on optical fiber composite algorithm amber cavity configuration | |
CN109781300A (en) | A device and method for simultaneous measurement of temperature and curvature based on optical fiber | |
CN111220188B (en) | Ultra-sensitive refractive index sensor based on cascade optical fiber displacement to enhance vernier effect | |
CN103900994A (en) | All-fiber refractive index meter based on michelson interferometer, manufacturing method and system | |
CN108279039A (en) | A kind of two-parameter sensing device of temperature and refractive index based on optical fiber misconstruction and Sagnac rings | |
CN105115623B (en) | Based on the theoretical mini optical fibre pyrostat of Michelson interference and preparation method | |
CN113008406A (en) | High-precision temperature sensor based on enhanced vernier effect | |
CN110987230A (en) | A dual-parameter optical fiber sensing module, system and measurement method | |
CN101650235A (en) | Minitype optical fiber internal integrated optical fiber interference type temperature sensor and manufacturing method thereof | |
CN111610166A (en) | Open microcavity MZI, open microcavity MZI refractive index sensor and measuring method | |
CN116105778A (en) | A Fiber Optic Sensing System for Synchronous Measurement of Temperature and Salt | |
CN110617901A (en) | Sapphire optical fiber F-P high-temperature sensor with inclined reflection surface, preparation method and temperature sensing system | |
CN111175253B (en) | Mixed sapphire crystal double-Fabry-Perot cavity optical fiber refractive index sensor and measuring method | |
CN112414581A (en) | Temperature sensor based on multicore optic fibre | |
Zhu et al. | A novel optical fiber sensor based on microfiber Mach-Zehnder interferometer with two spindle-shaped structures | |
CN109580037A (en) | Temperature sensor and preparation method thereof based on photonic crystal fiber FP structure | |
CN112179537A (en) | Fabry-Perot interferometer optical fiber sensor based on optical fiber surface waveguide | |
CN117906780A (en) | A C-type optical fiber vernier temperature sensor manufactured by femtosecond laser and its manufacturing method | |
CN109580036A (en) | FP temperature sensor and preparation method thereof based on photonic crystal fiber FBG | |
CN209470717U (en) | A single in-fiber MZI sensor based on vernier effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |