CN109559528B - Self-perception interactive traffic signal control device based on 3D laser radar - Google Patents
Self-perception interactive traffic signal control device based on 3D laser radar Download PDFInfo
- Publication number
- CN109559528B CN109559528B CN201910046578.3A CN201910046578A CN109559528B CN 109559528 B CN109559528 B CN 109559528B CN 201910046578 A CN201910046578 A CN 201910046578A CN 109559528 B CN109559528 B CN 109559528B
- Authority
- CN
- China
- Prior art keywords
- cuboid
- dist
- traffic
- traffic signal
- point cloud
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000002452 interceptive effect Effects 0.000 title claims abstract description 20
- 238000001514 detection method Methods 0.000 claims abstract description 42
- 230000003993 interaction Effects 0.000 claims abstract description 29
- 238000000605 extraction Methods 0.000 claims abstract description 7
- 238000004891 communication Methods 0.000 claims description 30
- 238000012544 monitoring process Methods 0.000 claims description 27
- 238000012545 processing Methods 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000000819 phase cycle Methods 0.000 claims description 6
- 241000283070 Equus zebra Species 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 230000008676 import Effects 0.000 claims 2
- 239000006185 dispersion Substances 0.000 claims 1
- 238000005457 optimization Methods 0.000 abstract description 6
- 230000008447 perception Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007667 floating Methods 0.000 description 3
- 230000004397 blinking Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/07—Controlling traffic signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
技术领域technical field
本发明属于交通信号控制技术领域,具体涉及一种基于3D激光雷达的自感知交互式交通信号控制装置。The invention belongs to the technical field of traffic signal control, and in particular relates to a self-perception interactive traffic signal control device based on 3D laser radar.
背景技术Background technique
随着我国社会经济和城市化进程的不断发展,城市人多地少、车多路少、设施集中、用地紧张、活动频繁的特点决定了城市可用于交通的土地资源极其有限,随着社会经济的持续快速发展,城市的交通需求势必继续不断扩大,城市交通供给和交通需求之间的矛盾日益突出。从扩大交通供给的角度:一是靠新建扩建城市道路,然而在城市有限的土地资源下,新建扩建道路已不太现实,而且道路建设的速度永远无法跟上交通需求的增长速度,不能从根本上解决交通拥挤问题;二是城市道路效能提升,通过智能交通技术手段提高城市道路交通基础设施的利用率,提升道路通行能力,是目前国内外解决城市交通问题的主要技术手段。其中,城市道路交叉口是道路通行效率的瓶颈,要有效提高道路通行效率,只有通过实时、微观、精确的交通流数据,对交通信号进行精细化控制,才能有效提高道路通行效率。With the continuous development of my country's social economy and urbanization process, the characteristics of cities with more people and less land, more cars and less roads, concentrated facilities, tight land use, and frequent activities determine that the land resources available for transportation in cities are extremely limited. The continuous and rapid development of the city will inevitably continue to expand the city's traffic demand, and the contradiction between urban traffic supply and traffic demand has become increasingly prominent. From the perspective of expanding traffic supply: First, rely on new construction and expansion of urban roads. However, under the limited land resources of the city, it is not realistic to build and expand roads, and the speed of road construction can never keep up with the growth rate of traffic demand. The first is to solve the problem of traffic congestion; the second is to improve the efficiency of urban roads. Using intelligent transportation technology to improve the utilization rate of urban road traffic infrastructure and improve road traffic capacity is the main technical means to solve urban traffic problems at home and abroad. Among them, urban road intersections are the bottleneck of road traffic efficiency. To effectively improve road traffic efficiency, only through real-time, microscopic and accurate traffic flow data and fine-grained control of traffic signals can the road traffic efficiency be effectively improved.
在目前的交通信号控制系统中,主要通过线圈检测器、雷达检测器、视频检测器、GPS浮动车等传感设备进行交通信息采集。然而,线圈检测器虽然能够获取道路某一截面的流量、速度、占有率信息,但只能反映截面附近的交通流运行状态,无法反映某一区域范围内的交通状态;同样,对于同是路基型检测设备的多普勒雷达检测器、视频检测器,虽然所获得的交通信息略有差异,但均只能反映道路某一截面的交通流状态信息,对于精细化交通信号控制而言,目前路基型检测器所提供的交通流信息还不够精细,信息的分辨率和维度均不能满足精细化交通优化控制的要求,需要通过安装其他的检测设备进行补充和完善;GPS浮动车数据虽然能够反映某一空间范围内的交通流信息,但受样本量、采样周期、网络传输等条件限制,GPS浮动车提供的交通流信息具有明显的滞后性、精度波动性,不适合应用于精细化交通信号控制中。In the current traffic signal control system, traffic information is collected mainly through sensing devices such as coil detectors, radar detectors, video detectors, and GPS floating vehicles. However, although the coil detector can obtain the flow, speed, and occupancy information of a certain section of the road, it can only reflect the running state of the traffic flow near the section, and cannot reflect the traffic state within a certain area; similarly, for the same roadbed Although the traffic information obtained by the Doppler radar detector and video detector of the type detection equipment is slightly different, they can only reflect the traffic flow state information of a certain section of the road. For refined traffic signal control, the current The traffic flow information provided by roadbed detectors is not fine enough, and the resolution and dimension of the information cannot meet the requirements of refined traffic optimization control. It needs to be supplemented and improved by installing other detection equipment; although GPS floating vehicle data can reflect Traffic flow information within a certain spatial range, but limited by sample size, sampling period, network transmission and other conditions, the traffic flow information provided by GPS floating vehicles has obvious lag and accuracy fluctuations, and is not suitable for fine-grained traffic signals in control.
3D激光雷达作为一种主动视觉传感器,具有外部光照变化不敏感、复杂环境适应性强、抗干扰能力强、高灵敏度、高分辨率、高精度、覆盖范围广、信息量大等优点,能够提供实时、微观、高精度、高分辨率的交通流信息,为城市交通信号控制的精细化交通信息感知、交通流动态识别与跟踪提供了新的技术解决方案。As an active vision sensor, 3D lidar has the advantages of insensitivity to external light changes, strong adaptability to complex environments, strong anti-interference ability, high sensitivity, high resolution, high precision, wide coverage, and large amount of information. Real-time, microscopic, high-precision, high-resolution traffic flow information provides new technical solutions for refined traffic information perception, traffic flow dynamic identification and tracking of urban traffic signal control.
发明内容Contents of the invention
本发明提出了一种基于3D激光雷达的自感知交互式交通信号控制装置,该装置主要由3D激光雷达检测单元、交通信号交互协调单元、交通信号驱动控制单元组成,如图1所示。该装置通过3D激光雷达传感器实现对交叉口进口方向人流、车流的自主感知和交通流参数实时、高精度、多分辨率的自动提取,进行精细化交通信号优化、协调和控制,以提高交叉口通行效率,提升道路交通资源利用率。The present invention proposes a self-perception interactive traffic signal control device based on 3D laser radar. The device is mainly composed of a 3D laser radar detection unit, a traffic signal interaction coordination unit, and a traffic signal drive control unit, as shown in FIG. 1 . The device uses a 3D lidar sensor to realize the independent perception of the flow of people and vehicles in the direction of the intersection entrance and the real-time, high-precision, and multi-resolution automatic extraction of traffic flow parameters, and conduct refined traffic signal optimization, coordination, and control to improve the intersection Improve traffic efficiency and improve the utilization rate of road traffic resources.
本发明的技术解决方案是在城市交叉口悬臂式信号灯杆上安装本发明提出的一种基于3D激光雷达的自感知交互式交通信号控制装置,如图2所示。该装置中的3D激光雷达检测单元负责对交叉口进口方向的车流、人行横道的人流进行实时、动态检测、识别、跟踪和信息提取;交通信号交互协调单元根据3D激光雷达检测单元提取的实时、高精度、多分辨率交通流信息,对进口方向的交通信号相位、相序、绿灯时长进行优化、信息交互、信号协调,对人行横道的人流进行动态监测和安全预警;交通信号驱动控制单元根据交通信号交互协调单元形成的交通信号方案,对交通信号显示模块、交通信号提示模块、交通安全预警模块进行驱动,控制交通信号灯组、信息显示屏的启亮时间、启亮时长、启亮状态、显示图案、显示信息和安全预警。The technical solution of the present invention is to install a self-sensing interactive traffic signal control device based on 3D laser radar proposed by the present invention on the cantilever signal light pole at the urban intersection, as shown in FIG. 2 . The 3D laser radar detection unit in the device is responsible for real-time and dynamic detection, identification, tracking and information extraction of the traffic flow in the direction of the intersection entrance and the pedestrian flow in the crosswalk; Accurate, multi-resolution traffic flow information, optimization of traffic signal phase, phase sequence, and green light duration in the direction of entrance, information interaction, signal coordination, dynamic monitoring and safety warning of pedestrian flow in crosswalks; traffic signal drive control unit according to traffic signal The traffic signal scheme formed by the interactive coordination unit drives the traffic signal display module, traffic signal prompt module, and traffic safety early warning module, and controls the lighting time, lighting time, lighting status, and display pattern of the traffic signal light group and information display screen , to display information and safety warnings.
本发明提出的一种基于3D激光雷达的自感知交互式交通信号控制装置,其特征主要包括:A self-perception interactive traffic signal control device based on 3D laser radar proposed by the present invention, its features mainly include:
1)3D激光雷达检测单元1) 3D lidar detection unit
3D激光雷达检测单元由3D激光雷达传感器、多核激光点云微处理模块组成,3D激光雷达传感器与多核激光点云微处理模块采用EMIF(External Memory Interface)总线进行连接和数据通信传输;3D激光雷达传感器用于扫描、检测交叉口进口方向的车流、人行横道的人流,形成激光点云数据帧,并将激光点云数据帧通过EMIF总线传送给多核激光点云微处理模块;多核激光点云微处理模块负责对3D激光雷达传感器传送过来的激光点云数据帧进行数据过滤和信息提取,从激光点云数据帧中提取车流、人流的交通流参数信息。The 3D lidar detection unit is composed of a 3D lidar sensor and a multi-core laser point cloud micro-processing module. The 3D lidar sensor and the multi-core laser point cloud micro-processing module are connected and transmitted by EMIF (External Memory Interface) bus; The sensor is used to scan and detect the traffic flow in the direction of the intersection entrance and the pedestrian flow in the crosswalk to form a laser point cloud data frame, and transmit the laser point cloud data frame to the multi-core laser point cloud micro-processing module through the EMIF bus; the multi-core laser point cloud micro-processing The module is responsible for data filtering and information extraction of the laser point cloud data frame transmitted by the 3D lidar sensor, and extracts the traffic flow parameter information of the vehicle flow and the flow of people from the laser point cloud data frame.
2)交通信号交互协调单元2) Traffic signal interaction coordination unit
交通信号交互协调单元由通信模块、FPGA主控模块、DSP安全监测模块、PCB背板组成,通信模块、FPGA主控模块、DSP信号调控模块采用EMIF总线进行连接和数据通信传输,并在PCB背板上进行布局固定;同时,交通信号交互协调单元通过EMIF总线与3D激光雷达检测单元和交通信号驱动控制单元进行连接和数据通信传输;The traffic signal interaction coordination unit is composed of communication module, FPGA main control module, DSP safety monitoring module, and PCB backplane. The communication module, FPGA main control module, and DSP signal regulation module use EMIF bus for connection and data communication transmission. The layout is fixed on the board; at the same time, the traffic signal interaction coordination unit is connected and data communication transmission with the 3D lidar detection unit and the traffic signal drive control unit through the EMIF bus;
交通信号交互协调单元中的通信模块负责与同一交叉口内安装在其他悬臂式灯杆上的自感知交互式交通信号控制装置进行信息交互和共享;FPGA主控模块根据激光雷达检测单元提供的交通流参数信息,对所对应的进口方向进行交通信号相位、绿灯时长进行优化,并通过通信模块与交叉口其他悬臂式灯杆上的自感知交互式交通信号控制装置进行相位、相序、绿灯时长进行协调;DSP安全监测模块对交叉口进口方向的车流、人流的安全状态进行动态监测和安全预警,对突发交通事件下的交通信号进行自动干预和快速调整。The communication module in the traffic signal interaction coordination unit is responsible for information interaction and sharing with the self-perception interactive traffic signal control devices installed on other cantilever light poles in the same intersection; the FPGA main control module is based on the traffic flow provided by the lidar detection unit. Parameter information, optimize the traffic signal phase and green light duration for the corresponding entrance direction, and perform phase, phase sequence, and green light duration optimization through the communication module and the self-sensing interactive traffic signal control device on other cantilever light poles at the intersection Coordination; the DSP safety monitoring module conducts dynamic monitoring and safety warning of the safety status of traffic flow and people flow in the direction of the intersection entrance, and automatically intervenes and quickly adjusts traffic signals in emergencies.
3)交通信号驱动控制单元3) Traffic signal drive control unit
交通信号驱动控制单元由交通信号显示模块、交通信号提示模块、交通安全预警模块、信号灯组、LED微显屏、6U VPX开关信号接口板组成,交通信号显示模块、交通信号提示模块、交通安全预警模块、信号灯组、LED微显屏通过串口与6U VPX开关信号接口板进行连接和数据通信传输;交通信号显示模块负责将交通信号交互协调单元传送过来的交通信号控制方案,驱动和控制信号灯组的启亮时间、启亮状态、启亮图案;交通信号提示模块根据交通信号交互协调单元传送过来的交通信号控制方案,控制LED微显屏的信息提示内容,对人流、车流的通行状态、通行时间进行信息提示和动态引导;交通安全预警模块根据交通信号交互协调单元传送过来的交通安全预警指令,对交叉口进口方向的人流、车流进行安全预警。Traffic signal drive control unit consists of traffic signal display module, traffic signal prompt module, traffic safety early warning module, signal light group, LED micro display screen, 6U VPX switch signal interface board, traffic signal display module, traffic signal prompt module, traffic safety early warning The module, the signal light group, and the LED micro-display screen are connected and communicated with the 6U VPX switch signal interface board through the serial port; the traffic signal display module is responsible for the traffic signal control scheme transmitted from the traffic signal interaction coordination unit, driving and controlling the signal light group Turn-on time, turn-on state, turn-on pattern; the traffic signal prompt module controls the information prompt content of the LED micro-display screen according to the traffic signal control scheme transmitted by the traffic signal interaction coordination unit, and the traffic status and time of the flow of people and vehicles Carry out information prompts and dynamic guidance; the traffic safety warning module provides safety warnings for the flow of people and vehicles in the direction of the intersection entrance according to the traffic safety warning instructions sent by the traffic signal interaction coordination unit.
附图说明Description of drawings
图1:一种基于3D激光雷达的自感知交互式交通信号控制装置功能结构图;Figure 1: Functional structure diagram of a self-aware interactive traffic signal control device based on 3D lidar;
图2:一种基于3D激光雷达的自感知交互式交通信号控制装置安装布设图;Figure 2: Installation and layout diagram of a self-sensing interactive traffic signal control device based on 3D lidar;
图3:多核激光点云微处理模块划出的车辆检测空间示意图;Figure 3: Schematic diagram of the vehicle detection space drawn by the multi-core laser point cloud microprocessing module;
图4:多核激光点云微处理模块划出的行人检测空间示意图。Figure 4: Schematic diagram of the pedestrian detection space drawn by the multi-core laser point cloud microprocessing module.
具体实施方式Detailed ways
本发明所述的一种基于3D激光雷达的自感知交互式交通信号控制装置,该装置主要由3D激光雷达检测单元、交通信号交互协调单元、交通信号驱动控制单元组成,如图1、图2所示;该装置通过3D激光雷达传感器实现对交叉口进口方向车流、人流的自主感知和交通流参数实时、高精度、多分辨率的自动提取,进行精细化交通信号优化、协调和控制,以提高交叉口通行效率,提升道路交通资源利用率。A self-sensing interactive traffic signal control device based on 3D laser radar according to the present invention, the device is mainly composed of a 3D laser radar detection unit, a traffic signal interaction coordination unit, and a traffic signal drive control unit, as shown in Figure 1 and Figure 2 As shown; the device uses a 3D lidar sensor to realize the independent perception of traffic flow and passenger flow in the direction of the intersection entrance and the real-time, high-precision, and multi-resolution automatic extraction of traffic flow parameters, and conduct refined traffic signal optimization, coordination, and control. Improve the traffic efficiency of intersections and improve the utilization rate of road traffic resources.
本发明提出的一种基于3D激光雷达的自感知交互式交通信号控制装置,其工作的具体流程为:A kind of self-sensing interactive traffic signal control device based on 3D laser radar proposed by the present invention, the specific process of its work is:
1)3D激光雷达检测单元1) 3D lidar detection unit
3D激光雷达检测单元由激光雷达传感器、多核激光点云微处理模块组成,3D激光雷达传感器与多核激光点云微处理模块采用EMIF(External Memory Interface)总线进行连接和数据通信传输;激光雷达传感器用于扫描、检测交叉口进口方向的车流、人行横道的人流,形成激光点云数据帧,并将激光点云数据帧通过EMIF总线传送给多核激光点云微处理模块;多核激光点云微处理模块负责对3D激光雷达传感器传送过来的激光点云数据帧进行数据过滤和信息提取,从激光点云数据帧中提取车流、人流的交通流参数信息。具体工作步骤如下:The 3D laser radar detection unit is composed of a laser radar sensor and a multi-core laser point cloud micro-processing module. The 3D laser radar sensor and the multi-core laser point cloud micro-processing module are connected and transmitted by EMIF (External Memory Interface) bus; the laser radar sensor uses It is used to scan and detect the traffic flow in the direction of the entrance of the intersection and the flow of people in the crosswalk to form a laser point cloud data frame, and transmit the laser point cloud data frame to the multi-core laser point cloud micro-processing module through the EMIF bus; the multi-core laser point cloud micro-processing module is responsible for Data filtering and information extraction are performed on the laser point cloud data frame transmitted by the 3D lidar sensor, and the traffic flow parameter information of the vehicle flow and the flow of people is extracted from the laser point cloud data frame. The specific working steps are as follows:
Step1:3D激光雷达传感器以一定的频率发射激光束和旋转激光折射镜面,并通过接收激光反射光束来实现对检测方向道路交通环境的3D扫描,并以激光点云的形式形成3D激光点云影像,当3D激光雷达传感器每完成一次对检测空间范围内道路交通环境的3D扫描后形成一幅3D激光点云数据帧,数据帧中包含激光点云的三维坐标信息(X、Y、Z坐标)、激光强度、激光ID、激光水平旋转方向角、激光垂直方向夹角、激光距离、时间戳;Step1: The 3D laser radar sensor emits laser beams at a certain frequency and rotates the laser refracting mirror, and realizes 3D scanning of the road traffic environment in the detection direction by receiving laser reflected beams, and forms 3D laser point cloud images in the form of laser point clouds , when the 3D lidar sensor completes a 3D scan of the road traffic environment within the detection space, a 3D laser point cloud data frame is formed, and the data frame contains the three-dimensional coordinate information (X, Y, Z coordinates) of the laser point cloud , laser intensity, laser ID, laser horizontal rotation angle, laser vertical angle, laser distance, time stamp;
Step2:多核激光点云微处理模块将3D激光雷达传感器扫描空间划出两个子空间,一个为进口方向车辆检测空间VEH_Ω,一个为检测方向人行横道的行人检测空间PED_Ω,如图3、图4所示;其中:VEH_Ω为VL×VW×H的长方体,PED_Ω为PL×PW×H的长方体,VL为3D激光雷达传感器检测方向的进口方向最远位置与进口方向停车线之间的距离;VW为3D激光雷达传感器检测方向的进口道宽度;H为3D激光雷达传感器离地面的高度;PL为3D激光雷达传感器检测方向人行横道的长度;PW为3D激光雷达传感器检测方向人行横道的宽度;Step2: The multi-core laser point cloud microprocessing module divides the scanning space of the 3D lidar sensor into two subspaces, one is the vehicle detection space VEH_Ω in the direction of entrance, and the other is the pedestrian detection space PED_Ω of the crosswalk in the detection direction, as shown in Figure 3 and Figure 4 ; Among them: VEH_Ω is a cuboid of VL×VW×H, PED_Ω is a cuboid of PL×PW×H, VL is the distance between the farthest position in the direction of the entrance detected by the 3D lidar sensor and the parking line in the direction of the entrance; VW is 3D The width of the entrance road in the detection direction of the laser radar sensor; H is the height of the 3D laser radar sensor from the ground; PL is the length of the pedestrian crossing in the detection direction of the 3D laser radar sensor; PW is the width of the pedestrian crossing in the detection direction of the 3D laser radar sensor;
Step3:多核激光点云微处理模块分别从激光点云数据帧中提取处于VEH_Ω和PED_Ω空间范围内的激光点云,分别构建一个MV×NV×KV的三维空间矩阵V(VEH_Ω),vijk∈V(VEH_Ω)和MP×NP×KP的三维空间矩阵P(PED_Ω),pijk∈P(PED_Ω);Step3: The multi-core laser point cloud microprocessing module extracts the laser point cloud in the space range of VEH_Ω and PED_Ω respectively from the laser point cloud data frame, and constructs a three-dimensional space matrix V(VEH_Ω) of MV×NV×KV, v ijk ∈ The three-dimensional space matrix P(PED_Ω) of V(VEH_Ω) and MP×NP×KP, p ijk ∈ P(PED_Ω);
在VEH_Ω中:vijk为VEH_Ω中X坐标轴第i行,Y坐标轴第j列,Z坐标轴第k层激光点的激光强度;i=1,2,…,MV;j=1,2,…,NV;k=1,2,…,KV;MV为VEH_Ω中X坐标轴激光点云的总行数;NV为VEH_Ω中Y坐标轴激光点云的总列数;KV为VEH_Ω中Z坐标轴激光点云的总层数;In VEH_Ω: v ijk is the i-th row of the X coordinate axis, the j-th column of the Y coordinate axis, and the laser intensity of the k-th layer of the Z coordinate axis in VEH_Ω; i=1, 2,..., MV; j=1, 2 ,...,NV; k=1,2,...,KV; MV is the total number of rows of the X-axis laser point cloud in VEH_Ω; NV is the total number of columns of the Y-axis laser point cloud in VEH_Ω; KV is the Z coordinate in VEH_Ω The total number of layers of the axis laser point cloud;
在PED_Ω中:pijk为PED_Ω中X坐标轴第i行,Y坐标轴第j列,Z坐标轴第k层激光点的激光强度;i=1,2,…,MP;j=1,2,…,NP;k=1,2,…,KP;MP为PED_Ω中X坐标轴激光点云的总行数;NV为PED_Ω中Y坐标轴激光点云的总列数;KP为PED_Ω中Z坐标轴激光点云的总层数;In PED_Ω: p ijk is the i-th row of the X coordinate axis, the j-th column of the Y coordinate axis, and the laser intensity of the k-th layer of the Z coordinate axis in PED_Ω; i=1, 2,..., MP; j=1, 2 ,…,NP; k=1,2,…,KP; MP is the total number of rows of the X-axis laser point cloud in PED_Ω; NV is the total number of columns of the Y-axis laser point cloud in PED_Ω; KP is the Z coordinate in PED_Ω The total number of layers of the axis laser point cloud;
在VEH_Ω和PED_Ω中3D激光雷达传感器扫描的交叉口进口方向为Y坐标轴方向;3D激光雷达传感器扫描的交叉口进口方向人行横道方向为X坐标轴方向;交叉口地面垂直方向为Z坐标轴方向;In VEH_Ω and PED_Ω, the direction of the intersection entrance scanned by the 3D lidar sensor is the direction of the Y coordinate axis; the direction of the pedestrian crossing in the direction of the intersection entrance scanned by the 3D lidar sensor is the direction of the X coordinate axis; the vertical direction of the intersection ground is the direction of the Z coordinate axis;
Step4:对VEH_Ω空间范围内的激光点云进行背景过滤:Step4: Perform background filtering on the laser point cloud within the VEH_Ω space range:
Step4.1:定义A为一个可包含UV×VV×WV激光点的长方体,A∈VEH_Ω,分别为长方体VEH_Ω中的上层、下层第i行第j列的长方体A;分别为长方体VEH_Ω中的左壁、右壁第j列第k层的长方体A;i=1,2,…,MV′;j=1,2,…,NV′;k=1,2,…,KV′;令δ(A)为长方体A的激光点云密度,计算长方体A的激光点云密度波动率:Step4.1: Define A as a cuboid that can contain UV×VV×WV laser points, A∈VEH_Ω, Respectively, cuboid A in the upper and lower layers of the i-th row and j-th column in the cuboid VEH_Ω; Respectively cuboid A in the left and right walls of the cuboid VEH_Ω in the jth column and the kth layer; i=1, 2,..., MV'; j=1, 2,..., NV'; k=1, 2,... , KV′; Let δ(A) be the laser point cloud density of cuboid A, and calculate the laser point cloud density fluctuation rate of cuboid A:
其中:分别为以A为截面的长方体VEH_Ω中上层、下层、左壁、右壁的激光点云平均密度;分别为长方体VEH_Ω中上层、下层第i行第j列的长方体A的激光点云密度波动率;分别为长方体VEH_Ω中左壁、右壁第j列第k层的长方体A的激光点云密度波动率;in: Respectively, the average density of the laser point cloud in the upper layer, lower layer, left wall, and right wall of the cuboid VEH_Ω with A as the cross-section; Respectively, the laser point cloud density fluctuation rate of the cuboid A in the upper and lower layers of the cuboid VEH_Ω in the i-th row and j-th column; Respectively, the laser point cloud density fluctuation rate of the cuboid A in the jth column and the kth layer of the left wall and the right wall in the cuboid VEH_Ω;
Step4.2:判断长方体VEH_Ω中上层、下层、左壁、右壁中的长方体A是否为背景激光点云图像,并对背景进行过滤:Step4.2: Determine whether the cuboid A in the upper layer, lower layer, left wall, and right wall of the cuboid VEH_Ω is the background laser point cloud image, and filter the background:
若则判断长方体VEH_Ω中上层第i行第j列的长方体A所包含的激光点云为背景激光点云;like Then it is judged that the laser point cloud contained in the cuboid A in the i-th row and j-column of the upper layer in the cuboid VEH_Ω is the background laser point cloud;
若则判断长方体VEH_Ω中下层第i行第j列的长方体A所包含的激光点云为背景激光点云;like Then it is judged that the laser point cloud contained in the cuboid A contained in the i-th row and j-column in the lower layer of the cuboid VEH_Ω is the background laser point cloud;
若则长方体VEH_Ω中左壁第j列第k层的长方体A所包含的激光点云为背景激光点云;like Then the laser point cloud contained in the cuboid A in the jth column on the left wall of the kth layer in the cuboid VEH_Ω is the background laser point cloud;
若则长方体VEH_Ω中右壁第j列第k层的长方体A所包含的激光点云为背景激光点云;like Then the laser point cloud contained in the cuboid A in the jth column and the kth layer on the right wall of the cuboid VEH_Ω is the background laser point cloud;
其中:τUP(T)、τDW(T)、τLF(T)、τRT(T)分别为第T判断周期内长方体VEH_Ω中上层、下层、左壁、右壁中的长方体A背景激光点云密度波动临界阈值;Among them: τ UP (T), τ DW (T), τ LF (T), τ RT (T) are respectively the background laser light of the cuboid A in the upper layer, lower layer, left wall, and right wall of the cuboid VEH_Ω in the T judgment period Point cloud density fluctuation critical threshold;
Step4.3:重复Step4.1至Step4.2,对长方体VEH_Ω上层、下层、左壁、右壁中所有的长方体A进行背景判断,并剔除所有的背景激光点云,形成新的三维空间矩阵V′(VEH_Ω),v′ijk∈V′(VEH_Ω);Step4.3: Repeat Step4.1 to Step4.2 to judge the background of all cuboids A in the upper layer, lower layer, left wall, and right wall of the cuboid VEH_Ω, and remove all background laser point clouds to form a new three-dimensional space matrix V '(VEH_Ω), v' ijk ∈ V'(VEH_Ω);
Step5:对PED_Ω空间范围内的激光点云进行背景过滤:Step5: Perform background filtering on the laser point cloud within the PED_Ω space range:
Step5.1:定义B为一个可包含UP×VP×WP激光点的长方体,B∈PED_Ω,分别为长方体PED_Ω中的上层、下层第i行第j列的长方体B;分别为长方体PED_Ω中的左壁、右壁第j列第k层的长方体B;i=1,2,…,MP′;j=1,2,…,NP′;k=1,2,…,KP′;令δ(B)为长方体B的激光点云密度,计算长方体B的激光点云密度波动率:Step5.1: Define B as a cuboid that can contain UP×VP×WP laser points, B∈PED_Ω, Respectively, cuboid B in the upper and lower layers of the i-th row and j-th column in the cuboid PED_Ω; Respectively, cuboid B in the left and right walls of the cuboid PED_Ω in the jth column and the kth layer; i=1, 2,..., MP'; j=1, 2,..., NP'; k=1, 2,... , KP′; Let δ(B) be the laser point cloud density of cuboid B, and calculate the laser point cloud density fluctuation rate of cuboid B:
其中:分别为以B为截面的长方体PED_Ω中上层、下层、左壁、右壁的激光点云平均密度;分别为长方体PED_Ω中上层、下层第i行第j列的长方体B的激光点云密度波动率;分别为长方体PED_Ω中左壁、右壁第j列第k层的长方体B的激光点云密度波动率;in: Respectively, the average density of the laser point cloud in the upper layer, lower layer, left wall, and right wall of the cuboid PED_Ω with B as the cross-section; Respectively, the laser point cloud density fluctuation rate of the cuboid B in the upper and lower layers of the cuboid PED_Ω at row i and column j; Respectively, the laser point cloud density fluctuation rate of the cuboid B in the jth column and the kth layer of the left wall and right wall in the cuboid PED_Ω;
Step5.2:判断长方体PED_Ω中上层、下层、左壁、右壁中的长方体B是否为背景图像,并对背景进行过滤:Step5.2: Determine whether the cuboid B in the upper layer, lower layer, left wall, and right wall of the cuboid PED_Ω is a background image, and filter the background:
若则判断长方体PED_Ω中上层第i行第j列的长方体B所包含的激光点云为背景激光点云;like Then it is judged that the laser point cloud contained in the cuboid B in the upper i-th row and j-th column of the cuboid PED_Ω is the background laser point cloud;
若则判断长方体PED_Ω中下层第i行第j列的长方体B所包含的激光点云为背景激光点云;like Then it is judged that the laser point cloud contained in the cuboid B contained in the i-th row and j-th column in the lower layer of the cuboid PED_Ω is the background laser point cloud;
若则长方体PED_Ω中左壁第j列第k层的长方体B所包含的激光点云为背景激光点云;like Then the laser point cloud contained in the cuboid B in the jth column on the left wall of the kth layer in the cuboid PED_Ω is the background laser point cloud;
若则长方体PED_Ω中右壁第j列第k层的长方体B所包含的激光点云为背景激光点云;like Then the laser point cloud contained in the cuboid B in the jth column and the kth layer on the right wall of the cuboid PED_Ω is the background laser point cloud;
其中:λUP(T)、λDW(T)、λLF(T)、λRT(T)分别为第T判断周期内长方体PED_Ω中上层、下层、左壁、右壁中的长方体B背景激光点云密度波动临界阈值;Among them: λ UP (T), λ DW (T), λ LF (T), λ RT (T) are respectively the background laser light of the cuboid B in the upper layer, lower layer, left wall, and right wall of the cuboid PED_Ω in the Tth judgment cycle Point cloud density fluctuation critical threshold;
Step5.3:重复Step5.1至Step5.2,对长方体PED_Ω上层、下层、左壁、右壁中所有的长方体B进行背景判断,并剔除所有的背景激光点云,形成新的三维空间矩阵P′(PEH_Ω),p′ijk∈P′(PED_Ω);Step5.3: Repeat Step5.1 to Step5.2 to judge the background of all cuboids B in the upper layer, lower layer, left wall, and right wall of the cuboid PED_Ω, and remove all background laser point clouds to form a new three-dimensional space matrix P '(PEH_Ω), p' ijk ∈ P'(PED_Ω);
Step6:将VEH_Ω的X、Y轴平面划分成NC×NL个网格,每个网格内为一个WL×LV×H的长方体E;其中:WL为3D激光雷达传感器检测方向进口方向的车道宽度;LV为车辆的平均长度;H为3D激光雷达传感器离地面的高度;E∈VEH_Ω,Eij为VEH_Ω为第i行第j车道的长方体;其中:i=1,2,…,NC;j=1,2,…,NL; Step6: Divide the X and Y axis planes of VEH_Ω into NC×NL grids, and each grid is a cuboid E of WL×LV×H; where: WL is the lane width in the direction of the entrance of the detection direction of the 3D lidar sensor ; LV is the average length of the vehicle; H is the height of the 3D lidar sensor from the ground; E ∈ VEH_Ω, E ij is the cuboid in which VEH_Ω is the i-th row and the j-th lane; where: i=1, 2,..., NC; j = 1, 2, ..., NL;
Step6.1:计算VEH_Ω中长方体的E的激光点云密度δ(E)Step6.1: Calculate the laser point cloud density δ(E) of the cuboid E in VEH_Ω
其中:为E中所有激光点云密度之和;为长方体E的体积;in: is the sum of all laser point cloud densities in E; is the volume of cuboid E;
Step6.2:判断长方体E中车辆的存在情况:Step6.2: Determine the existence of vehicles in the cuboid E:
(1)若δ(E)≥∈V,则判断长方体E中有车辆存在;(1) If δ(E) ≥∈V , it is judged that there is a vehicle in the cuboid E;
(2)若∈bV≤δ(E)<∈V,将长方体E拆分成体积相等的前后两部分和若且则车辆存在于长方体E的前部,将和合并,标记为新的长方体E′;若且则车辆存在于长方体E的后部,将和合并,标记为新的长方体E′;(2) If ∈ bV ≤ δ(E)<∈ V , split the cuboid E into two parts with equal volume and like and Then the vehicle exists in the front of the cuboid E, and the and Merged, marked as a new cuboid E′; if and Then the vehicle exists at the rear of the cuboid E, and the and Merge, marked as a new cuboid E';
其中:为长方体E相邻的前一个长方体E的后半部分;为长方体E相邻的后一个长方体E的前半部分;∈V为长方体E车辆存在的临界密度;∈bV为长方体E车辆占用的临界密度;in: is the second half of the previous cuboid E adjacent to cuboid E; is the first half of the next cuboid E adjacent to cuboid E; ∈ V is the critical density of vehicles in cuboid E; ∈ bV is the critical density occupied by cuboid E vehicles;
Step6.3:给定车辆的最小邻点数为Min_VehPts,邻域半径为R_Veh;遍历长方体E或者E′中所有的激光点Li_Pt,找出各激光点Li_Pt邻域半径R_Veh内的激光点数NumPt(Li_Pt);若NumPt(Li_Pt)≥Min_VehPts,则将激光点Li_Pt标记为长方体E或者E′中的车辆质心VehCore_Pt;Step6.3: The minimum number of adjacent points of a given vehicle is Min_VehPts, and the neighborhood radius is R_Veh; traverse all the laser points Li_Pt in the cuboid E or E′, and find out the number of laser points NumPt(Li_Pt) within the radius R_Veh of each laser point Li_Pt ); if NumPt(Li_Pt)≥Min_VehPts, then mark the laser point Li_Pt as the vehicle center of mass VehCore_Pt in the cuboid E or E′;
Step6.4:重复Step6.1至Step6.3,根据车辆质心点的位置信息和数量,获取当前激光点云数据帧VEH_Ω中各进口道的车辆数VehNum和排队长度VehQue;Step6.4: Repeat Step6.1 to Step6.3 to obtain the number of vehicles VehNum and queue length VehQue of each entrance lane in the current laser point cloud data frame VEH_Ω according to the position information and quantity of the vehicle centroid points;
Step7:将PED_Ω的X、Y轴平面划分成NP×NT个网格,每个网格内为一个WP×PT×H的长方体S;其中:WP为行人行走所需的平均纵向空间距离;PT为行人行走横向空间距离;H为激光雷达传感器离里面的高度;S∈PED_Ω,Sij为PED_Ω为人行横道中第i行第j列的长方体S;其中:i=1,2,…,NP;j=1,2,…,NT; Step7: Divide the X and Y axis planes of PED_Ω into NP×NT grids, and each grid is a cuboid S of WP×PT×H; where: WP is the average longitudinal space distance required for pedestrians to walk; PT H is the height of the lidar sensor from the inside; S ∈ PED_Ω, Sij is PED_Ω is the cuboid S in row i and column j in the pedestrian crossing; where: i=1, 2,..., NP; j = 1, 2, ..., NT;
Step7.1:计算PED_Ω中长方体的S的激光点云密度δ(S)Step7.1: Calculate the laser point cloud density δ(S) of the cuboid S in PED_Ω
其中:为S中所有激光点云密度之和;为长方体S的体积;in: is the sum of all laser point cloud densities in S; is the volume of cuboid S;
Step7.2:判断长方体S中行人的存在情况:Step7.2: Determine the existence of pedestrians in the cuboid S:
(1)若δ(S)≥∈p,则判断长方体S中有行人存在;(1) If δ(S) ≥∈p , it is judged that there are pedestrians in the cuboid S;
(2)若∈bp≤δ(S)<∈p,将长方体S拆分成体积相等的前后两部分和或左右两部分和若且则行人存在于长方体S的前部,将和合并,标记为新的长方体S′;若且则车辆存在于长方体S的后部,将和合并,标记为新的长方体S′;若且则行人存在于长方体S的右侧,将和合并,标记为新的长方体S′;若且则行人存在于长方体S的左侧,将和合并,标记为新的长方体S′(2) If ∈ bp ≤ δ(S)<∈ p , split the cuboid S into two parts with equal volume and or left and right parts and like and Then the pedestrian exists in the front of the cuboid S, and the and Merged, marked as a new cuboid S'; if and Then the vehicle exists at the rear of the cuboid S, and the and Merged, marked as a new cuboid S'; if and Then the pedestrian exists on the right side of the cuboid S, and the and Merged, marked as a new cuboid S'; if and Then the pedestrian exists on the left side of the cuboid S, and the and Merged, labeled as new cuboid S'
其中:为长方体S相邻的前一个长方体S的后半部分;为长方体S相邻的后一个长方体S的前半部分;∈p为长方体S行人存在的临界密度;∈bp为长方体行人占用的临界密度;in: is the second half of the previous cuboid S adjacent to cuboid S; is the first half of the next cuboid S adjacent to cuboid S; ∈ p is the critical density of pedestrians in cuboid S; ∈ b p is the critical density of pedestrians in cuboid;
Step7.3:给定行人的最小邻点数为Min_PedPts,邻域半径为R_Ped;遍历长方体S或者S′中所有的激光点Li_Pt,找出各激光点Li_Pt邻域半径R_Ped内的激光点数NumPt(Li_Pt);若NumPt(Li_Pt)≥Min_PedPts,则将激光点Li_Pt标记为长方体S或者S′中的行人质心PedCore_Pt;Step7.3: The minimum number of adjacent points of a given pedestrian is Min_PedPts, and the neighborhood radius is R_Ped; traverse all the laser points Li_Pt in the cuboid S or S′, and find out the number of laser points NumPt(Li_Pt) within the neighborhood radius R_Ped of each laser point Li_Pt ); if NumPt(Li_Pt)≥Min_PedPts, then mark the laser point Li_Pt as the pedestrian centroid PedCore_Pt in the cuboid S or S′;
Step7.4:重复Step7.1至Step7.3,根据行人质心点的位置信息和数量,获取当前激光点云数据帧PED_Ω中人行过街横道及行人过街等待区域的行人数VPedNum和行人位置信息PedLoInfo;Step7.4: Repeat Step7.1 to Step7.3, according to the position information and number of pedestrian centroid points, obtain the number of pedestrians VPedNum and pedestrian location information PedLoInfo in the pedestrian crossing and pedestrian crossing waiting area in the current laser point cloud data frame PED_Ω ;
Step8:对3D激光雷达传感器传送过来的每一帧的数据重复进行Step2至Step7的处理,对每一帧中车辆和行人的位置进行跟踪,获取车辆和行人的运行轨迹VedTrace和PedTrace,通过车辆和行人的位置变化,获取车辆和行人的运行速度信息VehSpeedInfo和PedSpeedInfo;Step8: Repeat the processing of Step2 to Step7 for each frame of data transmitted by the 3D lidar sensor, track the position of vehicles and pedestrians in each frame, obtain the running trajectories VedTrace and PedTrace of vehicles and pedestrians, and pass vehicles and pedestrians Changes in the position of pedestrians, obtain the running speed information VehSpeedInfo and PedSpeedInfo of vehicles and pedestrians;
Step9:多核激光点云微处理模块将检测区域内的车辆、行人的数量、位置、速度、运行轨迹信息通过EMIF总线传送给交通信号交互协调单元。Step9: The multi-core laser point cloud micro-processing module transmits the number, position, speed, and running track information of vehicles and pedestrians in the detection area to the traffic signal interaction coordination unit through the EMIF bus.
2)交通信号交互协调单元2) Traffic signal interaction coordination unit
交通信号交互协调单元由通信模块、FPGA主控模块、DSP安全监测模块、PCB背板组成,通信模块、FPGA主控模块、DSP信号调控模块采用EMIF总线进行数据通信传输,并在PCB背板上进行布局固定;通信模块负责与同一交叉口内安装在其他悬臂式灯杆上的自感知交互式交通信号控制装置进行信息交互和共享;FPGA主控模块根据激光雷达检测单元提供的交通流参数信息,对所对应的进口方向进行交通信号相位、绿灯时长进行优化,并通过通信模块与交叉口其他悬臂式灯杆上的自感知交互式交通信号控制装置进行相位、相序、绿灯时长进行协调;DSP安全监测模块对人行横道的交通流、人流的安全状态进行动态监测和安全预警,对突发交通事件下的交通信号进行自动干预和快速调整;具体工作步骤如下:The traffic signal interaction coordination unit is composed of communication module, FPGA main control module, DSP safety monitoring module, and PCB backplane. The communication module, FPGA main control module, and DSP signal regulation module use EMIF bus for data communication transmission, and the The layout is fixed; the communication module is responsible for information interaction and sharing with the self-sensing interactive traffic signal control devices installed on other cantilever light poles in the same intersection; the FPGA main control module is based on the traffic flow parameter information provided by the lidar detection unit, Optimize the traffic signal phase and green light duration for the corresponding entrance direction, and coordinate the phase, phase sequence, and green light duration with the self-sensing interactive traffic signal control device on other cantilever light poles at the intersection through the communication module; DSP The safety monitoring module conducts dynamic monitoring and safety warnings on the safety status of traffic flow and pedestrian flow in crosswalks, and automatically intervenes and quickly adjusts traffic signals in emergencies; the specific working steps are as follows:
Step1:FPGA主控模块以一定的时间间隔周期T_GAP对检测方向各进口道的排队交通流量进行预测:Step1: The FPGA main control module predicts the queuing traffic flow of each entrance lane in the detection direction at a certain time interval period T_GAP:
其中:Vol(t+T_GAP)、Vol(t)、Vol(t-T_GAP)分别为t时刻的下一个预测周期间隔T_GAP、当前预测周期、上一个预测周期间隔T_GAP的交叉口进口道的流量;Vel(t)、Vel(t-T_GAP)分别为t时刻的当前预测周期、上一个预测周期间隔T_GAP的交叉口进口道的车辆平均速度;α、β分别为修正参数;Among them: Vol(t+T_GAP), Vol(t), and Vol(t-T_GAP) are respectively the flow of the intersection entrance road at the next forecast period interval T_GAP, the current forecast period, and the previous forecast period interval T_GAP at time t; Vel(t) and Vel(t-T_GAP) are the current forecast period at time t and the average vehicle speed at the intersection entrance of the last forecast period interval T_GAP; α and β are correction parameters respectively;
Step2:FPGA主控模块估算各进口车道排队车辆消散所需的时间:Step2: The FPGA main control module estimates the time required for the queuing vehicles in each entrance lane to dissipate:
其中:disT为车道排队车辆消散时间;μ为排队车辆启动延误;γ为排队消散时间修正系数;为排队车辆平均消散速度;Among them: disT is the dissipation time of queuing vehicles in the lane; μ is the start delay of queuing vehicles; γ is the correction coefficient of queuing dissipation time; is the average dissipation speed of queuing vehicles;
Step3:FPGA主控模块确定进口车道各通行方向所需的排队车辆消散时间:Step3: The FPGA main control module determines the queuing vehicle dissipation time required for each direction of the entrance lane:
disT_ST=max(disT_ST1,disT_ST2,…,disT_STn)disT_ST=max(disT_ST 1 , disT_ST 2 , . . . , disT_ST n )
disT_LT=max(disT_LT1,disT_LT2,…,disT_LTm)disT_LT=max(disT_LT 1 , disT_LT 2 , . . . , disT_LT m )
其中:disT_ST、disT_LT分别为进口车道直行通行方向、左转通行方向所需的排队车辆消散时间;disT_ST1,disT_ST2,…,disT_STn分别为进口车道中第1、2,…,n条直行车道所需的排队车辆消散时间;disT_LT1,disT_LT2,…,disT_LTm分别为进口车道中第1、2,…,m条左转车道所需的排队车辆消散时间;Among them: disT_ST , disT_LT are the queuing vehicle dissipation time required for the straight-going direction and left-turn direction of the entrance lane respectively; The queuing vehicle dissipation time required for the lane; disT_LT 1 , disT_LT 2 , ..., disT_LT m are respectively the queuing vehicle dissipation time required for the first, 2, ..., m left-turn lanes in the entrance lane;
Step4:FPGA主控模块计算进口车道直行通行方向排队车辆消散时间disT_ST和左转通行方向排队车辆消散时间disT_LT之间的时间差:Step4: The FPGA main control module calculates the time difference between the dissipation time disT_ST of the queuing vehicles in the through direction of the entrance lane and disT_LT of the queuing vehicles in the left turn direction:
ΔdisT=|disT_ST-disT_LT|ΔdisT=|disT_ST-disT_LT|
(1)若ΔdisT≤ξ,则FPGA主控模块将进口车道的直行通行信号相位和左转通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为max(disT_ST,disT_LT);(1) If ΔdisT≤ξ, the main control module of the FPGA merges the phases of the through traffic signal and the left turn signal phase of the entrance lane into the same signal phase phase, and the green light time of the phase phase is max(disT_ST, disT_LT);
(2)若ΔdisT>ξ,则FPGA主控模块通过通信模块获取对向进口车道直行通行方向和左转通行方向的排队车辆消散时间disT_ST’和disT_LT’;(2) If ΔdisT>ξ, the FPGA main control module obtains the dissipation times disT_ST' and disT_LT' of the queuing vehicles in the through direction and left turn direction of the opposite entrance lane through the communication module;
①若|disT_ST-disT_ST’|≤ξ,则FPGA主控模块通过通信模块与对向的FPGA主控模块协调,将进口车道的直行通行信号相位与对向进口车道的直行通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为max(disT_ST,disT_ST’);①If |disT_ST-disT_ST'|≤ξ, the FPGA main control module coordinates with the opposite FPGA main control module through the communication module, and merges the phase of the through traffic signal of the entrance lane and the phase of the through traffic signal of the opposite entrance lane into the same A signal phase phase, the green light time of the phase phase is max(disT_ST, disT_ST');
②若|disT_LT-disT_LT’|≤ξ,则FPGA主控模块通过通信模块与对向的FPGA主控模块协调,将进口车道的左转通行信号相位与对向进口车道的左转通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为max(disT_LT,disT_LT’);②If |disT_LT-disT_LT'|≤ξ, the FPGA main control module coordinates with the opposite FPGA main control module through the communication module, and merges the left-turn traffic signal phase of the entrance lane with the left-turn traffic signal phase of the opposite entrance lane For the same signal phase phase, the green light time of the phase phase is max(disT_LT, disT_LT');
③若|disT_ST-disT_ST’|≤ξ且|disT_LT-disT_LT’|>ξ,则FPGA主控模块通过通信模块与对向的FPGA主控模块协调:③If |disT_ST-disT_ST’|≤ξ and |disT_LT-disT_LT’|>ξ, the FPGA main control module coordinates with the opposite FPGA main control module through the communication module:
将进口车道的直行通行信号相位与对向进口车道的直行通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为max(disT_ST,disT_ST’);The phase of the through traffic signal of the entrance lane and the phase of the through traffic signal of the opposite entrance lane are combined into the same signal phase phase, and the green light time of the phase phase is max(disT_ST, disT_ST’);
如果disT_LT>disT_LT’,且maxVOL_ST(t+T_GAP)>maxVOL_LT′(t+T_GAP),则将进口车道的左转通行信号相位与对向进口车道的左转通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为min(disT_LT,disT_LT’);并在进口车道增加一个叠加相位阶段,允许进口方向的直行通行方向和左转通行方向同时放行,叠加相位阶段的绿灯时间为|disT_LT-disT_LT’|;If disT_LT>disT_LT', and maxVOL_ST(t+T_GAP)>maxVOL_LT'(t+T_GAP), then the left-turn signal phase of the entrance lane and the left-turn signal phase of the opposite entrance lane are combined into the same signal phase phase , the green light time in the phase phase is min(disT_LT, disT_LT'); and a superimposed phase phase is added to the entrance lane, which allows the through direction and left-turn traffic direction of the entrance direction to pass at the same time, and the green light time in the superimposed phase phase is |disT_LT- disT_LT'|;
如果disT_LT>disT_LT’,且maxVOL_ST(t+T_GAP)<maxVOL_LT′(t+T_GAP),则将进口车道的左转通行信号相位与对向进口车道的左转通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为disT_LT;If disT_LT>disT_LT', and maxVOL_ST(t+T_GAP)<maxVOL_LT'(t+T_GAP), the phase of the left-turn traffic signal of the entrance lane and the phase of the left-turn traffic signal of the opposite entrance lane are merged into the same signal phase phase , the green light time of the phase phase is disT_LT;
如果disT_LT<disT_LT’,且maxVOL_LT(t+T_GAP)>maxVOL_ST′(t+T_GAP),则将进口车道的左转通行信号相位与对向进口车道的左转通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为disT_LT’;If disT_LT<disT_LT', and maxVOL_LT(t+T_GAP)>maxVOL_ST'(t+T_GAP), the phase of the left-turn traffic signal of the entrance lane and the phase of the left-turn traffic signal of the opposite entrance lane are combined into the same signal phase phase , the green light time of the phase phase is disT_LT';
如果disT_LT<disT_LT’,且maxVOL_LT(t+T_GAP)<maxVOL_ST′(t+T_GAP),则将进口车道的左转通行信号相位与对向进口车道的左转通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为min(disT_LT,disT_LT’);并在对向进口车道增加一个叠加相位阶段,允许对向进口放行的直行通行方向和左转通行方向同时放行,叠加相位阶段的绿灯时间为|disT_LT-disT_LT’|;If disT_LT<disT_LT', and maxVOL_LT(t+T_GAP)<maxVOL_ST'(t+T_GAP), the phase of the left-turn traffic signal of the entrance lane and the phase of the left-turn traffic signal of the opposite entrance lane are merged into the same signal phase phase , the green light time in the phase phase is min(disT_LT, disT_LT'); and add a superimposed phase phase to the opposite entrance lane, allowing the opposite entrance to pass in the through direction and the left turn direction at the same time, and the green light time in the superimposed phase phase for |disT_LT-disT_LT'|;
④若|disT_ST-disT_ST’|>ξ且|disT_LT-disT_LT’|≤ξ,则FPGA主控模块通过通信模块与对向的FPGA主控模块协调:④If |disT_ST-disT_ST’|>ξ and |disT_LT-disT_LT’|≤ξ, the FPGA main control module coordinates with the opposite FPGA main control module through the communication module:
将进口车道的左转通行信号相位与对向进口车道的左转通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为max(disT_LT,disT_LT’);Merge the phase of the left-turn traffic signal of the entrance lane and the phase of the left-turn traffic signal of the opposite entrance lane into the same signal phase phase, and the green light time of the phase phase is max(disT_LT, disT_LT’);
如果disT_ST>disT_ST’,且maxVOL_LT(t+T_GAP)>maxVOL_ST′(t+T_GAP),则将进口车道的直行通行信号相位与对向进口车道的直行通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为min(disT_ST,disT_ST’);并在进口车道增加一个叠加相位阶段,允许进口方向的直行通行方向和左转通行方向同时放行,叠加相位阶段的绿灯时间为|disT_ST-disT_ST’|;If disT_ST>disT_ST', and maxVOL_LT(t+T_GAP)>maxVOL_ST'(t+T_GAP), the phase of the through signal of the entrance lane and the phase of the through signal of the opposite entrance lane are combined into the same signal phase phase, the phase The green light time of the phase is min(disT_ST, disT_ST'); and a superimposed phase phase is added to the entrance lane, which allows the through direction and left-turn traffic direction of the entrance direction to pass at the same time, and the green light time of the superimposed phase phase is |disT_ST-disT_ST' |;
如果disT_ST>disT_ST’,且maxVOL_LT(t+T_GAP)<maxVOL_ST′(t+T_GAP),则将进口车道的直行通行信号相位与对向进口车道的直行通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为disT_ST;If disT_ST>disT_ST', and maxVOL_LT(t+T_GAP)<maxVOL_ST'(t+T_GAP), then the phase of the through traffic signal of the entrance lane and the phase of the through traffic signal of the opposite entrance lane are combined into the same signal phase phase, the phase The green light time of the stage is disT_ST;
如果disT_ST<disT_ST’,且maxVOL_ST(t+T_GAP)>maxVOL_LT′(t+T_GAP),则将进口车道的左转通行信号相位与对向进口车道的左转通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为disT_LT’;If disT_ST<disT_ST', and maxVOL_ST(t+T_GAP)>maxVOL_LT'(t+T_GAP), the phase of the left-turn traffic signal of the entrance lane and the phase of the left-turn traffic signal of the opposite entrance lane are merged into the same signal phase phase , the green light time of the phase phase is disT_LT';
如果disT_ST<disT_ST’,且maxVOL_ST(t+T_GAP)<maxVOL_LT′(t+T_GAP),则将进口车道的直行通行信号相位与对向进口车道的直行通行信号相位合并为同一个信号相位阶段,相位阶段的绿灯时间为min(disT_ST,disT_ST’);并在对向进口车道增加一个叠加相位阶段,允许进口方向的直行通行方向和左转通行方向同时放行,叠加相位阶段的绿灯时间为|disT_ST-disT_ST’|;If disT_ST<disT_ST', and maxVOL_ST(t+T_GAP)<maxVOL_LT'(t+T_GAP), the phase of the through traffic signal of the entrance lane and the phase of the through traffic signal of the opposite entrance lane are merged into the same signal phase phase, the phase The green light time of the stage is min(disT_ST, disT_ST'); and a superimposed phase phase is added to the opposite entrance lane, which allows the passage in the through direction and the left turn direction of the entrance direction to pass at the same time, and the green light time of the superimposed phase phase is |disT_ST- disT_ST'|;
其中:ξ相位阶段拆分临界阈值;maxVOL_ST(t+T_GAP)、maxVOL_ST′(t+T_GAP)分别为t时刻下一个预测间隔T_GAP进口车道直行通行方向和对向进口车道直行通行方向的最大直行车道流量;maxVOL_LT(t+T_GAP)、maxVOL_LT′(t+T_GAP)分别为t时刻下一个预测间隔T_GAP进口车道左转通行方向和对向进口车道左转通行方向的最大左转车道流量;Among them: ξ phase stage splitting critical threshold; maxVOL_ST(t+T_GAP), maxVOL_ST′(t+T_GAP) are respectively the maximum through lanes in the through direction of the entrance lane and the through direction of the opposite entrance lane in the next prediction interval T_GAP at time t Flow; maxVOL_LT(t+T_GAP), maxVOL_LT′(t+T_GAP) are respectively the maximum left-turn lane traffic in the left-turn direction of the entrance lane and the left-turn direction of the opposite entrance lane in the next prediction interval T_GAP at time t;
Step5:FPGA主控模块通过通信模块与交叉口其他的FPGA主控模块根据各FPGA主控模块计算得出的各进口方向中各通行相位的绿灯时长,根据韦伯斯特交叉口延误计算公式,采用交叉口延误最小的原则,协调确定各信号相位的执行顺序,即相位相序;Step5: The FPGA main control module communicates with other FPGA main control modules at the intersection through the communication module. According to the green light duration of each passing phase in each entrance direction calculated by each FPGA main control module, according to the Webster intersection delay calculation formula, adopt The principle of minimum delay at intersections is to coordinate and determine the execution sequence of each signal phase, that is, the phase sequence;
Step6:DSP安全监测模块实时监测车辆和行人的运行情况:Step6: The DSP safety monitoring module monitors the running conditions of vehicles and pedestrians in real time:
Step6.1:在车辆信号绿灯即将结束期间,DSP安全监测模块实时监测进口方向即将驶入交叉口的车辆,计算当前车辆是否能够安全停车或安全通过交叉口:Step6.1: When the green light of the vehicle signal is about to end, the DSP safety monitoring module monitors the vehicles that are about to enter the intersection in the direction of the entrance in real time, and calculates whether the current vehicle can safely stop or pass through the intersection:
其中:X0为车辆能够减速停车的最小安全停车距离;XC为车辆能够加速通行的最大安全距离;V0即将驶入交叉口的车辆运行速度;σ为驾驶员的平均制动反映时间;α-为车辆平均制动减速度;α+为车辆平均制动加速度;greenT为剩余的通行时间;w为交叉口宽度;l为平均车辆长度;Among them: X 0 is the minimum safe parking distance that the vehicle can decelerate and stop; X C is the maximum safe distance that the vehicle can accelerate to pass; V 0 is the running speed of the vehicle that is about to enter the intersection; σ is the average braking reaction time of the driver; α - is the average braking deceleration of the vehicle; α + is the average braking acceleration of the vehicle; greenT is the remaining transit time; w is the intersection width; l is the average vehicle length;
Step6.2:若X0>XC,则车辆既不能安全通行,也不能安全停车,则DSP安全监测模块与FPGA主控模块协调,延长车辆运行方向的绿灯时间,使其能够安全通过,向交通信号驱动控制模块发送DilemmaType1指令数据包;Step6.2: If X 0 >X C , the vehicle can neither pass through nor stop safely, then the DSP safety monitoring module coordinates with the FPGA main control module to prolong the green light time of the vehicle running direction so that it can pass safely and The traffic signal drive control module sends a DilemmaType1 instruction packet;
Step6.3:若X0<XC,则DSP安全监测模块与交通信号驱动控制单元协调,对车辆运行方向进行信号灯闪烁,提示驾驶员减速停车或加速通过,向交通信号驱动控制模块发送DilemmaType2指令数据包;Step6.3: If X 0 <X C , then the DSP safety monitoring module coordinates with the traffic signal drive control unit to flash the signal light in the direction of the vehicle, prompting the driver to slow down and stop or speed up to pass, and sends a DilemmaType2 command to the traffic signal drive control module data pack;
Step6.4:DSP安全监测模块实时监测人行横道行人和进口方向车辆的运行轨迹,一旦检测到人行的运行轨迹和车辆的运行轨迹有冲突的情况出现,则DSP安全监测模块向交通信号驱动控制单元发送“危险,请注意安全!”的安全警报DangerInfo指令数据包;Step6.4: The DSP safety monitoring module monitors the running trajectories of pedestrians in the crosswalk and vehicles in the direction of the entrance in real time. Once a conflict between the running trajectories of pedestrians and vehicles is detected, the DSP safety monitoring module sends a signal to the traffic signal drive control unit. "Danger, please pay attention to safety!" security alert DangerInfo command packet;
Step6.5:在车辆信号绿灯即将结束期间,DSP安全监测模块实时监测人行横道是否有行人,一旦在道路边缘的人行横道边界检测到有行人出现,DSP安全监测模块向交通信号驱动控制单元发送“耐心等待,请退回等待区!”安全预警PedWarningType1指令数据包;Step6.5: When the green light of the vehicle signal is about to end, the DSP safety monitoring module monitors whether there are pedestrians in the crosswalk in real time. Once a pedestrian is detected at the border of the crosswalk at the edge of the road, the DSP safety monitoring module sends "wait patiently" to the traffic signal drive control unit , please return to the waiting area!" security warning PedWarningType1 instruction packet;
Step6.6:在车辆信号红灯,行人信号绿灯期间,DSP安全检测模块实时监测行人是否行走在人行横道上,一旦检测到有行人行走的轨迹不在人行横道上,DSP安全监测模块向交通信号驱动控制单元发送“文明交通,请走斑马线!”的安全预警PedWarningType2指令数据包;Step6.6: During the red light of the vehicle signal and the green light of the pedestrian signal, the DSP safety detection module monitors whether the pedestrian is walking on the crosswalk in real time. Once it detects that the track of a pedestrian walking is not on the crosswalk, the DSP safety monitoring module drives the control unit to the traffic signal Send the "civilized traffic, please walk the zebra crossing!" safety warning PedWarningType2 instruction data packet;
Step7:FPGA主控模块、DSP安全检测模块通过EMIF总线将交通信号控制方案,包括各信号相位的绿灯时间、信号相位的执行顺序,以及交通安全预警指令传送给交通信号驱动控制单元;Step7: The FPGA main control module and DSP safety detection module transmit the traffic signal control scheme, including the green light time of each signal phase, the execution sequence of the signal phase, and the traffic safety warning command, to the traffic signal drive control unit through the EMIF bus;
3)交通信号驱动控制单元3) Traffic signal drive control unit
交通信号驱动控制单元由交通信号显示模块、交通信号提示模块、交通安全预警模块、信号灯组、LED微显屏、6U VPX开关信号接口板组成,交通信号显示模块、交通信号提示模块、交通安全预警模块、信号灯组、LED微显屏通过串口与6U VPX开关信号接口板进行连接和数据通信传输;交通信号显示模块负责将交通信号协调单元传送过来的交通信号控制方案,驱动和控制信号灯组的启亮时间、启亮状态、启亮图案;交通信号提示模块根据交通信号交互协调单元传送过来的交通信号控制方案,控制LED微显屏的信息提示内容,对人流、车流的通行状态、通行时间进行信息提示和动态引导;交通安全预警模块根据交通信号交互协调单元传送过来的交通安全预警指令,对交叉口的人流、车流进行安全预警。Traffic signal drive control unit consists of traffic signal display module, traffic signal prompt module, traffic safety early warning module, signal light group, LED micro display screen, 6U VPX switch signal interface board, traffic signal display module, traffic signal prompt module, traffic safety early warning The module, the signal lamp group, and the LED micro-display screen are connected and communicated with the 6U VPX switch signal interface board through the serial port; the traffic signal display module is responsible for the traffic signal control scheme transmitted from the traffic signal coordination unit, and drives and controls the activation of the signal lamp group. Lighting time, lighting state, and lighting pattern; the traffic signal prompt module controls the information prompt content of the LED micro-display screen according to the traffic signal control scheme transmitted by the traffic signal interaction coordination unit, and monitors the passing status and passing time of the flow of people and vehicles. Information prompts and dynamic guidance; the traffic safety early warning module provides safety warnings for the flow of people and vehicles at the intersection according to the traffic safety early warning instructions sent by the traffic signal interaction coordination unit.
Step1:交通信号显示模块接收交通信号交互协调单元传送过来的交通信号控制方案,将交通信号控制方案的数字信息转换从模拟信号,驱动和控制信号灯组启亮的时间、启亮的颜色、启亮的顺序、不同灯色的过渡顺序和过渡形式以及灯色显示的图形;Step1: The traffic signal display module receives the traffic signal control scheme sent by the traffic signal interaction coordination unit, converts the digital information of the traffic signal control scheme from the analog signal, drives and controls the lighting time, lighting color, and lighting of the signal light group sequence, the transition sequence and transition form of different light colors, and the graphics displayed by light colors;
Step2:交通信号提示模块接收交通信号交互协调单元传送过来的交通信号控制方案,驱动和控制LED微显屏,对人流、车流的通行状态、通行时间、剩余时间、行进方向进行提示和引导;Step2: The traffic signal prompt module receives the traffic signal control scheme sent by the traffic signal interaction coordination unit, drives and controls the LED micro-display screen, and prompts and guides the passing status, passing time, remaining time and traveling direction of the flow of people and vehicles;
Step3:交通安全预警模块接收交通信号交互协调单元传送过来的交通安全预警指令,根据不同的信号指令进行安全预警:Step3: The traffic safety warning module receives the traffic safety warning instructions sent by the traffic signal interaction coordination unit, and performs safety warnings according to different signal instructions:
Step3.1:当交通安全预警模块接收到DilemmaType1指令数据包时,接管交通信号显示模块对信号灯组的控制,根据DilemmaType1指令内容,延长指定通行方向的绿灯时长,当延长时间结束时,释放对信号灯组的控制,将信号灯组的控制权交还给交通信号显示模块;Step3.1: When the traffic safety warning module receives the DilemmaType1 instruction packet, it takes over the control of the traffic signal display module on the signal light group, and according to the content of the DilemmaType1 instruction, prolongs the duration of the green light in the designated traffic direction, and releases the signal light when the extended time ends Group control, return the control right of the signal light group to the traffic signal display module;
Step3.2:当交通安全预警模块接收到DilemmaType2指令数据包时,接管交通信号显示模块对信号灯组的控制,根据DilemmaType2指令内容,对指定通行方向的信号灯进行闪烁控制,当闪烁控制结束后,释放对信号灯组的控制,将信号灯组的控制权交还给交通信号显示模块;Step3.2: When the traffic safety warning module receives the DilemmaType2 instruction packet, it takes over the control of the traffic signal display module on the signal light group, and according to the content of the DilemmaType2 instruction, it performs blinking control on the signal lights in the designated direction of traffic. When the blinking control ends, release For the control of the signal light group, return the control right of the signal light group to the traffic signal display module;
Step3.3:当交通安全预警模块接收到DangerInfo指令数据包时,接管交通信号显示模块对信号灯组的控制,根据DangerInfo指令内容,对指定通行方向启动红灯闪烁预警,并通过语音和LED微显屏报警“危险,请注意安全!”;Step3.3: When the traffic safety early warning module receives the DangerInfo instruction data packet, it takes over the control of the traffic signal display module on the signal light group, and according to the content of the DangerInfo instruction, starts the red light flashing warning for the designated traffic direction, and displays it through voice and LED micro display Screen alarm "Danger, please pay attention to safety!";
Step3.4:当交通安全预警模块接收到PedWarningType1指令数据包时,通过语音和LED微显屏向行人报警“耐心等待,请退回等待区!”;Step3.4: When the traffic safety warning module receives the PedWarningType1 instruction packet, it will alarm the pedestrians "wait patiently, please return to the waiting area!" through voice and LED micro-display screen;
Step3.5:当交通安全预警模块接收到PedWarningType2指令数据包时,通过语音和LED微显屏向行人报警“文明交通,请走斑马线!”。Step3.5: When the traffic safety warning module receives the PedWarningType2 command data packet, it will send an alarm to pedestrians "civilized traffic, please walk the zebra crossing!" through voice and LED micro-display screen.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910046578.3A CN109559528B (en) | 2019-01-18 | 2019-01-18 | Self-perception interactive traffic signal control device based on 3D laser radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910046578.3A CN109559528B (en) | 2019-01-18 | 2019-01-18 | Self-perception interactive traffic signal control device based on 3D laser radar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109559528A CN109559528A (en) | 2019-04-02 |
CN109559528B true CN109559528B (en) | 2023-03-21 |
Family
ID=65873165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910046578.3A Expired - Fee Related CN109559528B (en) | 2019-01-18 | 2019-01-18 | Self-perception interactive traffic signal control device based on 3D laser radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109559528B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110110696B (en) * | 2019-05-17 | 2022-07-05 | 百度在线网络技术(北京)有限公司 | Method and apparatus for processing information |
CN110097766A (en) * | 2019-06-03 | 2019-08-06 | 南昌金科交通科技股份有限公司 | It is a kind of to utilize three-dimensional radar inspection optimization traffic control system |
CN110599802A (en) * | 2019-08-16 | 2019-12-20 | 同济大学 | Pedestrian crossing early warning implementation method and early warning system |
CN115643809A (en) * | 2019-09-26 | 2023-01-24 | 深圳市大疆创新科技有限公司 | Signal processing method of point cloud detection system and point cloud detection system |
CN110599782B (en) * | 2019-11-07 | 2021-06-11 | 山西省地震局 | Method for controlling duration of traffic lights according to population distribution thermodynamic diagrams |
CN110928317A (en) * | 2019-12-27 | 2020-03-27 | 华域视觉科技(上海)有限公司 | Street lamp and automatic driving road system |
CN111477011A (en) * | 2020-04-08 | 2020-07-31 | 图达通智能科技(苏州)有限公司 | Detection device and detection method for road intersection early warning |
CN111553517A (en) * | 2020-04-17 | 2020-08-18 | 平安科技(深圳)有限公司 | Road optimization method, system, terminal and computer readable storage medium |
CN112907989A (en) * | 2021-01-29 | 2021-06-04 | 安徽四创电子股份有限公司 | Traffic signal control method for detecting pedestrian road crossing based on video and radar |
CN112921851B (en) * | 2021-02-01 | 2022-06-10 | 武汉理工大学 | A Self-Explaining Pedestrian Crossing Traffic Safety Facility |
CN113112830B (en) * | 2021-04-08 | 2021-12-17 | 同济大学 | Signal-controlled intersection clearing method and system based on lidar and trajectory prediction |
CN114530039A (en) * | 2022-01-27 | 2022-05-24 | 浙江梧斯源通信科技股份有限公司 | Real-time detection device and method for pedestrian flow and vehicle flow at intersection |
CN114510788B (en) * | 2022-04-18 | 2022-08-16 | 北京中科慧眼科技有限公司 | Time threshold model construction method and system based on vehicle automatic braking system |
CN115410373A (en) * | 2022-11-01 | 2022-11-29 | 山东科技职业学院 | Radar positioning system based on road traffic |
CN119252052A (en) * | 2024-12-05 | 2025-01-03 | 维特瑞交通科技有限公司 | Intelligent traffic signal status display and control integrated device and control method thereof |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103302287A (en) * | 2013-06-18 | 2013-09-18 | 华北电力大学 | Iron-based amorphous powder for wear-resisting and corrosion-resisting coating and preparation method thereof |
CN103711050A (en) * | 2013-12-31 | 2014-04-09 | 中交第二公路勘察设计研究院有限公司 | Laser radar road reconstruction and expansion exploratory survey design method |
CN104134216A (en) * | 2014-07-29 | 2014-11-05 | 武汉大学 | Laser point cloud automatic registration method and system based on 16-dimensional feature description |
CA2847121A1 (en) * | 2013-05-13 | 2014-11-13 | Oliver Nagy | Apparatus for measuring the position of a vehicle or a surface thereof |
CN104966404A (en) * | 2015-07-23 | 2015-10-07 | 合肥革绿信息科技有限公司 | Single-point self-optimization signal control method and device based on array radars |
CN105070074A (en) * | 2015-07-23 | 2015-11-18 | 合肥革绿信息科技有限公司 | Region self-optimization signal control method based on array radar and device |
DE102014012364A1 (en) * | 2014-08-25 | 2016-02-25 | Microtech Gefell Gmbh | Inertia-free A / D converter for determining the density of gas and optical signal processing equipment |
CN105513387A (en) * | 2016-01-30 | 2016-04-20 | 山东星志智能交通科技有限公司 | Pedestrian passing signal lamp capable of being intelligently controlled |
CN105551270A (en) * | 2016-01-30 | 2016-05-04 | 山东星志智能交通科技有限公司 | Intelligent traffic signal control system |
KR20160062880A (en) * | 2014-11-26 | 2016-06-03 | 휴앤에스(주) | road traffic information management system for g using camera and radar |
CN105894826A (en) * | 2016-06-28 | 2016-08-24 | 侯舸 | Traffic flow density identifying device based on infrared thermal imaging |
CN106530761A (en) * | 2016-12-21 | 2017-03-22 | 吉林大学 | Traffic signal controller based on fractal geometry |
CN106772318A (en) * | 2016-11-24 | 2017-05-31 | 东台银信钢结构工程有限公司 | A kind of measuring method of steel construction inner laser radar scanning density |
CN106846792A (en) * | 2017-04-05 | 2017-06-13 | 滁州学院 | Urban Traffic Peccancy intelligent early-warning system and its method |
CN107123287A (en) * | 2017-06-27 | 2017-09-01 | 吉林大学 | A kind of traffic lights control integrated device based on Self-organizing Coordinated |
CN207263924U (en) * | 2017-08-28 | 2018-04-20 | 国网甘肃省电力公司电力科学研究院 | A kind of improved power-line patrolling shaft tower modeling laser radar system |
CN108417055A (en) * | 2018-03-22 | 2018-08-17 | 南京推推兔信息科技有限公司 | A kind of trunk roads synergistic signal machine control method based on radar detector |
CN108629968A (en) * | 2018-06-26 | 2018-10-09 | 吉林大学 | A kind of pedestrian's street crossing safety control based on laser radar |
CN208240196U (en) * | 2018-06-26 | 2018-12-14 | 吉林大学 | A kind of pedestrian's street crossing safety control based on laser radar |
CN109147363A (en) * | 2018-09-10 | 2019-01-04 | 吉林大学 | Traffic intelligent guides system and bootstrap technique |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140158578A1 (en) * | 2012-12-06 | 2014-06-12 | Jason Varan | Folding apparatus for the containment and transport of bottles and method of use |
US10677953B2 (en) * | 2016-05-31 | 2020-06-09 | Lockheed Martin Corporation | Magneto-optical detecting apparatus and methods |
-
2019
- 2019-01-18 CN CN201910046578.3A patent/CN109559528B/en not_active Expired - Fee Related
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2847121A1 (en) * | 2013-05-13 | 2014-11-13 | Oliver Nagy | Apparatus for measuring the position of a vehicle or a surface thereof |
CN103302287A (en) * | 2013-06-18 | 2013-09-18 | 华北电力大学 | Iron-based amorphous powder for wear-resisting and corrosion-resisting coating and preparation method thereof |
CN103711050A (en) * | 2013-12-31 | 2014-04-09 | 中交第二公路勘察设计研究院有限公司 | Laser radar road reconstruction and expansion exploratory survey design method |
CN104134216A (en) * | 2014-07-29 | 2014-11-05 | 武汉大学 | Laser point cloud automatic registration method and system based on 16-dimensional feature description |
DE102014012364A1 (en) * | 2014-08-25 | 2016-02-25 | Microtech Gefell Gmbh | Inertia-free A / D converter for determining the density of gas and optical signal processing equipment |
KR20160062880A (en) * | 2014-11-26 | 2016-06-03 | 휴앤에스(주) | road traffic information management system for g using camera and radar |
CN104966404A (en) * | 2015-07-23 | 2015-10-07 | 合肥革绿信息科技有限公司 | Single-point self-optimization signal control method and device based on array radars |
CN105070074A (en) * | 2015-07-23 | 2015-11-18 | 合肥革绿信息科技有限公司 | Region self-optimization signal control method based on array radar and device |
CN105513387A (en) * | 2016-01-30 | 2016-04-20 | 山东星志智能交通科技有限公司 | Pedestrian passing signal lamp capable of being intelligently controlled |
CN105551270A (en) * | 2016-01-30 | 2016-05-04 | 山东星志智能交通科技有限公司 | Intelligent traffic signal control system |
CN105894826A (en) * | 2016-06-28 | 2016-08-24 | 侯舸 | Traffic flow density identifying device based on infrared thermal imaging |
CN106772318A (en) * | 2016-11-24 | 2017-05-31 | 东台银信钢结构工程有限公司 | A kind of measuring method of steel construction inner laser radar scanning density |
CN106530761A (en) * | 2016-12-21 | 2017-03-22 | 吉林大学 | Traffic signal controller based on fractal geometry |
CN106846792A (en) * | 2017-04-05 | 2017-06-13 | 滁州学院 | Urban Traffic Peccancy intelligent early-warning system and its method |
CN107123287A (en) * | 2017-06-27 | 2017-09-01 | 吉林大学 | A kind of traffic lights control integrated device based on Self-organizing Coordinated |
CN207263924U (en) * | 2017-08-28 | 2018-04-20 | 国网甘肃省电力公司电力科学研究院 | A kind of improved power-line patrolling shaft tower modeling laser radar system |
CN108417055A (en) * | 2018-03-22 | 2018-08-17 | 南京推推兔信息科技有限公司 | A kind of trunk roads synergistic signal machine control method based on radar detector |
CN108629968A (en) * | 2018-06-26 | 2018-10-09 | 吉林大学 | A kind of pedestrian's street crossing safety control based on laser radar |
CN208240196U (en) * | 2018-06-26 | 2018-12-14 | 吉林大学 | A kind of pedestrian's street crossing safety control based on laser radar |
CN109147363A (en) * | 2018-09-10 | 2019-01-04 | 吉林大学 | Traffic intelligent guides system and bootstrap technique |
Non-Patent Citations (2)
Title |
---|
林赐云.考虑低排放低延误的交通信号优化方法.2015,29-34+41. * |
王肖.复杂环境下智能车辆动态目标三维感知方法研究.2017,C035-9. * |
Also Published As
Publication number | Publication date |
---|---|
CN109559528A (en) | 2019-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109559528B (en) | Self-perception interactive traffic signal control device based on 3D laser radar | |
CN107798861B (en) | A kind of vehicle cooperative formation driving method and system | |
CN112907986B (en) | A dynamic time window intersection scheduling method based on digital twin scene and edge cloud | |
CN108011947B (en) | A vehicle cooperative formation driving system | |
CN106601002B (en) | Entrance ramp vehicle passing guiding system and method under Internet of vehicles environment | |
CN113345253B (en) | Traffic flow array and signal cooperative control system | |
CN108629968A (en) | A kind of pedestrian's street crossing safety control based on laser radar | |
JP2021523469A (en) | Systems and methods for assigning driving intelligence between vehicles and highways | |
CN113316535A (en) | Vehicle control | |
CN106157669A (en) | How navigation systems work to reduce traffic accidents | |
EP3846148B1 (en) | System, management method, automated driving vehicle, and program | |
US20220326711A1 (en) | Evaluating pullovers for autonomous vehicles | |
US12145628B1 (en) | Driving difficulty maps for autonomous vehicles | |
US12345821B2 (en) | Method for predicting behavior of object e as an autonomous vehicles, determining afggregated data based on first and second lidars data and transfer function | |
CN109035867A (en) | A kind of device that can improve traffic safety and traffic efficiency | |
CN116013101B (en) | System and method for suggesting speed of signal-free intersection based on network environment | |
US20250231562A1 (en) | Remote driving method and apparatus, electronic device, storage medium, and program product | |
CN116564110A (en) | Traffic fault early warning device and method based on multi-unmanned aerial vehicle cooperation | |
CN115840404A (en) | Cloud control automatic driving system based on automatic driving special road network and digital twin map | |
KR20230148980A (en) | Location-based IoT Autonomous Sensing Road Facility System for Electric and Hydrogen Unmanned Autonomous Vehicles and Method of Operation Thereof | |
CN116373904A (en) | A vehicle intelligent control system based on environment perception and multi-vehicle coordination | |
CN114274978A (en) | Obstacle avoidance method for unmanned logistics vehicle | |
KR102605101B1 (en) | Smart signal apparatus for non-signalized intersection and control method thereof | |
CN117315953A (en) | Vehicle-road cooperative system based on intermittent event triggering | |
CN113963561B (en) | Autonomous driving vehicle group control method and communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230321 |