[go: up one dir, main page]

CN109557816B - Method, system and medium for suppressing hysteresis characteristic of piezoelectric ceramic actuator - Google Patents

Method, system and medium for suppressing hysteresis characteristic of piezoelectric ceramic actuator Download PDF

Info

Publication number
CN109557816B
CN109557816B CN201811625537.1A CN201811625537A CN109557816B CN 109557816 B CN109557816 B CN 109557816B CN 201811625537 A CN201811625537 A CN 201811625537A CN 109557816 B CN109557816 B CN 109557816B
Authority
CN
China
Prior art keywords
hysteresis
model
sliding mode
piezoelectric ceramic
bouc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811625537.1A
Other languages
Chinese (zh)
Other versions
CN109557816A (en
Inventor
李自成
张赛
王后能
曾丽
熊涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201811625537.1A priority Critical patent/CN109557816B/en
Publication of CN109557816A publication Critical patent/CN109557816A/en
Application granted granted Critical
Publication of CN109557816B publication Critical patent/CN109557816B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本发明涉及一种压电陶瓷执行器迟滞特性的抑制方法、系统及介质,方法包括获取压电陶瓷执行器在输入电压下产生的输出位移,并根据输出位移和输入电压建立迟滞模型;对迟滞模型进行参数辨识,得到目标迟滞模型;根据目标迟滞模型设计分数阶滑模控制器,并采用分数阶滑模控制器对压电陶瓷执行器进行控制。本发明由输出位移与输入电压的关系来描述迟滞特性,能更好地描述迟滞特性与压电陶瓷执行器的关系,由分数阶滑模控制器控制压电陶瓷执行器,较好地抑制滑模面的抖动问题,且计算过程少、计算难度低,可以在很大程度上保证对压电陶瓷执行器控制的实时性,控制效果更好,能更有效地抑制压电陶瓷执行器在工作过程中的迟滞特性。

Figure 201811625537

The invention relates to a method, system and medium for suppressing the hysteresis characteristic of a piezoelectric ceramic actuator. The method includes obtaining an output displacement generated by a piezoelectric ceramic actuator under an input voltage, and establishing a hysteresis model according to the output displacement and the input voltage; The parameters of the model are identified to obtain the target hysteresis model; the fractional-order sliding mode controller is designed according to the target hysteresis model, and the fractional-order sliding mode controller is used to control the piezoelectric ceramic actuator. The invention describes the hysteresis characteristic by the relationship between the output displacement and the input voltage, can better describe the relationship between the hysteresis characteristic and the piezoelectric ceramic actuator, controls the piezoelectric ceramic actuator by a fractional-order sliding mode controller, and better suppresses sliding The jitter problem of the die surface, and the calculation process is small and the calculation difficulty is low, the real-time control of the piezoelectric ceramic actuator can be guaranteed to a large extent, the control effect is better, and the piezoelectric ceramic actuator can be more effectively inhibited from working. Hysteresis characteristics in the process.

Figure 201811625537

Description

一种压电陶瓷执行器迟滞特性的抑制方法、系统及介质Method, system and medium for suppressing hysteresis characteristic of piezoelectric ceramic actuator

技术领域technical field

本发明涉及机电控制技术领域,尤其涉及一种压电陶瓷执行器迟滞特性的抑制方法、系统及介质。The invention relates to the technical field of electromechanical control, in particular to a method, system and medium for suppressing hysteresis characteristics of a piezoelectric ceramic actuator.

背景技术Background technique

压电陶瓷执行器具有体积小、能量密度高、定位精度高、分辨率高、频响快等优点,在精密定位、微机电系统、微纳米制造技术、纳米生物工程等领域中得到了广泛应用。Piezoelectric ceramic actuators have the advantages of small size, high energy density, high positioning accuracy, high resolution, and fast frequency response. .

例如,柔性电子需要在任意形状的柔性衬底上实现纳米特征微纳结构宏观器件的大面积集成,制造过程涉及到聚合物、金属、非金属、纳米材料等物理特性迥异材料的功能界面的精确形成,这对制造装备的驱动、定位和运动控制性能提出了极大挑战。因此,微观尺度内的亚微米精密定位和运动控制技术成为必要手段。For example, flexible electronics need to realize large-area integration of nano-featured micro-nano-structured macroscopic devices on flexible substrates of any shape. The manufacturing process involves precise functional interfaces of polymers, metals, non-metals, nanomaterials and other materials with different physical properties. formation, which poses a great challenge to the drive, positioning and motion control performance of manufacturing equipment. Therefore, sub-micron precise positioning and motion control technology at the micro-scale has become a necessary means.

压电陶瓷执行器是利用压电材料在电场中产生逆压电效应或电致伸缩效应,直接将电能转化为机械能从而产生微小位移,并通过位移放大机构(例如柔性饺链等)来实现高分辨率位移输出的精密执行器。然而作为一种极性材料,压电陶瓷本身固有的非线性特性,如迟滞、温度、蠕变和动态频率特性等,尤其是迟滞特性,直接影响了系统的运动性能,给跨尺度喷印制造中的精密定位和跟踪带来了困难和挑战。Piezoelectric ceramic actuators use piezoelectric materials to generate inverse piezoelectric effect or electrostrictive effect in an electric field, directly convert electrical energy into mechanical energy to generate tiny displacements, and use displacement amplification mechanisms (such as flexible dumpling chains, etc.) to achieve high Precision actuators with high resolution displacement output. However, as a polar material, the inherent nonlinear characteristics of piezoelectric ceramics, such as hysteresis, temperature, creep and dynamic frequency characteristics, especially the hysteresis characteristics, directly affect the motion performance of the system, which can be used for cross-scale printing manufacturing. Precise positioning and tracking in the

目前,针对迟滞特性的抑制方法有多种,例如基于迟滞模型的追踪的模糊PID控制方法,该方法首先通过建模得到压电陶瓷执行器的迟滞模型,然后利用该迟滞模型设计相对应的PID控制器并用模糊控制规则来实现对PID控制器中比例常数kp、积分常数ki和微分常数kd的设计以补偿压电陶瓷执行器的输出位移,但目前该方法存在以下缺点:At present, there are many suppression methods for the hysteresis characteristics, such as the fuzzy PID control method based on the tracking of the hysteresis model. This method first obtains the hysteresis model of the piezoelectric ceramic actuator through modeling, and then uses the hysteresis model to design the corresponding PID control method. The controller also uses fuzzy control rules to realize the design of proportional constant k p , integral constant k i and differential constant k d in the PID controller to compensate the output displacement of the piezoelectric ceramic actuator, but the current method has the following shortcomings:

1、迟滞模型是理想物理模型而存在模型误差,与迟滞特性的拟合度不够高;1. The hysteresis model is an ideal physical model and there are model errors, and the fitting degree with the hysteresis characteristics is not high enough;

2、迟滞模型需要辨识的参数较多,辨识过程较复杂,且效果不佳;2. The hysteresis model needs to identify many parameters, the identification process is more complicated, and the effect is not good;

3、因为模糊规则的设定使计算过程较复杂,导致计算难度较高,实时性差,且迟滞特性的抑制效果一般。、3. Because the setting of the fuzzy rules makes the calculation process more complicated, the calculation difficulty is higher, the real-time performance is poor, and the inhibition effect of the hysteresis characteristic is general. ,

发明内容SUMMARY OF THE INVENTION

本发明所要解决的技术问题是针对上述现有技术的不足,提供一种压电陶瓷执行器迟滞特性的抑制方法、系统及介质。The technical problem to be solved by the present invention is to provide a method, system and medium for suppressing the hysteresis characteristic of a piezoelectric ceramic actuator in view of the above-mentioned deficiencies of the prior art.

本发明解决上述技术问题的技术方案如下:The technical scheme that the present invention solves the above-mentioned technical problems is as follows:

一种压电陶瓷执行器迟滞特性的抑制方法,包括以下步骤:A method for suppressing hysteresis characteristics of a piezoelectric ceramic actuator, comprising the following steps:

步骤1:获取压电陶瓷执行器在输入电压下产生的输出位移,并根据所述输出位移和所述输入电压建立迟滞模型;Step 1: obtain the output displacement generated by the piezoelectric ceramic actuator under the input voltage, and establish a hysteresis model according to the output displacement and the input voltage;

步骤2:对所述迟滞模型进行参数辨识,得到目标迟滞模型;Step 2: performing parameter identification on the hysteresis model to obtain a target hysteresis model;

步骤3:根据所述目标迟滞模型设计分数阶滑模控制器,并采用所述分数阶滑模控制器对所述压电陶瓷执行器进行控制。Step 3: Design a fractional-order sliding mode controller according to the target hysteresis model, and use the fractional-order sliding mode controller to control the piezoelectric ceramic actuator.

本发明的有益效果是:由于压电陶瓷执行器的迟滞特性直接体现为在输入电压下的输出位移,通过输出位移和输入电压建立迟滞模型,由输出位移与输入电压的关系来描述迟滞特性,能更好地描述迟滞特性与压电陶瓷执行器的关系,便于后续根据两者的关系得到抑制迟滞特性的控制信号,以便分数阶滑模控制器根据控制信号控制压电陶瓷执行器;由于迟滞模型存在模型误差,且存在多个参数,通过对迟滞模型进行参数辨识,以便得到精度更高的目标迟滞模型,使得该目标迟滞模型与迟滞特性的拟合度更高,在描述迟滞特性上更准确,从而根据该高精度的目标迟滞模型设计更为精确的分数阶滑模控制器;分数阶滑模控制器相比传统控制器,可以较好地抑制滑模面的抖动问题,且计算过程少、计算难度低,可以在很大程度上保证对压电陶瓷执行器控制的实时性,控制效果更好,能更有效地抑制压电陶瓷执行器在工作过程中的迟滞特性,避免迟滞特性影响制造设备的精密定位、跟踪和运动控制,提高精密制造业的工作效率和产品质量。The beneficial effects of the invention are as follows: since the hysteresis characteristic of the piezoelectric ceramic actuator is directly reflected as the output displacement under the input voltage, the hysteresis model is established by the output displacement and the input voltage, and the hysteresis characteristic is described by the relationship between the output displacement and the input voltage, It can better describe the relationship between the hysteresis characteristics and the piezoelectric ceramic actuator, and it is convenient to obtain a control signal that suppresses the hysteresis characteristics according to the relationship between the two, so that the fractional-order sliding mode controller can control the piezoelectric ceramic actuator according to the control signal; due to the hysteresis There are model errors in the model, and there are multiple parameters. Through parameter identification of the hysteresis model, a target hysteresis model with higher accuracy can be obtained, so that the target hysteresis model has a higher degree of fit with the hysteresis characteristics, and is more accurate in describing the hysteresis characteristics. Therefore, a more accurate fractional-order sliding mode controller is designed according to the high-precision target hysteresis model. Compared with the traditional controller, the fractional-order sliding mode controller can better suppress the jitter problem of the sliding mode surface, and the calculation process Less and less difficult to calculate, it can ensure the real-time control of piezoelectric ceramic actuators to a large extent, the control effect is better, and the hysteresis characteristics of piezoelectric ceramic actuators in the working process can be suppressed more effectively, and the hysteresis characteristics can be avoided. It affects the precise positioning, tracking and motion control of manufacturing equipment, and improves the work efficiency and product quality of precision manufacturing.

在上述技术方案的基础上,本发明还可以做如下改进:On the basis of above-mentioned technical scheme, the present invention can also do following improvement:

进一步:所述步骤1具体采用基于质量-弹簧-阻尼数学物理模型的建模方法建立所述迟滞模型。Further: the step 1 specifically adopts a modeling method based on a mass-spring-damping mathematical and physical model to establish the hysteresis model.

上述进一步方案的有益效果是:采用基于质量-弹簧-阻尼数学物理模型的建模方法建立迟滞模型,可以较好地描述压电陶瓷的迟滞特性与压电陶瓷执行器的关系,且模型形式简单,方法简单。The beneficial effect of the above-mentioned further scheme is that the hysteresis model is established by the modeling method based on the mass-spring-damping mathematical and physical model, which can better describe the relationship between the hysteresis characteristics of the piezoelectric ceramic and the piezoelectric ceramic actuator, and the model form is simple. , the method is simple.

进一步:所述步骤1中的所述迟滞模型具体为Bouc-wen等效迟滞模型,所述Bouc-wen等效迟滞模型的具体公式为:Further: the hysteresis model in the step 1 is specifically the Bouc-wen equivalent hysteresis model, and the specific formula of the Bouc-wen equivalent hysteresis model is:

y(t)=k1u(t)+k2h(t)y(t)=k 1 u(t)+k 2 h(t)

Figure BDA0001927906030000031
Figure BDA0001927906030000031

Figure BDA0001927906030000032
Figure BDA0001927906030000032

其中,y(t)为所述输出位移,u(t)为所述输入电压,h(t)为所述Bouc-wen等效迟滞模型的迟滞分量,

Figure BDA0001927906030000033
为所述迟滞分量对时间的一阶导数,D0、A、β、γ和n均为反映迟滞特性的模型参数,
Figure BDA0001927906030000034
为所述输入电压对时间的一阶导数,α为权重系数,ks为所述压电陶瓷执行器的第一等效刚度系数,k为反映所述迟滞特性的第二等效刚度系数,k1和k2均为根据α、D0、k和ks所得的第一简记系数。where y(t) is the output displacement, u(t) is the input voltage, h(t) is the hysteresis component of the Bouc-wen equivalent hysteresis model,
Figure BDA0001927906030000033
is the first derivative of the hysteresis component with respect to time, D 0 , A, β, γ and n are all model parameters reflecting the hysteresis characteristics,
Figure BDA0001927906030000034
is the first derivative of the input voltage with respect to time, α is the weight coefficient, k s is the first equivalent stiffness coefficient of the piezoelectric ceramic actuator, k is the second equivalent stiffness coefficient reflecting the hysteresis characteristic, Both k 1 and k 2 are first shorthand coefficients obtained from α, D 0 , k and k s .

上述进一步方案的有益效果是:由于Bouc-wen等效迟滞模型可以描述大多数的迟滞系统,与实际运动过程中的迟滞特性具有较好的拟合度,因此通过质量-弹簧-阻尼数学物理模型来获得Bouc-wen等效迟滞模型,能更好地描述迟滞特性,且上述Bouc-wen等效迟滞模型与传统的Bouc-wen模型相比,进行了简化,使得模型更为简单,以便后续对模型中的参数进行辨识,得到精度更高的目标迟滞模型;The beneficial effect of the above-mentioned further scheme is: because the Bouc-wen equivalent hysteresis model can describe most hysteresis systems, and has a good degree of fit with the hysteresis characteristics in the actual motion process, the mass-spring-damping mathematical and physical model is adopted. To obtain the Bouc-wen equivalent hysteresis model, which can better describe the hysteresis characteristics, and the above Bouc-wen equivalent hysteresis model is simplified compared with the traditional Bouc-wen model, making the model simpler, so that the subsequent The parameters in the model are identified to obtain the target hysteresis model with higher accuracy;

其中,反映迟滞特性的第二等效刚度系数k>0,权值系数0<α<1;D0、A、β、γ和n均为反映迟滞特性的模型参数,D0、A、β和γ具体控制迟滞特性曲线的形状,n主要控制迟滞特性曲线的平滑度,当其他参数固定不变时,A越大迟滞特性曲线的形状越宽,且会让曲线逆时针偏转;n越大曲线越平滑;β的大小会改变迟滞特性曲线的宽和扁,也会改变曲线偏转;γ也会使曲线发生偏转;D0通常当做常数处理,通常取值为1。Among them, the second equivalent stiffness coefficient k>0 reflecting the hysteresis characteristics, the weight coefficient 0<α<1; D 0 , A, β, γ and n are all model parameters reflecting the hysteresis characteristics, D 0 , A, β and γ specifically control the shape of the hysteresis characteristic curve, and n mainly controls the smoothness of the hysteresis characteristic curve. When other parameters are fixed, the larger A is, the wider the shape of the hysteresis characteristic curve will be, and the curve will be deflected counterclockwise; the larger the n, the wider the shape of the hysteresis characteristic curve. The smoother the curve; the size of β will change the width and flatness of the hysteresis characteristic curve, and also change the deflection of the curve; γ will also deflect the curve ;

进一步:在所述步骤1中,还包括对所述Bouc-wen等效迟滞模型进行修正,得到修正Bouc-wen模型,所述修正Bouc-wen模型的具体公式为:Further: in the step 1, it also includes modifying the Bouc-wen equivalent hysteresis model to obtain a modified Bouc-wen model, and the specific formula of the modified Bouc-wen model is:

y1(t)=k1u(t)+k2h1(t)+dy 1 (t)=k 1 u(t)+k 2 h 1 (t)+d

Figure BDA0001927906030000041
Figure BDA0001927906030000041

Figure BDA0001927906030000042
Figure BDA0001927906030000042

Figure BDA0001927906030000043
Figure BDA0001927906030000043

其中,y1(t)为修正输出位移,u1(t)为修正输入电压,h1(t)为所述修正Bouc-wen模型的修正迟滞分量,d为修正迟滞分量差值,

Figure BDA0001927906030000044
为相位差值,
Figure BDA0001927906030000045
为所述修正迟滞分量对时间的一阶导数,
Figure BDA0001927906030000046
为所述修正输入电压对时间的一阶导数。Among them, y 1 (t) is the corrected output displacement, u 1 (t) is the corrected input voltage, h 1 (t) is the corrected hysteresis component of the corrected Bouc-wen model, d is the corrected hysteresis component difference,
Figure BDA0001927906030000044
is the phase difference value,
Figure BDA0001927906030000045
is the first derivative of the modified hysteresis component with respect to time,
Figure BDA0001927906030000046
is the first derivative of the corrected input voltage with respect to time.

上述进一步方案的有益效果是:由于Bouc-wen等效迟滞模型本身为理想模型,与实际运动过程中迟滞行为有偏差,因此引入在Bouc-wen等效迟滞模型中与初始位置的偏差d(即修正迟滞分量差值)以及与初始相位的偏差

Figure BDA0001927906030000047
(即相位差值),来对Bouc-wen等效迟滞模型进行修正,可以进一步提高修正Bouc-wen模型在描述迟滞特性上的精度。The beneficial effect of the above-mentioned further scheme is: because the Bouc-wen equivalent hysteresis model itself is an ideal model, which deviates from the hysteresis behavior in the actual motion process, the deviation d from the initial position in the Bouc-wen equivalent hysteresis model (that is, is introduced) is introduced. Correction hysteresis component difference) and deviation from initial phase
Figure BDA0001927906030000047
(that is, the phase difference value), to modify the Bouc-wen equivalent hysteresis model, which can further improve the accuracy of the modified Bouc-wen model in describing the hysteresis characteristics.

进一步:所述步骤2中具体采用差分进化方法对所述修正Bouc-wen模型进行参数辨识,得到所述目标迟滞模型。Further: in the step 2, the differential evolution method is specifically used to identify the parameters of the modified Bouc-wen model to obtain the target hysteresis model.

上述进一步方案的有益效果是:通过差分进化方法进行参数辨识,可以很大程度上提高修正Bouc-wen模型中相关参数的精度,具体表现在进一步提升修正Bouc-wen模型在描述压电陶瓷迟滞特性方面同实验数据更高的拟合度,从而便于将修正Bouc-wen模型应用在分数阶滑模控制器中来描述压电陶瓷的迟滞特性,以便对迟滞特性进行有效抑制。The beneficial effect of the above-mentioned further scheme is that the parameter identification by the differential evolution method can greatly improve the accuracy of the relevant parameters in the revised Bouc-wen model. In terms of the higher fitting degree with the experimental data, it is convenient to apply the modified Bouc-wen model in the fractional-order sliding mode controller to describe the hysteresis characteristics of piezoelectric ceramics, so as to effectively suppress the hysteresis characteristics.

进一步:所述步骤3具体包括以下步骤:Further: the step 3 specifically includes the following steps:

步骤31:根据所述目标迟滞模型中的所述修正输出位移与预设的参考位移之间的位移误差确定所述分数阶滑模控制器的滑模面;Step 31: Determine the sliding mode surface of the fractional-order sliding mode controller according to the displacement error between the corrected output displacement in the target hysteresis model and a preset reference displacement;

所述滑模面为:The sliding surface is:

Figure BDA0001927906030000051
Figure BDA0001927906030000051

e=y1-yde=y 1 -y d ;

其中,s为所述滑模面,e为所述位移误差,y1为所述修正输出位移的值,yd为所述参考位移,c0为所述分数阶滑模控制器的比例参数且c0>0,D为分数阶运算,λ为分数阶的阶数;Wherein, s is the sliding mode surface, e is the displacement error, y 1 is the value of the corrected output displacement, y d is the reference displacement, and c 0 is the proportional parameter of the fractional sliding mode controller And c 0 >0, D is a fractional order operation, and λ is the order of the fractional order;

步骤32:根据所述滑模面确定所述分数阶滑模控制器的控制律,并根据所述控制律、所述滑模面和所述目标迟滞模型,得到所述分数阶滑模控制器的控制信号;Step 32: Determine the control law of the fractional sliding mode controller according to the sliding mode surface, and obtain the fractional sliding mode controller according to the control law, the sliding mode surface and the target hysteresis model control signal;

所述控制律为:

Figure BDA0001927906030000052
The control law is:
Figure BDA0001927906030000052

其中,

Figure BDA0001927906030000053
为所述滑模面的一阶导数,k0为指数趋近项系数,ε为趋近速度,sgn(·)为开关函数;in,
Figure BDA0001927906030000053
is the first derivative of the sliding mode surface, k 0 is the exponential approach term coefficient, ε is the approach speed, and sgn( ) is the switching function;

所述控制信号的具体公式为:The specific formula of the control signal is:

Figure BDA0001927906030000054
Figure BDA0001927906030000054

k3=αk,k4=D0k(1-α)k 3 =αk,k 4 =D 0 k(1-α)

其中,uc(t)为所述控制信号,m为所述质量-弹簧-阻尼数学物理模型的等效质量,c为所述质量-弹簧-阻尼数学物理模型的等效阻尼系数,k3和k4均为根据k1和k2所得的第二简记系数;Wherein, u c (t) is the control signal, m is the equivalent mass of the mass-spring-damping mathematical-physical model, c is the equivalent damping coefficient of the mass-spring-damping mathematical-physical model, k 3 and k 4 are the second shorthand coefficients obtained according to k 1 and k 2 ;

步骤33:根据所述控制信号对所述压电陶瓷执行器进行控制。Step 33: Control the piezoelectric ceramic actuator according to the control signal.

上述进一步方案的有益效果是:根据差分进化方法提升修正Bouc-wen模型的参数精度,并根据提升精度后的修正Bouc-wen模型(即目标迟滞模型)得到修正输出位移,并将该修正输出位移与参考位移之间的位移误差作为分数阶滑模控制器的滑模面的主要变量,并依据滑模面确定对应的控制律,与传统的滑模控制器相比,可以更好地抑制滑模面的抖动问题,保证修正输出位移能与参考位移更好的实时跟踪,从而有效抑制迟滞特性,且计算过程少、难度低,可以在很大程度上保证基于压电陶瓷执行器定位控制的实时性,控制效果较好;The beneficial effect of the above-mentioned further scheme is: according to the differential evolution method, the parameter accuracy of the revised Bouc-wen model is improved, and the revised output displacement is obtained according to the revised Bouc-wen model after the improved accuracy (ie, the target hysteresis model), and the revised output displacement is obtained. The displacement error between the reference displacement and the reference displacement is used as the main variable of the sliding mode surface of the fractional sliding mode controller, and the corresponding control law is determined according to the sliding mode surface. Compared with the traditional sliding mode controller, it can better suppress the sliding mode. The jitter problem of the die surface ensures that the corrected output displacement can better track the reference displacement in real time, thereby effectively suppressing the hysteresis characteristics, and the calculation process is less and the difficulty is low, which can largely ensure the positioning control based on the piezoelectric ceramic actuator. Real-time, good control effect;

其中,分数阶的阶数λ一般在(0,1]之间取值,λ=1即表示为传统的滑模控制器。Among them, the order λ of the fractional order generally takes a value between (0, 1], and λ=1 means a traditional sliding mode controller.

依据本发明的另一方面,提供了一种压电陶瓷执行器迟滞特性的抑制系统,包括电源模块、采样模块、处理模块和控制模块;According to another aspect of the present invention, a system for suppressing hysteresis characteristics of a piezoelectric ceramic actuator is provided, including a power supply module, a sampling module, a processing module and a control module;

所述电源模块用于提供压电陶瓷执行器的输入电压;The power module is used to provide the input voltage of the piezoelectric ceramic actuator;

所述采样模块用于获取所述压电陶瓷执行器在所述输入电压下产生的输出位移;The sampling module is used to obtain the output displacement of the piezoelectric ceramic actuator under the input voltage;

所述处理模块用于根据所述输出位移和所述输入电压建立迟滞模型,还用于对所述迟滞模型进行参数辨识,得到目标迟滞模型,还用于根据所述目标迟滞模型设计分数阶滑模控制器;The processing module is used for establishing a hysteresis model according to the output displacement and the input voltage, and is also used for parameter identification of the hysteresis model to obtain a target hysteresis model, and is also used for designing a fractional slip according to the target hysteresis model. model controller;

所述控制模块用于采用所述分数阶滑模控制器对所述压电陶瓷执行器进行控制。The control module is configured to use the fractional-order sliding mode controller to control the piezoelectric ceramic actuator.

本发明的有益效果是:通过电源模块提供压电陶瓷执行器的输入电压,采集模块获取在该输入电压下产生的输出位移,由于压电陶瓷执行器的迟滞特性直接体现为在该输入电压下的输出位移,因此处理器通过输出位移和输入电压建立迟滞模型,由输出位移与输入电压的关系来描述迟滞特性,能更好地描述迟滞特性与压电陶瓷执行器的关系,便于后续根据两者的关系得到抑制迟滞特性的控制信号,以便控制模块采用分数阶滑模控制器根据控制信号控制压电陶瓷执行器;由于迟滞模型存在模型误差,且存在多个参数,通过处理模块对迟滞模型进行参数辨识,以便得到精度更高的目标迟滞模型,使得该目标迟滞模型与迟滞特性的拟合度更高,在描述迟滞特性上更准确,从而便于处理模块根据该高精度的目标迟滞模型设计更为精确的分数阶滑模控制器;分数阶滑模控制器相比传统控制器,可以较好地抑制滑模面的抖动问题,且计算过程少、计算难度低,可以在很大程度上保证对压电陶瓷执行器控制的实时性,控制效果更好,能更有效地抑制压电陶瓷执行器在工作过程中的迟滞特性,避免迟滞特性影响制造设备的精密定位、跟踪和运动控制,提高精密制造业的工作效率和产品质量。The beneficial effects of the present invention are: the input voltage of the piezoelectric ceramic actuator is provided by the power module, and the output displacement generated under the input voltage is acquired by the acquisition module, because the hysteresis characteristic of the piezoelectric ceramic actuator is directly reflected under the input voltage. Therefore, the processor establishes a hysteresis model through the output displacement and input voltage, and describes the hysteresis characteristics by the relationship between the output displacement and the input voltage, which can better describe the relationship between the hysteresis characteristics and the piezoelectric ceramic actuator. The relationship between the two can obtain the control signal that suppresses the hysteresis characteristic, so that the control module uses the fractional-order sliding mode controller to control the piezoelectric ceramic actuator according to the control signal; because the hysteresis model has model errors and there are multiple parameters, the hysteresis model is processed by the processing module. Parameter identification is performed to obtain a target hysteresis model with higher accuracy, so that the target hysteresis model has a higher degree of fit with the hysteresis characteristics, and is more accurate in describing the hysteresis characteristics, so that the processing module can be designed according to the high-precision target hysteresis model. A more accurate fractional-order sliding mode controller; compared with the traditional controller, the fractional-order sliding mode controller can better suppress the jitter problem of the sliding mode surface, and the calculation process is less and the calculation difficulty is low. To ensure the real-time control of piezoelectric ceramic actuators, the control effect is better, and the hysteresis characteristics of piezoelectric ceramic actuators in the working process can be suppressed more effectively, so as to avoid the hysteresis characteristics affecting the precise positioning, tracking and motion control of manufacturing equipment. Improve work efficiency and product quality in precision manufacturing.

在上述技术方案的基础上,本发明还可以做如下改进:On the basis of above-mentioned technical scheme, the present invention can also do following improvement:

进一步:所述迟滞模型具体为Bouc-wen等效迟滞模型,所述处理模块还具体用于对所述Bouc-wen等效迟滞模型进行修正,得到修正Bouc-wen模型。Further: the hysteresis model is specifically a Bouc-wen equivalent hysteresis model, and the processing module is also specifically configured to correct the Bouc-wen equivalent hysteresis model to obtain a revised Bouc-wen model.

上述进一步方案的有益效果是:由于Bouc-wen等效迟滞模型可以描述大多数的迟滞系统,与实际运动过程中的迟滞特性具有较好的拟合度,因此通过质量-弹簧-阻尼数学物理模型来获得Bouc-wen等效迟滞模型,能更好地描述迟滞特性,且上述Bouc-wen等效迟滞模型与传统的Bouc-wen模型相比,进行了简化,使得模型更为简单,以便后续对模型中的参数进行辨识,得到精度更高的目标迟滞模型;由于Bouc-wen等效迟滞模型本身为理想模型,与实际运动过程中迟滞行为有偏差,因此引入在Bouc-wen等效迟滞模型中与初始位置的偏差d(即修正迟滞分量差值)以及与初始相位的偏差

Figure BDA0001927906030000081
(即相位差值),来对Bouc-wen等效迟滞模型进行修正,可以进一步提高修正Bouc-wen模型在描述迟滞特性上的精度。The beneficial effect of the above-mentioned further scheme is: because the Bouc-wen equivalent hysteresis model can describe most hysteresis systems, and has a good degree of fit with the hysteresis characteristics in the actual motion process, the mass-spring-damping mathematical and physical model is adopted. To obtain the Bouc-wen equivalent hysteresis model, which can better describe the hysteresis characteristics, and the above Bouc-wen equivalent hysteresis model is simplified compared with the traditional Bouc-wen model, making the model simpler, so that the subsequent The parameters in the model are identified to obtain the target hysteresis model with higher accuracy; because the Bouc-wen equivalent hysteresis model itself is an ideal model, which deviates from the hysteresis behavior in the actual motion process, it is introduced into the Bouc-wen equivalent hysteresis model. Deviation d from the initial position (that is, the difference of the corrected hysteresis component) and deviation from the initial phase
Figure BDA0001927906030000081
(that is, the phase difference value), to modify the Bouc-wen equivalent hysteresis model, which can further improve the accuracy of the modified Bouc-wen model in describing the hysteresis characteristics.

依据本发明的另一方面,提供了另一种压电陶瓷执行器迟滞特性的抑制系统,包括处理器、存储器和存储在所述存储器中且可运行在所述处理器上的计算机程序,所述计算机程序运行时实现本发明的一种压电陶瓷执行器迟滞特性的抑制方法中的步骤。According to another aspect of the present invention, another system for suppressing the hysteresis characteristic of a piezoelectric ceramic actuator is provided, comprising a processor, a memory, and a computer program stored in the memory and executable on the processor, wherein When the computer program runs, the steps in the method for suppressing the hysteresis characteristic of the piezoelectric ceramic actuator of the present invention are realized.

本发明的有益效果是:通过存储在存储器上的计算机程序,并运行在处理器上,实现本发明的压电陶瓷执行器迟滞特性的抑制系统,能够更好地描述迟滞特性与压电陶瓷执行器的关系,便于后续得到抑制迟滞特性的控制信号,以便分数阶滑模控制器根据控制信号控制压电陶瓷执行器,分数阶滑模控制器相比传统控制器,可以较好地抑制滑模面的抖动问题,且计算过程少、计算难度低,可以在很大程度上保证对压电陶瓷执行器控制的实时性,控制效果更好,能更有效地抑制压电陶瓷执行器在工作过程中的迟滞特性,避免迟滞特性影响制造设备的精密定位、跟踪和运动控制,提高精密制造业的工作效率和产品质量。The beneficial effect of the present invention is that the suppression system of the hysteresis characteristic of the piezoelectric ceramic actuator of the present invention is realized by the computer program stored in the memory and running on the processor, and the hysteresis characteristic and the piezoelectric ceramic actuator can be better described. It is convenient to obtain the control signal that suppresses the hysteresis characteristic later, so that the fractional-order sliding mode controller can control the piezoelectric ceramic actuator according to the control signal. Compared with the traditional controller, the fractional-order sliding mode controller can better suppress the sliding mode. In addition to the problem of jitter on the surface, and the calculation process is small and the calculation difficulty is low, the real-time control of the piezoelectric ceramic actuator can be guaranteed to a large extent, the control effect is better, and the piezoelectric ceramic actuator can be more effectively suppressed during the working process. The hysteresis characteristics in the manufacturing equipment can avoid the hysteresis characteristics affecting the precise positioning, tracking and motion control of manufacturing equipment, and improve the work efficiency and product quality of precision manufacturing.

依据本发明的另一方面,提供了一种计算机存储介质,所述计算机存储介质包括:至少一个指令,在所述指令被执行时实现本发明的一种压电陶瓷执行器迟滞特性的抑制方法中的步骤。According to another aspect of the present invention, a computer storage medium is provided, the computer storage medium comprising: at least one instruction, when the instruction is executed, a method for suppressing the hysteresis characteristic of a piezoelectric ceramic actuator of the present invention is implemented steps in .

本发明的有益效果是:通过执行包含至少一个指令的计算机存储介质,实现本发明的压电陶瓷执行器迟滞特性的抑制,能够更好地描述迟滞特性与压电陶瓷执行器的关系,便于后续得到抑制迟滞特性的控制信号,以便分数阶滑模控制器根据控制信号控制压电陶瓷执行器,分数阶滑模控制器相比传统控制器,可以较好地抑制滑模面的抖动问题,且计算过程少、计算难度低,可以在很大程度上保证对压电陶瓷执行器控制的实时性,控制效果更好,能更有效地抑制压电陶瓷执行器在工作过程中的迟滞特性,避免迟滞特性影响制造设备的精密定位、跟踪和运动控制,提高精密制造业的工作效率和产品质量。The beneficial effects of the present invention are: by executing the computer storage medium containing at least one instruction, the hysteresis characteristic of the piezoelectric ceramic actuator of the present invention can be suppressed, and the relationship between the hysteresis characteristic and the piezoelectric ceramic actuator can be better described, which is convenient for subsequent The control signal that suppresses the hysteresis characteristic is obtained, so that the fractional-order sliding mode controller can control the piezoelectric ceramic actuator according to the control signal. Compared with the traditional controller, the fractional-order sliding mode controller can better suppress the jitter of the sliding mode surface, and The calculation process is less and the calculation difficulty is low, which can ensure the real-time control of the piezoelectric ceramic actuator to a large extent, the control effect is better, and the hysteresis characteristics of the piezoelectric ceramic actuator in the working process can be more effectively suppressed, avoiding Hysteresis affects the precise positioning, tracking and motion control of manufacturing equipment, improving work efficiency and product quality in precision manufacturing.

附图说明Description of drawings

图1为本发明一种压电陶瓷执行器迟滞特性的抑制方法的流程示意图一;FIG. 1 is a schematic flow chart 1 of a method for suppressing the hysteresis characteristic of a piezoelectric ceramic actuator according to the present invention;

图2为本发明一种压电陶瓷执行器迟滞特性的抑制方法的流程示意图二;FIG. 2 is a schematic flow chart 2 of a method for suppressing the hysteresis characteristic of a piezoelectric ceramic actuator according to the present invention;

图3为本发明实施例一中质量-弹簧-阻尼数学物理模型的结构示意图;3 is a schematic structural diagram of a mass-spring-damping mathematical and physical model in Embodiment 1 of the present invention;

图4-1为本发明实施例一中在2Hz输入电压信号下,未修正的Bouc-Wen等效迟滞模型描述输入电压与输出位移的迟滞图;Figure 4-1 is a hysteresis diagram describing the input voltage and output displacement by the uncorrected Bouc-Wen equivalent hysteresis model under the 2Hz input voltage signal in the first embodiment of the present invention;

图4-2为本发明实施例一中在8Hz输入电压信号下,未修正的Bouc-Wen等效迟滞模型描述输入电压与输出位移的迟滞图;Fig. 4-2 is a hysteresis diagram describing the input voltage and the output displacement by the uncorrected Bouc-Wen equivalent hysteresis model under the 8Hz input voltage signal in the first embodiment of the present invention;

图5-1为本发明实施例一中在2Hz输入电压信号下,修正Bouc-Wen模型描述输入电压与输出位移的迟滞图;Fig. 5-1 is a hysteresis diagram describing the input voltage and the output displacement by the modified Bouc-Wen model under the 2Hz input voltage signal in the first embodiment of the present invention;

图5-2为本发明实施例一中在8Hz输入电压信号下,修正Bouc-Wen模型描述输入电压与输出位移的迟滞图;Fig. 5-2 is a hysteresis diagram of the modified Bouc-Wen model describing the input voltage and the output displacement under the 8Hz input voltage signal in the first embodiment of the present invention;

图6为本发明实施例一中采用差分进化方法进行参数辨识的流程示意图;6 is a schematic flowchart of parameter identification using a differential evolution method in Embodiment 1 of the present invention;

图7为本发明实施例一中分数阶滑模控制器的结构示意图;7 is a schematic structural diagram of a fractional-order sliding mode controller in Embodiment 1 of the present invention;

图8-1为本发明实施例一中采用传统滑模控制器进行控制的输出位移的跟踪波形图;8-1 is a tracking waveform diagram of output displacement controlled by a traditional sliding mode controller in Embodiment 1 of the present invention;

图8-2为本发明实施例一中采用分数阶滑模控制器进行控制的输出位移的跟踪波形图;8-2 is a tracking waveform diagram of the output displacement controlled by the fractional-order sliding mode controller in the first embodiment of the present invention;

图9-1为本发明实施例一中采用传统滑模控制器进行控制的位移误差的跟踪波形图;9-1 is a tracking waveform diagram of displacement error controlled by a traditional sliding mode controller in Embodiment 1 of the present invention;

图9-2为本发明实施例一中采用分数阶滑模控制器进行控制的位移误差的跟踪波形图;9-2 is a tracking waveform diagram of displacement error controlled by a fractional-order sliding mode controller in Embodiment 1 of the present invention;

图10为本发明一种压电陶瓷执行器迟滞特性的抑制系统的结构示意图。10 is a schematic structural diagram of a system for suppressing hysteresis characteristics of a piezoelectric ceramic actuator according to the present invention.

具体实施方式Detailed ways

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。The principles and features of the present invention will be described below with reference to the accompanying drawings. The examples are only used to explain the present invention, but not to limit the scope of the present invention.

下面结合附图,对本发明进行说明。The present invention will be described below with reference to the accompanying drawings.

实施例一、如图1所示,一种压电陶瓷执行器迟滞特性的抑制方法,包括以下步骤:Embodiment 1. As shown in FIG. 1, a method for suppressing the hysteresis characteristic of a piezoelectric ceramic actuator includes the following steps:

S1:获取压电陶瓷执行器在输入电压下产生的输出位移,并根据所述输出位移和所述输入电压建立迟滞模型;S1: obtain the output displacement generated by the piezoelectric ceramic actuator under the input voltage, and establish a hysteresis model according to the output displacement and the input voltage;

S2:对所述迟滞模型进行参数辨识,得到目标迟滞模型;S2: Perform parameter identification on the hysteresis model to obtain a target hysteresis model;

S3:根据所述目标迟滞模型设计分数阶滑模控制器,并采用所述分数阶滑模控制器对所述压电陶瓷执行器进行控制。S3: Design a fractional-order sliding mode controller according to the target hysteresis model, and use the fractional-order sliding mode controller to control the piezoelectric ceramic actuator.

由于压电陶瓷执行器的迟滞特性直接体现为在输入电压下的输出位移,通过输出位移和输入电压建立迟滞模型,由输出位移与输入电压的关系来描述迟滞特性,能更好地描述迟滞特性与压电陶瓷执行器的关系,便于后续根据两者的关系得到抑制迟滞特性的控制信号,以便分数阶滑模控制器根据控制信号控制压电陶瓷执行器;由于迟滞模型存在模型误差,且存在多个参数,通过对迟滞模型进行参数辨识,以便得到精度更高的目标迟滞模型,使得该目标迟滞模型与迟滞特性的拟合度更高,在描述迟滞特性上更准确,从而根据该高精度的目标迟滞模型设计更为精确的分数阶滑模控制器;分数阶滑模控制器相比传统控制器,可以较好地抑制滑模面的抖动问题,且计算过程少、计算难度低,可以在很大程度上保证对压电陶瓷执行器控制的实时性,控制效果更好,能更有效地抑制压电陶瓷执行器在工作过程中的迟滞特性,避免迟滞特性影响制造设备的精密定位、跟踪和运动控制,提高精密制造业的工作效率和产品质量。Since the hysteresis characteristic of the piezoelectric ceramic actuator is directly reflected in the output displacement under the input voltage, the hysteresis model is established by the output displacement and the input voltage, and the hysteresis characteristic is described by the relationship between the output displacement and the input voltage, which can better describe the hysteresis characteristic. The relationship with the piezoelectric ceramic actuator is convenient to obtain the control signal that suppresses the hysteresis characteristic according to the relationship between the two, so that the fractional-order sliding mode controller can control the piezoelectric ceramic actuator according to the control signal; due to the model error of the hysteresis model, and the existence of Multiple parameters, through parameter identification of the hysteresis model, in order to obtain a target hysteresis model with higher accuracy, so that the target hysteresis model and the hysteresis characteristics have a higher degree of fit, and are more accurate in describing the hysteresis characteristics. Compared with the traditional controller, the fractional-order sliding mode controller can better suppress the jitter problem of the sliding mode surface, and the calculation process is less and the calculation difficulty is low, which can To a large extent, the real-time control of the piezoelectric ceramic actuator is guaranteed, and the control effect is better. It can more effectively suppress the hysteresis characteristics of the piezoelectric ceramic actuator during the working process, and avoid the hysteresis characteristics affecting the precise positioning and positioning of the manufacturing equipment. Tracking and motion control to improve work efficiency and product quality in precision manufacturing.

优选地,如图2和图3所示,S1具体采用基于质量-弹簧-阻尼数学物理模型的建模方法建立所述迟滞模型。Preferably, as shown in FIG. 2 and FIG. 3 , S1 specifically adopts a modeling method based on a mass-spring-damping mathematical-physical model to establish the hysteresis model.

优选地,如图2所示,S1中的所述迟滞模型具体为Bouc-wen等效迟滞模型,所述Bouc-wen等效迟滞模型的具体公式为:Preferably, as shown in FIG. 2 , the hysteresis model in S1 is a Bouc-wen equivalent hysteresis model, and the specific formula of the Bouc-wen equivalent hysteresis model is:

y(t)=k1u(t)+k2h(t)y(t)=k 1 u(t)+k 2 h(t)

Figure BDA0001927906030000111
Figure BDA0001927906030000111

Figure BDA0001927906030000112
Figure BDA0001927906030000112

其中,y(t)为所述输出位移,u(t)为所述输入电压,h(t)为所述Bouc-wen等效迟滞模型的迟滞分量,

Figure BDA0001927906030000113
为所述迟滞分量对时间的一阶导数,D0、A、β、γ和n均为反映迟滞特性的模型参数,
Figure BDA0001927906030000114
为所述输入电压对时间的一阶导数,α为权重系数,ks为所述压电陶瓷执行器的第一等效刚度系数,k为反映所述迟滞特性的第二等效刚度系数,k1和k2均为根据α、D0、k和ks所得的第一简记系数。where y(t) is the output displacement, u(t) is the input voltage, h(t) is the hysteresis component of the Bouc-wen equivalent hysteresis model,
Figure BDA0001927906030000113
is the first derivative of the hysteresis component with respect to time, D 0 , A, β, γ and n are all model parameters reflecting the hysteresis characteristics,
Figure BDA0001927906030000114
is the first derivative of the input voltage with respect to time, α is the weight coefficient, k s is the first equivalent stiffness coefficient of the piezoelectric ceramic actuator, k is the second equivalent stiffness coefficient reflecting the hysteresis characteristic, Both k 1 and k 2 are first shorthand coefficients obtained from α, D 0 , k and k s .

k>0,0<α<1,D0、A、β、γ和n均为反映迟滞特性的模型参数,D0、A、β和γ具体控制迟滞特性曲线的形状,n主要控制迟滞特性曲线的平滑度,当其他参数固定不变时,A越大迟滞特性曲线的形状越宽,且会让曲线逆时针偏转;n越大曲线越平滑;β的大小会改变迟滞特性曲线的宽和扁,也会改变曲线偏转;γ也会使曲线发生偏转;D0通常当做常数处理,通常取值为1。k>0, 0<α<1, D 0 , A, β, γ and n are all model parameters reflecting the hysteresis characteristics, D 0 , A, β and γ specifically control the shape of the hysteresis characteristic curve, and n mainly controls the hysteresis characteristics The smoothness of the curve, when other parameters are fixed, the larger A is, the wider the shape of the hysteresis characteristic curve will be, and the curve will be deflected counterclockwise; the larger the n, the smoother the curve; the size of β will change the width and width of the hysteresis characteristic curve. Flat, it will also change the deflection of the curve; γ will also deflect the curve; D 0 is usually treated as a constant, usually with a value of 1.

本实施例采用的质量-弹簧-阻尼数学物理模型的结构示意图如图3所示,在输入电压u(t)的作用下,压电陶瓷执行器伸长,并产生力F作用在m上,引起输出位移y(t),其动力学方程如下:The schematic structural diagram of the mass-spring-damping mathematical and physical model used in this embodiment is shown in Figure 3. Under the action of the input voltage u(t), the piezoelectric ceramic actuator stretches, and a force F acts on m, The output displacement y(t) is caused, and its dynamic equation is as follows:

Figure BDA0001927906030000121
Figure BDA0001927906030000121

其中,m是质量-弹簧-阻尼数学物理模型的等效质量,c为所述质量-弹簧-阻尼数学物理模型的等效阻尼系数。Wherein, m is the equivalent mass of the mass-spring-damping mathematical-physical model, and c is the equivalent damping coefficient of the mass-spring-damping mathematical-physical model.

具有迟滞行为的质量-弹簧-阻尼数学物理模型的输入为压电陶瓷执行器的输入电压,则迟滞输出f(t)等效为输入电压u(t)的函数,得到描述迟滞特性的Bouc-Wen模型,具体如下:The input of the mass-spring-damping mathematical and physical model with hysteretic behavior is the input voltage of the piezoelectric ceramic actuator, then the hysteretic output f(t) is equivalent to a function of the input voltage u(t), and the Bouc- Wen model, as follows:

Figure BDA0001927906030000122
Figure BDA0001927906030000122

为描述方便,后续公式中的函数式采用简写方式,例如y(t)用y表示。For the convenience of description, the functional expressions in the following formulas are abbreviated, for example, y(t) is represented by y.

由于压电陶瓷材料本身固有的迟滞特性,使输出力F与输入电压u(t)之间呈现迟滞非线性关系,因此根据质量-弹簧-阻尼数学物理模型的动力学方程和Bouc-Wen模型,得到:Due to the inherent hysteresis characteristics of piezoelectric ceramic materials, there is a hysteretic nonlinear relationship between the output force F and the input voltage u(t). get:

Figure BDA0001927906030000123
Figure BDA0001927906030000123

为了防止振动和发热,一般以较低的输入电压频率来驱动压电陶瓷执行器,而在低频电压加载下,动力学方程中的

Figure BDA0001927906030000124
Figure BDA0001927906030000125
作用可忽略不计;且为了后续计算方便,对上述公式进行简化,得到Bouc-Wen等效迟滞模型,如下:In order to prevent vibration and heating, piezoelectric ceramic actuators are generally driven at a lower input voltage frequency, and under low-frequency voltage loading, the dynamic equation
Figure BDA0001927906030000124
and
Figure BDA0001927906030000125
The effect can be ignored; and for the convenience of subsequent calculations, the above formula is simplified to obtain the Bouc-Wen equivalent hysteresis model, as follows:

y(t)=k1u(t)+k2h(t)y(t)=k 1 u(t)+k 2 h(t)

Figure BDA0001927906030000126
Figure BDA0001927906030000126

Figure BDA0001927906030000127
Figure BDA0001927906030000127

采用基于质量-弹簧-阻尼数学物理模型的建模方法建立迟滞模型,可以较好地描述压电陶瓷的迟滞特性与压电陶瓷执行器的关系,且模型形式简单,方法简单;由于Bouc-wen等效迟滞模型可以描述大多数的迟滞系统,与实际运动过程中的迟滞特性具有较好的拟合度,因此通过质量-弹簧-阻尼数学物理模型来获得Bouc-wen等效迟滞模型,能更好地描述迟滞特性,且上述Bouc-wen等效迟滞模型与传统的Bouc-wen模型相比,进行了简化,使得模型更为简单,以便后续对模型中的参数进行辨识,得到精度更高的目标迟滞模型。The hysteresis model is established by the modeling method based on the mass-spring-damping mathematical and physical model, which can better describe the relationship between the hysteresis characteristics of piezoelectric ceramics and piezoelectric ceramic actuators, and the model form is simple and the method is simple; due to Bouc-wen The equivalent hysteresis model can describe most hysteresis systems and has a good fit with the hysteresis characteristics in the actual motion process. The hysteresis characteristics are well described, and the above-mentioned Bouc-wen equivalent hysteresis model is simplified compared with the traditional Bouc-wen model, which makes the model simpler, so that the parameters in the model can be identified later, and a higher precision model can be obtained. Target hysteresis model.

优选地,如图2所示,在S1中,还包括对所述Bouc-wen等效迟滞模型进行修正,得到修正Bouc-wen模型,所述修正Bouc-wen模型的具体公式为:Preferably, as shown in FIG. 2, in S1, it also includes modifying the Bouc-wen equivalent hysteresis model to obtain a modified Bouc-wen model, and the specific formula of the modified Bouc-wen model is:

y1(t)=k1u(t)+k2h1(t)+dy 1 (t)=k 1 u(t)+k 2 h 1 (t)+d

Figure BDA0001927906030000131
Figure BDA0001927906030000131

Figure BDA0001927906030000132
Figure BDA0001927906030000132

Figure BDA0001927906030000133
Figure BDA0001927906030000133

其中,y1(t)为修正输出位移,u1(t)为修正输入电压,h1(t)为所述修正Bouc-wen模型的修正迟滞分量,d为修正迟滞分量差值,

Figure BDA0001927906030000134
为相位差值,
Figure BDA0001927906030000135
为所述修正迟滞分量对时间的一阶导数,
Figure BDA0001927906030000136
为所述修正输入电压对时间的一阶导数。Among them, y 1 (t) is the corrected output displacement, u 1 (t) is the corrected input voltage, h 1 (t) is the corrected hysteresis component of the corrected Bouc-wen model, d is the corrected hysteresis component difference,
Figure BDA0001927906030000134
is the phase difference value,
Figure BDA0001927906030000135
is the first derivative of the modified hysteresis component with respect to time,
Figure BDA0001927906030000136
is the first derivative of the corrected input voltage with respect to time.

由于Bouc-wen等效迟滞模型本身为理想模型,与实际运动过程中迟滞行为有偏差,因此引入在Bouc-wen等效迟滞模型中与初始位置的偏差d(即修正迟滞分量差值)以及与初始相位的偏差

Figure BDA0001927906030000137
(即相位差值),来对Bouc-wen等效迟滞模型进行修正,可以进一步提高修正的Bouc-wen模型在描述迟滞特性上的精度;本实施例可通过多次试验来调整修正迟滞分量差值d和相位差值
Figure BDA0001927906030000138
以实现对Bouc-wen等效迟滞模型的修正并得到修正输出位移y1(t)。Since the Bouc-wen equivalent hysteresis model itself is an ideal model and has a deviation from the hysteresis behavior in the actual motion process, the deviation d from the initial position in the Bouc-wen equivalent hysteresis model (that is, the difference between the corrected hysteresis components) and the Deviation of initial phase
Figure BDA0001927906030000137
(that is, the phase difference value), to modify the Bouc-wen equivalent hysteresis model, which can further improve the accuracy of the modified Bouc-wen model in describing the hysteresis characteristics; this embodiment can adjust and correct the hysteresis component difference through multiple tests value d and phase difference value
Figure BDA0001927906030000138
In order to realize the correction of the Bouc-wen equivalent hysteresis model and obtain the corrected output displacement y 1 (t).

本实施例采用上一步的未修正的Bouc-wen等效迟滞模型对输出位移进行验证,以此来验证对迟滞特性的描述,具体如图4-1和图4-2所示,图4-1和图4-2分别为在2Hz输入电压信号和8Hz输入电压信号下,采用未修正的Bouc-wen等效迟滞模型描述输入电压和输出位移的迟滞图;This embodiment uses the uncorrected Bouc-wen equivalent hysteresis model in the previous step to verify the output displacement, so as to verify the description of the hysteresis characteristics, as shown in Figure 4-1 and Figure 4-2, and Figure 4- 1 and Figure 4-2 are the hysteresis diagrams of the input voltage and output displacement using the uncorrected Bouc-wen equivalent hysteresis model under the 2Hz input voltage signal and the 8Hz input voltage signal, respectively;

本实施例再根据修正Bouc-wen模型,在同样的条件下对输出位移进行验证,具体如图5-1和图5-2所示,图5-1和图5-2分别为在2Hz输入电压频率和8Hz输入电压频率下,采用修正Bouc-wen模型描述输入电压和输出位移的迟滞图;In this embodiment, the output displacement is verified under the same conditions according to the modified Bouc-wen model, as shown in Figure 5-1 and Figure 5-2. Figure 5-1 and Figure 5-2 respectively show the input at 2 Hz. The hysteresis diagram of the input voltage and output displacement is described by the modified Bouc-wen model at the voltage frequency and 8Hz input voltage frequency;

综合图4-1和图4-2,以及图5-1和图5-2,可以明显看出,经过修正的Bouc-wen等效迟滞模型(即修正Bouc-wen模型)在描述压电陶瓷执行器的输入电压与压电陶瓷执行器的输出位移迟滞关系上更加精确。Combining Figures 4-1 and 4-2, as well as Figures 5-1 and 5-2, it can be clearly seen that the modified Bouc-wen equivalent hysteresis model (namely the modified Bouc-wen model) is used to describe piezoelectric ceramics. The hysteresis relationship between the input voltage of the actuator and the output displacement of the piezoelectric ceramic actuator is more accurate.

优选地,如图1和图2所示,S2中具体采用差分进化方法对所述修正Bouc-wen模型进行参数辨识,得到所述目标迟滞模型。Preferably, as shown in FIG. 1 and FIG. 2 , the differential evolution method is specifically used in S2 to perform parameter identification on the modified Bouc-wen model to obtain the target hysteresis model.

提高参数精度的问题通常以实验数据为基础,利用参数辨识方法来提高模型参数精度。差分进化方法的运行参数主要有:变异因子F,交叉因子CR,群体规模M和最大迭代次数G。变异因子F是控制种群多样性和收敛性的重要参数,一般在[0,2]之间取值;变异因子F值较小时,群体的差异度减小,进化过程不易跳出局部极值从而导致种群过早收敛;变异因子F较大时,虽然容易跳出局部极值,但是收敛速度会减慢。交叉因子CR可控制个体参数的各维度对交叉的参与程度,以及全局与局部搜索能力的平衡,一般在[0,1]之间。交叉因子CR越小,种群多样性较小,易过早收敛。CR越大,收敛速度越大,但是过大可能导致收敛变慢。CR越大,F越小,种群收敛逐渐加速,但随着交叉因子CR的增大,收敛对变异因子F的敏感度逐渐提高。种群规模M越大,种群多样性越强,获得最优解的概率越大,但是计算时间更长。最大迭代次数G一般作为进化过程的终止条件。迭代次数越大,最优解更精确,但同时计算的时间会更长。The problem of improving the parameter accuracy is usually based on experimental data, and the parameter identification method is used to improve the model parameter accuracy. The operating parameters of the differential evolution method mainly include: mutation factor F, crossover factor CR, population size M and maximum number of iterations G. The variation factor F is an important parameter to control the diversity and convergence of the population, and generally takes a value between [0, 2]; when the value of the variation factor F is small, the degree of difference of the population decreases, and the evolution process is not easy to jump out of the local extreme value, which leads to The population converges prematurely; when the variation factor F is large, although it is easy to jump out of the local extreme value, the convergence speed will slow down. The crossover factor CR can control the degree of participation of each dimension of individual parameters in crossover and the balance of global and local search capabilities, generally between [0, 1]. The smaller the crossover factor CR is, the smaller the population diversity is, and it is easy to converge prematurely. The larger the CR, the faster the convergence speed, but too large may lead to slower convergence. The larger the CR, the smaller the F, and the population convergence is gradually accelerated, but with the increase of the crossover factor CR, the sensitivity of the convergence to the variation factor F gradually increases. The larger the population size M, the stronger the population diversity, and the greater the probability of obtaining the optimal solution, but the calculation time is longer. The maximum number of iterations G is generally used as the termination condition of the evolution process. The larger the number of iterations, the more accurate the optimal solution, but the simultaneous computation time will be longer.

因此,以上4个参数对差分进化方法的求解结果和求解效率都有很大的影响,需要对以上4个参数进行合理的设定才能获得较好的效果,本实施例具体的差分进化方法的流程如下:Therefore, the above four parameters have a great influence on the solution result and solution efficiency of the differential evolution method, and it is necessary to reasonably set the above four parameters to obtain better results. The process is as follows:

(1)初始化种群,确定差分进化算法控制参数,确定适应度函数;差分进化算法控制参数包括:变异因子F,交叉因子CR,群体规模M和最大迭代次数G;(1) Initialize the population, determine the control parameters of the differential evolution algorithm, and determine the fitness function; the control parameters of the differential evolution algorithm include: the mutation factor F, the crossover factor CR, the population size M and the maximum number of iterations G;

(2)对初始种群进行评价,即计算初始种群中每个个体的适应度值;(2) Evaluate the initial population, that is, calculate the fitness value of each individual in the initial population;

(3)判断是否达到终止条件或进化代数达到最大;若是,则终止进化,将得到最佳个体作为最优结果输出;若否,继续;(3) Judging whether the termination condition is reached or the evolutionary algebra reaches the maximum; if so, terminate the evolution, and the best individual will be obtained as the optimal result output; if not, continue;

(4)进行变异和交叉操作,得到中间种群;(4) Perform mutation and crossover operations to obtain intermediate populations;

(5)在原种群和中间种群中选择较优个体,作为新一代种群;(5) Select better individuals from the original population and the intermediate population as a new generation population;

(6)进化迭代次数G=G+1,转步骤(2);(6) The number of evolution iterations G=G+1, go to step (2);

具体的流程示意图如图6所示。The specific flow chart is shown in FIG. 6 .

通过差分进化方法进行参数辨识,可以很大程度上提高修正Bouc-wen模型中相关参数的精度,具体表现在进一步提升修正Bouc-wen模型在描述压电陶瓷迟滞特性方面同实验数据更高的拟合度,从而便于将修正Bouc-wen模型应用在分数阶滑模控制器中来描述压电陶瓷的迟滞特性,以便对迟滞特性进行有效抑制。Parameter identification by the differential evolution method can greatly improve the accuracy of the relevant parameters in the revised Bouc-wen model, which is embodied in the further improvement of the improved Bouc-wen model in describing the hysteresis characteristics of piezoelectric ceramics. Therefore, it is convenient to apply the modified Bouc-wen model in the fractional-order sliding mode controller to describe the hysteresis characteristics of piezoelectric ceramics, so as to effectively suppress the hysteresis characteristics.

优选地,如图1和图2所示,S3具体包括以下步骤:Preferably, as shown in Figure 1 and Figure 2, S3 specifically includes the following steps:

步骤31:根据所述目标迟滞模型中的所述修正输出位移与预设的参考位移之间的位移误差确定所述分数阶滑模控制器的滑模面;Step 31: Determine the sliding mode surface of the fractional-order sliding mode controller according to the displacement error between the corrected output displacement in the target hysteresis model and a preset reference displacement;

所述滑模面为:The sliding surface is:

Figure BDA0001927906030000151
Figure BDA0001927906030000151

e=y1-yde=y 1 -y d ;

其中,s为所述滑模面,e为所述位移误差,y1为所述修正输出位移的值,yd为所述参考位移,c0为所述分数阶滑模控制器的比例参数且c0>0,D为分数阶运算,λ为分数阶的阶数;Wherein, s is the sliding mode surface, e is the displacement error, y 1 is the value of the corrected output displacement, y d is the reference displacement, and c 0 is the proportional parameter of the fractional sliding mode controller And c 0 >0, D is a fractional order operation, and λ is the order of the fractional order;

步骤32:根据所述滑模面确定所述分数阶滑模控制器的控制律,并根据所述控制律、所述滑模面和所述目标迟滞模型,得到所述分数阶滑模控制器的控制信号;Step 32: Determine the control law of the fractional sliding mode controller according to the sliding mode surface, and obtain the fractional sliding mode controller according to the control law, the sliding mode surface and the target hysteresis model control signal;

所述控制律为:

Figure BDA0001927906030000161
The control law is:
Figure BDA0001927906030000161

其中,

Figure BDA0001927906030000162
为所述滑模面的一阶导数,k0为指数趋近项系数,ε为趋近速度,sgn(·)为开关函数;in,
Figure BDA0001927906030000162
is the first derivative of the sliding mode surface, k 0 is the exponential approach term coefficient, ε is the approach speed, and sgn( ) is the switching function;

所述控制信号的具体公式为:The specific formula of the control signal is:

Figure BDA0001927906030000163
Figure BDA0001927906030000163

其中,uc(t)为所述控制信号,m为所述质量-弹簧-阻尼数学物理模型的等效质量,c为所述质量-弹簧-阻尼数学物理模型的等效阻尼系数,k3和k4均为根据k1和k2所得的第二简记系数;Wherein, u c (t) is the control signal, m is the equivalent mass of the mass-spring-damping mathematical-physical model, c is the equivalent damping coefficient of the mass-spring-damping mathematical-physical model, k 3 and k 4 are the second shorthand coefficients obtained according to k 1 and k 2 ;

步骤33:根据所述控制信号对所述压电陶瓷执行器进行控制。Step 33: Control the piezoelectric ceramic actuator according to the control signal.

根据差分进化方法提升修正Bouc-wen模型的参数精度,并根据提升精度后的修正Bouc-wen模型(即目标迟滞模型)得到修正输出位移,将该修正输出位移与参考位移之间的位移误差作为分数阶滑模控制器的滑模面的主要变量,并依据滑模面确定对应的控制律,与传统的滑模控制器相比,可以更好地抑制滑模面的抖动问题,保证修正输出位移能与参考位移更好的实时跟踪,从而有效抑制迟滞特性,且计算过程少、难度低,可以在很大程度上保证基于压电陶瓷执行器定位控制的实时性,控制效果较好;The parameter accuracy of the revised Bouc-wen model is improved according to the differential evolution method, and the revised output displacement is obtained according to the revised Bouc-wen model after the improved accuracy (ie, the target hysteresis model), and the displacement error between the revised output displacement and the reference displacement is taken as The main variables of the sliding mode surface of the fractional sliding mode controller, and the corresponding control law is determined according to the sliding mode surface. Compared with the traditional sliding mode controller, it can better suppress the jitter problem of the sliding mode surface and ensure the corrected output. The displacement can track the reference displacement better in real time, thereby effectively suppressing the hysteresis characteristics, and the calculation process is less and the difficulty is low, which can largely ensure the real-time performance of the positioning control based on the piezoelectric ceramic actuator, and the control effect is good;

其中,分数阶的阶数λ一般在(0,1]之间取值,λ=1即表示为传统的滑模控制器。Among them, the order λ of the fractional order generally takes a value between (0, 1], and λ=1 means a traditional sliding mode controller.

本实施例根据上述步骤设计的分数阶滑模控制器的结构示意图如图7所示。A schematic structural diagram of the fractional-order sliding mode controller designed according to the above steps in this embodiment is shown in FIG. 7 .

本实施例还采用Lyapunov稳定性定理来证明得到的分数阶滑模控制器的稳定性,选取能量函数为:This embodiment also adopts Lyapunov stability theorem to prove the stability of the obtained fractional-order sliding mode controller, and selects the energy function as:

Figure BDA0001927906030000171
Figure BDA0001927906030000171

其中,V为能量函数;易证明

Figure BDA0001927906030000172
证明过程如下所示:where V is the energy function; it is easy to prove
Figure BDA0001927906030000172
The proof process is as follows:

Figure BDA0001927906030000173
Figure BDA0001927906030000173

由此可见,本实施例设计的分数阶滑模控制器来控制压电陶瓷执行器的稳定性高,能有效抑制压电陶瓷执行器的迟滞特性。It can be seen that the fractional-order sliding mode controller designed in this embodiment has high stability in controlling the piezoelectric ceramic actuator, and can effectively suppress the hysteresis characteristic of the piezoelectric ceramic actuator.

具体地,本实施例选用的压电陶瓷执行器和分数阶滑模控制器的相关参数分别为:Specifically, the relevant parameters of the piezoelectric ceramic actuator and fractional-order sliding mode controller selected in this embodiment are:

质量为m=1.45kg,等效阻尼系数为c=11Ns/m,第一等效刚度系数为ks=9.998×105N/m,参考位移yd信号为频率2Hz、峰峰值10μm的正弦信号。The mass is m=1.45kg, the equivalent damping coefficient is c=11Ns/m, the first equivalent stiffness coefficient is k s =9.998×10 5 N/m, the reference displacement y d signal is a sine with a frequency of 2Hz and a peak-to-peak value of 10μm Signal.

分别采用传统滑模控制器和分数阶滑模控制器对压电陶瓷执行器进行控制,在进入稳态运行的条件下,得到的输出位移跟踪波形图分别如图8-1和图8-2所示,从图8-1和图8-2可以看出,本实施例的分数阶滑模控制器的位移跟踪拟合度更高;除此之外,还分别得到传统滑模控制下和分数阶滑模控制下的位移误差跟踪波形图,分别如图9-1和图9-2所示,从图9-1和图9-2可以看出,在传统滑模控制中跟踪误差的峰峰值为0.076μm,而在分数阶滑模控制中跟踪误差的峰峰值为0.014μm,跟踪误差的峰峰值降低了81.5%。由此可见,本实施例的压电陶瓷执行器迟滞特性的抑制方法可以明显有效地抑制迟滞特性,可以有效提高采用压电陶瓷执行器的精密设备的精密定位、跟踪和运动控制,从而提高精密制造业的工作效率和产品质量。The traditional sliding mode controller and fractional-order sliding mode controller are used to control the piezoelectric ceramic actuator. Under the condition of entering the steady state operation, the obtained output displacement tracking waveforms are shown in Figure 8-1 and Figure 8-2 respectively. As can be seen from Figure 8-1 and Figure 8-2, the fractional-order sliding mode controller of this embodiment has a higher displacement tracking fit; The displacement error tracking waveforms under fractional sliding mode control are shown in Figure 9-1 and Figure 9-2 respectively. From Figure 9-1 and Figure 9-2, it can be seen that the tracking error in the traditional sliding mode control The peak-to-peak value is 0.076 μm, while the peak-to-peak value of tracking error in fractional-order sliding mode control is 0.014 μm, and the peak-to-peak value of tracking error is reduced by 81.5%. It can be seen that the method for suppressing the hysteresis characteristic of the piezoelectric ceramic actuator in this embodiment can significantly and effectively suppress the hysteresis characteristic, and can effectively improve the precise positioning, tracking and motion control of the precision equipment using the piezoelectric ceramic actuator, thereby improving the precision Manufacturing productivity and product quality.

实施例二、如图10所示,一种压电陶瓷执行器迟滞特性的抑制系统,包括电源模块、采样模块、处理模块和控制模块;Embodiment 2. As shown in FIG. 10 , a system for suppressing hysteresis characteristics of a piezoelectric ceramic actuator includes a power supply module, a sampling module, a processing module and a control module;

所述电源模块用于提供压电陶瓷执行器的输入电压;The power module is used to provide the input voltage of the piezoelectric ceramic actuator;

所述采样模块用于获取所述压电陶瓷执行器在所述输入电压下产生的输出位移;The sampling module is used to obtain the output displacement of the piezoelectric ceramic actuator under the input voltage;

所述处理模块用于根据所述输出位移和所述输入电压建立迟滞模型,还用于对所述迟滞模型进行参数辨识,得到目标迟滞模型,还用于根据所述目标迟滞模型设计分数阶滑模控制器;The processing module is used for establishing a hysteresis model according to the output displacement and the input voltage, and is also used for parameter identification of the hysteresis model to obtain a target hysteresis model, and is also used for designing a fractional slip according to the target hysteresis model. model controller;

所述控制模块用于采用所述分数阶滑模控制器对所述压电陶瓷执行器进行控制。The control module is configured to use the fractional-order sliding mode controller to control the piezoelectric ceramic actuator.

本实施例通过电源模块提供压电陶瓷执行器的输入电压,采集模块获取在该输入电压下产生的输出位移,由于压电陶瓷执行器的迟滞特性直接体现为在该输入电压下的输出位移,因此处理器通过输出位移和输入电压建立迟滞模型,由输出位移与输入电压的关系来描述迟滞特性,能更好地描述迟滞特性与压电陶瓷执行器的关系,便于后续根据两者的关系得到抑制迟滞特性的控制信号,以便控制模块采用分数阶滑模控制器根据控制信号控制压电陶瓷执行器;由于迟滞模型存在模型误差,且存在多个参数,通过处理模块对迟滞模型进行参数辨识,以便得到精度更高的目标迟滞模型,使得该目标迟滞模型与迟滞特性的拟合度更高,在描述迟滞特性上更准确,从而便于处理模块根据该高精度的目标迟滞模型设计更为精确的分数阶滑模控制器;分数阶滑模控制器相比传统控制器,可以较好地抑制滑模面的抖动问题,且计算过程少、计算难度低,可以在很大程度上保证对压电陶瓷执行器控制的实时性,控制效果更好,能更有效地抑制压电陶瓷执行器在工作过程中的迟滞特性,避免迟滞特性影响制造设备的精密定位、跟踪和运动控制,提高精密制造业的工作效率和产品质量。In this embodiment, the input voltage of the piezoelectric ceramic actuator is provided by the power module, and the output displacement generated under the input voltage is acquired by the acquisition module. Since the hysteresis characteristic of the piezoelectric ceramic actuator is directly reflected as the output displacement under the input voltage, Therefore, the processor establishes a hysteresis model through the output displacement and the input voltage, and describes the hysteresis characteristics by the relationship between the output displacement and the input voltage, which can better describe the relationship between the hysteresis characteristics and the piezoelectric ceramic actuator, and is convenient for subsequent obtaining according to the relationship between the two. The control signal of the hysteresis characteristic is suppressed, so that the control module uses the fractional-order sliding mode controller to control the piezoelectric ceramic actuator according to the control signal; because the hysteresis model has model errors and there are multiple parameters, the hysteresis model is identified by the processing module. In order to obtain the target hysteresis model with higher accuracy, the fitting degree of the target hysteresis model and the hysteresis characteristics is higher, and the description of the hysteresis characteristics is more accurate, so as to facilitate the processing module to design a more accurate target hysteresis model according to the high-precision target hysteresis model. Fractional sliding mode controller: Compared with the traditional controller, the fractional sliding mode controller can better suppress the jitter problem of the sliding mode surface, and the calculation process is less and the calculation difficulty is low, which can guarantee the piezoelectricity to a large extent. Real-time control of ceramic actuators, better control effect, can more effectively suppress the hysteresis characteristics of piezoelectric ceramic actuators in the working process, avoid hysteresis characteristics affecting the precision positioning, tracking and motion control of manufacturing equipment, improve precision manufacturing work efficiency and product quality.

优选地,所述迟滞模型具体为Bouc-wen等效迟滞模型,所述处理模块还具体用于对所述Bouc-wen等效迟滞模型进行修正,得到修正Bouc-wen模型。Preferably, the hysteresis model is specifically a Bouc-wen equivalent hysteresis model, and the processing module is further specifically configured to revise the Bouc-wen equivalent hysteresis model to obtain a revised Bouc-wen model.

由于Bouc-wen等效迟滞模型可以描述大多数的迟滞系统,与实际运动过程中的迟滞特性具有较好的拟合度,因此通过质量-弹簧-阻尼数学物理模型来获得Bouc-wen等效迟滞模型,能更好地描述迟滞特性,且上述Bouc-wen等效迟滞模型与传统的Bouc-wen模型相比,进行了简化,使得模型更为简单,以便后续对模型中的参数进行辨识,得到精度更高的目标迟滞模型;由于Bouc-wen等效迟滞模型本身为理想模型,与实际运动过程中迟滞行为有偏差,因此引入在Bouc-wen等效迟滞模型中与初始位置的偏差d(即修正迟滞分量差值)以及与初始相位的偏差

Figure BDA0001927906030000191
(即相位差值),来对Bouc-wen等效迟滞模型进行修正,可以进一步提高修正Bouc-wen模型在描述迟滞特性上的精度。Since the Bouc-wen equivalent hysteresis model can describe most hysteretic systems and has a good fit with the hysteresis characteristics in the actual motion process, the Bouc-wen equivalent hysteresis is obtained through the mass-spring-damping mathematical and physical model. Compared with the traditional Bouc-wen model, the above Bouc-wen equivalent hysteresis model is simplified, which makes the model simpler, so that the parameters in the model can be identified later, and the The target hysteresis model with higher accuracy; since the Bouc-wen equivalent hysteresis model itself is an ideal model, which deviates from the hysteresis behavior in the actual motion process, the deviation d from the initial position in the Bouc-wen equivalent hysteresis model is introduced (ie Correction hysteresis component difference) and deviation from initial phase
Figure BDA0001927906030000191
(that is, the phase difference value), to modify the Bouc-wen equivalent hysteresis model, which can further improve the accuracy of the modified Bouc-wen model in describing the hysteresis characteristics.

实施例三、基于实施例一和实施例二,本实施例还公开了一种压电陶瓷执行器迟滞特性的抑制系统,包括处理器、存储器和存储在所述存储器中且可运行在所述处理器上的计算机程序,所述计算机程序运行时实现如图1所示的以下步骤:Embodiment 3. Based on Embodiment 1 and Embodiment 2, this embodiment also discloses a system for suppressing hysteresis characteristics of a piezoelectric ceramic actuator, including a processor, a memory, and a system stored in the memory and operable in the The computer program on the processor, when the computer program runs, realizes the following steps as shown in Figure 1:

S1:获取压电陶瓷执行器在输入电压下产生的输出位移,并根据所述输出位移和所述输入电压建立迟滞模型;S1: obtain the output displacement generated by the piezoelectric ceramic actuator under the input voltage, and establish a hysteresis model according to the output displacement and the input voltage;

S2:对所述迟滞模型进行参数辨识,得到目标迟滞模型;S2: Perform parameter identification on the hysteresis model to obtain a target hysteresis model;

S3:根据所述目标迟滞模型设计分数阶滑模控制器,并采用所述分数阶滑模控制器对所述压电陶瓷执行器进行控制。S3: Design a fractional-order sliding mode controller according to the target hysteresis model, and use the fractional-order sliding mode controller to control the piezoelectric ceramic actuator.

通过存储在存储器上的计算机程序,并运行在处理器上,实现本发明的压电陶瓷执行器迟滞特性的抑制系统,能够更好地描述迟滞特性与压电陶瓷执行器的关系,便于后续得到抑制迟滞特性的控制信号,以便分数阶滑模控制器根据控制信号控制压电陶瓷执行器,分数阶滑模控制器相比传统控制器,可以较好地抑制滑模面的抖动问题,且计算过程少、计算难度低,可以在很大程度上保证对压电陶瓷执行器控制的实时性,控制效果更好,能更有效地抑制压电陶瓷执行器在工作过程中的迟滞特性,避免迟滞特性影响制造设备的精密定位、跟踪和运动控制,提高精密制造业的工作效率和产品质量。Through the computer program stored in the memory and running on the processor, the system for suppressing the hysteresis characteristics of the piezoelectric ceramic actuator of the present invention can be realized, and the relationship between the hysteresis characteristics and the piezoelectric ceramic actuator can be better described, and it is convenient to obtain the following results. The control signal that suppresses the hysteresis characteristic, so that the fractional-order sliding mode controller can control the piezoelectric ceramic actuator according to the control signal. Compared with the traditional controller, the fractional-order sliding mode controller can better suppress the jitter of the sliding mode surface, and the calculation Fewer processes and low calculation difficulty can ensure the real-time control of piezoelectric ceramic actuators to a large extent, the control effect is better, and the hysteresis characteristics of piezoelectric ceramic actuators in the working process can be suppressed more effectively, avoiding hysteresis Characteristics affect the precise positioning, tracking and motion control of manufacturing equipment, improving work efficiency and product quality in precision manufacturing.

本实施例还提供一种计算机存储介质,所述计算机存储介质上存储有至少一个指令,所述指令被执行时实现所述S1-S3的具体步骤。This embodiment further provides a computer storage medium, where at least one instruction is stored on the computer storage medium, and the specific steps of S1-S3 are implemented when the instruction is executed.

通过执行包含至少一个指令的计算机存储介质,实现本发明的压电陶瓷执行器迟滞特性的抑制,能够更好地描述迟滞特性与压电陶瓷执行器的关系,便于后续得到抑制迟滞特性的控制信号,以便分数阶滑模控制器根据控制信号控制压电陶瓷执行器,分数阶滑模控制器相比传统控制器,可以较好地抑制滑模面的抖动问题,且计算过程少、计算难度低,可以在很大程度上保证对压电陶瓷执行器控制的实时性,控制效果更好,能更有效地抑制压电陶瓷执行器在工作过程中的迟滞特性,避免迟滞特性影响制造设备的精密定位、跟踪和运动控制,提高精密制造业的工作效率和产品质量。By executing the computer storage medium containing at least one instruction, the suppression of the hysteresis characteristic of the piezoelectric ceramic actuator of the present invention can be achieved, the relationship between the hysteresis characteristic and the piezoelectric ceramic actuator can be better described, and it is convenient to obtain a control signal for suppressing the hysteresis characteristic subsequently. , so that the fractional sliding mode controller can control the piezoelectric ceramic actuator according to the control signal. Compared with the traditional controller, the fractional sliding mode controller can better suppress the jitter problem of the sliding mode surface, and the calculation process is less and the calculation difficulty is low. , can guarantee the real-time control of the piezoelectric ceramic actuator to a large extent, the control effect is better, can more effectively suppress the hysteresis characteristics of the piezoelectric ceramic actuator in the working process, and avoid the hysteresis characteristics affecting the precision of the manufacturing equipment Positioning, tracking and motion control to improve work efficiency and product quality in precision manufacturing.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.

Claims (4)

1.一种压电陶瓷执行器迟滞特性的抑制方法,其特征在于,包括以下步骤:1. A method for suppressing hysteresis characteristics of a piezoelectric ceramic actuator, comprising the following steps: 步骤1:获取压电陶瓷执行器在输入电压下产生的输出位移,并根据所述输出位移和所述输入电压建立迟滞模型;Step 1: obtain the output displacement generated by the piezoelectric ceramic actuator under the input voltage, and establish a hysteresis model according to the output displacement and the input voltage; 步骤2:对所述迟滞模型进行参数辨识,得到目标迟滞模型;Step 2: performing parameter identification on the hysteresis model to obtain a target hysteresis model; 步骤3:根据所述目标迟滞模型设计分数阶滑模控制器,并采用所述分数阶滑模控制器对所述压电陶瓷执行器进行控制;Step 3: designing a fractional-order sliding mode controller according to the target hysteresis model, and using the fractional-order sliding mode controller to control the piezoelectric ceramic actuator; 所述步骤1具体采用基于质量-弹簧-阻尼数学物理模型的建模方法建立所述迟滞模型;所述迟滞模型具体为Bouc-wen等效迟滞模型,所述Bouc-wen等效迟滞模型的具体公式为:The step 1 specifically adopts a modeling method based on a mass-spring-damping mathematical and physical model to establish the hysteresis model; the hysteresis model is specifically a Bouc-wen equivalent hysteresis model, and the specific example of the Bouc-wen equivalent hysteresis model is: The formula is:
Figure FDA0003072974140000011
Figure FDA0003072974140000011
其中,y(t)为所述输出位移,u(t)为所述输入电压,h(t)为所述Bouc-wen等效迟滞模型的迟滞分量,
Figure FDA0003072974140000012
为所述迟滞分量对时间的一阶导数,D0、A、β、γ和n均为反映迟滞特性的模型参数,
Figure FDA0003072974140000013
为所述输入电压对时间的一阶导数,α为权重系数,ks为所述压电陶瓷执行器的第一等效刚度系数,k为反映所述迟滞特性的第二等效刚度系数,k1和k2均为根据α、D0、k和ks所得的第一简记系数;
where y(t) is the output displacement, u(t) is the input voltage, h(t) is the hysteresis component of the Bouc-wen equivalent hysteresis model,
Figure FDA0003072974140000012
is the first derivative of the hysteresis component with respect to time, D 0 , A, β, γ and n are all model parameters reflecting the hysteresis characteristics,
Figure FDA0003072974140000013
is the first derivative of the input voltage with respect to time, α is the weight coefficient, k s is the first equivalent stiffness coefficient of the piezoelectric ceramic actuator, k is the second equivalent stiffness coefficient reflecting the hysteresis characteristic, Both k 1 and k 2 are the first abbreviated coefficients obtained according to α, D 0 , k and k s ;
在所述步骤1中,还包括对所述Bouc-wen等效迟滞模型进行修正,得到修正Bouc-wen模型,所述修正Bouc-wen模型的具体公式为:In the step 1, it also includes modifying the Bouc-wen equivalent hysteresis model to obtain a modified Bouc-wen model. The specific formula of the modified Bouc-wen model is:
Figure FDA0003072974140000021
Figure FDA0003072974140000021
其中,y1(t)为修正输出位移,u1(t)为修正输入电压,h1(t)为所述修正Bouc-wen模型的修正迟滞分量,d为修正迟滞分量差值,
Figure FDA0003072974140000022
为相位差值,
Figure FDA0003072974140000023
为所述修正迟滞分量对时间的一阶导数,
Figure FDA0003072974140000024
为所述修正输入电压对时间的一阶导数;
Among them, y 1 (t) is the corrected output displacement, u 1 (t) is the corrected input voltage, h 1 (t) is the corrected hysteresis component of the corrected Bouc-wen model, d is the corrected hysteresis component difference,
Figure FDA0003072974140000022
is the phase difference value,
Figure FDA0003072974140000023
is the first derivative of the modified hysteresis component with respect to time,
Figure FDA0003072974140000024
is the first derivative of the corrected input voltage with respect to time;
所述步骤2中具体采用差分进化方法对所述修正Bouc-wen模型进行参数辨识,得到所述目标迟滞模型;In the step 2, the differential evolution method is specifically used to perform parameter identification on the modified Bouc-wen model to obtain the target hysteresis model; 所述步骤3具体包括以下步骤:The step 3 specifically includes the following steps: 步骤31:根据所述目标迟滞模型中的所述修正输出位移与预设的参考位移之间的位移误差确定所述分数阶滑模控制器的滑模面;Step 31: Determine the sliding mode surface of the fractional-order sliding mode controller according to the displacement error between the corrected output displacement in the target hysteresis model and a preset reference displacement; 所述滑模面为:The sliding surface is:
Figure FDA0003072974140000025
Figure FDA0003072974140000025
e=y1-yde=y 1 -y d ; 其中,s为所述滑模面,e为所述位移误差,y1为所述修正输出位移的值,yd为所述参考位移,c0为所述分数阶滑模控制器的比例参数且c0>0,D为分数阶运算,λ为分数阶的阶数;Wherein, s is the sliding mode surface, e is the displacement error, y 1 is the value of the corrected output displacement, y d is the reference displacement, and c 0 is the proportional parameter of the fractional sliding mode controller And c 0 >0, D is a fractional order operation, and λ is the order of the fractional order; 步骤32:根据所述滑模面确定所述分数阶滑模控制器的控制律,并根据所述控制律、所述滑模面和所述目标迟滞模型,得到所述分数阶滑模控制器的控制信号;Step 32: Determine the control law of the fractional sliding mode controller according to the sliding mode surface, and obtain the fractional sliding mode controller according to the control law, the sliding mode surface and the target hysteresis model control signal; 所述控制律为:
Figure FDA0003072974140000026
The control law is:
Figure FDA0003072974140000026
其中,
Figure FDA0003072974140000027
为所述滑模面的一阶导数,k0为指数趋近项系数,ε为趋近速度,sgn(·)为开关函数;
in,
Figure FDA0003072974140000027
is the first derivative of the sliding mode surface, k 0 is the exponential approach term coefficient, ε is the approach speed, and sgn( ) is the switching function;
所述控制信号的具体公式为:The specific formula of the control signal is:
Figure FDA0003072974140000031
Figure FDA0003072974140000031
其中,uc(t)为所述控制信号,m为所述质量-弹簧-阻尼数学物理模型的等效质量,c为所述质量-弹簧-阻尼数学物理模型的等效阻尼系数,k3和k4均为根据k1和k2所得的第二简记系数;Wherein, u c (t) is the control signal, m is the equivalent mass of the mass-spring-damping mathematical-physical model, c is the equivalent damping coefficient of the mass-spring-damping mathematical-physical model, k 3 and k 4 are the second shorthand coefficients obtained according to k 1 and k 2 ; 步骤33:根据所述控制信号对所述压电陶瓷执行器进行控制。Step 33: Control the piezoelectric ceramic actuator according to the control signal.
2.一种压电陶瓷执行器迟滞特性的抑制系统,其特征在于,包括电源模块、采样模块、处理模块和控制模块;2. A suppression system for the hysteresis characteristic of a piezoelectric ceramic actuator, characterized in that it comprises a power supply module, a sampling module, a processing module and a control module; 所述电源模块用于提供压电陶瓷执行器的输入电压;The power module is used to provide the input voltage of the piezoelectric ceramic actuator; 所述采样模块用于获取所述压电陶瓷执行器在所述输入电压下产生的输出位移;The sampling module is used to obtain the output displacement of the piezoelectric ceramic actuator under the input voltage; 所述处理模块用于根据所述输出位移和所述输入电压建立迟滞模型,还用于对所述迟滞模型进行参数辨识,得到目标迟滞模型,还用于根据所述目标迟滞模型设计分数阶滑模控制器;The processing module is used for establishing a hysteresis model according to the output displacement and the input voltage, and is also used for parameter identification of the hysteresis model to obtain a target hysteresis model, and is also used for designing a fractional slip according to the target hysteresis model. model controller; 所述控制模块用于采用所述分数阶滑模控制器对所述压电陶瓷执行器进行控制;The control module is configured to use the fractional-order sliding mode controller to control the piezoelectric ceramic actuator; 所述处理模块具体用于采用基于质量-弹簧-阻尼数学物理模型的建模方法建立所述迟滞模型;所述迟滞模型具体为Bouc-wen等效迟滞模型,所述Bouc-wen等效迟滞模型的具体公式为:The processing module is specifically used to establish the hysteresis model by using a modeling method based on a mass-spring-damping mathematical and physical model; the hysteresis model is specifically a Bouc-wen equivalent hysteresis model, and the Bouc-wen equivalent hysteresis model The specific formula is:
Figure FDA0003072974140000032
Figure FDA0003072974140000032
其中,y(t)为所述输出位移,u(t)为所述输入电压,h(t)为所述Bouc-wen等效迟滞模型的迟滞分量,
Figure FDA0003072974140000033
为所述迟滞分量对时间的一阶导数,D0、A、β、γ和n均为反映迟滞特性的模型参数,
Figure FDA0003072974140000046
为所述输入电压对时间的一阶导数,α为权重系数,ks为所述压电陶瓷执行器的第一等效刚度系数,k为反映所述迟滞特性的第二等效刚度系数,k1和k2均为根据α、D0、k和ks所得的第一简记系数;
where y(t) is the output displacement, u(t) is the input voltage, h(t) is the hysteresis component of the Bouc-wen equivalent hysteresis model,
Figure FDA0003072974140000033
is the first derivative of the hysteresis component with respect to time, D 0 , A, β, γ and n are all model parameters reflecting the hysteresis characteristics,
Figure FDA0003072974140000046
is the first derivative of the input voltage with respect to time, α is the weight coefficient, k s is the first equivalent stiffness coefficient of the piezoelectric ceramic actuator, k is the second equivalent stiffness coefficient reflecting the hysteresis characteristic, Both k 1 and k 2 are the first abbreviated coefficients obtained according to α, D 0 , k and k s ;
所述处理模块还具体用于对所述Bouc-wen等效迟滞模型进行修正,得到修正Bouc-wen模型,所述修正Bouc-wen模型的具体公式为:The processing module is also specifically used to revise the Bouc-wen equivalent hysteresis model to obtain a revised Bouc-wen model, and the specific formula of the revised Bouc-wen model is:
Figure FDA0003072974140000041
Figure FDA0003072974140000041
其中,y1(t)为修正输出位移,u1(t)为修正输入电压,h1(t)为所述修正Bouc-wen模型的修正迟滞分量,d为修正迟滞分量差值,
Figure FDA0003072974140000042
为相位差值,
Figure FDA0003072974140000043
为所述修正迟滞分量对时间的一阶导数,
Figure FDA0003072974140000044
为所述修正输入电压对时间的一阶导数;
Among them, y 1 (t) is the corrected output displacement, u 1 (t) is the corrected input voltage, h 1 (t) is the corrected hysteresis component of the corrected Bouc-wen model, d is the corrected hysteresis component difference,
Figure FDA0003072974140000042
is the phase difference value,
Figure FDA0003072974140000043
is the first derivative of the modified hysteresis component with respect to time,
Figure FDA0003072974140000044
is the first derivative of the corrected input voltage with respect to time;
所述处理模块具体用于采用差分进化方法对所述修正Bouc-wen模型进行参数辨识,得到所述目标迟滞模型;The processing module is specifically configured to use a differential evolution method to perform parameter identification on the modified Bouc-wen model to obtain the target hysteresis model; 所述处理模块还具体用于:The processing module is also specifically used for: 根据所述目标迟滞模型中的所述修正输出位移与预设的参考位移之间的位移误差确定所述分数阶滑模控制器的滑模面;determining a sliding mode surface of the fractional-order sliding mode controller according to a displacement error between the corrected output displacement in the target hysteresis model and a preset reference displacement; 所述滑模面为:The sliding surface is:
Figure FDA0003072974140000045
Figure FDA0003072974140000045
e=y1-yde=y 1 -y d ; 其中,s为所述滑模面,e为所述位移误差,y1为所述修正输出位移的值,yd为所述参考位移,c0为所述分数阶滑模控制器的比例参数且c0>0,D为分数阶运算,λ为分数阶的阶数;Wherein, s is the sliding mode surface, e is the displacement error, y 1 is the value of the corrected output displacement, y d is the reference displacement, and c 0 is the proportional parameter of the fractional sliding mode controller And c 0 >0, D is a fractional order operation, and λ is the order of the fractional order; 根据所述滑模面确定所述分数阶滑模控制器的控制律,并根据所述控制律、所述滑模面和所述目标迟滞模型,得到所述分数阶滑模控制器的控制信号;The control law of the fractional sliding mode controller is determined according to the sliding mode surface, and the control signal of the fractional sliding mode controller is obtained according to the control law, the sliding mode surface and the target hysteresis model ; 所述控制律为:
Figure FDA0003072974140000051
The control law is:
Figure FDA0003072974140000051
其中,
Figure FDA0003072974140000052
为所述滑模面的一阶导数,k0为指数趋近项系数,ε为趋近速度,sgn(·)为开关函数;
in,
Figure FDA0003072974140000052
is the first derivative of the sliding mode surface, k 0 is the exponential approach term coefficient, ε is the approach speed, and sgn( ) is the switching function;
所述控制信号的具体公式为:The specific formula of the control signal is:
Figure FDA0003072974140000053
Figure FDA0003072974140000053
其中,uc(t)为所述控制信号,m为所述质量-弹簧-阻尼数学物理模型的等效质量,c为所述质量-弹簧-阻尼数学物理模型的等效阻尼系数,k3和k4均为根据k1和k2所得的第二简记系数;Wherein, u c (t) is the control signal, m is the equivalent mass of the mass-spring-damping mathematical-physical model, c is the equivalent damping coefficient of the mass-spring-damping mathematical-physical model, k 3 and k 4 are the second shorthand coefficients obtained according to k 1 and k 2 ; 所述控制模块具体用于根据所述控制信号对所述压电陶瓷执行器进行控制。The control module is specifically configured to control the piezoelectric ceramic actuator according to the control signal.
3.一种压电陶瓷执行器迟滞特性的抑制系统,其特征在于,包括处理器、存储器和存储在所述存储器中且可运行在所述处理器上的计算机程序,所述计算机程序运行时实现如权利要求1所述的方法步骤。3. A system for suppressing hysteresis characteristics of a piezoelectric ceramic actuator, comprising a processor, a memory, and a computer program stored in the memory and executable on the processor, when the computer program runs The method steps of claim 1 are implemented. 4.一种计算机存储介质,其特征在于,所述计算机存储介质包括:至少一个指令,在所述指令被执行时实现如权利要求1所述的方法步骤。4. A computer storage medium, wherein the computer storage medium comprises: at least one instruction that, when executed, implements the method steps of claim 1 .
CN201811625537.1A 2018-12-28 2018-12-28 Method, system and medium for suppressing hysteresis characteristic of piezoelectric ceramic actuator Active CN109557816B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811625537.1A CN109557816B (en) 2018-12-28 2018-12-28 Method, system and medium for suppressing hysteresis characteristic of piezoelectric ceramic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811625537.1A CN109557816B (en) 2018-12-28 2018-12-28 Method, system and medium for suppressing hysteresis characteristic of piezoelectric ceramic actuator

Publications (2)

Publication Number Publication Date
CN109557816A CN109557816A (en) 2019-04-02
CN109557816B true CN109557816B (en) 2021-06-29

Family

ID=65871755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811625537.1A Active CN109557816B (en) 2018-12-28 2018-12-28 Method, system and medium for suppressing hysteresis characteristic of piezoelectric ceramic actuator

Country Status (1)

Country Link
CN (1) CN109557816B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991606B (en) * 2019-10-29 2022-04-08 广东工业大学 Piezoelectric ceramic driver composite control method based on radial basis function neural network
CN110768569A (en) * 2019-11-11 2020-02-07 华侨大学 An anti-hysteresis driving method for piezoelectric ceramics based on cutting rate
CN111240198B (en) * 2020-01-15 2022-03-25 南通大学 Piezoelectric ceramic actuator hysteresis analysis method
CN111697874B (en) * 2020-06-24 2023-09-05 河北工业大学 Observation Method of Motor Stator Vibration Mode Based on Nonlinear Sliding Mode Observer
CN112835295B (en) * 2021-01-22 2022-07-19 武汉工程大学 Parameter identification and composite control method of piezoelectric ceramic actuator based on PI model
CN113009830A (en) * 2021-03-01 2021-06-22 哈尔滨理工大学 Nonlinear modeling and control method of piezoelectric actuator
CN114137835B (en) * 2021-11-19 2023-09-26 武汉工程大学 Composite control method for identifying parameters of piezoelectric ceramic actuator based on B-W model
CN115047765B (en) * 2022-06-13 2023-06-23 哈尔滨工业大学 Piezoelectric transducer sliding mode control method, device, computer and storage medium based on hysteresis inverse model
CN115167148B (en) * 2022-08-12 2025-05-16 中国科学院长春光学精密机械与物理研究所 A dual-time-scale state observation method and system for piezoelectric actuator

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280572A (en) * 2011-04-15 2011-12-14 重庆大学 Composite linear control method of hysteresis characteristic of piezoelectric ceramic actuator and realization circuit thereof
CN104808495A (en) * 2015-05-15 2015-07-29 武汉工程大学 Robot steering gear control system based on gyroscope feedback
CN105068564A (en) * 2015-08-03 2015-11-18 北京理工大学 Displacement control method for piezoelectric ceramic actuator
CN105425587A (en) * 2015-11-16 2016-03-23 北京理工大学 Hysteresis nonlinear motor identification and control method
CN106094525A (en) * 2016-07-08 2016-11-09 西安理工大学 A kind of TSM control device based on fractional calculus and control method
CN106773694A (en) * 2016-12-26 2017-05-31 东北电力大学 Precision Piezoelectric location platform self adaptation output feedback inverse control method
CN106802565A (en) * 2017-03-13 2017-06-06 南京理工大学 A kind of adaptive inverse control of piezoelectric actuator
CN107911056A (en) * 2017-11-14 2018-04-13 江西理工大学 A kind of fractional order iteration sliding-mode control, control system and device
CN107942684A (en) * 2017-12-26 2018-04-20 电子科技大学 Mechanical arm trace tracking method based on the adaptive non-singular terminal sliding formwork of fractional order
CN108227504A (en) * 2018-01-25 2018-06-29 河海大学常州校区 Microthrust test fractional order adaptive fuzzy nerve inverting TSM control method
CN108710296A (en) * 2018-04-26 2018-10-26 河海大学常州校区 The adaptive fast terminal sliding-mode control of fractional order of gyroscope
CN108762088A (en) * 2018-06-20 2018-11-06 山东科技大学 A kind of Hysteresis Nonlinear servo electrical machinery system sliding-mode control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488827B2 (en) * 2012-02-15 2019-11-26 Nri R&D Patent Licensing, Llc Adaptive multi-level control for variable-hierarchy-structure hierarchical systems

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280572A (en) * 2011-04-15 2011-12-14 重庆大学 Composite linear control method of hysteresis characteristic of piezoelectric ceramic actuator and realization circuit thereof
CN104808495A (en) * 2015-05-15 2015-07-29 武汉工程大学 Robot steering gear control system based on gyroscope feedback
CN105068564A (en) * 2015-08-03 2015-11-18 北京理工大学 Displacement control method for piezoelectric ceramic actuator
CN105425587A (en) * 2015-11-16 2016-03-23 北京理工大学 Hysteresis nonlinear motor identification and control method
CN106094525A (en) * 2016-07-08 2016-11-09 西安理工大学 A kind of TSM control device based on fractional calculus and control method
CN106773694A (en) * 2016-12-26 2017-05-31 东北电力大学 Precision Piezoelectric location platform self adaptation output feedback inverse control method
CN106802565A (en) * 2017-03-13 2017-06-06 南京理工大学 A kind of adaptive inverse control of piezoelectric actuator
CN107911056A (en) * 2017-11-14 2018-04-13 江西理工大学 A kind of fractional order iteration sliding-mode control, control system and device
CN107942684A (en) * 2017-12-26 2018-04-20 电子科技大学 Mechanical arm trace tracking method based on the adaptive non-singular terminal sliding formwork of fractional order
CN108227504A (en) * 2018-01-25 2018-06-29 河海大学常州校区 Microthrust test fractional order adaptive fuzzy nerve inverting TSM control method
CN108710296A (en) * 2018-04-26 2018-10-26 河海大学常州校区 The adaptive fast terminal sliding-mode control of fractional order of gyroscope
CN108762088A (en) * 2018-06-20 2018-11-06 山东科技大学 A kind of Hysteresis Nonlinear servo electrical machinery system sliding-mode control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于 Bouc-Wen 模型的压电陶瓷执行器的迟滞特性模拟与控制技术的研究;朱炜;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20091215(第12期);第C042-25页 *

Also Published As

Publication number Publication date
CN109557816A (en) 2019-04-02

Similar Documents

Publication Publication Date Title
CN109557816B (en) Method, system and medium for suppressing hysteresis characteristic of piezoelectric ceramic actuator
CN109274314B (en) Machine learning device, servomotor control system, and machine learning method
JP6774637B2 (en) Control device and control method
JP6499720B2 (en) Machine learning device, servo control device, servo control system, and machine learning method
CN108365784A (en) Based on the control method for brushless direct current motor for improving PSO-BP neural networks
JP4918682B2 (en) Ultrasonic motor control method, ultrasonic motor control apparatus, and program for controlling ultrasonic motor
CN113078861A (en) Sliding mode control method, system, medium and application of permanent magnet synchronous motor
JP6748135B2 (en) Machine learning device, servo control device, servo control system, and machine learning method
CN114047703B (en) Model-free self-adaptive control method of piezoelectric ceramic micro-positioning platform
WO2019159504A1 (en) Control device of power converter
CN117055207B (en) A coupling force compensation coordinated control method and device for a piezoelectric deformable mirror
CN109839823A (en) Asynchronous hysteresis compensation-Linear-Quadratic Problem H of piezoelectric deforming mirror∞Control method and system
CN113612418B (en) A Control Method of Brushless DC Motor Based on Neural Network Feedforward Compensation
CN111106772A (en) Induction motor state strong tracking filtering estimation method including parameter tracking
CN113485123A (en) Frequency domain adaptive iterative learning control method for small-stroke nanoscale motion platform
CN112835295B (en) Parameter identification and composite control method of piezoelectric ceramic actuator based on PI model
Insperger et al. Increasing the accuracy of digital force control process using the act-and-wait concept
CN114253138B (en) Nanometer positioning platform compensation control method and system based on dynamic delay PI model
CN110138296B (en) Machine learning device and method, servo motor control device and system
CN108267970B (en) Time-lag rotor active balance control system and method based on Smith model and single neuron PID
CN117601122A (en) A pneumatic artificial muscle position tracking control system and algorithm
Wang et al. An adaptive gradient method with differentiation element in deep neural networks
CN109695540B (en) Optimal LQR control method for wind turbine airfoil based on comprehensive correlation improved DE algorithm
CN114137835A (en) B-W model-based piezoelectric ceramic actuator parameter identification composite control method
CN111610715A (en) Adaptive Recursive Feedforward Control Method for Linear Motion Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant