Detailed Description
The following examples are presented to further illustrate embodiments of the present invention, and it should be understood that the embodiments described herein are for purposes of illustration and explanation only and are not intended to limit the invention.
The invention clones and obtains ILPR gene from the muscle of macrobrachium nipponense; an RNA interference primer is designed according to an open reading frame of the ILPR gene, and double-stranded RNA (dsRNA) is injected into macrobrachium nipponense bodies, so that the expression level of the ILPR gene can be effectively reduced; meanwhile, the growth of the macrobrachium nipponensis is obviously slowed down. The invention clones the mRNA sequence of the ILPR gene in the crustacean for the first time, defines that the ILPR gene has the function of regulating and controlling the growth and development of the macrobrachium nipponense for the first time, and provides an important economic character candidate gene for the fine breed breeding and the development and the utilization of the production performance of the macrobrachium nipponense.
Example 1: obtaining of the full-Length cDNA of the ILPR Gene of Macrobrachium nipponense
Total RNA extraction: selecting about 3g of Macrobrachium nipponensis (two each of male and female), taking the muscle, placing into a precooled mortar containing liquid nitrogen, and rapidly grinding. Muscle total RNA was extracted using the Takara RNAiso Plus extraction reagent in combination with a traditional phenol-mimetic extraction method. Detecting the quality of RNA through 1.2% agarose gel electrophoresis, analyzing the OD260/280 ratio of the sample to be 1.8-2.0 by a spectrophotometer, and determining the concentration of the RNA.
First strand cDNA Synthesis: first strand cDNA was synthesized using the above RNA as a template according to the Takara M-MLV reverse transcription kit instructions.
Cloning of the full-length cDNA sequence of Penaeus japonicus ILPR: designing two groups of primers according to the middle segment of the muscle transcriptome of the macrobrachium nipponensis to verify the middle segment (the amplified segments of the two groups of primers have an overlapping part so as to be convenient for splicing): forward primer MF1(SEQ ID NO:6) and reverse primer MR1(SEQ ID NO:7), forward primer MF2(SEQ ID NO:8) and reverse primer MR2(SEQ ID NO: 9). The PCR amplification reaction system is as follows:
the PCR reaction program is: pre-denaturation at 94 ℃ for 3min, then entering the following cycle: 30s at 94 ℃, 30s at 55 ℃, 90s at 72 ℃, 30 cycles, final extension for 5min at 72 ℃ and storage at 4 ℃. Detection by 1.5% agarose gel electrophoresis.
The method comprises the steps of utilizing a column type DNA glue recovery kit of Shanghai biological engineering Co., Ltd (Sangon) to recover target fragments, connecting products to a pMD18-T vector (Takara), transforming the vectors into escherichia coli DH5 alpha, carrying out blue-white spot screening, picking out single-clone white spot amplification culture, and sending positive clones inserted with the target fragments to Shanghai platinum Shanghai biological corporation for sequencing analysis.
Designing specific forward primers 3F (SEQ ID NO:10) and 5R (SEQ ID NO:11) according to the ILPR gene cDNA middle fragment sequence for respectively carrying out 3 'and 5' rapid amplification, and the operation steps are as follows
RACE 5 '/3' Kit instructions. The subsequent steps of cutting gel, recovering, transforming, cloning and sequencing are carried out according to the cloning steps to finally obtain the 3 'end sequence and the 5' end sequence of the ILPR gene. The sequencing results of the intermediate fragment and the 3 'and 5' ends are compared and spliced to obtain the full-length cDNA sequence of the shrimp ILPR gene of the macrobrachium nipponense, which is shown as the base sequence of SEQ ID NO. 1.
Example 2: synthesis of dsRNA of ILPR gene of macrobrachium nipponense
Based on the nucleotide sequence of SEQ ID NO:1, a primer (SEQ ID NO: 2; SEQ ID NO:3) for preparing double-stranded RNA was designed within the open reading frame of the ILPR gene using online dsRNA primer design software (http:// www.flyrnai.org/cgi-bin/RNAi _ find _ primers. pl), and the following PCR reaction was carried out using total muscle RNA of Macrobrachium nipponense as a template according to the following reaction system to obtain a sequence shown in SEQ ID NO: 4.
Then, in vitro Transcription was performed to synthesize dsRNA according to the instructions of the Transcript AidTM T7 High Yield Transcription kit (Fermentas, Inc., USA), and in vitro synthesis of double-stranded RNA (dsRNA) using the PCR reaction solution obtained from SEQ ID NO. 4 as a template is performed as shown in SEQ ID NO. 5.
The in vitro synthesized double-stranded RNA (dsRNA) obtained above was identified by 1.5% agarose gel, and then the dsRNA was dissolved in DEPC water for use.
Example 3: effect of dsRNA-ILPR injection on growth and development of Macrobrachium nipponense
1. Selection of experimental shrimps
Firstly, 80 adult male and female macrobrachium nipponensis with strong activity, uniform individual and weight of about 2g are selected in one-time experiment, and are averagely divided into two groups (40 per group), wherein one group is a dsRNA-ILPR injection group, and the other group is a DEPC water group control group. Air is filled in the glass jar before the experiment for temporary culture, the water temperature is 25 ℃, so that the culture environment of the laboratory is adapted, and the snail and artificial bait are fed in the morning and at night every day.
dsRNA injection and growth parameter detection
The dsRNA solution was injected into the pericardial cavity from the basal part of the cephalic turbinates of Macrobrachium nipponensis at an injection dose of 5. mu.g/g, and the control group was injected with DEPC water. The intervention time was 4 weeks, once weekly. Muscle tissues were taken at 7d, 14d, 21d and 28d, respectively, and stored in RNA storage solutions. Finally, the total RNA of the sample is extracted and inverted into cDNA. The interference efficiency was calculated by detecting the change in expression level of ILPR relative to the control group using a fluorescent quantitative PCR technique. The body weights of the control group and the experimental group were measured at the end of the experiment, and the data were analyzed.
3. Results and analysis of the experiments
As shown in FIG. 1, the expression level of the male Macrobrachium nipponensis ILPR was reduced to 88.03%, 89.59%, 86.51% and 87.01% at 7d, 14d, 21d and 28d after the interference, respectively, as compared with the expression level of the muscle of the control Macrobrachium nipponensis.
As shown in fig. 2, the expression level of female macrobrachium nipponensis ILPR decreased to 88.14%, 86.96%, 87.21% and 81.19% at 7d, 14d, 21d and 28d after the interference, respectively, as compared to the expression level of the muscle of the control macrobrachium nipponensis.
The above results indicate that injection of dsRNA effectively reduced the expression level of ILPR.
TABLE 1 changes in molting individuals and mean body weight in Macrobrachium nipponensis RNAi experiments
Note: capital letters indicate significant differences between the two sets of data.
As shown in table 1, the numbers of molts of male and female shrimps in the RNAi-interfered group were 12 and 10, respectively, while the numbers of molts of male and female shrimps in the control group were 31 and 29, respectively. Compared with the control group, the average body weight of male and female shrimps in the RNAi interference group is reduced by 0.66g and 0.36g respectively, and the difference between the control group and the interference group is obvious.
Research results show that the interference of the ILPR gene can prolong the ecdysis period of the macrobrachium nipponense and slow the growth of the macrobrachium nipponense, and the ILPR gene plays an important regulation and control function in the growth and development process of the macrobrachium nipponense. The invention ensures the function of the ILPR gene and provides a new growth target gene for the fine breed breeding of macrobrachium nipponensis. In addition, the invention also lays a foundation for clarifying the molecular mechanism of the growth and development of the crustacean.
Sequence listing
<110> Weifang science and technology college
<120> insulin-like receptor gene for regulating growth and development of macrobrachium nipponense and application thereof
<140> 201811502966X
<141> 2018-12-10
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 5295
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
ttgtgatgct tctagtacag cttcctctct ctctctttct ctctctcatc ggtaaaagga 60
agtgtgaacg taacttgcgt tactttataa cgagtgtaaa gtgaaaatct tgacgagtgt 120
cgtctgcgaa gaatgattat tattattatt ataaatataa taataaatac aaataaatag 180
ctaacggccc ctgtctatca gggtgaagtt gcatttcggc gtcacgtttt gtgcgttaga 240
atagcgaacg caaacattag aaaaaaataa aaagaaggaa gaagtcgacc tgaatgaaat 300
atatactaga acgtcgacac atgtaacacg cagtgtgaat taaaattaaa ataaaataaa 360
ttcggctatt tggttgatgt tggcccggcc cctccccccc ttctctcttc cactctccgt 420
cgagtgccac atcgctctgg aataagtgtt tgtgcgtgtg tttgtgtggc caggaggaaa 480
tattgttttt gaaactgacc tggacgggat aagcggagat attgcgtcat cgaggtttga 540
cccagccagg tgggtggtgg tgccgccgtc aagttgggat ataaacatat catatctatt 600
atgataataa tcctttagaa cagcgattgg atcaatttga aattaagttg tggtgtttgt 660
gcagtgatta tcataaagga agaaaaattc aaaaaattta gcgctgttta aaaagggtat 720
tagtttctcg gacttttcgc taccttagga gacgcgatag cgataagttc tcgaggagaa 780
aaagcaggag agaaagtgaa cttctcttcc tccaactccg cctcctcctc ctactcctcc 840
acgcccgtgc tgggagagta tgtgatcgcg ggcgtgggtg ttgagaaaca gccccgccca 900
taccactccc tgtctacttc tactttaata aagaatggcg tagcagagac catgagacgc 960
gacagcgggt gtagggatac cgggaggccg ccactaccac ggctgccctc tagaggccgt 1020
cccttcctca ccctgctgac gatcgccgcc gtaggcctaa tgctcctgtt caactgtacc 1080
gctgcggccg tcgggggcag cagcagtgga ggaggaaaag catcggcagc ggcgatggaa 1140
cgacatttgg gattgctgga ccacccgacg tctgtcatgc cctccccgcc gacgaccacg 1200
acggttccca cttgccttcg caaggacgac ctaaagaagt tggggagggg gaatgaggtg 1260
aagaccagac gtctgtacgt aaacgagaag gaagaagtcc tgacgatgct gtcgtcgagc 1320
agagttcctc agcagctcat gacgcggata gtggccatct tcctgaagga ctggctgggc 1380
tacgtgaacc tgaccatcac gacggtgccg aacacgttcc atccgagctc cgtcgtcgac 1440
gccatgacgg ctcccgaggg acacaacgcc aacaccaaca gtgcatcgga acaggtggtc 1500
attcctaagg caatggcgaa cctggaagtg tggattcctc caggttacaa cttggaccct 1560
ttaacgtcag attttgaaac cagcagttat cttggatcgg gtgggcgatt tggatggttt 1620
atgccagaga ctatccatct ggatacttcc atattagatc actggagagc ttttgtcaca 1680
ccagactccc cagttctgca cctgttttct agaacaaatg aagaactggg tgccatgtct 1740
gatatgatga caaacacttc gactggcgag tattattgta gagatgaata tggctgtaag 1800
aacggcatgt atactccaaa aaaatgtgag aatgctgtgt gtgccgtact gtttgcatct 1860
tatgcagata tgaatataac agactttttg cggcgccagt tgagaaccat ggatgcctac 1920
gtgaaagtgg tgtggctggg gccaaatttg aatcacgact tcataagaaa aaatactaat 1980
ctcaagaggc ccaatagatc tgtactaatt ttccactggt ggccgtctgt cctactgcag 2040
ccattcaaat tctcatctgt tggatttgca ccctgtatcg acagctcata taaatcagat 2100
ggacaatggc cttaccaatg taaatatgag atgcatcgtt tccataaatt cgtctggaaa 2160
aaattgaaaa gatatgcgcg gtttgcatat gatgcccttc ataaggttca gataaatcat 2220
acagagttca tgcaactcat gaaaaactac aatgatgtac gtggcccgaa gactgagtct 2280
actttaaatg aagtagcttg ccagtggata aaaaagaatc aggctcattg ggactactgg 2340
cgacctgctg ttgacaaaga cattttgaag ttagtgggat tatttcctat caactccagt 2400
gacgagagtc gtaacaaatt cattgctcct ggcaatgtcc cagctttcaa catggctgta 2460
aaggcagtca acaacaacag tactattttg gcagactaca aaattgatca gattacattg 2520
aatggtgcct gtgaaccagc aatggtgatg cgtcaattca ttgaaattat ccagacttcc 2580
tcaagcgaag gattctacaa cagtatgatt ggttttgttg gtccagcctg ctcagatact 2640
gttgaacctg ttgccggtgt atcaaaatat tttaacatgc ccatcatttc ctatggggca 2700
gaaggagcca tattttcaga tgaggattac ccatacttct ttcgtactat acctgaaaac 2760
aagattttta gatatgtgtt caatgacttt ttcctacaaa tgggatggtc acgcgtagca 2820
tctctcaatg aagacggcca aagatactca gaatatttga cattacttca ggatttatta 2880
aatgagaata gtattcattt gtacataagg aagtatcccc aagaacgagc tgaacgcaac 2940
atgactcagt atttgcagga tttaaaacaa aagaaatact tcataataat tggtgacttt 3000
tatgaagatg ttgctcgatc tgttatatgt gatgcttata atatgaagat gactggtgaa 3060
cagcgatatt tgtggtttct gcctcactgg ttctctgcgc attggtacga cactgataga 3120
ctgcgagaat ctgagggacc caatagaaat tatcaggatt cactcaggga tccagtagtt 3180
acttgtacaa ctgaacaaat gaggctcgct cttcaaggac atatgtcatt atcttacaaa 3240
tattttgctg aaaactcttc agtcatgcaa gaaaacaaaa ctgtcgaaga ttggcggaaa 3300
gaatactcta agactgtgaa gagtgttcaa gggcttgcta ctgagtctaa ctatgcaggc 3360
tttacatatg atgctgtgtg gacttatgcc ttggcactgg atgccctctt caaggaagat 3420
cagtcgtatg cagctgacct aagggcaccc aatgcaacaa aggcatacat cagtaagatt 3480
aaatcagttg cttttgatgg cgtctctggc ccaattaatt ttacatcagg ctcaagagta 3540
actgatatta ttgtgtggca attcaaaggc aactcgtatg aagaggttgg aatttttcat 3600
cctggactca cgagaaatga cactggaaaa ctgaatatca gattggagaa actcttctgg 3660
ccatctaatg agaaacctga tgatgggagt gacaaatgtg atatagaggg gtttaggaag 3720
ctgctcaatg tagagtgccg cacagcaatc atcatattgt gtgctgtttg ctttggtggc 3780
cttgcaacag tactcatagc atgctttgtt atctttaaaa gaaggtatga aaaaagactg 3840
gaacaaatcc aggaactgtg gaggggtcga ccgttgtttg aaatttttga cggatgggaa 3900
attcctcgag ataaagtggt aataaatcgt aaaattggtg aaggagcctt tggcacagtg 3960
tatggaggag aatgccagtt tgatacaaaa ggatgggaag ctgatagggt tgctgtggca 4020
gtgaagactc tgaagattgg atcaactatt tctgagaagt tggacttcct ttctgaagca 4080
gagatgatga aaaattttga gcatgaaaat attgttcaac taataggggt ctgcaccaag 4140
agtgagccaa tatatactgt tatggaattc atgctgtatg ctgacttgaa gacatatctt 4200
ctggctcgaa ggcatctcgt aaatgaaaaa agccgtaatg acgatgatga agtcagcaac 4260
aagaggctga cttcaatggc acttgatatt gcacgtgggc ttgcttattt agcagaaatg 4320
aaatatgtgc acagggatgt tgctagtcgt aactgtcttg tgaatgccaa cagaactgtc 4380
aaacttgcag attttggaat gaccaggcct atgtatgaga ataactacta caaatttaat 4440
cgtaaaggta tgctaccagt acgatggatg gcgccagaat cactaacaga gggagttttc 4500
actaccatga gtgatgtctg gtcatatggt gtgttgctgt atgaaattgt cacatttgga 4560
gcattcccgt ttcagggaat gtctaatgat caagtgttag agcatgtcaa agctggtcat 4620
actatagcca taccaaaagg agtgaaaccg caaatggaga ttttactgag gagttgctgg 4680
catcatgttc ccacaagaag gattcagatt ttacaaataa ttgactattt aacaaattac 4740
ccgcgtttga tatcgccttg tctagatgga ccacagtcat cagtgcagat tgaagacact 4800
gtctcacttg agttgagaat acctgataag acaaggaaac tgtcactatc aataaataat 4860
cgcttacctc aagtggtgtc gagtcgaaag cgatcaatga gtggaaatat ggtgatgaat 4920
gttcctcctc ttacctcgag tctaagcgag gatggaatga tatcggctca ttccaactta 4980
gatgctctca atctaaatca tgtgacttta gaggaaaatg aaatgggaga ggaccctttg 5040
ttaccccctg ctcaatatgt ctcctctgga tacatgtcta taccacacaa agacctaaaa 5100
gaaaaggaaa gtttagtaag tagacagcag ggagattatt gcgctacaga tctacccggt 5160
gacttgtgga ctaatgttac tcctgtatag ggaaacgcct ccttaggcaa atttaagtga 5220
ccaaagtagt gttctagtat tttacatata gatctaatat atatatatat gtatgtatgt 5280
gtatatatat atata 5295
<210> 2
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
taatacgact cactataggg ctgcgagaat ctgagggacc 40
<210> 3
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
taatacgact cactataggg cagtgccaag gcataagtcc 40
<210> 4
<211> 279
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
ctgcgagaat ctgagggacc caatagaaat tatcaggatt cactcaggga tccagtagtt 60
acttgtacaa ctgaacaaat gaggctcgct cttcaaggac atatgtcatt atcttacaaa 120
tattttgctg aaaactcttc agtcatgcaa gaaaacaaaa ctgtcgaaga ttggcggaaa 180
gaatactcta agactgtgaa gagtgttcaa gggcttgcta ctgagtctaa ctatgcaggc 240
tttacatatg atgctgtgtg gacttatgcc ttggcactg 279
<210> 5
<211> 279
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
cugcgagaau cugagggacc caauagaaau uaucaggauu cacucaggga uccaguaguu 60
acuuguacaa cugaacaaau gaggcucgcu cuucaaggac auaugucauu aucuuacaaa 120
uauuuugcug aaaacucuuc agucaugcaa gaaaacaaaa cugucgaaga uuggcggaaa 180
gaauacucua agacugugaa gaguguucaa gggcuugcua cugagucuaa cuaugcaggc 240
uuuacauaug augcugugug gacuuaugcc uuggcacug 279
<210> 6
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
gcgtgggtgt tgagaaacag cc 22
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
acgaaagaag tatgggtaat cc 22
<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
cctgctcaga tactgttgaa cc 22
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
ttccctgaaa cgggaatgct cc 22
<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
cagttgaaca ggagcattag gcctacg 27
<210> 11
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
gttttcacta ccatgagtga tgtctgg 27