CN109525310B - Apparatus and method for measuring the influence of transflective medium on photon orbital angular momentum - Google Patents
Apparatus and method for measuring the influence of transflective medium on photon orbital angular momentum Download PDFInfo
- Publication number
- CN109525310B CN109525310B CN201811398444.XA CN201811398444A CN109525310B CN 109525310 B CN109525310 B CN 109525310B CN 201811398444 A CN201811398444 A CN 201811398444A CN 109525310 B CN109525310 B CN 109525310B
- Authority
- CN
- China
- Prior art keywords
- angular momentum
- laser
- double
- measuring
- orbital angular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 238000005452 bending Methods 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 14
- 230000010287 polarization Effects 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 5
- 238000003491 array Methods 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims 3
- 238000002474 experimental method Methods 0.000 abstract description 3
- 230000001427 coherent effect Effects 0.000 abstract description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 12
- 238000011160 research Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
- H04B10/0775—Performance monitoring and measurement of transmission parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及物理光学领域,是一种透反性介质对光子轨道角动量影响的测量装置及方法The invention relates to the field of physical optics, and relates to a device and method for measuring the influence of a transflective medium on photon orbital angular momentum
背景技术Background technique
1992年Leidon大学的Allen等人理论预言了光子轨道角动量Orbital AngularMomentum,OAM的存在。它在基础性物理、应用物理以及天文,生物等交叉学科的研究中已经发挥了或正在发挥着令人意想不到的重要作用。1995年Queensland大学的研究小组实验观测到了轨道角动量从光束到CuO微粒的传递,并驱使后者发生转动,直接验证了光子轨道角动量的存在。光子轨道角动量广泛应用于量子雷达目标散射特性研究、目标探测与识别、量子隐身目标等诸多领域,除此之外,在量子通信领域,轨道角动量(OAM)作为一种新技术备受关注。但是,对于光子轨道角动量传输特性研究过程中容易由于涡旋光束携带有一定拓扑荷数的光束具有特殊的螺旋相位波前结构,在电磁波传播过程中,极易受到传输环境因素的影响,包括大气湍流、雨雾等,破坏其空间波前结构,使不同OAM模态之间信息传输产生干扰。In 1992, Allen et al. of Leidon University predicted the existence of Orbital Angular Momentum, OAM, of photon orbital angular momentum. It has played or is playing an unexpectedly important role in the research of basic physics, applied physics, astronomy, biology and other interdisciplinary subjects. In 1995, the research team of the University of Queensland observed the transfer of orbital angular momentum from the light beam to the CuO particle, and drove the latter to rotate, which directly verified the existence of the photon's orbital angular momentum. Photon orbital angular momentum is widely used in quantum radar target scattering characteristics research, target detection and identification, quantum stealth targets and many other fields. In addition, in the field of quantum communication, orbital angular momentum (OAM) has attracted much attention as a new technology. . However, in the process of studying the transmission characteristics of photon orbital angular momentum, it is easy for the vortex beam to carry a certain topological charge to have a special helical phase wavefront structure. Atmospheric turbulence, rain and fog, etc., destroy the spatial wavefront structure and interfere with the information transmission between different OAM modes.
发明内容SUMMARY OF THE INVENTION
本发明为研究透反性介质对光子轨道角动量的传输特性的影响,提供了一种透反性介质对光子轨道角动量影响的测量装置及方法,提供了以下技术方案:The present invention provides a measuring device and method for the influence of the transflective medium on the photon orbital angular momentum, and provides the following technical solutions:
一种透反性介质对光子轨道角动量传输特性影响的测量装置,包括驱动电源1、激光头2、扩束器3、螺旋相位板4、反射增程腔5、双缝挡板6、光屏7、测量头8、CCD相机9和计算机10,除电源1和计算机10外其余均固定在支撑架上;A measuring device for the influence of a transflective medium on the transmission characteristics of photon orbital angular momentum, comprising a driving power supply 1, a
驱动电源1连接激光头2,激光头2的出射端正对扩束器3的入射端,扩束器3的出射端正对螺旋相位板4入射端,螺旋相位板4的出射端正对反射增程腔5的入射端,反射增程腔5的出射端正对双缝挡板6的入射端,双缝挡板6的出射端正对光屏7的正面;测量头8的测量端正对光屏7的反面,CCD相机9正对测量头8输出结果端,CCD相机9连接计算机10。The driving power supply 1 is connected to the
优选地,所述激光头2输出连续稳定的拉盖尔高斯激光的激光波长范围为380nm-760nm,光斑直径为0.5-0.9mm,横模为TEM00,偏振状态为线偏振、光束质量小于1.5。Preferably, the
优选地,所述激光头2产生的拉盖尔高斯激光通过所述螺旋相位板4的中心位置,所述螺旋相位板4使拉盖尔高斯激光光束携带拓扑荷为1的轨道角动量。Preferably, the Laguerre Gaussian laser generated by the
优选地,反射增程腔5包括5个首尾相连的反射镜,相邻的反射镜相互垂直,首尾处的两个发射镜长度为8cm-13cm,中间3个反射镜长度为20cm-30cm,反射增程腔5内填充透反性介质。Preferably, the reflection
优选地,双缝挡板6的双缝间距为0.08mm-0.4mm,双缝挡板6与光屏7之间的距离为500mm-800mm。Preferably, the double-slit spacing of the double-slit baffle 6 is 0.08 mm-0.4 mm, and the distance between the double-slit baffle 6 and the light screen 7 is 500 mm-800 mm.
一种透反性介质对光子轨道角动量传输特性影响的测量方法,包括如下步骤:A method for measuring the influence of a transflective medium on the transmission characteristics of photon orbital angular momentum, comprising the following steps:
步骤一:向反射增程腔5内填充透反性介质,保持室温状态;Step 1: Fill the reflection-extending
步骤二:将驱动电源1接入220V交流电,激光头2产生一束连续稳定的拉盖尔高斯激光;Step 2: Connect the driving power supply 1 to 220V AC, and the
步骤二:调整激光头2、扩束器3和螺旋相位板4的中心点在同一直线上,使螺旋相位板4处发出的入射光束与反射增程腔5呈80°入射;Step 2: Adjust the center points of the
步骤三:调整双缝挡板6、光屏7、测量头8和CCD相机9的中心点在同一条直线上,使双缝挡板6与反射增程腔5处发出的出射光束呈80°出射;Step 3: Adjust the center points of the double-slit baffle 6, the light screen 7, the measuring head 8 and the CCD camera 9 to be on the same straight line, so that the double-slit baffle 6 and the outgoing beam from the reflection
步骤四:拉盖尔高斯激光分别通过扩束器3、螺旋相位板4、反射增程腔5、双缝挡板6后,通过光屏7成像,测量头8对干涉条纹进行定量测量,CCD相机9和计算机10显示干涉条纹的测量结果;Step 4: After the Laguerre Gaussian laser passes through the beam expander 3, the spiral phase plate 4, the reflection
步骤五:通过干涉条纹测量得到条纹弯曲的量和方向,反推透反性介质作用后的激光光束轨道角动量的拓扑荷数。Step 5: Obtain the amount and direction of fringe bending by measuring the interference fringes, and reverse the topological charge of the orbital angular momentum of the laser beam under the action of the transflective medium.
优选地,所述激光头2输出连续稳定的拉盖尔高斯激光的激光波长范围为380nm-760nm,光斑直径为0.5-0.9mm,横模为TEM00,偏振状态为线偏振、光束质量小于1.5。Preferably, the
优选地,所述激光头2产生的拉盖尔高斯激光通过所述螺旋相位板4的中心位置,所述螺旋相位板4使拉盖尔高斯激光光束携带拓扑荷为1的轨道角动量。Preferably, the Laguerre Gaussian laser generated by the
优选地,所述步骤五具体为:Preferably, the
第一步:一个拓扑荷数为的光子轨道角动量光束波长为λ正入射双缝挡板,通过下式表示入射拉盖尔高斯激光光束的通用表达式:Step 1: A topological charge is The photon orbital angular momentum beam wavelength of λ is the normal incidence double-slit baffle, and the general expression for the incident Laguerre Gaussian laser beam is expressed by the following equation:
其中,Ein为入射拉盖尔高斯激光光束强度,(r,θ)为极坐标,A(r)为表征复振幅,为激光光束轨道角动量的拓扑荷数,i为虚数单位,exp(imr2)为额外的衍射项。Among them, E in is the intensity of the incident Laguerre Gaussian laser beam, (r, θ) is the polar coordinate, A(r) is the characteristic complex amplitude, is the topological charge of the orbital angular momentum of the laser beam, i is an imaginary unit, and exp(imr 2 ) is an additional diffraction term.
第二步:将左边狭缝的相位表达为第二个狭缝的相位表达为两个狭缝的沿着方向的相位差分布δφ(y)通过下式表达:Step 2: Express the phase of the left slit as The phase of the second slit is expressed as The phase difference distribution δφ(y) of the two slits along the direction is expressed by the following formula:
其中,δφ(y)为两个狭缝的沿着方向的相位分布,(x,y)为光屏上的直角坐标,a为双缝挡板6的双缝间距。Among them, δφ(y) is the phase distribution of the two slits along the direction, (x, y) is the rectangular coordinate on the light screen, and a is the double-slit spacing of the double-slit baffle 6 .
第三步:根据光学光程差理论和公式,当激光光束入射时,两个狭缝阵列的干涉强度分布通过下式表达:Step 3: According to the optical path difference theory and formula, when the laser beam is incident, the interference intensity distribution of the two slit arrays is expressed by the following formula:
当条纹是等间距的平行条纹,其中心亮纹的轨迹x通过下式表示:When the fringes are equally spaced parallel fringes, the locus x of the central bright fringes is expressed by the following formula:
其中,x为中心亮纹的轨迹,(x,y)为光屏上的直角坐标,λ为激光光束的波长,d为双缝挡板6与光屏7之间的距离。Among them, x is the trajectory of the central bright pattern, (x, y) is the rectangular coordinate on the light screen, λ is the wavelength of the laser beam, and d is the distance between the double-slit baffle 6 and the light screen 7 .
第四步:通过下式得到条纹的弯曲量Δx:Step 4: The bending amount Δx of the stripes is obtained by the following formula:
反之,根据条纹弯曲量,通过下式可求得拓扑荷数的绝对值:On the contrary, according to the amount of fringe bending, the absolute value of the topological charge can be obtained by the following formula:
其中,Δx为条纹的弯曲量,为激光光束轨道角动量的拓扑荷数的绝对值。Among them, Δx is the bending amount of the stripes, is the absolute value of the topological charge of the orbital angular momentum of the laser beam.
第五步:激光光束轨道角动量的拓扑荷数值的正负由条纹弯曲的方向确定,对同一条条纹从上到下,条纹偏向右说明拓扑荷为负值,条纹偏向左说明拓扑荷为正值。Step 5: The positive or negative value of the topological charge of the orbital angular momentum of the laser beam is determined by the direction of the fringe bending. For the same fringe from top to bottom, if the fringe deviates to the right, the topological charge is negative, and if the fringe deviates to the left, the topological charge is positive. value.
本发明具有以下有益效果:The present invention has the following beneficial effects:
为研究透反性介质对光子轨道角动量的传输特性的影响,本发明所述装置通过对拉盖尔高斯光束进行波前调制,使其携带拓扑荷为1的轨道角动量,通过一个反射增程系统使得透反性介质与激光光束充分作用,再通过双缝干涉产生弯曲条纹,使用CCD相机9与计算机10将干涉图样及其测量结果呈现在计算机上,最后通过测量结果就可以透反性介质作用后的激光光束轨道角动量的拓扑荷数及其正负,这样就能得到透反性介质对激光光束轨道角动量的影响。In order to study the influence of the transflective medium on the transmission characteristics of the photon orbital angular momentum, the device of the present invention modulates the Laguerre Gaussian beam by the wavefront, so that it carries the orbital angular momentum with a topological charge of 1, and increases through a reflection. The process system makes the transflective medium fully interact with the laser beam, and then generates curved fringes through double-slit interference. The CCD camera 9 and the
本发明提出的透反性介质对光子轨道角动量传输特性影响测量装置结构简单、操作方便,不需要对光路进行复杂的调节。本发明装置在较小的反射增程腔5内,使得光程增大百倍,不需要大范围的外场实验,这样可以简便快速地测量出透反性介质对光子轨道角动量传输特性影响。本发明能够快速高效地测量透反性介质对激光光束轨道角动量产生的影响,同时具有较高的可扩展性,通过对螺旋相位片4、双缝挡板6和激光头2的调整和匹配可以在一个较宽光谱范围内进行测量,同时,将测量的不确定度降低到6%左右。The device for measuring the influence of the transflective medium on the transmission characteristics of the photon orbital angular momentum proposed by the invention is simple in structure and convenient in operation, and does not require complicated adjustment of the optical path. The device of the present invention is located in a small reflective
附图说明Description of drawings
图1是透反性介质对光子轨道角动量影响的测量装置。Fig. 1 is a measuring device for the influence of transflective medium on photon orbital angular momentum.
图2是反射增程腔5的反射示意图。FIG. 2 is a reflection schematic diagram of the reflection
图3是激光光束携带拓扑荷为1的轨道角动量时的测量结果图Figure 3 is a graph of the measurement results when the laser beam carries the orbital angular momentum with a topological charge of 1
图中:1-驱动电源,2-激光头,3-扩束器,4-螺旋相位板,5-反射增程腔,6-双缝挡板,7-光屏,8-测量头,9-CCD相机,10-计算机。In the picture: 1-drive power supply, 2-laser head, 3-beam expander, 4-spiral phase plate, 5-reflection extender cavity, 6-double slit baffle, 7-light screen, 8-measurement head, 9 -CCD camera, 10-computer.
具体实施方式Detailed ways
以下结合具体实施例,对本发明进行了详细说明。The present invention is described in detail below with reference to specific embodiments.
具体实施例一:Specific embodiment one:
根据图1所示,本发明提供一种透反性介质对光子轨道角动量影响的测量装置,包括驱动电源1、激光头2、扩束器3、螺旋相位板4、反射增程腔5、双缝挡板6、光屏7、测量头8、CCD相机9和计算机10,除电源1和计算机10外其余均固定在支撑架上;As shown in FIG. 1 , the present invention provides a measuring device for the influence of a transflective medium on photon orbital angular momentum, including a driving power source 1, a
驱动电源1连接激光头2,激光头2的出射端正对扩束器3的入射端,扩束器3的出射端正对螺旋相位板4入射端,螺旋相位板4的出射端正对反射增程腔5的入射端,反射增程腔5的出射端正对双缝挡板6的入射端,双缝挡板6的出射端正对光屏7的正面;测量头8的测量端正对光屏7的反面,CCD相机9正对测量头8输出结果端,CCD相机9连接计算机10。The driving power supply 1 is connected to the
所述激光头2输出连续稳定的拉盖尔高斯激光的激光波长范围为380nm-760nm,光斑直径为0.5-0.9mm,横模为TEM00,偏振状态为线偏振、光束质量小于1.5。所述激光头2产生的拉盖尔高斯激光通过所述螺旋相位板4的中心位置,所述螺旋相位板4使拉盖尔高斯激光光束携带拓扑荷为1的轨道角动量。The
反射增程腔5包括5个首尾相连的反射镜,相邻的反射镜相互垂直,首尾处的两个发射镜长度为8cm-13cm,中间3个反射镜长度为20cm-30cm,反射增程腔5内可填充透反性介质,如雾、湍流大气或者冰晶等。双缝挡板6的双缝间距为0.08mm-0.4mm,双缝挡板6与光屏7之间的距离为500mm-800mm。The reflection
具体实施例二:Specific embodiment two:
本发明所述装置通过对拉盖尔高斯光束进行波前调制,使其携带拓扑荷为1的轨道角动量,通过一个反射增程系统使得透反性介质与激光光束充分作用,再通过双缝干涉产生弯曲条纹,使用CCD相机9与计算机10将干涉图样及其测量结果呈现在计算机上,最后通过测量结果就可以透反性介质作用后的激光光束轨道角动量的拓扑荷数及其正负,这样就能得到透反性介质对激光光束轨道角动量的影响。The device of the invention modulates the Laguerre Gaussian beam by the wavefront, so that it carries the orbital angular momentum with a topological charge of 1, makes the transflective medium and the laser beam fully interact through a reflection range extension system, and then passes through the double slit. The interference produces curved fringes, and the CCD camera 9 and the
基于上述原理,提出一种透反性介质对光子轨道角动量传输特性影响的测量方法,包括如下步骤:Based on the above principles, a method for measuring the influence of a transflective medium on the transmission characteristics of photon orbital angular momentum is proposed, which includes the following steps:
步骤一:向反射增程腔5内填充透反性介质,保持室温状态;Step 1: Fill the reflection-extending
步骤二:将驱动电源1接入220V交流电,激光头2产生一束连续稳定的拉盖尔高斯激光;Step 2: Connect the driving power supply 1 to 220V AC, and the
步骤二:调整激光头2、扩束器3和螺旋相位板4的中心点在同一直线上,使螺旋相位板4处发出的入射光束与反射增程腔5呈80°入射;Step 2: Adjust the center points of the
步骤三:调整双缝挡板6、光屏7、测量头8和CCD相机9的中心点在同一条直线上,使双缝挡板6与反射增程腔5处发出的出射光束呈80°出射;Step 3: Adjust the center points of the double-slit baffle 6, the light screen 7, the measuring head 8 and the CCD camera 9 to be on the same straight line, so that the double-slit baffle 6 and the outgoing beam from the reflection
步骤四:拉盖尔高斯激光分别通过扩束器3、螺旋相位板4、反射增程腔5、双缝挡板6后,通过光屏7成像,测量头8对干涉条纹进行定量测量,CCD相机9和计算机10显示干涉条纹的测量结果;Step 4: After the Laguerre Gaussian laser passes through the
步骤五:通过干涉条纹测量得到条纹弯曲的量和方向,反推透反性介质作用后的激光光束轨道角动量的拓扑荷数。Step 5: Obtain the amount and direction of fringe bending by measuring the interference fringes, and reverse the topological charge of the orbital angular momentum of the laser beam under the action of the transflective medium.
激光头2输出端产生连续稳定的拉盖尔高斯激光,输出的激光波长范围为380nm-760nm,光斑直径为0.5-0.9mm,横模为TEM00,偏振状态为线偏振、光束质量小于1.5。扩束器3可将激光束扩大10倍,经过扩束后的激光通过所述螺旋相位板4中心位置,所述螺旋相位板4将拉盖尔高斯激光进行空间调制,能够使激光光束携带拓扑荷为1的轨道角动量。The output end of the
通过步骤四得到干涉条纹及其测量结果,干涉条纹是等间距排列的弯曲条纹,条纹弯曲的量和方向会跟激光光束轨道角动量的拓扑荷数有关,同时和双缝挡板6的双缝间距、双缝挡板6与光屏7之间的距离有关,因此可以通过干涉条纹测量得到的条纹弯曲的量和方向,反推得透反性介质作用后的激光光束轨道角动量的拓扑荷数,其具体计算过程如下:The interference fringes and their measurement results are obtained through step 4. The interference fringes are curved fringes arranged at equal intervals. The amount and direction of fringe bending are related to the topological charge of the orbital angular momentum of the laser beam, and are also related to the double slits of the double slit baffle 6. The distance between the double-slit baffle 6 and the optical screen 7 is related to the distance between the two-slit baffle 6 and the optical screen 7. Therefore, the amount and direction of fringe bending can be obtained by measuring the interference fringes, and the topological charge of the orbital angular momentum of the laser beam after the action of the transflective medium can be reversed. The specific calculation process is as follows:
一个拓扑荷数为的光子轨道角动量光束波长为λ正入射双缝挡板,通过下式表示入射拉盖尔高斯激光光束的通用表达式:A topological charge is The photon orbital angular momentum beam wavelength of λ is the normal incidence double-slit baffle, and the general expression for the incident Laguerre Gaussian laser beam is expressed by the following equation:
其中,Ein为入射激光光束强度,(r,θ)为极坐标,A(r)为表征复振幅,为激光光束轨道角动量的拓扑荷数,i为虚数单位,exp(imr2)为额外的衍射项。Among them, E in is the intensity of the incident laser beam, (r, θ) is the polar coordinate, A(r) is the representative complex amplitude, is the topological charge of the orbital angular momentum of the laser beam, i is an imaginary unit, and exp(imr 2 ) is an additional diffraction term.
将左边狭缝的相位表达为第二个狭缝的相位表达为两个狭缝的沿着方向的相位差分布δφ(y)通过下式表达:Express the phase of the left slit as The phase of the second slit is expressed as The phase difference distribution δφ(y) of the two slits along the direction is expressed by the following formula:
其中,(x,y)为光屏上的直角坐标,a为双缝挡板6的双缝间距。Among them, (x, y) are the rectangular coordinates on the light screen, and a is the double-slit spacing of the double-slit baffle 6 .
根据光学光程差理论和公式,当激光光束入射时,两个狭缝阵列的干涉强度分布通过下式表达:According to the optical path difference theory and formula, when the laser beam is incident, the interference intensity distribution of the two slit arrays is expressed by the following formula:
其中,(x,y)为光屏上的直角坐标,λ为激光光束的波长,d为双缝挡板6与光屏7之间的距离。Among them, (x, y) are the rectangular coordinates on the light screen, λ is the wavelength of the laser beam, and d is the distance between the double-slit baffle 6 and the light screen 7 .
因此当条纹是等间距的平行条纹,其中心亮纹的轨迹x通过下式表示:Therefore, when the fringes are equally spaced parallel fringes, the locus x of the central bright fringes is expressed by the following formula:
通过下式得到条纹的弯曲量Δx:The bending amount Δx of the stripes is obtained by the following formula:
其中,为激光光束轨道角动量的拓扑荷数的绝对值。in, is the absolute value of the topological charge of the orbital angular momentum of the laser beam.
反之,根据条纹弯曲量,通过下式可求得拓扑荷数的绝对值:On the contrary, according to the amount of fringe bending, the absolute value of the topological charge can be obtained by the following formula:
拓扑荷的正负由条纹弯曲的方向确定,对同一条条纹从上到下,条纹偏向右说明拓扑荷为负值,条纹偏向左说明拓扑荷为正值。The positive and negative of the topological charge is determined by the direction of the stripe bending. For the same stripe from top to bottom, if the stripe deviates to the right, the topological load is negative, and if the stripe deviates to the left, the topological load is positive.
具体实施例三:Specific embodiment three:
驱动电源1产生高性能自动引燃恒流电源,为激光头2供电。激光头2输出端产生连续稳定的拉盖尔高斯激光,输出的激光波长范围为632.8nm,光斑直径为0.68mm,横模为TEM00,偏振状态为线偏振、光束质量小于1.5。The driving power supply 1 generates a high-performance automatic ignition constant current power supply to supply power to the
扩束器3可将激光束扩大10倍,经过扩束后的激光通过所述螺旋相位板4中心位置。螺旋相位板4将投射的出射光的光束赋予螺旋形相位分布,使其携带一定拓扑荷的轨道角动量,所述螺旋相位板4将拉盖尔高斯激光进行空间调制,能够使激光光束携带拓扑荷为1的轨道角动量,激光光束通过透反性介质后,测量结果如图3所示。The
如图2所示,螺旋相位板4处发出的入射光束与反射增程腔5呈80°入射,双缝挡板6与反射增程腔5处发出的出射光束呈80°出射,反射增程腔5使拉盖尔高斯激光通过长距离的透反性介质区域,通过不断地反射,增加拉盖尔高斯激光与透反性介质的作用距离。本发明装置在20cm*20cm的腔内使得光程增大到1021cm,双缝挡板6是带有两条狭缝的挡板,可产生两束相干的激光光束。光屏7对双缝干涉结果进行成像,测量头8对成像结果进行定量测量,CCD相机9将光线转变为电荷,通过模数转换器芯片转换成数字信号,通过计算机10呈现测量结果,实现半自动化操作。As shown in Fig. 2, the incident beam from the spiral phase plate 4 is incident at 80° to the reflection
本发明装置结构简单、操作方便,不需要对光路进行复杂的调节,本发明装置在较小的反射增程腔5内,使得光程增大百倍,不需要大范围的外场实验,这样可以简便快速地测量出透反性介质对光子轨道角动量传输特性影响。本发明能够快速高效地测量透反性介质对激光光束轨道角动量产生的影响,同时具有较高的可扩展性,通过对螺旋相位板4、双缝挡板6和激光头2的调整和匹配可以在一个较宽光谱范围内进行测量,同时,本发明将测量的不确定度降低到6%左右。The device of the present invention is simple in structure and convenient to operate, and does not require complex adjustment of the optical path. The device of the present invention is located in a small reflective
以上所述仅是透反性介质对光子轨道角动量影响的测量装置及方法的优选实施方式,透反性介质对光子轨道角动量影响的测量装置及方法的保护范围并不仅局限于上述实施例,凡属于思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的技术人员来说,在不脱离本发明原理前提下的若干改进和变化,这些改进和变化也应视为本发明的保护范围。The above are only preferred embodiments of the device and method for measuring the influence of a transflective medium on the photon orbital angular momentum, and the protection scope of the device and method for measuring the influence of a transflective medium on the photon orbital angular momentum is not limited to the above-mentioned embodiments. , all the technical solutions under the idea belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and changes without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811398444.XA CN109525310B (en) | 2018-11-22 | 2018-11-22 | Apparatus and method for measuring the influence of transflective medium on photon orbital angular momentum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811398444.XA CN109525310B (en) | 2018-11-22 | 2018-11-22 | Apparatus and method for measuring the influence of transflective medium on photon orbital angular momentum |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109525310A CN109525310A (en) | 2019-03-26 |
CN109525310B true CN109525310B (en) | 2020-05-26 |
Family
ID=65778464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811398444.XA Active CN109525310B (en) | 2018-11-22 | 2018-11-22 | Apparatus and method for measuring the influence of transflective medium on photon orbital angular momentum |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109525310B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110796936A (en) * | 2019-11-13 | 2020-02-14 | 中电科仪器仪表有限公司 | Electromagnetic field and electromagnetic wave teaching experimental device |
JP7468406B2 (en) * | 2021-02-26 | 2024-04-16 | 株式会社島津製作所 | Fourier transform infrared spectrophotometer |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101625306B (en) * | 2009-08-03 | 2011-01-05 | 浙江大学 | Device for measuring gas concentration |
US9784673B2 (en) * | 2014-10-16 | 2017-10-10 | Nec Corporation | Laser spectroscopic sensor using orbital angular momentum |
CN106289526B (en) * | 2016-07-21 | 2017-11-17 | 哈尔滨工业大学 | Photon trajectory angular motion system for measuring quantity and method based on wave-front conversion method |
CN108712216B (en) * | 2018-07-21 | 2024-01-12 | 中南民族大学 | Space phase compensation system and method in orbital angular momentum optical communication |
CN208723908U (en) * | 2018-07-21 | 2019-04-09 | 中南民族大学 | A kind of space phase compensation device in orbital angular momentum optic communication |
-
2018
- 2018-11-22 CN CN201811398444.XA patent/CN109525310B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109525310A (en) | 2019-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7372968B2 (en) | Method for determining angles by confocal optical protractor and structured light illumination | |
CN109343077B (en) | Liquid crystal phased array ghost imaging system and imaging method thereof | |
CN103308142B (en) | A kind of speed of ultrasonic travelling wave in liquid and method and device of frequency measured | |
WO2021093259A1 (en) | Arbitrary singularity beam order detection device and method | |
CN101614523B (en) | A Multi-beam Long Track Interferometer for Detecting Glancing Cylindrical Off-Axis Aspheric Mirrors | |
CN109525310B (en) | Apparatus and method for measuring the influence of transflective medium on photon orbital angular momentum | |
CN102620830B (en) | Foundation airglow imaging interferometer and method thereof for detecting wind speed and temperature of upper atmosphere | |
CN114252816B (en) | High-sensitivity magnetic field measuring device and method based on Faraday rotation | |
CN110132174B (en) | Angel type lobster eye X-ray lens surface type testing device based on stripe reflection method | |
CN112986186A (en) | Device for detecting angular structure of obstacle by using fractional spectrum of orbital angular momentum of drifting light beam | |
US3832059A (en) | Flow velocity measuring arrangement utilizing laser doppler probe | |
CN109269636B (en) | Generation of an astigmatic elliptical beam and a method for measuring its orbital angular momentum | |
Chu et al. | Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry | |
CN111352126A (en) | Single-pixel imaging method based on atmospheric scattering medium modulation | |
CN216013145U (en) | A device for detecting the angular structure of obstacles using orbital angular momentum fractional spectra of drifting beams | |
CN114690087B (en) | Sensitivity-adjustable plasma magnetic field optical measurement device and method | |
CN110595621A (en) | Fully polarized video imaging device using reflective phase retarder array | |
CN106770335B (en) | A Phase Defect Detection System and Method Based on Reflective Point Diffraction Interferometer | |
CN109443237B (en) | A long-distance structured light three-dimensional measurement device | |
CN103852809A (en) | Foundation F-P wind measuring interferometer | |
CN109539998A (en) | A kind of nanometer gap measuring device and method based on light-intensity test | |
CN103336370A (en) | Optical structure equivalent to pi-step phase plate in diffractive long-term contourgraph | |
CN109931885A (en) | A kind of device of precise measurement light beam incidence angle | |
CN109029742B (en) | A kind of detection device and method of vortex laser | |
CN103543442B (en) | M-Z type electropical scanning Orthoptic synthetic aperture laser imaging radar emission coefficient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |