CN109509817A - 一种发光二极管外延片及其制备方法 - Google Patents
一种发光二极管外延片及其制备方法 Download PDFInfo
- Publication number
- CN109509817A CN109509817A CN201811287337.XA CN201811287337A CN109509817A CN 109509817 A CN109509817 A CN 109509817A CN 201811287337 A CN201811287337 A CN 201811287337A CN 109509817 A CN109509817 A CN 109509817A
- Authority
- CN
- China
- Prior art keywords
- layer
- bgan
- algan
- ingan
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 99
- 230000004888 barrier function Effects 0.000 claims abstract description 92
- 239000002131 composite material Substances 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 230000000903 blocking effect Effects 0.000 claims abstract description 16
- 238000003780 insertion Methods 0.000 claims abstract 13
- 230000037431 insertion Effects 0.000 claims abstract 13
- 238000000034 method Methods 0.000 claims description 9
- 230000006798 recombination Effects 0.000 claims description 7
- 238000005215 recombination Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims 2
- 230000002687 intercalation Effects 0.000 abstract 1
- 238000009830 intercalation Methods 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 28
- 229910002601 GaN Inorganic materials 0.000 description 24
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 24
- 239000000470 constituent Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000000137 annealing Methods 0.000 description 9
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 229910001751 gemstone Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004047 hole gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种发光二极管外延片及其制备方法,属于发光二极管技术领域。一种发光二极管外延片,该外延片包括:衬底、以及顺次层叠在衬底上的缓冲层、未掺杂GaN层、N型掺杂GaN层、多量子阱层、电子阻挡层、P型掺杂GaN层、及P型接触层,该外延片还包括BGaN插入层,BGaN插入层位于多量子阱层和电子阻挡层之间,多量子阱层包括若干层叠的阱垒层,阱垒层包括InGaN量子阱和AlGaN量子垒,靠近N型掺杂GaN层的阱垒层中的InGaN量子阱与N型掺杂GaN层接触,靠近电子阻挡层的阱垒层中的AlGaN量子垒与BGaN插入层接触,电子阻挡层包括多个层叠的复合层,复合层包括第一复合子层,第一复合子层包括第一AlGaN层,靠近多量子阱层的复合层中的第一AlGaN层与BGaN插入层接触。
Description
技术领域
本发明涉及发光二极管技术领域,特别涉及一种发光二极管外延片及其制备方法。
背景技术
GaN(氮化镓)基LED(Light Emitting Diode,发光二极管)一般包括外延片和在外延片上制备的电极。外延片通常包括:衬底、以及顺次层叠在衬底上的缓冲层、未掺杂GaN层、N型掺杂层、MQW(Multiple Quantum Well,多量子阱)层、电子阻挡层、P型GaN层和P型接触层。当有电流通过时,N型掺杂层等N型区的电子和P型GaN层等P型区的空穴进入MQW有源区并且复合,发出可见光。常规的MQW层由InGaN量子阱/AlGaN量子垒超晶格组成。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
MQW层中靠近电子阻挡层的AlGaN量子垒与电子阻挡层之间存在较大的晶格失配,导致AlGaN量子垒与电子阻挡层之间产生较多界面极化物,界面极化物将降低LED的发光效率。
发明内容
本发明实施例提供了一种发光二极管外延片及其制备方法,能够减少MQW层中靠近电子阻挡层的AlGaN量子垒与电子阻挡层之间存在的晶格失配。所述技术方案如下:
第一方面,提供了一种发光二极管外延片,所述外延片包括:衬底、以及顺次层叠在所述衬底上的缓冲层、未掺杂GaN层、N型掺杂GaN层、多量子阱层、电子阻挡层、P型掺杂GaN层、及P型接触层,所述外延片还包括BGaN插入层,所述BGaN插入层位于所述多量子阱层和所述电子阻挡层之间,所述多量子阱层包括若干层叠的阱垒层,所述阱垒层包括InGaN量子阱和AlGaN量子垒,靠近所述N型掺杂GaN层的阱垒层中的InGaN量子阱与所述N型掺杂GaN层接触,靠近所述电子阻挡层的阱垒层中的AlGaN量子垒与所述BGaN插入层接触,所述电子阻挡层包括多个层叠的复合层,所述复合层包括第一复合子层,所述第一复合子层包括第一AlGaN层,靠近所述多量子阱层的复合层中的第一AlGaN层与所述BGaN插入层接触。
可选地,所述BGaN插入层的厚度为2.0~4.0nm。
可选地,所述BGaN插入层包括层叠在所述多量子阱层上的第一BGaN层、第二BGaN层和第三BGaN层,所述第一BGaN层、所述第二BGaN层和所述第三BGaN层中的B组分含量逐渐递增。
可选地,所述第一BGaN层、所述第二BGaN层和所述第三BGaN层分别为Bx1Ga1-x1N层、Bx2Ga1-x2N层、以及Bx3Ga1-x3N层,0<x1<x2<x3<0.5。
可选地,所述第一BGaN层和所述第二BGaN层的厚度相同,所述第三BGaN层的厚度是所述第一BGaN层的厚度的2倍。
可选地,所述BGaN插入层为ByGa1-yN层,0<y<0.5。
可选地,所述第一复合子层还包括层叠在所述第一AlGaN层上的第一InGaN层。
可选地,所述复合层还包括顺次层叠在所述第一复合子层上的第二复合子层和第三复合子层,所述第二复合子层包括第二AlGaN层和第二InGaN层,所述第三复合子层包括第三AlGaN层和第三InGaN层,
所述第一InGaN层、所述第二InGaN层和所述第三InGaN层中,所述第一InGaN层的In组分含量最少,所述第二InGaN层的In组分含量最多。
可选地,所述第一AlGaN层、所述第二AlGaN层和所述第三AlGaN层均为AlaGa1-aN层,0.1<a<0.5,所述第一InGaN层、所述第二InGaN层和所述第三InGaN层分别为Inb1Ga1-b1N层、Inb2Ga1-b2N层、以及Inb3Ga1-b3N层,0<b1<b3<b2<0.6。
第二方面,提供了一种发光二极管外延片的制备方法,所述方法包括:
提供衬底;
在所述衬底上顺次沉积缓冲层、未掺杂GaN层、N型掺杂GaN层、多量子阱层、BGaN插入层、电子阻挡层、P型掺杂GaN层、及P型接触层,所述多量子阱层包括若干层叠的阱垒层,所述阱垒层包括InGaN量子阱和AlGaN量子垒,靠近所述N型掺杂GaN层的阱垒层中的InGaN量子阱与所述N型掺杂GaN层接触,靠近所述电子阻挡层的阱垒层中的AlGaN量子垒与所述BGaN插入层接触,所述电子阻挡层包括多个层叠的复合层,所述复合层包括第一复合子层,所述第一复合子层包括第一AlGaN层,靠近所述多量子阱层的复合层中的第一AlGaN层与所述BGaN插入层接触。
本发明实施例提供的技术方案带来的有益效果是:
通过BGaN插入层位于多量子阱层和电子阻挡层之间,电子阻挡层包括多个层叠的复合层,BGaN插入层与靠近电子阻挡层的阱垒层中的AlGaN量子垒接触,并且,BGaN插入层又与靠近多量子阱层的复合层中的第一AlGaN层接触,这样,在多量子阱层的最后一个AlGaN量子垒与第一AlGaN层之间插入BGaN层,BGaN层的晶格常数介于AlGaN量子垒与第一AlGaN层之间,能够使外延片从多量子阱层的最后一个AlGaN量子垒到第一AlGaN层以相近的形态生长,减小了因晶格失配而产生的极化场,提高了LED的发光效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种发光二极管外延片的结构示意图;
图2是本发明实施例提供的第一种结构的BGaN插入层的结构示意图;
图3是本发明实施例提供的电子阻挡层的结构示意图;
图4是本发明实施例提供的一种发光二极管外延片的制备方法的流程图;
图5是本发明实施例提供的一种发光二极管外延片的制备方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是本发明实施例提供的一种发光二极管外延片,参见图1,该外延片包括:衬底1、以及顺次层叠在衬底1上的缓冲层2、未掺杂GaN层3、N型掺杂GaN层4、多量子阱层5、电子阻挡层7、P型掺杂GaN层8、及P型接触层9。该外延片还包括BGaN(氮化硼镓)插入层6。BGaN插入层6位于多量子阱层5和电子阻挡层7之间。多量子阱层5包括若干层叠的阱垒层50。阱垒层50包括InGaN量子阱51和AlGaN量子垒52。靠近N型掺杂GaN层5的阱垒层50中的InGaN量子阱51与N型掺杂GaN层5接触,靠近电子阻挡层7的阱垒层50中的AlGaN量子垒52与BGaN插入层6接触。电子阻挡层7包括多个层叠的复合层70,复合层70包括第一复合子层71(参见图3)。第一复合子层71包括第一AlGaN层711(参见图3),靠近多量子阱层5的复合层70中的第一AlGaN层71与BGaN插入层6接触。
通过BGaN插入层6位于多量子阱层5和电子阻挡层7之间,电子阻挡层7包括多个层叠的复合层70,BGaN插入层6与靠近电子阻挡层7的阱垒层50中的AlGaN量子垒52接触,并且,BGaN插入层6又与靠近多量子阱层5的复合层70中的第一AlGaN层711接触,这样,在多量子阱层5的最后一个AlGaN量子垒52与第一AlGaN层711之间插入BGaN层6,BGaN层6的晶格常数介于AlGaN量子垒52与第一AlGaN层711之间,能够使外延片从多量子阱层5的最后一个AlGaN量子垒52到第一AlGaN层711以相近的形态生长,减小了因晶格失配而产生的极化场,提高了LED的发光效率。
LED在工作时,存在droop效应。droop效应是指,随着注入的电流密度增大,LED的发光效率先达到一个最大值,当电流密度继续时,发光效率会出现严重下降。针对此,一般可以通过改善量子阱层中电子空穴的分布及辐射复合效率,来减小droop效应,从而提高LED的发光效率。在本实施例中,由于BGaN层6中BN的晶格常数比AlN小,BN的禁带宽度比AlN大,因此,BGaN比AlGaN具有更高的势垒高度,这样,BGaN层6入能够提高有效势垒高度,对电子阻挡作用更强,抑制多量子阱层5中的电子溢流到P型区中,可以改善LED的droop效应,从而提高发光二极管的发光效率。
示例性地,BGaN插入层6的厚度为2.0~4.0nm。BGaN插入层比较薄,一方面能够节省材料,降低成本开支,另一方面,经试验表明,当BGaN插入层6的厚度为2.0~4.0nm时,LED的发光效率最高。
本发明实施例提供两种结构的BGaN插入层6。
图2为第一种结构的BGaN插入层6的结构示意图。参见图2,BGaN插入层6包括层叠在多量子阱层上的第一BGaN层61、第二BGaN层62和第三BGaN层63,第一BGaN层61、第二BGaN层62和第三BGaN层63中的B组分含量逐渐递增。
通过调整BGaN插入层6中的B组分含量,靠近多量子阱层5的最后一个AlGaN量子垒52的第一BGaN层61的B组分含量少,这样,第一BGaN层61的晶格常数与最后一个AlGaN量子垒52的晶格常数更加接近,使得靠近电子阻挡层7中第一AlGaN层711的第三BGaN层63的B组分含量多,这样,第三BGaN层63的晶格常数与第一AlGaN层711的晶格常数更加接近,使得第二BGaN层62的晶格常数介于最后一个AlGaN量子垒52的晶格常数与第一AlGaN层711的晶格常数之间,使得外延从最后一个AlGaN量子垒52到电子阻挡层7以相近的形态生长,从而可以大幅减小最后一个AlGaN量子垒52与电子阻挡层7之间的晶格失配度,提高晶体生长质量,提高LED的发光效率。
示例性地,第一BGaN层、第二BGaN层和第三BGaN层分别为Bx1Ga1-x1N层、Bx2Ga1-x2N层、以及Bx3Ga1-x3N层,0<x1<x2<x3<0.5。
示例性地,x1为0.1,x2为0.2,x3为0.3,或者,x1为0.2,x2为0.3,x3为0.4,或者,x1为0.1,x2为0.2,x3为0.4。
经试验表明,当0<x1<x2<x3<0.5时,LED的发光效率最高。
示例性地,第一BGaN层和第二BGaN层的厚度相同,第三BGaN层的厚度是第一BGaN层的厚度的2倍。
通过由于第三BGaN层63含有更高的B组分,具有更高的势垒高度,将第三BGaN层63的厚度设为最厚,增大整个第三BGaN层63中B组分含量,能够达到进一步阻挡电子溢流的效果,优化有源区的载流子分布,从而有利于载流子的复合效率。
第二种结构的BGaN插入层6为ByGa1-yN层,0<y<0.5。
图3为电子阻挡层的结构示意图。示例性地,参见图3,第一复合子层71还包括层叠在所述第一AlGaN层711上的第一InGaN层712。
第一InGaN层712为InGaN层,相比于传统的AlGaN电子阻挡层,通过在电子阻挡层中设置InGaN层,能够在AlGaN和InGaN双异质结界面能产生二维电子气和二维空穴气,提高载流子的复合效率。
示例性地,参见图3,所述复合层70还包括顺次层叠在第一复合子层71上的第二复合子层72和第三复合子层73。所述第二复合子层72包括第二AlGaN层721和第二InGaN层722,所述第三复合子层73包括第三AlGaN层731和第三InGaN层732。第一InGaN层712、第二InGaN层722和第三InGaN层732中,第一InGaN层712的In组分含量最少,第二InGaN层722的In组分含量最多。
通过改变电子阻挡层7不同子层中In组分含量来改变电子、空穴的迁移速率,由于电子的迁移速率比空穴快,且电子在InGaN材料的InN中的迁移速率更快,第一InGaN层712中的In组分含量最少,能够降低电子的溢流速率,而空穴在InGaN材料的InN中的迁移速率非常低,第三InGaN层732的In组分含量较少,有利于提高空穴的迁移速率,最终改善电子、空穴的辐射复合效率。
示例性地,第一AlGaN层711、第二AlGaN层721和第三AlGaN层731均为AlaGa1-aN层,0.1<a<0.5。第一InGaN层712、第二InGaN层722和第三InGaN层732分别为Inb1Ga1-b1N层、Inb2Ga1-b2N层、以及Inb3Ga1-b3N层,0<b1<b3<b2<0.6。
示例性地,b1为0.1,b3为0.2,b2为0.3,或者,b1为0.2,b3为0.3,b2为0.4,或者,b1为0.3,b3为0.4,b2为0.5。
经试验表明,当0.1<a<0.5,且0<b1<b3<b2<0.6时,LED的发光效果最佳。
示例性地,复合层70的数量为2-4。经试验表明,当复合层70的数量为2-4时,LED的发光效果最佳。
示例性地,电子阻挡层7的厚度为10-100nm,AlaGa1-aN层的厚度为1-5nm,Inb1Ga1- b1N层、Inb2Ga1-b2N层、以及Inb3Ga1-b3N层的厚度分别为0.5-5nm。
示例性地,该发光二极管外延片可以是紫外发光二极管外延片。紫外发光二极管外延片中:衬底1可以是蓝宝石衬底。缓冲层2可以是AlN缓冲层。AlN缓冲层的厚度可以是15-35nm。未掺杂GaN层3的厚度可以是1.0-4.0微米,比如2.5微米。N型掺杂GaN层4的厚度可以是1.0-5.0微米,比如3微米。InGaN量子阱51的厚度可以是3nm,AlGaN量子垒52的厚度可以是8-20nm。P型掺杂GaN层8的厚度可以是100nm-500nm。P型接触层9的厚度可以是5-300nm。
本发明实施例中,通过在多量子阱层的最后一个AlGaN量子垒与电子阻挡层之间插入一个Bx1Ga1-x1N/Bx2Ga1-x2N/Bx3Ga1-x3N薄层,并且搭配电子阻挡层中各个复合子层含有不同的In组分,BGaN插入层能够增加有效势垒高度,抑制电子从有源区溢出到P型区,传统的多量子阱层的最后一个AlGaN量子垒与电子阻挡层中的AlGaN层晶格失配较大,易在其界面形成极化物,而BGaN插入层通过调整B组分含量可以减小最后一个AlGaN量子垒与电子阻挡层之间的晶格失配度,搭配调整电子阻挡层子层中In组分含量,进一步改善电子和空穴的辐射复合效率,可以有效改善droop效应,提高光输出功率和内量子效率。
图4示出了本发明实施例提供的一种发光二极管外延片的制备方法。发光二极管外延片可以是紫外发光二极管外延片。参见图4,该方法流程包括如下步骤。
步骤11、提供衬底。
示例性地,衬底可以是(0001)晶向蓝宝石衬底(Al2O3)。
步骤12、在衬底上顺次沉积缓冲层、未掺杂GaN层、N型掺杂GaN层、多量子阱层、BGaN插入层、电子阻挡层、P型掺杂GaN层、及P型接触层。
其中,多量子阱层包括若干层叠的阱垒层,阱垒层包括InGaN量子阱和AlGaN量子垒,靠近N型掺杂GaN层的阱垒层中的InGaN量子阱与N型掺杂GaN层接触,靠近电子阻挡层的阱垒层中的AlGaN量子垒与BGaN插入层接触,电子阻挡层包括多个层叠的复合层,复合层包括第一复合子层,第一复合子层包括第一AlGaN层,靠近多量子阱层的复合层中的第一AlGaN层与BGaN插入层接触。
示例性地,参见图5,步骤12可以包括如下步骤121-步骤129。
步骤121、对衬底进行退火处理。
其中,退火处理方式可以包括:将衬底放置到PVD(Physical Vapor Deposition,物理气相沉积)设备的反应腔内,并对反应腔进行抽真空,抽真空的同时开始对蓝宝石衬底进行加热升温。当本底真空抽至低于1*10-7Torr时,将加热温度稳定在350~750℃,对蓝宝石衬底进行烘烤,烘烤时间为2~12分钟。
步骤122、在衬底上沉积缓冲层。
其中,缓冲层可以是AlN缓冲层。示例性地,采用PVD方法生长AlN缓冲层,PVD方法包括:将PVD设备的反应腔内温度调整至400-700℃,调整溅射功率为3000~5000W,调整压力为1~10torr,生长15至35nm厚的AlN缓冲层。
完成缓冲层的生长之后,将衬底从PVD设备取出,放置到MOCVD(Metal-organicChemical Vapor Deposition,金属有机化合物化学气相沉淀)设备中反应室内,以便采用MOCVD方法沉积外延层中的未掺杂GaN层、N型掺杂GaN层、多量子阱层、BGaN插入层、电子阻挡层、P型掺杂GaN层、及P型接触层。在生长未掺杂GaN层之前,可以先对衬底进行退火处理。退火温度可以是1000℃-1200℃,退火压力可以为150Torr-500Torr,退火时间在5分钟至10分钟之间。
步骤123、在缓冲层上沉积未掺杂GaN层。
示例性地,未掺杂GaN层的生长温度为1000℃-1100℃,生长厚度在1至4.0微米之间,生长压力在100Torr至300Torr之间。
步骤124、在未掺杂GaN层上沉积N型掺杂GaN层。
示例性地,N型掺杂GaN层的厚度在1.0-5微米之间,生长温度在1000℃-1200℃,生长压力在100Torr至300Torr之间,Si掺杂浓度在1018cm-3-1019cm-3之间。
步骤125、在N型掺杂GaN层上沉积多量子阱层。
其中,多量子阱层包括若干层叠的阱垒层。示例性地,阱垒层的数量为6~12。阱垒层包括InGaN量子阱和AlGaN量子垒。靠近N型掺杂GaN层的阱垒层中的InGaN量子阱与N型掺杂GaN层接触。
示例性地,InGaN量子阱的生长温度范围为780℃~850℃,压力范围在100Torr与300Torr之间。阱层的整体生长温度相同,均为低温生长。InGaN量子阱的厚度为3nm左右。InGaN量子阱可以是IncGa1-cN层,0<c<0.5。
示例性地,AlGaN量子垒的生长温度在820℃-920℃,生长压力在100Torr到300Torr之间。AlGaN量子垒的厚度在8nm至20nm间。AlGaN量子垒为AldGa1-dN层,0<d<0.5。
步骤126、在多量子阱层上沉积BGaN插入层。
其中,靠近电子阻挡层的阱垒层中的AlGaN量子垒与BGaN插入层接触。
示例性地,BGaN插入层的厚度在2.0-4.0nm之间,生长温度为850℃-1000℃,生长压力为100Torr-300Torr。
在第一种可选的实施方式中,BGaN插入层包括层叠在多量子阱层上的第一BGaN层、第二BGaN层和第三BGaN层,第一BGaN层、第二BGaN层和第三BGaN层中的B组分含量逐渐递增。
示例性地,第一BGaN层、第二BGaN层和第三BGaN层分别为Bx1Ga1-x1N层、Bx2Ga1-x2N层、以及Bx3Ga1-x3N层,0<x1<x2<x3<0.5。
示例性地,第一BGaN层和第二BGaN层的厚度相同,第三BGaN层的厚度是第一BGaN层的厚度的2倍。
在第二种可选的实施方式中,BGaN插入层为ByGa1-yN层,0<y<0.5。
BGaN插入层更为具体的结构可以参见图1示出的实施例,在此不再赘述。
步骤127、在BGaN插入层上沉积电子阻挡层。
示例性地,电子阻挡层包括多个层叠的复合层,复合层包括第一复合子层,第一复合子层包括第一AlGaN层,靠近多量子阱层的复合层中的第一AlGaN层与BGaN插入层接触。
示例性地,第一复合子层还包括层叠在所述第一AlGaN层上的第一InGaN层。
示例性地,所述复合层还包括顺次层叠在第一复合子层上的第二复合子层和第三复合子层,所述第二复合子层包括第二AlGaN层和第二InGaN层,所述第三复合子层包括第三AlGaN层和第三InGaN层。第一InGaN层、第二InGaN层和第三InGaN层中,第一InGaN层的In组分含量最少,第二InGaN层的In组分含量最多。
示例性地,第一AlGaN层、第二AlGaN层和第三AlGaN层均为AlaGa1-aN层,0.1<a<0.5;第一InGaN层、第二InGaN层和第三InGaN层分别为Inb1Ga1-b1N层、Inb2Ga1-b2N层、以及Inb3Ga1-b3N层,0<b1<b3<b2<0.6。
AlaGa1-aN层的厚度为1-5nm,Inb1Ga1-b1N层、Inb2Ga1-b2N层、以及Inb3Ga1-b3N层的厚度分别为0.5-5nm。
示例性地,复合层的数量可以是2~4。复合层的生长温度在850℃与1050℃之间,生长压力为100Torr与500Torr之间。电子阻挡层的生长总厚度在10nm至100nm之间。
电子阻挡层更为具体的结构可以参见图1示出的实施例,在此不再赘述。
步骤128、在电子阻挡层上沉积P型掺杂GaN层。
示例性地,P型掺杂GaN层的生长温度在850℃与1080℃之间,生长压力为200Torr与600Torr之间,生长厚度在100nm至500nm之间。
步骤129、在P型掺杂GaN层上沉积P型接触层。
示例性地,P型接触层的厚度为5nm至300nm之间,生长温度区间为850℃-1050℃,生长压力区间为100Torr-600Torr。
示例性地,P型接触层生长结束后,将MOCVD设备的反应腔内温度降低,在氮气气氛中退火处理,退火温度区间为650℃-850℃,退火处理5到15分钟,降至室温,完成外延生长。
本发明实施例中,通过在多量子阱层的最后一个AlGaN量子垒与电子阻挡层之间插入一个Bx1Ga1-x1N/Bx2Ga1-x2N/Bx3Ga1-x3N薄层,并且搭配电子阻挡层中各个复合子层含有不同的In组分,BGaN插入层能够增加有效势垒高度,抑制电子从有源区溢出到P型区,传统的多量子阱层的最后一个AlGaN量子垒与电子阻挡层中的AlGaN层晶格失配较大,易在其界面形成极化物,而BGaN插入层通过调整B组分含量可以减小最后一个AlGaN量子垒与电子阻挡层之间的晶格失配度,搭配调整电子阻挡层子层中In组分含量,进一步改善电子和空穴的辐射复合效率,可以有效改善droop效应,提高光输出功率和内量子效率。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种发光二极管外延片,所述外延片包括:衬底、以及顺次层叠在所述衬底上的缓冲层、未掺杂GaN层、N型掺杂GaN层、多量子阱层、电子阻挡层、P型掺杂GaN层、及P型接触层,其特征在于,所述外延片还包括BGaN插入层,所述BGaN插入层位于所述多量子阱层和所述电子阻挡层之间,所述多量子阱层包括若干层叠的阱垒层,所述阱垒层包括InGaN量子阱和AlGaN量子垒,靠近所述N型掺杂GaN层的阱垒层中的InGaN量子阱与所述N型掺杂GaN层接触,靠近所述电子阻挡层的阱垒层中的AlGaN量子垒与所述BGaN插入层接触,所述电子阻挡层包括多个层叠的复合层,所述复合层包括第一复合子层,所述第一复合子层包括第一AlGaN层,靠近所述多量子阱层的复合层中的第一AlGaN层与所述BGaN插入层接触。
2.根据权利要求1所述的发光二极管外延片,其特征在于,所述BGaN插入层的厚度为2.0~4.0nm。
3.根据权利要求1所述的发光二极管外延片,其特征在于,所述BGaN插入层包括层叠在所述多量子阱层上的第一BGaN层、第二BGaN层和第三BGaN层,所述第一BGaN层、所述第二BGaN层和所述第三BGaN层中的B组分含量逐渐递增。
4.根据权利要求3所述的发光二极管外延片,其特征在于,所述第一BGaN层、所述第二BGaN层和所述第三BGaN层分别为Bx1Ga1-x1N层、Bx2Ga1-x2N层、以及Bx3Ga1-x3N层,0<x1<x2<x3<0.5。
5.根据权利要求4所述的发光二极管外延片,其特征在于,所述第一BGaN层和所述第二BGaN层的厚度相同,所述第三BGaN层的厚度是所述第一BGaN层的厚度的2倍。
6.根据权利要求1所述的发光二极管外延片,其特征在于,所述BGaN插入层为ByGa1-yN层,0<y<0.5。
7.根据权利要求1所述的发光二极管外延片,其特征在于,所述第一复合子层还包括层叠在所述第一AlGaN层上的第一InGaN层。
8.根据权利要求7所述的发光二极管外延片,其特征在于,所述复合层还包括顺次层叠在所述第一复合子层上的第二复合子层和第三复合子层,所述第二复合子层包括第二AlGaN层和第二InGaN层,所述第三复合子层包括第三AlGaN层和第三InGaN层,
所述第一InGaN层、所述第二InGaN层和所述第三InGaN层中,所述第一InGaN层的In组分含量最少,所述第二InGaN层的In组分含量最多。
9.根据权利要求8所述的发光二极管外延片,其特征在于,所述第一AlGaN层、所述第二AlGaN层和所述第三AlGaN层均为AlaGa1-aN层,0.1<a<0.5,所述第一InGaN层、所述第二InGaN层和所述第三InGaN层分别为Inb1Ga1-b1N层、Inb2Ga1-b2N层、以及Inb3Ga1-b3N层,0<b1<b3<b2<0.6。
10.一种发光二极管外延片的制备方法,其特征在于,所述方法包括:
提供衬底;
在所述衬底上顺次沉积缓冲层、未掺杂GaN层、N型掺杂GaN层、多量子阱层、BGaN插入层、电子阻挡层、P型掺杂GaN层、及P型接触层,所述多量子阱层包括若干层叠的阱垒层,所述阱垒层包括InGaN量子阱和AlGaN量子垒,靠近所述N型掺杂GaN层的阱垒层中的InGaN量子阱与所述N型掺杂GaN层接触,靠近所述电子阻挡层的阱垒层中的AlGaN量子垒与所述BGaN插入层接触,所述电子阻挡层包括多个层叠的复合层,所述复合层包括第一复合子层,所述第一复合子层包括第一AlGaN层,靠近所述多量子阱层的复合层中的第一AlGaN层与所述BGaN插入层接触。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811287337.XA CN109509817B (zh) | 2018-10-31 | 2018-10-31 | 一种发光二极管外延片及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811287337.XA CN109509817B (zh) | 2018-10-31 | 2018-10-31 | 一种发光二极管外延片及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109509817A true CN109509817A (zh) | 2019-03-22 |
CN109509817B CN109509817B (zh) | 2021-10-08 |
Family
ID=65747168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811287337.XA Active CN109509817B (zh) | 2018-10-31 | 2018-10-31 | 一种发光二极管外延片及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109509817B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113284996A (zh) * | 2021-03-31 | 2021-08-20 | 华灿光电(浙江)有限公司 | 发光二极管外延片及其制备方法 |
CN114551663A (zh) * | 2022-02-23 | 2022-05-27 | 聚灿光电科技(宿迁)有限公司 | 一种led外延结构及其制备方法 |
CN114824005A (zh) * | 2022-06-30 | 2022-07-29 | 江西兆驰半导体有限公司 | 一种GaN基发光二极管的外延结构及其制备方法 |
CN115036402A (zh) * | 2022-08-12 | 2022-09-09 | 江苏第三代半导体研究院有限公司 | 诱导增强型Micro-LED同质外延结构及其制备方法 |
CN115064622A (zh) * | 2022-08-18 | 2022-09-16 | 江西兆驰半导体有限公司 | 一种复合N型GaN层、发光二极管外延片及其制备方法 |
CN115498079A (zh) * | 2021-06-18 | 2022-12-20 | 淮安澳洋顺昌光电技术有限公司 | 一种发光二极管及半导体器件 |
CN116169218A (zh) * | 2023-04-25 | 2023-05-26 | 江西兆驰半导体有限公司 | 发光二极管外延片及其制备方法、led |
CN116469981A (zh) * | 2023-06-09 | 2023-07-21 | 江西兆驰半导体有限公司 | 一种高光效发光二极管及制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000150956A (ja) * | 1998-11-18 | 2000-05-30 | Nichia Chem Ind Ltd | 窒化物半導体発光素子 |
JP2001210862A (ja) * | 2000-01-24 | 2001-08-03 | Seiwa Electric Mfg Co Ltd | 窒化ガリウム系半導体発光素子 |
US20070228408A1 (en) * | 2006-03-31 | 2007-10-04 | Fujifilm Corporation | Semiconductor layer, process for forming the same, and semiconductor light emitting device |
KR20110124841A (ko) * | 2010-05-12 | 2011-11-18 | 서울옵토디바이스주식회사 | 발광소자 |
CN105742415A (zh) * | 2016-03-01 | 2016-07-06 | 聚灿光电科技股份有限公司 | 紫外GaN基LED外延结构及其制造方法 |
CN105845797A (zh) * | 2016-05-26 | 2016-08-10 | 聚灿光电科技股份有限公司 | 一种led外延结构及其制备方法 |
-
2018
- 2018-10-31 CN CN201811287337.XA patent/CN109509817B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000150956A (ja) * | 1998-11-18 | 2000-05-30 | Nichia Chem Ind Ltd | 窒化物半導体発光素子 |
JP2001210862A (ja) * | 2000-01-24 | 2001-08-03 | Seiwa Electric Mfg Co Ltd | 窒化ガリウム系半導体発光素子 |
US20070228408A1 (en) * | 2006-03-31 | 2007-10-04 | Fujifilm Corporation | Semiconductor layer, process for forming the same, and semiconductor light emitting device |
KR20110124841A (ko) * | 2010-05-12 | 2011-11-18 | 서울옵토디바이스주식회사 | 발광소자 |
CN105742415A (zh) * | 2016-03-01 | 2016-07-06 | 聚灿光电科技股份有限公司 | 紫外GaN基LED外延结构及其制造方法 |
CN105845797A (zh) * | 2016-05-26 | 2016-08-10 | 聚灿光电科技股份有限公司 | 一种led外延结构及其制备方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113284996A (zh) * | 2021-03-31 | 2021-08-20 | 华灿光电(浙江)有限公司 | 发光二极管外延片及其制备方法 |
CN113284996B (zh) * | 2021-03-31 | 2022-08-12 | 华灿光电(浙江)有限公司 | 发光二极管外延片及其制备方法 |
CN115498079A (zh) * | 2021-06-18 | 2022-12-20 | 淮安澳洋顺昌光电技术有限公司 | 一种发光二极管及半导体器件 |
CN114551663A (zh) * | 2022-02-23 | 2022-05-27 | 聚灿光电科技(宿迁)有限公司 | 一种led外延结构及其制备方法 |
CN114824005A (zh) * | 2022-06-30 | 2022-07-29 | 江西兆驰半导体有限公司 | 一种GaN基发光二极管的外延结构及其制备方法 |
CN115036402A (zh) * | 2022-08-12 | 2022-09-09 | 江苏第三代半导体研究院有限公司 | 诱导增强型Micro-LED同质外延结构及其制备方法 |
CN115064622A (zh) * | 2022-08-18 | 2022-09-16 | 江西兆驰半导体有限公司 | 一种复合N型GaN层、发光二极管外延片及其制备方法 |
CN115064622B (zh) * | 2022-08-18 | 2022-11-18 | 江西兆驰半导体有限公司 | 一种复合N型GaN层、发光二极管外延片及其制备方法 |
CN116169218A (zh) * | 2023-04-25 | 2023-05-26 | 江西兆驰半导体有限公司 | 发光二极管外延片及其制备方法、led |
CN116469981A (zh) * | 2023-06-09 | 2023-07-21 | 江西兆驰半导体有限公司 | 一种高光效发光二极管及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109509817B (zh) | 2021-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109509817A (zh) | 一种发光二极管外延片及其制备方法 | |
US9330911B2 (en) | Light emitting device having group III-nitride current spreading layer doped with transition metal or comprising transition metal nitride | |
CN109545925B (zh) | 一种GaN基发光二极管外延片及其制备方法 | |
CN109786529B (zh) | 一种氮化镓基发光二极管外延片及其制作方法 | |
CN109802020B (zh) | 一种GaN基发光二极管外延片及其制备方法 | |
CN109671813B (zh) | 一种GaN基发光二极管外延片及其制备方法 | |
CN104659170B (zh) | 一种发光二极管外延片及其制备方法 | |
CN107195737B (zh) | 一种发光二极管外延片及其制造方法 | |
CN107331745A (zh) | 一种发光二极管的外延片及其制备方法 | |
CN109860358B (zh) | 一种氮化镓基发光二极管外延片及其制备方法 | |
CN108447952B (zh) | 一种发光二极管外延片及其制备方法 | |
CN110311022A (zh) | GaN基发光二极管外延片及其制造方法 | |
CN107293618A (zh) | 一种发光二极管外延片及其制备方法 | |
CN109524522A (zh) | 一种GaN基发光二极管外延片及其制备方法 | |
CN108198920A (zh) | 一种发光二极管外延片及其制备方法 | |
CN109346576A (zh) | 一种发光二极管外延片及其制备方法 | |
CN109560171B (zh) | 一种发光二极管外延片及其制备方法 | |
CN109786530B (zh) | 一种GaN基发光二极管外延片及其制备方法 | |
CN109888068A (zh) | 近紫外发光二极管外延片及其制备方法 | |
CN109545918B (zh) | 一种氮化镓基发光二极管外延片及其制备方法 | |
CN109346568A (zh) | 一种发光二极管外延片及其制备方法 | |
CN110364598B (zh) | 发光二极管外延片及其制作方法 | |
CN109545922B (zh) | 一种GaN基发光二极管外延片及其制备方法 | |
CN109473516B (zh) | 一种氮化镓基发光二极管外延片及其生长方法 | |
CN109103312B (zh) | 一种氮化镓基发光二极管外延片及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province Patentee after: BOE Huacan Optoelectronics (Suzhou) Co.,Ltd. Country or region after: China Address before: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province Patentee before: HC SEMITEK (SUZHOU) Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |