CN109508974B - A shopping checkout system and method based on feature fusion - Google Patents
A shopping checkout system and method based on feature fusion Download PDFInfo
- Publication number
- CN109508974B CN109508974B CN201811440047.4A CN201811440047A CN109508974B CN 109508974 B CN109508974 B CN 109508974B CN 201811440047 A CN201811440047 A CN 201811440047A CN 109508974 B CN109508974 B CN 109508974B
- Authority
- CN
- China
- Prior art keywords
- product
- commodity
- module
- weight distribution
- cloud server
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/08—Payment architectures
- G06Q20/20—Point-of-sale [POS] network systems
- G06Q20/208—Input by product or record sensing, e.g. weighing or scanner processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/08—Payment architectures
- G06Q20/16—Payments settled via telecommunication systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/38—Payment protocols; Details thereof
- G06Q20/40—Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
- G06Q20/401—Transaction verification
- G06Q20/4014—Identity check for transactions
- G06Q20/40145—Biometric identity checks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Engineering & Computer Science (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Cash Registers Or Receiving Machines (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及购物结账技术领域,具体涉及一种基于特征融合的购物结账系统和方法。The invention relates to the technical field of shopping checkout, in particular to a shopping checkout system and method based on feature fusion.
背景技术Background technique
目前主流的商品结算方式是通过逐个商品扫描条形码来识别商品的,逐个商品地扫描又需要花费较多时间,人工扫描需要较大的人力支出。另自助扫码不支持散装商品的结算,形成了散装商品结算依赖于称重员,商品结账依赖于收银员。这样散装包装商品结算分离、超市人力物力开销较大、超市经济效益不高、消耗顾客的时间过多的缺点。而最近新兴的自助收银机和自助称重台仅缓解了人流量大时收银员和称重员的压力,并没有显著地提高顾客的购物体验。因此,行业内急需一种同时识别所有商品、统一结算散装、包装商品,解决散装商品和包装商品结算方式分离问题的系统或者方法。The current mainstream commodity settlement method is to identify commodities by scanning barcodes one by one. Scanning one by one takes a lot of time, and manual scanning requires a lot of manpower expenditure. In addition, the self-service QR code scanning does not support the settlement of bulk commodities, resulting in the settlement of bulk commodities relying on the weigher, and the checkout of commodities depends on the cashier. This has the disadvantages of separate settlement of bulk packaged goods, large expenditure of manpower and material resources in supermarkets, low economic benefits of supermarkets, and excessive consumption of customers' time. However, the recently emerging self-service cash registers and self-service weighing platforms only relieve the pressure on cashiers and weighers when there is a large flow of people, and do not significantly improve the shopping experience of customers. Therefore, there is an urgent need in the industry for a system or method that simultaneously identifies all commodities, uniformly settles bulk and packaged commodities, and solves the problem of separation of settlement methods for bulk commodities and packaged commodities.
发明内容Contents of the invention
本发明的目的是为了克服以上现有技术存在的不足,提供了一种基于特征融合的购物结账系统。The object of the present invention is to provide a shopping checkout system based on feature fusion in order to overcome the shortcomings of the above prior art.
本发明的另一目的是为了克服以上现有技术存在的不足,提供了一种基于特征融合的购物结账方法。Another object of the present invention is to provide a shopping checkout method based on feature fusion in order to overcome the shortcomings of the above prior art.
本发明的目的通过以下的技术方案实现:The purpose of the present invention is achieved through the following technical solutions:
一种基于特征融合的购物结账系统,包括:商品识别结账端和云端服务器,所述商品识别结账端包括处理器、商品摄像头、双目摄像头、压力传感器阵列模块、置物台、通信模块、扬声器、声音采集模块和触摸显示屏,所述云端服务器包括商品数据库、交易记录管理模块、结账模块、商品识别模块、人脸识别模块和声纹识别模块;所述商品摄像头、双目摄像头、压力传感器阵列模块、扬声器、声音采集模块、触摸显示屏和处理器的一端连接,所述处理器的另一端通过通信模块和商品数据库、交易记录管理模块、结账模块、商品识别模块、人脸识别模块、声纹识别模块均连接;所述置物台的表面贴有压力传感器阵列模块。A shopping checkout system based on feature fusion, including: a product recognition checkout terminal and a cloud server, the product recognition checkout terminal includes a processor, a product camera, a binocular camera, a pressure sensor array module, a storage table, a communication module, a speaker, Sound collection module and touch display screen, described cloud server includes commodity database, transaction record management module, checkout module, commodity recognition module, face recognition module and voiceprint recognition module; Described commodity camera, binocular camera, pressure sensor array Module, loudspeaker, sound acquisition module, touch display screen and one end of the processor are connected, and the other end of the processor is connected through the communication module and commodity database, transaction record management module, checkout module, commodity recognition module, face recognition module, sound The fingerprint recognition modules are all connected; the surface of the storage table is pasted with a pressure sensor array module.
优选地,所述置物台的左侧是箱体,箱体内部设置有处理器和通信模块,箱体尖角突起处的下侧表面设置有商品摄像头,箱体正面的倾斜面设置有触摸显示屏,触摸显示屏的下方且位于倾斜面上设置有小圆孔,小圆孔内部设置有扬声器和声音采集模块,触摸显示屏的上方且位于倾斜面上设置双目摄像头。Preferably, the left side of the storage table is a box body, a processor and a communication module are arranged inside the box body, a commodity camera is arranged on the lower surface of the corner protrusion of the box body, and a touch display is arranged on the inclined surface of the front side of the box body A small round hole is provided under the touch display screen and on the inclined surface, a speaker and a sound collection module are arranged inside the small round hole, and a binocular camera is arranged above the touch display screen and on the inclined surface.
优选地,所述压力传感器阵列模块包括:压力传感器阵列单元和模数转换电路;所述压力传感器阵列单元设置在置物台的表面,所述压力传感器阵列单元和模数转换电路的一端连接,所述模数转换电路的另一端和处理器连接。Preferably, the pressure sensor array module includes: a pressure sensor array unit and an analog-to-digital conversion circuit; the pressure sensor array unit is arranged on the surface of the storage table, and one end of the pressure sensor array unit is connected to the analog-to-digital conversion circuit, so The other end of the analog-to-digital conversion circuit is connected to the processor.
优选地,所述通信模块为4G物联网通信模块、WIFI通信模块和以太网通信模块中的任意一种,所述处理器为微型电脑、工作站或嵌入式控制主板中的任意一种。Preferably, the communication module is any one of 4G IoT communication module, WIFI communication module and Ethernet communication module, and the processor is any one of microcomputer, workstation or embedded control board.
优选地,所述结账模块包括二维码支付单元、生物支付单元,所述人脸识别模块包括人脸身份鉴别单元和眨眼检测单元,所述商品识别模块包括商品定位单元和商品识别单元,所述声纹识别模块包括依次连接的语音预处理单元、语音特征提取单元和语音分类单元。Preferably, the checkout module includes a two-dimensional code payment unit and a biological payment unit, the face recognition module includes a face identity identification unit and a blink detection unit, and the product identification module includes a product positioning unit and a product recognition unit, so The voiceprint recognition module includes a voice preprocessing unit, a voice feature extraction unit and a voice classification unit connected in sequence.
本发明的另一目的通过以下的技术方案实现:Another object of the present invention is achieved through the following technical solutions:
一种基于特征融合的购物结账方法,包括:A shopping checkout method based on feature fusion, comprising:
S1,双目摄像头拍摄顾客的人脸图像,声音采集模块采集顾客输入的付款关键字;触摸显示屏接收顾客输入的电子支付账户信息,完成顾客与电子支付账户的绑定。S1, the binocular camera captures the face image of the customer, and the sound collection module collects the payment keywords entered by the customer; the touch screen receives the electronic payment account information entered by the customer, and completes the binding of the customer and the electronic payment account.
S2,顾客将商品放置在置物台上,云端服务器对商品进行识别,商品包括散装商品;S2, the customer places the product on the shelf, and the cloud server identifies the product, and the product includes bulk products;
S3,顾客选择生物支付时,顾客将自身的人脸对准双目摄像头,眨眼以确定活体,说“确认付款”以确认交易,绑定的电子支付账户或虚拟支付账户自动扣款;S3, when the customer chooses biometric payment, the customer points his face at the binocular camera, blinks to confirm the living body, says "confirm payment" to confirm the transaction, and the bound electronic payment account or virtual payment account is automatically deducted;
S4,顾客取走置物台上的所有商品。S4, the customer takes away all the commodities on the shelf.
优选地,步骤S2包括:Preferably, step S2 includes:
压力传感器阵列模块获取置物台上商品的重量分布信息,构建出重量分布图;The pressure sensor array module obtains the weight distribution information of the goods on the storage table, and constructs a weight distribution map;
商品摄像头对置物台上的全体商品进行拍照,得到商品图片;The product camera takes photos of all the products on the shelf to obtain product pictures;
处理器将商品图片和重量分布图上传至云端服务器;The processor uploads the product picture and weight distribution map to the cloud server;
云端服务器的商品识别模块对商品图片上的商品的位置进行定位、种类进行识别、根据重量分布图获取重量分布图上商品的重量w_k;The product recognition module of the cloud server locates the position of the product on the product picture, identifies the type, and obtains the weight w_k of the product on the weight distribution map according to the weight distribution map;
从商品数据库获取商品a_k的单价后,结合重量w_k,计算出该商品a_k的价格;After obtaining the unit price of commodity a_k from the commodity database, combine the weight w_k to calculate the price of the commodity a_k;
将k遍历从1到n的所有取值,识别出置物台上的全部商品;Use k to traverse all the values from 1 to n to identify all the commodities on the shelf;
优选地,所述云端服务器的商品识别模块对商品图片上的商品的位置根据重量分布图获取重量分布图上商品的重量w_k包括:云端服务器的商品识别模块对商品图片上的商品的位置进行定位后,获取商品a_k在重力分布图里对应的子区域r_k;将重力分布图上的子区域r_k仿射变换到商品图片子区域s_k,得到商品图片里对应的位置s_k;云端服务器根据重量分布图,在子区域r_k对重力进行积分,得到商品a_k的重量w_k;所述云端服务器根据重量分布图,在子区域r_k对重力进行积分,得到商品a_k的重量w_k包括:预先对压力传感器阵列单元进行压力校准,获得校准曲线;对重力分布图中子区域r_k内的任意一点p_j的数值,利用校准曲线对所述数值进行校准,获得真实的压力数值rw_j;其中p_j为区域r_k中的任意点,j=1…m;对所有的j从1到m,求和rw_j,得到子区域r_k上的重量w_k;所述云端服务器的商品识别模块对商品图片上的商品的位置进行定位包括:云端服务器的商品识别模块将重量分布图进行预处理,得到商品图片上的商品的位置;对预处理后获得的商品位置进行后处理,得到重量分布图子区域和图片子区域;所述云端服务器的商品识别模块对商品图片上的商品的种类进行识别包括:将重量分布图子区域输入卷积层中,提取重量分布图子区域的特征向量;将图片子区域输入特征提取层中,提取图片子区域的特征向量;其中所述的卷积层和特征提取层为深度卷积神经网络结构。Preferably, the product identification module of the cloud server obtains the weight w_k of the product on the weight distribution map according to the position of the product on the product picture, including: the product identification module of the cloud server locates the position of the product on the product picture Finally, obtain the sub-area r_k corresponding to the commodity a_k in the gravity distribution map; affine transform the sub-region r_k on the gravity distribution map to the sub-region s_k of the product image, and obtain the corresponding position s_k in the product image; the cloud server according to the weight distribution map , Integrate the gravity in the sub-area r_k to obtain the weight w_k of the commodity a_k; the cloud server integrates the gravity in the sub-area r_k according to the weight distribution map to obtain the weight w_k of the commodity a_k, including: performing the pressure sensor array unit in advance Pressure calibration to obtain a calibration curve; for the value of any point p_j in the sub-region r_k in the gravity distribution diagram, use the calibration curve to calibrate the value to obtain the real pressure value rw_j; where p_j is any point in the region r_k, j=1...m; for all j from 1 to m, sum rw_j to obtain the weight w_k on the sub-region r_k; the product identification module of the cloud server locates the position of the product on the product picture, including: cloud server The product recognition module of the product preprocesses the weight distribution map to obtain the position of the product on the product picture; performs post-processing on the product position obtained after the preprocessing to obtain the weight distribution map sub-area and the picture sub-area; the product on the cloud server The identification module identifies the type of commodity on the commodity image, including: inputting the subregion of the weight distribution diagram into the convolution layer, extracting the feature vector of the subregion of the weight distribution diagram; inputting the subregion of the image into the feature extraction layer, extracting the subregion of the image The feature vector; wherein said convolutional layer and feature extraction layer are deep convolutional neural network structures.
优选地,所述预处理的步骤为:对重量分布图以背景重量为阈值进行二值化,得到二值化图;对二值化图进行模板匹配,确定商品的粗略位置;对商品的粗略位置区域进行范围扩张,获得商品位置,以使得商品图像完全落入定位范围内;Preferably, the preprocessing steps are: binarize the weight distribution map with the background weight as the threshold to obtain a binarized map; perform template matching on the binarized map to determine the rough position of the commodity; Expand the range of the location area to obtain the location of the product, so that the product image completely falls within the positioning range;
所述后处理的步骤为:根据商品位置对重量分布图进行裁剪,获得重量分布图裁剪后区域;根据重量分布图和图片的仿射变换关系,对商品位置进行仿射变换,获得重量分布图中的商品位置在商品图片中的对应位置;根据商品图片中的对应位置对商品图片进行裁剪,获得图片裁剪后区域;对图片裁剪后区域进行中值滤波;对重量分布图裁剪后区域和商品图片裁剪后区域进行伸缩变换,变换到卷积神经网络匹配的输入尺寸大小,获得重量分布图子区域和图片子区域。The post-processing steps are: cutting the weight distribution map according to the position of the commodity to obtain the area after the clipping of the weight distribution map; according to the affine transformation relationship between the weight distribution map and the picture, performing affine transformation on the position of the commodity to obtain the weight distribution map The corresponding position of the product position in the product picture; crop the product picture according to the corresponding position in the product picture to obtain the cropped area of the picture; perform median filtering on the cropped area of the picture; After the image is cropped, the area is stretched and transformed to the input size matched by the convolutional neural network, and the weight distribution map sub-area and the image sub-area are obtained.
优选地,人脸识别模块包括人脸身份鉴别单元和眨眼检测单元;所述人脸身份鉴别单元,用于将传统的可见光三通道图像与近红外单通道图像相结合,组成四通道的图像,将四通道图像作为卷积神经网络CNN的输入,送入卷积神经网络CNN进行人脸的识别和分类,获得顾客人脸的身份信息;所述眨眼检测单元,用于提取眼部的特征点,将描述特征点的特征向量送入机器学习分类器中进行分类训练,获得眨眼检测的识别模型;所述声纹识别模块,用于对采集到的语音信号进行预加重、分帧和加窗;进行端点检测,识别出语音信号的开始时刻、过渡阶段、噪声段和结束时刻,其中端点检测算法为采用基于短时能量和短时过零率的双阈值端点检测法,计算每一帧语音信号的梅尔倒谱系数和Gammatone频率倒谱系数,进行合并形成语音融合特征。Preferably, the face recognition module includes a face identification unit and a blink detection unit; the face identification unit is used to combine traditional visible light three-channel images with near-infrared single-channel images to form four-channel images, The four-channel image is used as the input of the convolutional neural network CNN, and is sent to the convolutional neural network CNN for face recognition and classification to obtain the identity information of the customer's face; the blink detection unit is used to extract the feature points of the eyes , sending the feature vector describing the feature point into the machine learning classifier for classification training to obtain the recognition model of blink detection; the voiceprint recognition module is used to pre-emphasize, frame and window the collected voice signal ; Carry out endpoint detection to identify the start moment, transition stage, noise segment and end moment of the speech signal, wherein the endpoint detection algorithm is to use the double threshold endpoint detection method based on short-term energy and short-term zero-crossing rate to calculate each frame of speech The Mel cepstral coefficients and Gammatone frequency cepstral coefficients of the signal are combined to form speech fusion features.
本发明相对于现有技术具有如下的优点:Compared with the prior art, the present invention has the following advantages:
本方案顾客无需额外将散装商品拿到称重处称重,而是直接拿到商品识别结账系统处进行结账即可,将散装包装商品的结算方式统一化。且本方案能够同时识别所有商品,无需依次放置商品,顾客只需把全部所有商品同时放到台面上,且无论该商品是包装商品还是散装商品,均能统一识别。采用重量分布图和图片相结合的特征融合方式,能较好地定位商品位置、提取更完备的商品特征,因而具备较高的商品识别准确度。以视觉识别取代传统的条形码识别:免去了反复翻找商品条形码的过程,识别过程更加快捷。顾客自助商品结账:免去雇佣收银员,节省超市经营成本。In this solution, customers do not need to take the bulk goods to the weighing place for weighing, but directly take them to the product identification checkout system for checkout, which unifies the settlement method of bulk packaged goods. And this solution can identify all commodities at the same time, without placing the commodities sequentially, customers only need to put all the commodities on the table at the same time, and regardless of whether the commodities are packaged commodities or bulk commodities, they can be uniformly identified. Using the feature fusion method combining weight distribution map and pictures, it can better locate the position of the product and extract more complete product features, so it has high product recognition accuracy. Replacing the traditional barcode recognition with visual recognition: the process of repeatedly looking for the barcode of the product is eliminated, and the recognition process is faster. Customer self-checkout for goods: eliminating the need to hire cashiers, saving supermarket operating costs.
附图说明Description of drawings
图1是本发明的基于特征融合的购物结账系统的结构框图。Fig. 1 is a structural block diagram of the shopping checkout system based on feature fusion of the present invention.
图2是本发明的商品识别结账端的结构图。Fig. 2 is a structural diagram of the commodity identification checkout terminal of the present invention.
图3是本发明的基于特征融合的购物结账方法的流程图。Fig. 3 is a flow chart of the shopping checkout method based on feature fusion of the present invention.
图4是本发明的商品识别模块架构图。Fig. 4 is a structure diagram of the commodity identification module of the present invention.
图5是本发明的人脸识别模块架构图。Fig. 5 is a structure diagram of the face recognition module of the present invention.
图6是本发明的声纹识别模块架构图。Fig. 6 is a structure diagram of the voiceprint recognition module of the present invention.
图7是本发明的残差模块图。Fig. 7 is a residual module diagram of the present invention.
其中,1:置物台;2:压力传感器阵列单元;3:箱体;4:商品摄像头;5:小圆孔;6:触摸显示屏;7:双目摄像头。Among them, 1: storage table; 2: pressure sensor array unit; 3: cabinet; 4: commodity camera; 5: small round hole; 6: touch display screen; 7: binocular camera.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
参见图1-2,一种基于特征融合的购物结账系统,包括:商品识别结账端和云端服务器,所述商品识别结账端包括处理器、商品摄像头4、双目摄像头7、压力传感器阵列模块、置物台1、通信模块、扬声器、声音采集模块和触摸显示屏,所述云端服务器包括商品数据库、交易记录管理模块、结账模块、商品识别模块、人脸识别模块和声纹识别模块;所述商品摄像头4、双目摄像头7、压力传感器阵列模块、扬声器、声音采集模块、触摸显示屏和处理器的一端连接,所述处理器的另一端通过通信模块和商品数据库、交易记录管理模块、结账模块、商品识别模块、人脸识别模块、声纹识别模块均连接;所述置物台1的表面贴有压力传感器阵列模块。Referring to Figures 1-2, a shopping checkout system based on feature fusion includes: a product recognition checkout terminal and a cloud server, and the product recognition checkout terminal includes a processor, a product camera 4, a binocular camera 7, a pressure sensor array module, Shelter 1, communication module, loudspeaker, sound collection module and touch display screen, said cloud server includes commodity database, transaction record management module, checkout module, commodity identification module, face recognition module and voiceprint recognition module; Camera 4, binocular camera 7, pressure sensor array module, loudspeaker, sound collection module, touch display and one end of the processor are connected, and the other end of the processor is connected through the communication module and commodity database, transaction record management module, checkout module , product recognition module, face recognition module, and voiceprint recognition module are all connected; the surface of the storage table 1 is pasted with a pressure sensor array module.
在本实施例,所述商品摄像头4用于采集商品的图像信息。所述双目摄像头7用于采集顾客人脸图像和支付二维码图像。所述双目摄像头7为通过光波频段不同的双目摄像头7。所述扬声器用于播放商品识别信息和支付信息的语音提示。所述声音采集模块包括麦克风和相应的驱动电路,用于采集声纹信息。所述触摸显示屏为电容或电阻触控的彩色显示屏,用于显示所识别商品的列表,包括商品名、重量、数量、单价和总价信息,以及显示商品支付信息,包括总价格、支付二维码、支付选项,以实现与顾客的人机交互。所述商品数据库存储每件商品的名称、重量、单价和价格信息。所述交易记录管理模块用于记录、查看和管理商品的交易记录。声纹识别模块利用声音采集模块采集的声纹信息,通过声纹识别算法,实现了说话人辨认。商品识别模块借助压力传感器阵列模块获取的重量分布信息,结合商品摄像头4获取的商品图片,通过商品定位和商品识别算法来识别商品。In this embodiment, the commodity camera 4 is used to collect image information of commodities. The binocular camera 7 is used to collect customer face images and payment two-dimensional code images. The binocular camera 7 is a binocular camera 7 that passes through different light wave frequency bands. The loudspeaker is used to play voice prompts of commodity identification information and payment information. The sound collection module includes a microphone and a corresponding driving circuit for collecting voiceprint information. The touch display screen is a color display screen with capacitive or resistive touch, which is used to display a list of identified commodities, including commodity name, weight, quantity, unit price and total price information, and display commodity payment information, including total price, payment QR codes, payment options to enable human-computer interaction with customers. The commodity database stores the name, weight, unit price and price information of each commodity. The transaction record management module is used for recording, checking and managing commodity transaction records. The voiceprint recognition module uses the voiceprint information collected by the voice collection module to realize speaker identification through the voiceprint recognition algorithm. Commodity identification module uses the weight distribution information obtained by the pressure sensor array module, combined with the product image obtained by the product camera 4, to identify the product through product positioning and product recognition algorithms.
更具体地,所述处理器的范围涵盖微型电脑、工作站或嵌入式控制主板。处理器用于协调和处理商品识别结账系统中其他各个子模块的工作和运转,用于采集数据的初步处理。商品摄像头4:所述商品摄像头4为彩色高清摄像头。商品摄像头4用于采集商品的图像信息,再交由处理器通过通信模块上传至云端服务器进行识别。双目摄像头7:所述双目摄像头7为通过光波频段不同的双目摄像头7,其中一只为可见光摄像头,另一只为近红外光摄像头。双目摄像头7用于采集顾客人脸图像信息,再交由处理器通过通信模块上传至云端服务器识别,也用于采集支付的二维码图像。压力传感器阵列模块:所述压力传感器阵列模块由压力传感器阵列单元和模数转换电路组成。压力传感器阵列单元用于采集商品的重量分布信息,重量分布信息交由处理器处理获得重量分布图,同时处理器将获取到的重量分布图通过通信模块上传至云端服务器进行商品的辅助识别。置物台1:所述置物台1为一块纯色平面板,表面贴有压力传感器阵列单元。置物台1用于放置被识别的商品,以及为商品图像拍摄提供颜色均匀的统一背景。通信模块:所述通信模块包括4G物联网通信模块、WIFI通信模块和以太网通信模块。通信模块用于传输图像以及其他数据信息,实现与云端服务器的通信。扬声器:扬声器用于播放商品识别信息和支付信息的语音提示。声音采集模块:所述声音采集模块包括麦克风和相应的驱动电路。声音采集模块用于采集声纹信息。触摸显示屏:所述触摸显示屏为电容或电阻触控的彩色显示屏。触摸显示屏用于显示所识别商品的列表,包括商品名、重量、数量、单价和总价信息,用于显示商品支付信息,包括总价格、支付二维码、支付选项,实现与顾客的人机交互。商品数据库:所述商品数据库包含了每件商品的名称、重量、单价和价格信息。商品数据库用于存储商品的名称、重量、单价和价格。交易记录管理模块:交易记录管理模块用于记录、查看和管理商品的交易记录。结账模块:所述结账模块包括二维码支付、生物支付以及其他的主流支付手段。结账模块用于结合商品识别模块的商品识别结果、人脸识别模块和声纹识别模块识别出的顾客身份信息或支付二维码的账户信息,调用相应的支付接口,从顾客的电子支付账户或虚拟支付账户里自动扣款结账。商品识别模块:所述商品识别模块的基本流程是商品定位和商品识别。商品识别模块用于将上传至云端服务器的商品图像进行商品位置定位和商品种类识别。所述人脸识别模块由人脸身份鉴别单元和眨眼检测单元组成。其中人脸身份鉴别模块用于将上传至云端服务器的人脸图像进行身份判别,眨眼检测单元用于将上传至云端服务器的人脸图像进行生物活体的鉴别。声纹识别单元:所述声纹识别模块包括依次连接的语音预处理单元、语音特征提取单元和语音分类单元。其中语音预处理单元用于对采集到的语音信号进行预处理,语音特征提取单元用于提取预处理后的语音特征,语音分类单元用于对提取到的语音特征进行分类。More specifically, the range of said processors covers microcomputers, workstations or embedded control motherboards. The processor is used to coordinate and process the work and operation of other sub-modules in the commodity identification checkout system, and is used for preliminary processing of collected data. Commodity camera 4: the commodity camera 4 is a color high-definition camera. The commodity camera 4 is used to collect the image information of the commodity, and then the processor uploads it to the cloud server through the communication module for identification. Binocular camera 7: The binocular camera 7 is a binocular camera 7 with different light wave frequency bands, one of which is a visible light camera and the other is a near-infrared light camera. The binocular camera 7 is used to collect the customer's face image information, which is uploaded to the cloud server by the processor through the communication module for identification, and is also used to collect the two-dimensional code image for payment. Pressure sensor array module: the pressure sensor array module is composed of a pressure sensor array unit and an analog-to-digital conversion circuit. The pressure sensor array unit is used to collect the weight distribution information of the product. The weight distribution information is processed by the processor to obtain the weight distribution map. At the same time, the processor uploads the obtained weight distribution map to the cloud server through the communication module for auxiliary product identification. Storage table 1: The storage table 1 is a solid-color flat plate with a pressure sensor array unit attached to the surface. The storage stand 1 is used to place the identified commodities and provide a uniform background with uniform color for photographing commodity images. Communication module: the communication module includes a 4G Internet of Things communication module, a WIFI communication module and an Ethernet communication module. The communication module is used to transmit images and other data information to realize communication with the cloud server. Speaker: The speaker is used to play voice prompts for product identification information and payment information. Sound collection module: the sound collection module includes a microphone and a corresponding driving circuit. The sound collection module is used to collect voiceprint information. Touch display screen: the touch display screen is a color display screen with capacitive or resistive touch. The touch display screen is used to display the list of identified commodities, including commodity name, weight, quantity, unit price and total price information, and is used to display commodity payment information, including total price, payment QR code, payment options, to realize personal communication with customers machine interaction. Commodity database: the commodity database includes the name, weight, unit price and price information of each commodity. The commodity database is used to store the name, weight, unit price and price of the commodity. Transaction record management module: The transaction record management module is used to record, view and manage commodity transaction records. Checkout module: The checkout module includes two-dimensional code payment, biological payment and other mainstream payment methods. The checkout module is used to combine the product recognition results of the product recognition module, the customer identity information identified by the face recognition module and the voiceprint recognition module, or the account information of the payment QR code, to call the corresponding payment interface, from the customer's electronic payment account or Automatic debit checkout in the virtual payment account. Product identification module: the basic process of the product identification module is product positioning and product identification. The product recognition module is used to locate the product position and identify the product type from the product image uploaded to the cloud server. The face recognition module is composed of a face identification unit and a blink detection unit. Wherein, the face identification module is used for identifying the face image uploaded to the cloud server, and the blink detection unit is used for identifying the living body of the face image uploaded to the cloud server. Voiceprint recognition unit: the voiceprint recognition module includes a voice preprocessing unit, a voice feature extraction unit and a voice classification unit connected in sequence. The voice preprocessing unit is used to preprocess the collected voice signal, the voice feature extraction unit is used to extract the preprocessed voice features, and the voice classification unit is used to classify the extracted voice features.
在本实施例,参见图2,所述置物台1的左侧是箱体3,箱体3内部设置有处理器和通信模块,箱体3尖角突起处的下侧表面设置有商品摄像头4,箱体3正面的倾斜面设置有触摸显示屏6,触摸显示屏6的下方且位于倾斜面上设置有小圆孔,小圆孔内部设置有扬声器和声音采集模块,触摸显示屏6的上方且位于倾斜面上设置双目摄像头7。In this embodiment, referring to Fig. 2, the left side of the storage table 1 is a box body 3, a processor and a communication module are arranged inside the box body 3, and a commodity camera 4 is arranged on the lower surface of the sharp corner protrusion of the box body 3 , the inclined surface of the front of the box body 3 is provided with a touch display 6, the bottom of the touch display 6 and on the inclined surface is provided with a small round hole, the inside of the small round hole is provided with a speaker and a sound collection module, and the top of the touch display 6 And the binocular camera 7 is arranged on the inclined surface.
在本实施例,所述压力传感器阵列模块包括:压力传感器阵列单元2和模数转换电路;所述压力传感器阵列单元2设置在置物台1的表面,所述压力传感器阵列单元2和模数转换电路的一端连接,所述模数转换电路的另一端和处理器连接。所述压力传感器阵列模块用于采集商品的重量分布信息。所述置物台1为一块表面贴有压力传感器阵列单元2的纯色平面板。In this embodiment, the pressure sensor array module includes: a pressure sensor array unit 2 and an analog-to-digital conversion circuit; One end of the circuit is connected, and the other end of the analog-to-digital conversion circuit is connected to the processor. The pressure sensor array module is used for collecting weight distribution information of commodities. The storage table 1 is a solid-color plane plate with a pressure sensor array unit 2 attached on its surface.
在本实施例,所述通信模块为4G物联网通信模块、WIFI通信模块和以太网通信模块中的任意一种,所述处理器为微型电脑、工作站或嵌入式控制主板中的任意一种。In this embodiment, the communication module is any one of a 4G Internet of Things communication module, a WIFI communication module and an Ethernet communication module, and the processor is any one of a microcomputer, a workstation or an embedded control board.
在本实施例,所述结账模块包括二维码支付单元、生物支付单元,所述人脸识别模块包括人脸身份鉴别单元和眨眼检测单元,所述商品识别模块包括商品定位单元和商品识别单元,所述声纹识别模块包括依次连接的语音预处理单元、语音特征提取单元和语音分类单元。In this embodiment, the checkout module includes a two-dimensional code payment unit and a biological payment unit, the face recognition module includes a face identity identification unit and a blink detection unit, and the commodity identification module includes a commodity positioning unit and a commodity recognition unit , the voiceprint recognition module includes a voice preprocessing unit, a voice feature extraction unit and a voice classification unit connected in sequence.
参见图3,上述基于特征融合的购物结账系统适用的基于特征融合的购物结账方法,包括:Referring to Fig. 3, the feature fusion-based shopping checkout method applicable to the above-mentioned feature fusion-based shopping checkout system includes:
S1,双目摄像头7拍摄顾客的人脸图像,声音采集模块采集顾客输入的付款关键字;触摸显示屏6接收顾客输入的电子支付账户信息,完成顾客与电子支付账户的绑定。S1, the binocular camera 7 captures the face image of the customer, and the sound collection module collects the payment keywords input by the customer; the touch screen 6 receives the electronic payment account information input by the customer, and completes the binding of the customer and the electronic payment account.
S2,顾客将商品放置在置物台1上,云端服务器对商品进行识别,商品包括散装商品;S2, the customer places the product on the storage table 1, and the cloud server identifies the product, and the product includes bulk products;
S3,顾客选择生物支付时,顾客将自身的人脸对准双目摄像头7,眨眼以确定活体,说“确认付款”以确认交易,绑定的电子支付账户或虚拟支付账户自动扣款;S3, when the customer chooses biometric payment, the customer points his or her face at the binocular camera 7, blinks to confirm the living body, says "confirm payment" to confirm the transaction, and the bound electronic payment account or virtual payment account is automatically debited;
S4,顾客取走置物台1上的所有商品。S4, the customer takes away all the commodities on the shelf 1 .
从顾客角度,步骤S1操作为:顾客通过触摸触摸显示屏6操作,进入顾客注册界面,按照屏幕提示的进行操作。人脸录入时,顾客立足在双目摄像头7正前方,人脸正对摄像头,通过转动头部等方式完成人脸图像的录入。声纹采集时,顾客按照屏幕提示,重复说付款关键字(如付款关键字“确认付款”)数次,完成声纹信息的录入。商品识别结账端将人脸图像和语音信息上传至云端服务器,调用人脸识别模块和声纹识别模块完成人脸识别模块的训练和声纹识别模块的训练。顾客通过在触摸显示屏6上输入个人的电子支付账户信息,完成人脸与电子支付账户的绑定;或者使用现有的电子支付账户(如支付宝、微信、银行卡等)往虚拟支付账户充值。从顾客角度,步骤S2操作为:顾客携带一件或多件商品到商品识别结账系统前。所述商品包括散装商品和包装商品。顾客将商品全部同时地放置在置物台1上,当然也可以依次放置在置物台1上,注意商品不可堆叠放置。处理器通过通信模块从云端服务器获取识别出的商品信息,将所述商品信息显示在触摸显示屏6上。从顾客角度,步骤S3操作为:确认结算时,顾客从触摸显示屏6上选择生物支付或是二维码支付。生物支付需要顾客提前注册的个人的人脸和声纹信息才能使用。当选择生物支付时,顾客将自身的人脸对准双目摄像头7,眨眼以确定活体,说“确认付款”以确认交易,绑定的电子支付账户或虚拟支付账户自动扣款。在这个过程中商品识别结账系统会实时地将人脸视频图像和语音信息上传至云端服务器,调用人脸识别模块进行人脸识别和眨眼检测,调用声纹识别模块进行说话人辨认。并结合顾客已绑定的电子支付账户或虚拟支付账户进行自动扣款。当选择二维码支付时,顾客将付款二维码(如支付宝、微信等付款二维码)对准双目摄像头7,电子支付账户将自动扣款。在此过程中商品识别结账系统对所摄二维码图片进行解析识别,并调用官方提供的支付接口对所在电子支付账户进行自动扣款。交易扣款成功后,云端服务器的交易记录管理模块将会记录商品的交易信息。From the customer's point of view, the operation of step S1 is as follows: the customer enters the customer registration interface by touching the touch screen 6, and operates according to the prompts on the screen. During face entry, the customer stands in front of the binocular camera 7 with his or her face facing the camera, and completes the entry of the face image by turning the head or the like. When the voiceprint is collected, the customer follows the screen prompts and repeats the payment keyword (such as the payment keyword "confirm payment") several times to complete the entry of the voiceprint information. The product recognition checkout terminal uploads the face image and voice information to the cloud server, calls the face recognition module and the voiceprint recognition module to complete the training of the face recognition module and the voiceprint recognition module. The customer completes the binding of the face and the electronic payment account by inputting personal electronic payment account information on the touch screen 6; or uses the existing electronic payment account (such as Alipay, WeChat, bank card, etc.) to recharge the virtual payment account . From the customer's point of view, the operation of step S2 is: the customer brings one or more commodities to the commodity identification checkout system. The commodities include bulk commodities and packaged commodities. The customer places all the products on the storage table 1 at the same time, and of course they can also place them on the storage table 1 in sequence. Note that the products cannot be stacked. The processor obtains the identified product information from the cloud server through the communication module, and displays the product information on the touch screen 6 . From the customer's point of view, the operation of step S3 is: when confirming the settlement, the customer selects biometric payment or two-dimensional code payment from the touch screen 6 . Biometric payment requires the customer's personal face and voiceprint information registered in advance to be used. When choosing biometric payment, the customer points his or her face at the binocular camera 7, blinks to confirm the living body, says "confirm payment" to confirm the transaction, and the bound electronic payment account or virtual payment account is automatically deducted. In this process, the commodity recognition checkout system will upload face video images and voice information to the cloud server in real time, call the face recognition module for face recognition and blink detection, and call the voiceprint recognition module for speaker recognition. And combined with the customer's bound electronic payment account or virtual payment account for automatic deduction. When choosing two-dimensional code payment, the customer aligns the payment two-dimensional code (such as Alipay, WeChat and other payment two-dimensional codes) with the binocular camera 7, and the electronic payment account will automatically debit the money. In this process, the commodity identification checkout system analyzes and recognizes the captured QR code pictures, and calls the official payment interface to automatically debit the electronic payment account. After the transaction deduction is successful, the transaction record management module of the cloud server will record the transaction information of the commodity.
在本实施例,步骤S2包括:压力传感器阵列模块获取置物台1上商品的重量分布信息,构建出重量分布图;商品摄像头4对置物台1上的全体商品进行拍照,得到商品图片;处理器将商品图片和重量分布图上传至云端服务器;云端服务器的商品识别模块对商品图片上的商品的位置进行定位、种类进行识别、根据重量分布图获取重量分布图上商品的重量w_k;从商品数据库获取商品a_k的单价后,结合重量w_k,计算出该商品a_k的价格;将k遍历从1到n的所有取值,识别出置物台1上的全部商品。In this embodiment, step S2 includes: the pressure sensor array module obtains the weight distribution information of the commodities on the storage table 1, and constructs a weight distribution map; the commodity camera 4 takes pictures of all the commodities on the storage platform 1 to obtain commodity pictures; Upload the product picture and weight distribution map to the cloud server; the product identification module of the cloud server locates the position of the product on the product picture, identifies the type, and obtains the weight w_k of the product on the weight distribution map according to the weight distribution map; from the product database After obtaining the unit price of the product a_k, combine the weight w_k to calculate the price of the product a_k; traverse all the values of k from 1 to n, and identify all the products on the shelf 1.
其中,参见图4,所述云端服务器的商品识别模块对商品图片上的商品的位置根据重量分布图获取重量分布图上商品的重量w_k包括:云端服务器的商品识别模块对商品图片上的商品的位置进行定位后,获取商品a_k在重力分布图里对应的子区域r_k;置物台1上存在多件商品时,记商品数量为n,商品依次记作a_i(i=1…n)将重力分布图上的子区域r_k仿射变换到商品图片子区域s_k,得到商品图片里对应的位置s_k;云端服务器根据重量分布图,在子区域r_k对重力进行积分,得到商品a_k的重量w_k;如果是包装商品,则直接从商品数据库中获取该件商品的价格;如果是散装商品,则从商品数据库获取该商品的单价后,结合重量w_k,从而计算出该商品a_k的价格。将k遍历从1到n的所有取值,就能识别出置物台1上的全部商品。Wherein, referring to FIG. 4 , the product identification module of the cloud server obtains the weight w_k of the product on the weight distribution map according to the position of the product on the product picture by the product identification module of the cloud server. After positioning the position, obtain the sub-area r_k corresponding to the product a_k in the gravity distribution map; when there are multiple products on the shelf 1, record the number of products as n, and record the products as a_i (i=1...n) in order to distribute the gravity The sub-area r_k on the figure is affinely transformed into the sub-area s_k of the product picture, and the corresponding position s_k in the product picture is obtained; the cloud server integrates the gravity in the sub-area r_k according to the weight distribution map, and obtains the weight w_k of the product a_k; if it is For packaged goods, obtain the price of the product directly from the product database; if it is a bulk product, obtain the unit price of the product from the product database and combine the weight w_k to calculate the price of the product a_k. By traversing k through all the values from 1 to n, all the commodities on shelf 1 can be identified.
所述云端服务器根据重量分布图,在子区域r_k对重力进行积分,得到商品a_k的重量w_k包括:预先对压力传感器阵列单元进行压力校准,获得校准曲线;对重力分布图中子区域r_k内的任意一点p_j的数值,利用校准曲线对所述数值进行校准,获得真实的压力数值rw_j;其中p_j为区域r_k中的任意点,j=1…m;对所有的j从1到m,求和rw_j,得到子区域r_k上的重量w_k;According to the weight distribution diagram, the cloud server integrates the gravity in the sub-region r_k to obtain the weight w_k of the commodity a_k including: performing pressure calibration on the pressure sensor array unit in advance to obtain a calibration curve; The value of any point p_j, use the calibration curve to calibrate the value to obtain the real pressure value rw_j; where p_j is any point in the area r_k, j=1...m; for all j from 1 to m, sum rw_j, get the weight w_k on the sub-region r_k;
所述云端服务器的商品识别模块对商品图片上的商品的位置进行定位包括:云端服务器的商品识别模块将重量分布图进行预处理,得到商品图片上的商品的位置;对预处理后获得的商品位置进行后处理,得到重量分布图子区域和图片子区域;所述预处理的步骤为:对重量分布图以背景重量为阈值进行二值化,得到二值化图;对二值化图进行模板匹配,确定商品的粗略位置;对商品的粗略位置区域进行范围扩张,获得商品位置,以使得商品图像完全落入定位范围内;所述后处理的步骤为:根据商品位置对重量分布图进行裁剪,获得重量分布图裁剪后区域;根据重量分布图和图片的仿射变换关系,对商品位置进行仿射变换,获得重量分布图中的商品位置在商品图片中的对应位置;根据商品图片中的对应位置对商品图片进行裁剪,获得图片裁剪后区域;对图片裁剪后区域进行中值滤波;对重量分布图裁剪后区域和商品图片裁剪后区域进行伸缩变换,变换到卷积神经网络匹配的输入尺寸大小,获得重量分布图子区域和图片子区域。The commodity recognition module of the cloud server locates the position of the commodity on the commodity picture, including: the commodity recognition module of the cloud server preprocesses the weight distribution map to obtain the position of the commodity on the commodity picture; The position is post-processed to obtain the sub-region of the weight distribution map and the sub-region of the picture; the steps of the preprocessing are: binarize the weight distribution map with the background weight as a threshold to obtain a binarized map; Template matching, determining the rough position of the product; expanding the range of the rough position area of the product to obtain the position of the product, so that the product image completely falls within the positioning range; the post-processing step is: according to the position of the product, the weight distribution map is Cutting, to obtain the cropped area of the weight distribution map; according to the affine transformation relationship between the weight distribution map and the picture, perform affine transformation on the product position, and obtain the corresponding position of the product position in the weight distribution map in the product picture; according to the affine transformation relationship in the product picture Crop the product image at the corresponding position to obtain the cropped area of the image; perform median filtering on the cropped area of the image; perform scaling transformation on the cropped area of the weight distribution map and the cropped area of the product image, and transform it to the one matched by the convolutional neural network Enter the size to get the weight distribution map sub-area and picture sub-area.
所述云端服务器的商品识别模块对商品图片上的商品的种类进行识别包括:将重量分布图子区域输入卷积层中,提取重量分布图子区域的特征向量;将图片子区域输入特征提取层中,提取图片子区域的特征向量;其中所述的卷积层和特征提取层为深度卷积神经网络结构。卷积层和特征提取层往往采用现有的分类深度卷积神经网络的变体,常见现有的分类深度卷积神经网络有VGG、ResNet、Inception、DenseNet、ZFNet和AlexNet。The product recognition module of the cloud server identifies the type of the product on the product picture, including: inputting the sub-region of the weight distribution graph into the convolution layer, extracting the feature vector of the sub-region of the weight distribution graph; inputting the sub-region of the image into the feature extraction layer , extracting feature vectors of image sub-regions; wherein the convolutional layer and feature extraction layer are deep convolutional neural network structures. The convolutional layer and feature extraction layer often use variants of existing classification deep convolutional neural networks. Common existing classification deep convolutional neural networks include VGG, ResNet, Inception, DenseNet, ZFNet, and AlexNet.
该卷积层为基于VGG16的分类深度卷积神经网络的变体。将a*a大小的n个卷积核记作conv_a_n,如3*3大小的64个卷积核记作conv_3_64。将单通道的重量分布图子区域复制两份组成三通道的图像,输入后续的卷积层中。卷积层输入为224*224的三通道彩色图片。借助卷积核的符号表达,那么此VGG16变种的神经网络结构可以描述为:conv_3_64、conv_3_64、maxpool、conv_3_128、conv_3_128、maxpool、conv_3_256、conv_3_256、conv_3_256、maxpool、conv_3_512、conv_3_512、conv_3_512、maxpool、conv_3_512、conv_3_512、conv_3_512、maxpool、FC_4096、FC_4096、FC_1000。其中maxpool均为2*2大小、步长为2的池化层,FC_4096代表4096个神经元的全连接层,FC_1000为1000个神经元的全连接层。最后全连接层FC_1000的该特征提取层为基于ResNet50的分类深度卷积神经网络的变体。我们记如图7所示的卷积结构为残差模块。残差模块依次由a个1*1卷积核、b个3*3卷积核和c个1*1卷积核构成,在如图6所示的结构中,a、b和c的取值依次为64、64和256。残差模块将三层之前的输入直接跨接到输出端相加,再经过relu激活函数激活作为残差模块的输出。每个卷积均使用relu激活函数。我们简记参数为a、b和c的残差模块为符号bottleneck_a_b_c,例如图7所示的残差模块就记作bottleneck_64_64_256。那么该特征提取层的其中一种实施例结构为:conv_7_64、maxpool、3个bottleneck_64_64_256、4个bottleneck_128_128_512、6个bottleneck_256_256_1024、3个bottleneck_512_512_2048、avgpool、FC_1000。其中conv_7_64代表64个7*7的卷积核,maxpool代表3*3大小以2为步长的最大池化层、avgpool代表平均池化层、FC_1000为神经元数量1000的全连接层。最后全连接层FC_1000的输出作为特征提取层的输出,输出为1000维的特征向量。This convolutional layer is a variant of the VGG16-based classification deep convolutional neural network. Denote n convolution kernels of a*a size as conv_a_n, such as 64 convolution kernels of 3*3 size as conv_3_64. Copy the single-channel weight distribution map sub-region twice to form a three-channel image, and input it into the subsequent convolutional layer. The convolutional layer input is a 224*224 three-channel color image. With the help of the symbolic expression of the convolution kernel, the neural network structure of this VGG16 variant can be described as: conv_3_64, conv_3_64, maxpool, conv_3_128, conv_3_128, maxpool, conv_3_256, conv_3_256, conv_3_256, maxpool, conv_3_512, conv_3_512, conv_3_ 512, maxpool, conv_3_512, conv_3_512, conv_3_512, maxpool, FC_4096, FC_4096, FC_1000. Among them, maxpool is a pooling layer with a size of 2*2 and a step size of 2, FC_4096 represents a fully connected layer with 4096 neurons, and FC_1000 is a fully connected layer with 1000 neurons. The feature extraction layer of the last fully connected layer FC_1000 is a variant of the classification deep convolutional neural network based on ResNet50. We remember the convolutional structure shown in Figure 7 as a residual module. The residual module is sequentially composed of a 1*1 convolution kernel, b 3*3 convolution kernel and c 1*1 convolution kernel. In the structure shown in Figure 6, the selection of a, b and c The values are 64, 64, and 256, in that order. The residual module directly bridges the input before the three layers to the output terminal and adds them, and then activates the relu activation function as the output of the residual module. Each convolution uses a relu activation function. We abbreviate the residual module with parameters a, b and c as the symbol bottleneck_a_b_c, for example, the residual module shown in Figure 7 is recorded as bottleneck_64_64_256. Then one embodiment structure of the feature extraction layer is: conv_7_64, maxpool, 3 bottleneck_64_64_256, 4 bottleneck_128_128_512, 6 bottleneck_256_256_1024, 3 bottleneck_512_512_2048, avgpool, FC_1000. Among them, conv_7_64 represents 64 convolution kernels of 7*7, maxpool represents the maximum pooling layer with a size of 3*3 and a step size of 2, avgpool represents the average pooling layer, and FC_1000 is a fully connected layer with 1000 neurons. Finally, the output of the fully connected layer FC_1000 is used as the output of the feature extraction layer, and the output is a 1000-dimensional feature vector.
将重量特征和图片特征进行合并处理得到合成特征,合成特征的维度为2000。Combining the weight feature and image feature to obtain a synthetic feature, the dimension of the synthetic feature is 2000.
将合成特征输入分类深度神经网络,其由全连接层以及softmax分类层组成,将softmax输出层概率最大的商品作为商品识别结果。The synthetic features are input into the classification deep neural network, which consists of a fully connected layer and a softmax classification layer, and the product with the highest probability of the softmax output layer is used as the product recognition result.
所述分类深度神经网络为:该神经网络的结构依次是FC_2000、softmax。其中FC_2000代表神经元个数为2000的全连接层,softmax为输出结点个数为商品种类数的分类输出层。其中激活函数均使用relu激活函数。The classification deep neural network is: the structure of the neural network is FC_2000 and softmax in sequence. Among them, FC_2000 represents the fully connected layer with 2000 neurons, and softmax is the classification output layer with the number of output nodes equal to the number of commodity types. The activation function uses the relu activation function.
在本实施例,参见图5,人脸识别模块包括人脸身份鉴别单元和眨眼检测单元;所述人脸身份鉴别单元采用卷积神经网络CNN,用于将传统的可见光三通道图像与近红外单通道图像相结合,组成四通道的图像,将四通道图像作为卷积神经网络CNN的输入,送入卷积神经网络CNN进行人脸的识别和分类,获得顾客人脸的身份信息;所述眨眼检测单元,用于提取眼部的特征点,将描述特征点的特征向量送入机器学习分类器中进行分类训练,获得眨眼检测的识别模型;眨眼检测单元的目的是对抗非活体,只有眨眼的被测对象才有可能被识别为活体对象。眨眼检测算法可以选取为使用眼部特征提取技术的实时眨眼检测算法。所述眨眼检测算法具有一定的鲁棒性以抵抗外界攻击。所述眨眼检测算法通过提取眼部的特征点,然后将描述特征点的特征向量送入机器学习分类器(如支持向量机SVM)中进行分类训练,即可获得眨眼检测的识别模型。In the present embodiment, referring to Fig. 5, the face recognition module includes a face identification unit and a blink detection unit; the face identification unit adopts a convolutional neural network (CNN) for combining traditional visible light three-channel images with near-infrared The single-channel images are combined to form a four-channel image, and the four-channel image is used as the input of the convolutional neural network CNN, and then sent to the convolutional neural network CNN for face identification and classification to obtain the identity information of the customer's face; The blink detection unit is used to extract the feature points of the eyes, and the feature vector describing the feature points is sent to the machine learning classifier for classification training to obtain the recognition model of blink detection; the purpose of the blink detection unit is to fight against non-living objects, only blinking It is possible for the measured object to be identified as a living object. The blink detection algorithm can be selected as a real-time blink detection algorithm using eye feature extraction technology. The blink detection algorithm has certain robustness against external attacks. The blink detection algorithm can obtain the recognition model of blink detection by extracting the feature points of the eyes, and then sending the feature vectors describing the feature points into a machine learning classifier (such as a support vector machine (SVM)) for classification training.
参见图6,所述声纹识别模块,用于对采集到的语音信号进行预加重、分帧和加窗;进行端点检测,识别出语音信号的开始时刻、过渡阶段、噪声段和结束时刻,其中端点检测算法为采用基于短时能量和短时过零率的双阈值端点检测法,计算每一帧语音信号的梅尔倒谱系数和Gammatone频率倒谱系数,进行合并形成语音融合特征。Referring to Fig. 6, the voiceprint recognition module is used to pre-emphasize, frame and window the collected voice signal; perform endpoint detection to identify the start moment, transition phase, noise segment and end moment of the voice signal, The endpoint detection algorithm adopts the double-threshold endpoint detection method based on short-term energy and short-term zero-crossing rate to calculate the Mel cepstral coefficient and Gammatone frequency cepstral coefficient of each frame of speech signal, and combine them to form speech fusion features.
使用深度神经网络对特征进行训练,深度神经网络的输出层是softmax分类层。取softmax层输出概率最大的作为识别结果。The features are trained using a deep neural network whose output layer is a softmax classification layer. The one with the highest output probability of the softmax layer is taken as the recognition result.
本方案相对于现有技术具有如下的优点:Compared with the prior art, this solution has the following advantages:
(1)放下统一识别:相比现阶段逐件扫描商品的方式,采用本系统,顾客只需把全部所有商品同时放到台面上即可。本系统能够同时识别所有商品,无需依次放置商品,无论该商品是包装商品还是散装商品。(1) Putting down unified identification: Compared with the current method of scanning products one by one, with this system, customers only need to put all the products on the table at the same time. The system is able to identify all products at the same time without placing them sequentially, regardless of whether the product is packaged or loose.
(2)将散装包装商品的结算方式统一化:采用本系统,顾客无需额外将散装商品拿到称重处称重,而是直接拿到商品识别结账系统处进行结账即可。(2) Unify the settlement method of bulk packaged goods: With this system, customers do not need to take bulk goods to the weighing place for weighing, but directly take them to the commodity identification checkout system for checkout.
(3)以视觉识别取代传统的条形码识别:免去了反复翻找商品条形码的过程,识别过程更加快捷。(3) Replacing the traditional barcode recognition with visual recognition: the process of repeatedly looking for the barcode of the product is eliminated, and the recognition process is faster.
(4)顾客自助商品结账:免去雇佣收银员,节省超市经营成本。(4) Customer self-service checkout: no need to hire cashiers, saving supermarket operating costs.
(5)较高的商品识别准确度:相比传统的机器学习算法,采用重量分布图和图片相结合的特征融合方式,能较好地定位商品位置、提取更完备的商品特征,因而具备较高的商品识别准确度。(5) Higher product recognition accuracy: Compared with the traditional machine learning algorithm, the feature fusion method combining weight distribution map and picture can better locate the product position and extract more complete product features, so it has a higher High product recognition accuracy.
(6)较高的人脸识别准确度:相比传统的机器学习算法,采用特征融合和卷积神经网络的方式,能更完备地描述人脸特征,因而具备较高的人脸识别准确度。(6) Higher face recognition accuracy: Compared with traditional machine learning algorithms, the use of feature fusion and convolutional neural network can describe face features more completely, so it has higher face recognition accuracy .
(7)云服务器的访问方式降低了图像识别的成本:云服务器访问的方式使得视觉识别模型无需写入结账系统的内部,方便了视觉识别模型的修改,同时降低了商品识别结账系统的硬件开销。(7) The access method of the cloud server reduces the cost of image recognition: the access method of the cloud server makes it unnecessary to write the visual recognition model inside the checkout system, which facilitates the modification of the visual recognition model and reduces the hardware overhead of the product recognition checkout system .
(8)免去了设备的有线网络部署成本:4G物联网方式的访问使得设备无需网络连线部署。但本系统也支持WIFI和以太网通讯接口。(8) The wired network deployment cost of the device is eliminated: 4G Internet of Things access makes the device no need for network connection deployment. But this system also supports WIFI and Ethernet communication interface.
(9)降低了顾客误结账的可能:采用人脸识别、眨眼检测和声纹识别三重验证的方式,大大降低了顾客因误操作而错误结账的可能性。但相比现今的结账方式又显得便捷和易操作。(9) Reduce the possibility of customers checking out by mistake: the triple verification method of face recognition, blink detection and voiceprint recognition greatly reduces the possibility of customers making wrong checkouts due to misoperation. But compared with today's checkout method, it is more convenient and easy to operate.
(10)省去了超市雇佣人力的成本开销:超市无需再雇佣称重员和收银员,节省了人工支出。若超市原本雇佣7名收银员、3名称重员,员工月收入五千,引入本系统后相当于为超市带来年利润60万元,经济效益可观。(10) The cost of hiring manpower in the supermarket is saved: the supermarket does not need to hire weighers and cashiers, which saves labor expenses. If the supermarket originally employs 7 cashiers, 3 staff with titles, and the monthly income of the employees is 5,000, the introduction of this system is equivalent to bringing an annual profit of 600,000 yuan to the supermarket, and the economic benefits are considerable.
上述具体实施方式为本发明的优选实施例,并不能对本发明进行限定,其他的任何未背离本发明的技术方案而所做的改变或其它等效的置换方式,都包含在本发明的保护范围之内。The specific implementation described above is a preferred embodiment of the present invention, and does not limit the present invention. Any other changes or other equivalent replacement methods that do not deviate from the technical solution of the present invention are included in the scope of protection of the present invention. within.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811440047.4A CN109508974B (en) | 2018-11-29 | 2018-11-29 | A shopping checkout system and method based on feature fusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811440047.4A CN109508974B (en) | 2018-11-29 | 2018-11-29 | A shopping checkout system and method based on feature fusion |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109508974A CN109508974A (en) | 2019-03-22 |
CN109508974B true CN109508974B (en) | 2023-08-22 |
Family
ID=65751132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811440047.4A Active CN109508974B (en) | 2018-11-29 | 2018-11-29 | A shopping checkout system and method based on feature fusion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109508974B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110210893A (en) * | 2019-05-09 | 2019-09-06 | 秒针信息技术有限公司 | Generation method, device, storage medium and the electronic device of report |
CN111275907B (en) * | 2020-01-20 | 2022-04-12 | 江苏恒宝智能系统技术有限公司 | Multi-channel identification authentication method and multi-channel identification authentication terminal |
CN111353389B (en) * | 2020-02-11 | 2023-08-11 | 山东唐门信息技术有限公司 | Intelligent weighing device based on multi-sensor recognition and analysis method thereof |
CN111780844A (en) * | 2020-06-22 | 2020-10-16 | 明光利拓智能科技有限公司 | Weighing and paying device for traceability scale and using method thereof |
CN112149577A (en) * | 2020-09-24 | 2020-12-29 | 信雅达系统工程股份有限公司 | Intelligent settlement system based on neural network image recognition |
CN113361673B (en) * | 2021-01-18 | 2022-07-15 | 南昌航空大学 | Color two-dimensional code anti-counterfeiting method based on support vector machine |
CN113762969B (en) * | 2021-04-23 | 2023-08-08 | 腾讯科技(深圳)有限公司 | Information processing method, apparatus, computer device, and storage medium |
CN114267139A (en) * | 2021-12-13 | 2022-04-01 | 湖南省金河计算机科技有限公司 | Intelligent POS machine system based on Internet of things, control method thereof and electronic equipment |
CN114222091B (en) * | 2021-12-14 | 2024-07-16 | 天翼电信终端有限公司 | Multifunctional business-customer fusion monitoring method and device based on cloud platform |
CN116503724A (en) * | 2022-01-20 | 2023-07-28 | 索尼半导体解决方案公司 | AI weighing system and method for increasing accuracy of AI model using multiple data sets |
CN115601027B (en) * | 2022-12-12 | 2023-04-21 | 临沂中科英泰智能科技有限责任公司 | Self-service retail cashing system and method based on big data |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106886889A (en) * | 2017-03-31 | 2017-06-23 | 四川研宝科技有限公司 | A kind of self-help shopping system and method based on commodity weight |
CN107808469A (en) * | 2017-11-02 | 2018-03-16 | 华北理工大学 | Self-service supermarket system |
CN108229946A (en) * | 2018-02-08 | 2018-06-29 | 中山简单点网络技术有限公司 | A kind of method of unmanned marketing balance system and system identification commodity |
CN108269371A (en) * | 2017-09-27 | 2018-07-10 | 缤果可为(北京)科技有限公司 | Commodity automatic settlement method, device, self-service cashier |
CN108537994A (en) * | 2018-03-12 | 2018-09-14 | 深兰科技(上海)有限公司 | View-based access control model identifies and the intelligent commodity settlement system and method for weight induction technology |
JP2018147402A (en) * | 2017-03-08 | 2018-09-20 | 東芝テック株式会社 | Checkout system |
-
2018
- 2018-11-29 CN CN201811440047.4A patent/CN109508974B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018147402A (en) * | 2017-03-08 | 2018-09-20 | 東芝テック株式会社 | Checkout system |
CN106886889A (en) * | 2017-03-31 | 2017-06-23 | 四川研宝科技有限公司 | A kind of self-help shopping system and method based on commodity weight |
CN108269371A (en) * | 2017-09-27 | 2018-07-10 | 缤果可为(北京)科技有限公司 | Commodity automatic settlement method, device, self-service cashier |
CN107808469A (en) * | 2017-11-02 | 2018-03-16 | 华北理工大学 | Self-service supermarket system |
CN108229946A (en) * | 2018-02-08 | 2018-06-29 | 中山简单点网络技术有限公司 | A kind of method of unmanned marketing balance system and system identification commodity |
CN108537994A (en) * | 2018-03-12 | 2018-09-14 | 深兰科技(上海)有限公司 | View-based access control model identifies and the intelligent commodity settlement system and method for weight induction technology |
Non-Patent Citations (1)
Title |
---|
大型超市自助收银终端的分析与设计;刘蒙 等;《工业设计》;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109508974A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109508974B (en) | A shopping checkout system and method based on feature fusion | |
US11501523B2 (en) | Goods sensing system and method for goods sensing based on image monitoring | |
US11790433B2 (en) | Constructing shopper carts using video surveillance | |
US20210312772A1 (en) | Storefront device, storefront management method, and program | |
US11151427B2 (en) | Method and apparatus for checkout based on image identification technique of convolutional neural network | |
CN109559458B (en) | Neural network-based commodity identification cash registering method and self-service cash registering desk | |
US11587149B2 (en) | Associating shoppers together | |
WO2019062812A1 (en) | Human-computer interaction device for automatic payment and use thereof | |
US20160300247A1 (en) | Sales data processing apparatus, server and method for acquiring attribute information | |
CN107679850A (en) | A kind of commodity settlement method, apparatus and system | |
CN111222870B (en) | Settlement method, device and system | |
CN108198315A (en) | A kind of auth method and authentication means | |
WO2019127618A1 (en) | Settlement method, device and system | |
CN111263224A (en) | Video processing method and device and electronic equipment | |
US12093889B2 (en) | Method, a device and a system for checkout | |
CN111260685B (en) | Video processing method and device and electronic equipment | |
CN116391183A (en) | Artificial intelligent recognition scale system and recognition method based on autonomous incremental learning | |
US10963896B2 (en) | Sales data processing apparatus, server and method for acquiring attribute information | |
CN112906759A (en) | Pure vision-based entrance-guard-free unmanned store checkout method | |
RU2724797C1 (en) | Cash register system and method for identification of courses on tray | |
US20220270061A1 (en) | System and method for indicating payment method availability on a smart shopping bin | |
CN113516469B (en) | Unmanned supermarket vending system and vending method based on deep learning and eye tracking | |
JP2024176763A (en) | Product image storage device and program | |
CN108877112A (en) | An intelligent cash register |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |