[go: up one dir, main page]

CN109499582B - 一种复合氧化物模拟酶材料及其制备方法和用途 - Google Patents

一种复合氧化物模拟酶材料及其制备方法和用途 Download PDF

Info

Publication number
CN109499582B
CN109499582B CN201811424281.8A CN201811424281A CN109499582B CN 109499582 B CN109499582 B CN 109499582B CN 201811424281 A CN201811424281 A CN 201811424281A CN 109499582 B CN109499582 B CN 109499582B
Authority
CN
China
Prior art keywords
composite oxide
oxide
enzyme material
application
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811424281.8A
Other languages
English (en)
Other versions
CN109499582A (zh
Inventor
陈超
王毅
张盾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN201811424281.8A priority Critical patent/CN109499582B/zh
Publication of CN109499582A publication Critical patent/CN109499582A/zh
Application granted granted Critical
Publication of CN109499582B publication Critical patent/CN109499582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/535Production of labelled immunochemicals with enzyme label or co-enzymes, co-factors, enzyme inhibitors or enzyme substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及模拟酶技术,具体说是一种复合氧化物(CoV复合氧化物)模拟酶材料及其制备和应用。通过沉淀剂尿素沉淀法制备CoV的层状双羟基复合金属氢氧化物前体,然后通过焙烧处理得CoV的复合氧化物模拟酶材料。本发明提供的钴钒氧化物模拟酶同时具有氧化酶和过氧化物酶活性的多重特征。所得复合材料具有合成步骤易操作、成本小、效果显著等特点,在新型催化氧化分析中具有广阔的应用前景。

Description

一种复合氧化物模拟酶材料及其制备方法和用途
技术领域
本发明涉及模拟酶技术,具体说是一种复合氧化物(CoV复合氧化物)模拟酶材料及其制备和应用。
背景技术
近年来,随着纳米技术的开发,越来越多的纳米材料或纳米复合材料被发现具有模拟酶的性质,极大扩展了酶的试用条件,如四氧化三铁纳米粒子、二氧化铈纳米材料[Asati A,Kaittanis C,Santra S,et al.pH-tunable oxidase-like activity ofcerium oxide nanoparticles achieving sensitive fluorigenic detection ofcancer biomarkers at neutral pH.Analytical Chemistry,2011,83(7):2547-2553]、碳纳米管、碳量子点、贵金属纳米颗粒金、银、铂[Jiang H,Chen Z,Cao H,et al.Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual andcolorimetric detection of glucose.Analyst,2012,137(23):5560-5564;MoglianettiM,De Luca E,Pedone D,et al.Platinum nanozymes recover cellular ROShomeostasis in an oxidative stress-mediateddisease model.Nanoscale,2016,8(6):3739-3752]等、和双金属纳米材料。
但是纳米颗粒因尺寸小,具有高的表面能,则容易发生团聚。多功能复合材料纳米模拟酶不仅能控制纳米材料大小,统一形貌,还能使其保持高催化活性。这对纳米模拟酶深入发展研究具有重要的理论指导与实际意义。
发明内容
本发明的目的在于提供一种复合氧化物(CoV复合氧化物)模拟酶材料及其制备和应用。
为实现上述目的,本发明采用的技术方案为:
一种复合氧化物模拟酶材料的制备方法,通过沉淀剂尿素沉淀法制备CoV的层状双羟基复合金属氢氧化物前体,然后通过焙烧处理得CoV的复合氧化物模拟酶材料。
进一步的说,将Co2+可溶性盐与三氯化钒(VCl3)按物质的量4~2:1的比例为混合,再加入尿素(CO(NH2)2),加入后一并溶于水中混匀直至澄清透明,而后置于水热反应釜中120-150℃(优选120℃)下晶化12h,晶化结束后自然冷却至室温后取出清洗、干燥,干燥后于300-800℃(优选300-500℃)下焙烧2h得到Co-V-MMO模拟酶材料;其中,尿素(CO(NH2)2)加量为Co源物质的量的1-3倍。
所述晶化处理后依次用超纯水、乙醇洗涤,洗涤后于4000转/min离心分离10min,离心后沉淀于80℃干燥6h,干燥后培烧得到Co-V MMO模拟酶材料。
所述Co2+可溶性盐为硝酸钴、氯化钴或草酸钴。
复合氧化物模拟酶材料,按所述方法制备获得Co-V复合氧化物模拟酶材料。
复合氧化物模拟酶材料的应用,所述Co-V的复合氧化物在作为模拟氧化物或过氧化物酶中的应用。
所述Co-V的复合氧化物作为氧化物或过氧化物模拟酶,在对底物进行催化氧化还原反应。
所述Co-V的复合氧化物作为氧化物或过氧化物模拟酶,在酸性条件下对底物进行催化氧化还原反应。
所述底物为TMB;或TMB和H2O2
本发明与现有技术相比,具有以下优点及突出性效果:
本发明通过尿素沉淀法制备出CoV复合金属前体,然后通过焙烧处理得分散性高、具有活化性能的钴钒复合氧化物氧化物模拟酶和过氧化物模拟酶双酶活性材料;并且模拟酶材料在酸性条件下具有高的化学稳定性,同时本发明材料成本低、制备方法简单、重复性好;作为一种新颖模拟酶在免疫分析、生物检测和临床诊断等领域都有潜在的应用价值;同时模拟酶在新型催化氧化分析中具有广阔的应用前景。
附图说明:
图1为本发明实施案例提供的复合纳米材料TEM图;
图2为本发明实施案例提供的定性分析材料成分X-射线衍射图;
图3为本发明实施例提供的复合纳米模拟酶类似过氧化物酶催化活性时的比色照片图。
具体实施方式
以下通过具体的实施例对本发明作进一步说明,有助于本领域的普通技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1:
2.4mmol六水氯化钴、0.8mmol三氯化钒(VCl3)和5mmol尿素(CO(NH2)2)溶于35mL水中搅拌至澄清透明,澄清透明液体置于40mL水热反应釜中120℃下晶化12h,晶化结束后自然冷却至室温,冷却至室温后取出依次用超纯水、无水乙醇分别超声清洗3次,清洗后于80℃干燥6h,然后用马弗炉400℃下焙烧2h得到Co-V-MMO模拟酶材料。Co-V-MMO模拟酶材料形貌TEM如图1所示。700℃XRD测试结果表明产物为Co3O4/Co3V2O8(见图2)。
由图1TEM图可见CoV-MMO为形貌均一的纳米片;由图2可看出合成钴钒复合纳米材料和成分通过与Co3O4和Co3V2O8标准的标准卡片Co3O4(43-1003)和Co3V2O8(16-0675)相吻合,另外图谱中没有出现其他任何杂质相。
实施例2-18
制备过程:
2.4mmol六水氯化钴与不同添加量的三氯化钒(VCl3)和5mmol尿素(CO(NH2)2)溶于35mL水中搅拌至澄清透明,澄清透明液体置于40mL水热反应釜中120℃下晶化12h,晶化结束后自然冷却至室温后取出依次用超纯水、无水乙醇分别超声清洗3次,清洗后80℃干燥6h,然后用马弗炉300-800℃下焙烧2h得到化学成分为Co3O4/Co3V2O8的Co-V-MMO模拟酶材料(参见表1)。各合成钴钒复合纳米材料和成分Co3O4和Co3V2O8标准的标准卡片(JCPDS No.47-1049和JCPDS No.74-1394)比对相吻合,没有出现其他任何杂质相。
表1
Figure BDA0001881211820000031
应用例
取100μL3mM H2O2,100μL 3mM TMB,750μL pH为4的醋酸钠缓冲液,再加入浓度为50μg/ml的上述实施例获得模拟酶材料;同时以未加入上述模拟酶材料的体系作为对照1,未加入过氧化氢和TMB的体系作为对照2,未加入TMB的体系作为对照3,未加入过氧化氢为对照4。室温下(25℃)下反应(测试波长范围内吸光度变化参见图3),由图3可见未加入模拟酶水溶液的对照1,过氧化氢对TMB没有氧化活性;而当不加入过氧化氢和TMB对照2,溶液也是略显浅黄色;当不加入TMB对照3,溶液也是略显浅黄色;当不加入过氧化氢对照4,溶液变浅蓝色,说明复合纳米材料有氧化酶性质;当TMB和过氧化氢时加入模拟酶水溶液,溶液蓝色较对照组4更深,说明复合纳米材料具有过氧化物模拟酶活性。
经离心洗涤后,不补充模拟酶材料,循环6次,模拟酶性能基本保持稳定,说明模拟酶材料稳定性较好。

Claims (6)

1.一种复合氧化物模拟酶材料的制备方法,其特征在于:通过沉淀剂尿素沉淀法制备CoV的层状双羟基复合金属氢氧化物前体,然后通过焙烧处理得CoV的复合氧化物模拟氧化物酶或过氧化物酶;
将Co2+可溶性盐与三氯化钒VCl3按物质的量的比例为4~2:1混合,再加入尿素CO(NH2)2,加入后一并溶于水中混匀直至澄清透明,而后置于水热反应釜中120-150℃下晶化12 h,晶化结束后自然冷却至室温后取出清洗、干燥,干燥后于300-800℃下焙烧2h得到Co-V-MMO模拟酶材料;
所述晶化处理后依次用超纯水、乙醇洗涤,离心后,沉淀干燥后焙烧得到Co-V MMO模拟酶材料;
所述Co2+可溶性盐为硝酸钴、氯化钴或草酸钴。
2.按权利要求1所述方法制备的复合氧化物模拟酶材料,其特征在于:按权利要求1所述方法制备获得Co-V复合氧化物模拟酶材料。
3.按权利要求2所述的复合氧化物模拟酶材料的应用,其特征在于:所述Co-V的复合氧化物在作为模拟氧化物或过氧化物酶中的应用。
4.按权利要求3所述的复合氧化物模拟酶材料的应用,其特征在于:所述Co-V的复合氧化物作为氧化物或过氧化物模拟酶,在对底物进行催化氧化还原反应。
5.按权利要求4所述的复合氧化物模拟酶材料的应用,其特征在于:所述Co-V的复合氧化物作为氧化物或过氧化物模拟酶,在酸性条件下对底物进行催化氧化还原反应。
6.按权利要求5所述的复合氧化物模拟酶材料的应用,其特征在于:所述底物为TMB或TMB和H2O2
CN201811424281.8A 2018-11-27 2018-11-27 一种复合氧化物模拟酶材料及其制备方法和用途 Active CN109499582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811424281.8A CN109499582B (zh) 2018-11-27 2018-11-27 一种复合氧化物模拟酶材料及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811424281.8A CN109499582B (zh) 2018-11-27 2018-11-27 一种复合氧化物模拟酶材料及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN109499582A CN109499582A (zh) 2019-03-22
CN109499582B true CN109499582B (zh) 2021-09-28

Family

ID=65750757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811424281.8A Active CN109499582B (zh) 2018-11-27 2018-11-27 一种复合氧化物模拟酶材料及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN109499582B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111054357B (zh) * 2019-12-12 2022-11-22 中国科学院海洋研究所 一种含铈复合氧化物模拟酶材料及其制备和应用
CN112630179B (zh) * 2020-12-09 2023-07-21 安徽师范大学 具有氧化物模拟酶性质的普鲁士蓝量子点及其制备方法及检测l-半胱氨酸的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568934A (zh) * 2015-01-05 2015-04-29 上海纳米技术及应用国家工程研究中心有限公司 纳米四氧化三钴作为过氧化物模拟酶测定过氧化氢的应用
CN104596956A (zh) * 2015-01-05 2015-05-06 上海纳米技术及应用国家工程研究中心有限公司 纳米氧化镍作为过氧化物模拟酶检测过氧化氢的应用
CN105798324A (zh) * 2016-03-21 2016-07-27 中山大学 一种基于自组装结构模拟酶及其制备方法与应用
CN107376961A (zh) * 2017-07-25 2017-11-24 江苏大学 集成化CoP纳米片阵列作为整体式类过氧化物酶的制备及应用
CN108786830A (zh) * 2018-06-29 2018-11-13 中国科学院海洋研究所 一种镍钒复合氧化物模拟酶材料及其制备方法和用途
CN108872216A (zh) * 2018-05-24 2018-11-23 首都师范大学 一种钴镍纳米线阵列及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568934A (zh) * 2015-01-05 2015-04-29 上海纳米技术及应用国家工程研究中心有限公司 纳米四氧化三钴作为过氧化物模拟酶测定过氧化氢的应用
CN104596956A (zh) * 2015-01-05 2015-05-06 上海纳米技术及应用国家工程研究中心有限公司 纳米氧化镍作为过氧化物模拟酶检测过氧化氢的应用
CN105798324A (zh) * 2016-03-21 2016-07-27 中山大学 一种基于自组装结构模拟酶及其制备方法与应用
CN107376961A (zh) * 2017-07-25 2017-11-24 江苏大学 集成化CoP纳米片阵列作为整体式类过氧化物酶的制备及应用
CN108872216A (zh) * 2018-05-24 2018-11-23 首都师范大学 一种钴镍纳米线阵列及其制备方法与应用
CN108786830A (zh) * 2018-06-29 2018-11-13 中国科学院海洋研究所 一种镍钒复合氧化物模拟酶材料及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"新型过氧化物模拟酶纳米材料在可视化检测葡萄糖中的应用";苏莉;《中国博士学位论文全文数据库工程俄科技I辑》;20131015(第10期);B020-41 *

Also Published As

Publication number Publication date
CN109499582A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
CN113861962B (zh) 一种比率型荧光探针及其制备方法和在检测过氧化氢中的应用
CN103183374A (zh) 一种单分散氧化铟纳米多孔微球的制备方法
CN109499582B (zh) 一种复合氧化物模拟酶材料及其制备方法和用途
CN111054357A (zh) 一种含铈复合氧化物模拟酶材料及其制备和应用
CN113200556B (zh) 一种高稳定性的微米级立方体钴基普鲁士蓝类似物的制备方法和应用
CN113275011B (zh) 一种花球状多级结构的氧化亚铜光催化剂的制备方法
CN106348349B (zh) 一种高比表面空心结构四氧化三钴及其合成方法和应用
CN105948097A (zh) 一种球形二氧化铈
CN106745180A (zh) 一种多孔纳米结构的氧化铜电极材料、制备方法及其应用
CN106596528B (zh) 一种基于羟基磷灰石超长纳米线/金属有机配合物的检测试纸
CN113120973B (zh) 一种铜掺杂的镍铝层状双金属氢氧化物的制备方法及所得产品和应用
CN108313993B (zh) 一种硝酸的合成方法
CN103641147B (zh) 一种微米级椭球形氧化铈的制备方法
CN103447028A (zh) 一种形貌可控的纳米银核/介孔二氧化硅壳结构的制备方法
CN112516997A (zh) CeO2/MnO2纳米棒的制备方法
CN108714426A (zh) 一种纳米立方体钙钛矿型催化剂及其制备方法和应用
CN107915255A (zh) 纳米氧化锆的制备方法及其制备的纳米氧化锆
CN112316985A (zh) 一种二氧化碳加氢制甲醇的催化材料及其制备方法
CN109133169A (zh) 一种钒酸铋及其制备方法和应用
CN111672523B (zh) 一种三维ZnFe2O4/BiOCl(001)复合光催化剂及其制备方法
CN109603858B (zh) 一种双活性模拟酶材料及其制备和应用
CN108786830B (zh) 一种镍钒复合氧化物模拟酶材料及其制备方法和用途
CN114160115B (zh) 一种基于mof合成氧化锆基固溶体的方法
CN117229631A (zh) 一种ZnO@HPDA抗菌纳米复合粒子及其制备方法与应用
CN104843762A (zh) 一种酞菁修饰的二氧化铈纳米粒子的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant