CN109490983B - A method and system for automatic fitting of reservoir geomechanics parameters - Google Patents
A method and system for automatic fitting of reservoir geomechanics parameters Download PDFInfo
- Publication number
- CN109490983B CN109490983B CN201811298174.5A CN201811298174A CN109490983B CN 109490983 B CN109490983 B CN 109490983B CN 201811298174 A CN201811298174 A CN 201811298174A CN 109490983 B CN109490983 B CN 109490983B
- Authority
- CN
- China
- Prior art keywords
- fitting
- parameters
- karhunen
- random
- random field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V9/00—Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/06—Power analysis or power optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Geophysics (AREA)
- Biomedical Technology (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Physiology (AREA)
- Genetics & Genomics (AREA)
- Artificial Intelligence (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种储层地质力学参数自动拟合方法及系统,它包括以下步骤:通过Karhunen‑Loeve展开法生成关于力学参数的随机场;将随机场导入Abaqus有限元模拟器中进行储层地应力计算;通过优化算法调整Karhunen‑Loeve算法中的随机数,实现地层应力模拟结果与实际观测值在误差范围内的拟合;利用通过遗传算法优选后的随机数,获得更为准确的地质力学参数场。利用Karhunen‑Loeve展开法实现随机场的生成,利用Abaqus软件模拟地层条件下的应力分布,利用优化算法拟合的地质力学参数,建立起一种地质力学参数自动拟合的方法,该方法能自动拟合储层地质力学参数,并得到符合统计分布特征的参数场,这对于工程师快速准确获取储层地质力学参数的空间分布具有重要的指导意义。
The present invention relates to a method and system for automatic fitting of geomechanical parameters of reservoirs, which comprises the following steps: generating a random field about mechanical parameters through the Karhunen-Loeve expansion method; importing the random field into an Abaqus finite element simulator Stress calculation; adjust the random number in the Karhunen-Loeve algorithm through the optimization algorithm to achieve the fitting of the formation stress simulation result and the actual observation value within the error range; use the random number optimized by the genetic algorithm to obtain more accurate geomechanics parameter field. Using the Karhunen-Loeve expansion method to realize the generation of random fields, using Abaqus software to simulate the stress distribution under formation conditions, and using the geomechanical parameters fitted by the optimization algorithm, a method for automatic fitting of geomechanical parameters is established, which can automatically Fitting reservoir geomechanical parameters and obtaining a parameter field conforming to statistical distribution characteristics is of great guiding significance for engineers to quickly and accurately obtain the spatial distribution of reservoir geomechanical parameters.
Description
技术领域technical field
本发明涉及一种自动拟合方法,特别是一种储层地质力学参数自动拟合方法及系统。The invention relates to an automatic fitting method, in particular to an automatic fitting method and system for reservoir geomechanics parameters.
背景技术Background technique
由于地下储层岩石具有非均质性,使得同一储层随着位置的不同,具有不同的力学性质,近而具有不同的地应力分布。对于油气藏生产而言,力学参数在空间上呈现出高度非均质性和各向异性,采用传统均质模型与实际地层存在很大的偏差。若能准确描述储层力学参数的分布,不仅有利于找准地质甜点区,甚至对于后期指导压裂施工都具有重要意义。Due to the heterogeneity of underground reservoir rocks, the same reservoir has different mechanical properties with different locations, and thus has different in-situ stress distributions. For oil and gas reservoir production, the mechanical parameters present highly heterogeneous and anisotropic spatially, and there is a large deviation between the traditional homogeneous model and the actual formation. If the distribution of reservoir mechanical parameters can be accurately described, it will not only help to identify geological sweet spots, but also be of great significance for guiding fracturing construction in the later stage.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点,提供了一种储层地质力学参数自动拟合方法及系统,解决了采用传统均质模型与实际地层存在很大的偏差的问题。The purpose of the present invention is to overcome the shortcomings of the prior art, provide a method and system for automatic fitting of reservoir geomechanics parameters, and solve the problem of large deviation between the traditional homogeneous model and the actual formation.
本发明的目的通过以下技术方案来实现:一种储层地质力学参数自动拟合方法,它包括以下步骤:The object of the present invention is achieved through the following technical solutions: a method for automatically fitting reservoir geomechanical parameters, which comprises the following steps:
通过Karhunen-Loeve展开法生成关于力学参数的随机场;Generate random fields about mechanical parameters by Karhunen-Loeve expansion method;
将随机场导入Abaqus模拟器中进行储层地应力模拟;Import the random field into the Abaqus simulator for reservoir stress simulation;
通过优化算法实现模拟结果与实际数值在允许误差范围内的拟合,进而获得最优地质力学参数场。Through the optimization algorithm, the simulation results and the actual values are fitted within the allowable error range, and then the optimal geomechanical parameter field is obtained.
在进行所述通过Karhunen-Loeve展开法将得到的力学参数生成关于力学参数的随机场步骤之前还需要完成Karhunen-Loeve展开法的推导过程这一步骤。The step of derivation of the Karhunen-Loeve expansion method needs to be completed before performing the step of generating a random field about the mechanical parameters from the mechanical parameters obtained by the Karhunen-Loeve expansion method.
在完成所述Karhunen-Loeve展开法的推导过程步骤之后以及进行所述通过Karhunen-Loeve展开法将得到的力学参数生成关于力学参数的随机场步骤之前还需要完成根据推导的实现过程编写Karhunen-Loeve展开法的相关程序。After completing the derivation process steps of the Karhunen-Loeve expansion method and before performing the step of generating a random field about the mechanical parameters from the mechanical parameters obtained by the Karhunen-Loeve expansion method, it is also necessary to complete the Karhunen-Loeve according to the derivation implementation process Related procedures of the expansion method.
所述的通过Karhunen-Loeve展开法将得到的力学参数生成关于力学参数的随机场步骤的具体内容如下:The specific content of the step of generating the random field about the mechanical parameters from the mechanical parameters obtained by the Karhunen-Loeve expansion method is as follows:
产生N个相互独立的高斯随机变量ξi(θ);Generate N mutually independent Gaussian random variables ξ i (θ);
计算协方差矩阵的积分方程得到特征值λn和特征函数fn;Calculate the integral equation of the covariance matrix to obtain the eigenvalue λ n and the eigenfunction f n ;
将特征值λn和特征函数fn以及高斯随机变量ξi(θ)代入取N阶截断,实现一次随机场的产生;Substitute the eigenvalue λ n , the eigenfunction f n and the Gaussian random variable ξ i (θ) into Take N-order truncation to realize the generation of a random field;
重复P次上述第三步骤,实现P次随机场的产生;Repeat the above third step P times to realize the generation of P random fields;
当实现P次随机场的产生后,根据随机变量ξi(θ)得到以下矩阵:After P random field generation is realized, the following matrix is obtained according to the random variable ξ i (θ):
所述的随机变量ξi(θ)满足标准正态分布,且满足E[ξi(θ)]=0;E[ξi(θ)ξj(θ)]=δij,其中,δij为Kronecker-delta函数。The random variable ξ i (θ) satisfies the standard normal distribution, and satisfies E[ξ i (θ)]=0; E[ξ i (θ)ξ j (θ)]=δ ij , wherein, δ ij is the Kronecker-delta function.
所述的Abaqus模拟器包括孔隙弹性有限元模拟器;所述将随机场导入Abaqus模拟器中进行储层地应力模拟步骤的具体内容如下:Described Abaqus simulator comprises poroelastic finite element simulator; Described import random field in the Abaqus simulator and carry out the concrete content of reservoir ground stress simulation step as follows:
将Karhunen-Loeve展开法所生成的力学性质随机场导入Abaqus模拟器中;Import the random field of mechanical properties generated by the Karhunen-Loeve expansion method into the Abaqus simulator;
在Abaqus模拟器中对孔隙弹性力学模型赋予水平方向的应变边界条件和来自上覆岩层的垂向应力边界条件;In the Abaqus simulator, a horizontal strain boundary condition and a vertical stress boundary condition from the overlying strata are assigned to the poroelastic mechanics model;
得到关于随机场的应力张量分布值。Get the value of the stress tensor distribution with respect to the random field.
所述的优化算法包括遗传算法;所述的遗传算法实现模拟结果与实际数值在误差范围内的拟合的具体步骤为:Described optimization algorithm comprises genetic algorithm; The concrete steps that described genetic algorithm realizes the fitting of simulation result and actual numerical value within error range are:
参数设置:确定遗传算法中每代人口数。人口数取所有网格总数的8~15%;确定遗传算法的停止条件。当相邻两代随机数差值的II型范数小于0.001时停止算法;设定遗传算法中保留精英、发生变异概率为0.1与0.02;Parameter setting: Determine the population size of each generation in the genetic algorithm. The population is 8-15% of the total number of all grids; determine the stop condition of the genetic algorithm. When the type II norm of the difference between two adjacent generations of random numbers is less than 0.001, stop the algorithm; set the genetic algorithm to retain the elite, and the probability of mutation is 0.1 and 0.02;
编码步骤:在进行搜索之前先将解空间的解数据(随机数组)表示成遗传空间的基因型串结构数据,所述的串结构数据的不同组合便构成了不同的点;Coding step: before searching, the solution data (random array) of the solution space is expressed as the genotype string structure data of the genetic space, and different combinations of the string structure data constitute different points;
适应度评估步骤:通过适应度评估去表明个体或解的优劣性,对于研究问题,适应度函数为模拟应力结果与实际观测值之间的差异;Fitness evaluation step: use fitness evaluation to indicate the pros and cons of individuals or solutions. For research problems, the fitness function is the difference between the simulated stress results and the actual observations;
选择步骤:从群体中选择出优良的个体作为为下一代繁殖子孙的父代;Selection step: select excellent individuals from the group as the parent generation for the next generation to reproduce;
交叉步骤:通过交叉得到一个组合了父辈个体特性的新一代个体;Crossover step: Obtain a new generation of individuals that combines the characteristics of the parent individual through crossover;
变异步骤:从群体中随机选择一个个体,并将选中的个体以随机地改变串结构数据中某一串的值,实现数据的变异。Mutation step: Randomly select an individual from the population, and randomly change the value of a certain string in the string structure data of the selected individual to realize data mutation.
所述的选择步骤中选择优良个体的原则为为下一代贡献一个或者多个后代概率大的适应性强的个体。The principle of selecting excellent individuals in the selection step is to contribute one or more highly adaptable individuals with a high probability of offspring to the next generation.
一种储层地质力学参数自动拟合系统,它包括推导编程模块、随机场生成模块、模拟模块和优化拟合模块;所述的推导变成模块实现推导Karhunen-Loeve展开法的实现过程并根据实现过程进行相应的编程;所述的随机场生成模块实现通过Karhunen-Loeve展开法将得到的力学参数生成关于力学参数的随机场;所述的模拟模块实现将随机场导入Abaqus模拟器中进行储层地应力模拟;所述的优化拟合模块实现通过优化算法实现模拟应力结果与实际观测值在误差范围内的拟合。An automatic fitting system for reservoir geomechanics parameters, which includes a derivation programming module, a random field generation module, a simulation module and an optimal fitting module; the derivation becomes a module to realize the realization process of the derivation Karhunen-Loeve expansion method and according to The realization process carries out corresponding programming; Described random field generation module realizes the mechanical parameter that will obtain by Karhunen-Loeve expansion method and generates the random field about mechanical parameter; Described simulation module realizes that random field is imported in Abaqus simulator and stores Layer stress simulation; the optimization fitting module realizes the fitting between the simulated stress result and the actual observed value within the error range through an optimization algorithm.
所述的模拟模块包括导入单元和条件赋予单元;所述的导入单元实现将Karhunen-Loeve展开法所生成的力学性质随机场导入Abaqus模拟器中;所述的条件赋予单元实现在Abaqus模拟器中对随机场赋予水平方向的应变边界条件和来自上覆岩层的垂向应力边界条件,并得到关于随机场的应力分布值。The simulation module includes an import unit and a condition assignment unit; the import unit realizes that the mechanical property random field generated by the Karhunen-Loeve expansion method is imported into the Abaqus simulator; the condition assignment unit is implemented in the Abaqus simulator A horizontal strain boundary condition and a vertical stress boundary condition from the overlying strata are given to the random field, and the stress distribution value of the random field is obtained.
所述的优化拟合模块包括参数设置、编码单元、初始群体生成单元、评估单元、选择交叉单元以及变异单元;The optimal fitting module includes parameter setting, encoding unit, initial population generation unit, evaluation unit, selection crossover unit and variation unit;
所述的编码单元实现GA在进行搜索之前先将解空间的解数据(随机数组)表示成遗传空间的基因型串结构数据,所述的串结构数据的不同组合便构成了不同的点;通过适应度评估去表明个体或解的优劣性,对于研究问题,适应度函数为模拟应力结果与实际观测值之间的差异;所述的选择交叉单元实现从群体中选择出优良的个体作为为下一代繁殖子孙的父代,并通过交叉得到一个组合了父辈个体特性的新一代个体;所述的变异单元实现从群体中随机选择一个个体,并将选中的个体以随机地改变串结构数据中某一串的值进而实现数据的变异。The coding unit realizes that the solution data (random array) of the solution space is expressed as the genotype string structure data of the genetic space before the GA searches, and different combinations of the string structure data constitute different points; The fitness evaluation is used to indicate the pros and cons of individuals or solutions. For research problems, the fitness function is the difference between the simulated stress results and the actual observed values; the selection cross unit realizes selecting excellent individuals from the population as The next generation reproduces the parent generation of the offspring, and obtains a new generation of individuals that combines the characteristics of the parents' individuals through crossover; the mutation unit realizes random selection of an individual from the population, and randomly changes the selected individual in the string structure data A string of values to achieve data mutation.
本发明的有益效果为:一种储层地质力学参数自动拟合方法及系统,利用Karhunen-Loeve展开法实现随机场的展开,利用Abaqus软件模拟地层条件下的应力分布,利用优化算法拟合准确的地质力学参数,建立起一种地质力学参数自动拟合的方法,该方法能自动拟合储层地质力学参数,并得到连续分布的参数场,这对于工程师快速准确拟合储层地质力学参数具有重要指导意义。The beneficial effects of the present invention are: a method and system for automatically fitting geomechanical parameters of reservoirs, using the Karhunen-Loeve expansion method to realize the expansion of the random field, using Abaqus software to simulate the stress distribution under formation conditions, and using the optimization algorithm to fit accurately A method for automatic fitting of geomechanical parameters is established, which can automatically fit reservoir geomechanical parameters and obtain a continuously distributed parameter field, which is helpful for engineers to quickly and accurately fit reservoir geomechanical parameters has important guiding significance.
附图说明Description of drawings
图1为本发明的流程图;Fig. 1 is a flowchart of the present invention;
图2为准确的杨氏模量参数示意图;Fig. 2 is the accurate Young's modulus parameter schematic diagram;
图3为利用Karhunen-Loeve展开法生成的第1代杨氏模量参数场示意图;Figure 3 is a schematic diagram of the first-generation Young's modulus parameter field generated by the Karhunen-Loeve expansion method;
图4为利用Karhunen-Loeve展开法生成的第25代杨氏模量参数场示意图;Figure 4 is a schematic diagram of the 25th generation Young's modulus parameter field generated by the Karhunen-Loeve expansion method;
图5为利用Abaqus软件绘制准确的应力分布示意图;Figure 5 is a schematic diagram of drawing accurate stress distribution using Abaqus software;
图6为利用Abaqus软件模拟第1代模型应力分布示意图;Figure 6 is a schematic diagram of the stress distribution of the first generation model simulated by Abaqus software;
图7利用Abaqus软件模拟第25代模型中应力分布示意。Figure 7 shows the stress distribution in the 25th generation model simulated by Abaqus software.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的描述,但本发明的保护范围不局限于以下所述。The present invention will be further described below in conjunction with the accompanying drawings, but the protection scope of the present invention is not limited to the following description.
如图1所示,一种储层地质力学参数自动拟合方法,它包括以下步骤:As shown in Figure 1, an automatic fitting method for reservoir geomechanics parameters, which includes the following steps:
S1、通过Karhunen-Loeve展开法将得到的力学参数生成关于力学参数的随机场;S1, generate a random field about the mechanical parameters from the obtained mechanical parameters through the Karhunen-Loeve expansion method;
S2、将随机场导入Abaqus模拟器中进行储层地应力模拟;S2. Import the random field into the Abaqus simulator to simulate the stress of the reservoir;
S3、通过优化算法实现模拟结果与实际数值在允许误差范围内的拟合。S3. Realize the fitting between the simulation result and the actual value within the allowable error range through the optimization algorithm.
在进行所述通过Karhunen-Loeve展开法将得到的力学参数生成关于力学参数的随机场步骤之前还需要完成Karhunen-Loeve展开法的推导过程这一步骤。The step of derivation of the Karhunen-Loeve expansion method needs to be completed before performing the step of generating a random field about the mechanical parameters from the mechanical parameters obtained by the Karhunen-Loeve expansion method.
在完成所述Karhunen-Loeve展开法的推导过程步骤之后以及进行所述通过Karhunen-Loeve展开法将得到的力学参数生成关于力学参数的随机场步骤之前还需要完成根据推导的实现过程编写Karhunen-Loeve展开法的相关程序。After completing the derivation process steps of the Karhunen-Loeve expansion method and before performing the step of generating a random field about the mechanical parameters from the mechanical parameters obtained by the Karhunen-Loeve expansion method, it is also necessary to complete the Karhunen-Loeve according to the derivation implementation process Related procedures of the expansion method.
所述的通过Karhunen-Loeve展开法将得到的力学参数生成关于力学参数的随机场步骤的具体内容如下:The specific content of the step of generating the random field about the mechanical parameters from the mechanical parameters obtained by the Karhunen-Loeve expansion method is as follows:
S11、产生N个相互独立的高斯随机变量ξi(θ);S11. Generate N mutually independent Gaussian random variables ξ i (θ);
S12、计算协方差矩阵的积分方程得到特征值λn和特征函数fn;S12, calculating the integral equation of the covariance matrix to obtain the eigenvalue λ n and the eigenfunction f n ;
S13、将特征值λn和特征函数fn以及高斯随机变量ξi(θ)代入 取N阶截断,实现一次随机场的产生;S13, eigenvalue λ n and eigenfunction f n and Gaussian random variable ξ i (θ) are substituted into Take N-order truncation to realize the generation of a random field;
S14、重复P次上述第三步骤,实现P次随机场的产生;S14. Repeat the third step above for P times to realize the generation of random fields for P times;
S15、当实现P次随机场的产生后,根据随机变量ξi(θ)得到以下矩阵:S15. After P times of random field generation is realized, the following matrix is obtained according to the random variable ξ i (θ):
所述的随机变量ξi(θ)满足标准正态分布,且满足E[ξi(θ)]=0;E[ξi(θ)ξj(θ)]=δij,其中,δij为Kronecker-delta函数。The random variable ξ i (θ) satisfies the standard normal distribution, and satisfies E[ξ i (θ)]=0; E[ξ i (θ)ξ j (θ)]=δ ij , wherein, δ ij is the Kronecker-delta function.
所述的Abaqus模拟器包括孔隙弹性有限元模拟器;所述将随机场导入Abaqus模拟器中进行储层地应力模拟步骤的具体内容如下:Described Abaqus simulator comprises poroelastic finite element simulator; Described import random field in the Abaqus simulator and carry out the concrete content of reservoir ground stress simulation step as follows:
S21、将Karhunen-Loeve展开法所生成的力学性质随机场导入Abaqus模拟器中;S21. Import the random field of mechanical properties generated by the Karhunen-Loeve expansion method into the Abaqus simulator;
S22、在Abaqus模拟器中对随机场赋予边界条件和初始应力条件;S22, assign boundary conditions and initial stress conditions to the random field in the Abaqus simulator;
S23、得到关于随机场的应力分布值。S23. Obtain the stress distribution value of the random field.
所述的优化算法包括遗传算法;所述的遗传算法实现模拟结果与实际数值在误差范围内的拟合的具体步骤为:Described optimization algorithm comprises genetic algorithm; The concrete steps that described genetic algorithm realizes the fitting of simulation result and actual numerical value within error range are:
编码步骤:GA在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,所述的串结构数据的不同组合便构成了不同的点;Coding step: GA expresses the solution data in the solution space as genotype string structure data in the genetic space before searching, and different combinations of the string structure data constitute different points;
生成初始群体步骤:随机产生M个初始串结构数据,每个串结构数据称为一个个体,M个个体构成了一个群体;其中,所述的GA以所述M个串结构数据作为初始点开始进化;Step of generating an initial group: Randomly generate M initial string structure data, each string structure data is called an individual, and M individuals form a group; wherein, the GA starts with the M string structure data as an initial point evolution;
适应度评估步骤:通过适应度评估去表明个体或解的优劣性,对于不同的问题,实现适应性函数的不同定义方式;Fitness evaluation step: use fitness evaluation to indicate the pros and cons of individuals or solutions, and implement different definitions of fitness functions for different problems;
选择步骤:从群体中选择出优良的个体作为为下一代繁殖子孙的父代;Selection step: select excellent individuals from the group as the parent generation for the next generation to reproduce;
交叉步骤:通过交叉得到一个组合了父辈个体特性的新一代个体;Crossover step: Obtain a new generation of individuals that combines the characteristics of the parent individual through crossover;
变异步骤:从群体中随机选择一个个体,并将选中的个体以随机地改变串结构数据中某一串的值,实现数据的变异。Mutation step: Randomly select an individual from the population, and randomly change the value of a certain string in the string structure data of the selected individual to realize data mutation.
其中,GA中变异发生的概率很低,因此通常取值都很小。Among them, the probability of mutation in GA is very low, so the value is usually very small.
所述的选择步骤中选择优良个体的原则为为下一代贡献一个或者多个后代概率大(入概率最大)的适应性强的个体。The principle of selecting excellent individuals in the selection step is to contribute one or more highly adaptable individuals with a high probability of offspring (maximum entry probability) to the next generation.
一种储层地质力学参数自动拟合系统,它包括推导编程模块、随机场生成模块、模拟模块和优化拟合模块;所述的推导变成模块实现推导Karhunen-Loeve展开法的实现过程并根据实现过程进行相应的编程;所述的随机场生成模块实现通过Karhunen-Loeve展开法将得到的力学参数生成关于力学参数的随机场;所述的模拟模块实现将随机场导入Abaqus模拟器中进行储层地应力模拟;所述的优化拟合模块实现通过优化算法实现模拟结果与实际数值在误差范围内的拟合。An automatic fitting system for reservoir geomechanics parameters, which includes a derivation programming module, a random field generation module, a simulation module and an optimal fitting module; the derivation becomes a module to realize the realization process of the derivation Karhunen-Loeve expansion method and according to The realization process carries out corresponding programming; Described random field generation module realizes the mechanical parameter that will obtain by Karhunen-Loeve expansion method and generates the random field about mechanical parameter; Described simulation module realizes that random field is imported in Abaqus simulator and stores Layer ground stress simulation; the optimization fitting module realizes the fitting between the simulation result and the actual value within the error range through an optimization algorithm.
所述的模拟模块包括导入单元和条件赋予单元;所述的导入单元实现将Karhunen-Loeve展开法所生成的力学性质随机场导入Abaqus模拟器中;所述的条件赋予单元实现在Abaqus模拟器中对随机场赋予边界条件和初始应力条件,并得到关于随机场的应力分布值。The simulation module includes an import unit and a condition assignment unit; the import unit realizes that the mechanical property random field generated by the Karhunen-Loeve expansion method is imported into the Abaqus simulator; the condition assignment unit is implemented in the Abaqus simulator Boundary conditions and initial stress conditions are given to the random field, and the stress distribution value of the random field is obtained.
所述的优化拟合模块包括编码单元、初始群体生成单元、评估单元、选择交叉单元以及变异单元;The optimal fitting module includes a coding unit, an initial population generation unit, an evaluation unit, a selection crossover unit and a variation unit;
所述的编码单元实现GA在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,所述的串结构数据的不同组合便构成了不同的点;所述的初始群体生成单元实现随机产生M个初始串结构数据,每个串结构数据称为一个个体,M个个体构成了一个群体,所述的GA以所述M个串结构数据作为初始点开始进化;所述的评估单元实现通过适应度评估去表明个体或解的优劣性,对于不同的问题,实现适应性函数的不同定义方式;所述的选择交叉单元实现从群体中选择出优良的个体作为为下一代繁殖子孙的父代,并通过交叉得到一个组合了父辈个体特性的新一代个体;所述的变异单元实现从群体中随机选择一个个体,并将选中的个体以随机地改变串结构数据中某一串的值进而实现数据的变异。The coding unit realizes that GA expresses the solution data of the solution space as genotype string structure data of the genetic space before searching, and different combinations of the string structure data constitute different points; the initial population The generating unit realizes random generation of M initial string structure data, each string structure data is called an individual, and M individuals form a group, and the GA begins to evolve with the M string structure data as an initial point; The evaluation unit realizes the fitness evaluation to indicate the pros and cons of the individual or the solution. For different problems, different definition methods of the fitness function are realized; the selection intersection unit realizes the selection of excellent individuals from the group as the following A generation of parents who breed offspring, and obtain a new generation of individuals that combines the characteristics of the parents' individuals through crossover; the mutation unit realizes random selection of an individual from the population, and randomly changes the selected individual to a certain value in the string structure data. A string of values to mutate the data.
优选地,如图2-图7所示,以模拟小尺度理论模型的杨氏模量分布为例,来介绍本发明所述的储层地质力学参数自动拟合的方法。基本参数如下:Preferably, as shown in FIGS. 2-7 , the method for automatic fitting of reservoir geomechanics parameters described in the present invention is introduced by taking the distribution of Young's modulus of a small-scale theoretical model as an example. The basic parameters are as follows:
杨氏模量参数随机场中均值为5;方差为1;理论模型大小:13*13*3;Karhunen-Loeve展开法中的截断项N=20;每代群体中包含个体数M=20;共生成25代个体。The mean value in the random field of Young's modulus parameter is 5; the variance is 1; the theoretical model size: 13*13*3; the truncation item in the Karhunen-Loeve expansion method is N=20; the number of individuals included in each generation population is M=20; A total of 25 generations of individuals were generated.
通过准确的杨氏模量参数场来作为参考场来评估本发明拟合的效果,从图2和图3中可以看出,第1代杨氏模量随机场与参考场杨氏模量分布存在很大的偏差,随机性得到了充分的考虑;从图4中可以发现图2和图4具有较高的相似度,说明经过了25代的遗传算法优化选择后,自动拟合出的杨氏模量参数场能较为准确的表征参考场。进一步观察模型的应力分布可以发现,利用Abaqus软件模拟第1代模型应力分布得到的图6与模型准确的应力分布图5存在很大的偏差,而经过25代的自动拟合后,得到的模型应力分布示意图7与准确的应力分布图5相似度很高,说明本发明可以准确快速地实现模型参数场自动拟合。近一步的,对于油藏地质模拟而言,可以准确的自动拟合储层地质力学参数场,操作简单,实现速度快,拟合精度高。As the reference field, the accurate Young's modulus parameter field is used to evaluate the fitting effect of the present invention. As can be seen from Fig. 2 and Fig. 3, the first generation Young's modulus random field and the reference field Young's modulus distribution There is a large deviation, and the randomness has been fully considered; from Figure 4, it can be found that Figure 2 and Figure 4 have a high degree of similarity, indicating that after 25 generations of genetic algorithm optimization selection, the automatically fitted poplar The modulus parameter field can characterize the reference field more accurately. Further observing the stress distribution of the model, it can be found that there is a large deviation between the stress distribution of the first generation model simulated by Abaqus software in Figure 6 and the accurate stress distribution in Figure 5 of the model, and after 25 generations of automatic fitting, the obtained model The stress distribution schematic diagram 7 is highly similar to the accurate stress distribution diagram 5, indicating that the present invention can accurately and quickly realize the automatic fitting of the model parameter field. Further, for reservoir geological simulation, it can accurately and automatically fit the reservoir geomechanical parameter field, with simple operation, fast implementation speed and high fitting accuracy.
以上所述,并非对本发明作任何形式上的限制,虽然本发明已通过上述实施例揭示,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些变动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above description does not limit the present invention in any form. Although the present invention has been disclosed by the above-mentioned embodiments, it is not intended to limit the present invention. When the technical content disclosed above can be used to make some changes or be modified into equivalent embodiments with equivalent changes, but if they do not deviate from the content of the technical solution of the present invention, any simple modifications made to the above embodiments according to the technical essence of the present invention, are equivalent to Changes and modifications all still belong to the scope of the technical solution of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811298174.5A CN109490983B (en) | 2018-11-02 | 2018-11-02 | A method and system for automatic fitting of reservoir geomechanics parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811298174.5A CN109490983B (en) | 2018-11-02 | 2018-11-02 | A method and system for automatic fitting of reservoir geomechanics parameters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109490983A CN109490983A (en) | 2019-03-19 |
CN109490983B true CN109490983B (en) | 2019-12-17 |
Family
ID=65693647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811298174.5A Active CN109490983B (en) | 2018-11-02 | 2018-11-02 | A method and system for automatic fitting of reservoir geomechanics parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109490983B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110702881B (en) * | 2019-10-23 | 2022-06-10 | 华北水利水电大学 | Prediction method of rock-soil material parameter variability result and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1447132A (en) * | 2002-03-26 | 2003-10-08 | 周熙襄 | Handling method for eliminating strong correlated interference waves in seismic exploration recordings |
CN101310196A (en) * | 2005-09-19 | 2008-11-19 | 沙特阿拉伯石油公司 | Method for estimating and reconstructing seismic reflection signals |
CN106372278A (en) * | 2016-08-19 | 2017-02-01 | 电子科技大学 | Sensitivity analysis method jointly considering input parameter uncertainty and proxy model uncertainty |
CN107847146A (en) * | 2015-07-21 | 2018-03-27 | 皇家飞利浦有限公司 | The method and system of automatic mark activity in ECG data |
CN108491578A (en) * | 2018-02-13 | 2018-09-04 | 东南大学 | A kind of Random dynamic loads recognition methods based on perturbative matrix |
-
2018
- 2018-11-02 CN CN201811298174.5A patent/CN109490983B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1447132A (en) * | 2002-03-26 | 2003-10-08 | 周熙襄 | Handling method for eliminating strong correlated interference waves in seismic exploration recordings |
CN101310196A (en) * | 2005-09-19 | 2008-11-19 | 沙特阿拉伯石油公司 | Method for estimating and reconstructing seismic reflection signals |
CN107847146A (en) * | 2015-07-21 | 2018-03-27 | 皇家飞利浦有限公司 | The method and system of automatic mark activity in ECG data |
CN106372278A (en) * | 2016-08-19 | 2017-02-01 | 电子科技大学 | Sensitivity analysis method jointly considering input parameter uncertainty and proxy model uncertainty |
CN108491578A (en) * | 2018-02-13 | 2018-09-04 | 东南大学 | A kind of Random dynamic loads recognition methods based on perturbative matrix |
Non-Patent Citations (2)
Title |
---|
水电工程边坡可靠度非侵入式随机分析方法;蒋水华;《中国博士学位论文全文数据库 工程科技II辑》;20160115(第1期);第2-3章 * |
现役建筑结构可靠性鉴定方法的研究;董素芹;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20061115(第11期);第3章 * |
Also Published As
Publication number | Publication date |
---|---|
CN109490983A (en) | 2019-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111441767B (en) | Oil reservoir production dynamic prediction method and device | |
CN113901681B (en) | A three-dimensional compressibility evaluation method for double sweet spots in shale gas reservoirs with full life cycle | |
CN113052371B (en) | Residual oil distribution prediction method and device based on deep convolutional neural network | |
AU2013296743B2 (en) | Multi-level reservoir history matching | |
CN109388817B (en) | Three-dimensional modeling method for reservoir fractures | |
Artus et al. | Optimization of nonconventional wells under uncertainty using statistical proxies | |
CN109478208A (en) | The iteration of integrated data and process integration for oil exploration and production assessment and repeatable workflow | |
US10846443B2 (en) | Discrete irregular cellular models for simulating the development of fractured reservoirs | |
CN106501856A (en) | Sub- earthquake fault quantitative forecasting technique | |
CN106291755B (en) | A kind of areas Long Sheng low-grade fault law of development quantitative forecasting technique | |
CN115166853B (en) | Method, device, electronic equipment and medium for establishing natural fracture model of shale gas reservoir | |
CN116205164B (en) | Multi-agent injection and production optimization method based on self-adaptive basis function selection | |
CN110988997A (en) | Hydrocarbon source rock three-dimensional space distribution quantitative prediction technology based on machine learning | |
CN116911216B (en) | Reservoir oil well productivity factor assessment and prediction method | |
CN117574755A (en) | Hierarchical multi-level optimization method for horizontal well fracturing parameters in shale reservoir well factory | |
CN116644662A (en) | A well layout optimization method based on knowledge embedded neural network agent model | |
CN107609265B (en) | Finite element simulation method and system for formation stress field based on ant tracking | |
CN115481577B (en) | Automatic oil reservoir history fitting method based on random forest and genetic algorithm | |
CN109490983B (en) | A method and system for automatic fitting of reservoir geomechanics parameters | |
CN108763164A (en) | Evaluation method for coal and gas outburst inversion similarity | |
CN112464483B (en) | Logging curve reconstruction method based on genetic neural network algorithm | |
CN118520554A (en) | Tunnel non-probability reliability analysis method based on symbolic regression algorithm | |
CN105781536A (en) | Method for measuring and calculating porosity of petroleum reservoir | |
CN116305751A (en) | A Fracture Modeling Method and Device for Fractured Metamorphic Buried Hill Reservoir | |
CN115936234A (en) | Thin reservoir space distribution prediction method based on deep learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |