A kind of metal material plane anisotropic supersonic detection method
Technical field
The invention belongs to ultrasonic detecting technology fields, are related to a kind of metal material plane anisotropic supersonic detection method.
Background technique
In actual production, due to phenomena such as extending there are crystal grain and recrystallizing, metal material original grain random distribution shape
State is destroyed, and generates the texture with preferred orientation inside it, causes to show different mechanics of materials spies on different directions
Property, so that it is with anisotropic character.By taking the metal foil wall pieces after shaping as an example, such as spinning, rolling, material surface have
The feature of plane anisotropic.In existing lossless detection method, ultrasonic method is commonly used for material parameter and feature assessment.So
And in the measurement of metal material constant ultrasound, often assume measured material isotropic, and have ignored the shadow of material anisotropic
It rings, this causes, and the sensitivity of traditional material constant supersonic testing method is low, measurement accuracy is difficult to ensure.For this purpose, material of quantitatively testing and assessing
Expect plane anisotropic feature, determining, mechanical analysis and status assessment are most important to material constant.
For the metal material with in-plane anisotropy feature, elastic properties of materials constant is distributed not in all directions in plane
Together.When ultrasonic wave is propagated along different directions, different phase velocities can be generated.Based on this, deviation when can use sound, calculating is obtained
The in-plane anisotropy constant of material different depth is obtained, and then realizes and tests and assesses to the ultrasound of material plane anisotropic character.
Zhang Jinduo et al. is in utility model patent " the full-automatic detector of sheet metal elastic anisotropy ", Publication No.
In the patent of CN2085981U, the principle changed to sheet metal transmission coefficient with incidence angle using ultrasonic wave, measurement have been invented
Sheet metal is obtained along each to material constants such as Young's modulus, shear modulus and Poisson's ratios of each direction to be measured, but can not be fitted
It tests and assesses for in-plane anisotropy.Mick Er Tantaier et al. is in patent " for characterizing the super of weak anisotropy soft-medium
Acoustic wave methodogy and equipment and ultrasonic probe component for the characterization equipment ", the patent of Publication No. CN106232013A
In, it has invented by observing the shearing wave issued at material center in different directions, thus it is speculated that propagation parameter is each to different to determine
Property, but anisotropy soft-medium material of this method just for material internal comprising fibrous material.
However, the above method or device do not refer to metal material plane anisotropic ultrasound detection and appraisal procedure.
Summary of the invention
The present invention solves the technical problem of overcoming the shortcomings of existing methods, for metal material anisotropy ultrasound
Detection and assessment problem, have invented a kind of metal material plane anisotropic supersonic detection method.This method has been firstly introduced into flat
Face anisotropic characterizes the factor, realizes quantifying for in-plane anisotropy feature and portrays.Provide overall merit region to be measured respectively to
Anisotropic index, can qualitative, quantitative metal material surface anisotropic is described.Using the method for multiangular measurement velocity of wave, sufficiently examine
Consider polarization direction in ultrasonic wave communication process to change harmony birefringent phenomenon, it is only necessary to the refracted longitudinal wave wave in three directions
Speed can measure the crystal grain orientation characterization factor.Measurement error is small, improves the Stability and dependability assessment method of measurement, can
By property height.
The technical solution adopted by the present invention is that a kind of metal material plane anisotropic supersonic detection method, this method is first
The plane anisotropic characterization factor is introduced, in-plane anisotropy characterization factor K is defined22And K12;In metal material plane
The sound time difference on N number of direction to be measured is measured, the ultrasonic velocity in N number of direction to be measured is detected, anti-calculate goes out in-plane anisotropy table
Levy the factor;Specific step is as follows for method:
The first step installs test specimen and ultrasonic probe
Metal specimen 1 is fixed on measuring table, determines N number of measurement direction in metal specimen 1 at tested point O, N=1,
2,3 ... n is measured respectively on N number of direction, i.e. the first measurement direction b1, the second measurement direction b2... n-th
Measurement direction bn;Ultrasonic receiver 3 and ultrasonic transmitter 4 constitute ultrasonic probe 2, and ultrasonic probe 2 is placed on metalwork 1
At tested point O, guarantee ultrasonic probe 2 and measured surface reliable contacts, also, makes 2 center of ultrasonic probe and tested point O weight
It closes, the central axes of ultrasonic probe 2 and the first measurement direction b1It is overlapped;
Second step introduces the plane anisotropic characterization factor, quantitatively portrays plane anisotropic;
Two characterization factors of definition material in-plane anisotropy, metal flat orthotropic parameter K22It is flat with metal
Face couples anisotropic parameters K12,
Wherein, c11、c12、c22And c66It is detected materials density for elastic properties of materials constant, the ρ in Voigt representation;
Metal flat orthotropic parameter K22, test specimen plane is respectively applied to for characterizing an equal amount of strain
Difference degree when two orthogonal main directions, between the stress of corresponding direction generation;Metal flat couples anisotropic parameters K12,
For characterizing effects of strain when material plane a certain principal direction, what anisotropic material generated in another principal direction of plane is answered
Stress increment of the power relative to isotropic material;
Third step detects the ultrasonic velocity in plane
Firstly, determining the measurement direction N=1 at tested point O, 2,3, i.e. the first measurement direction b1, the second measurement direction b2With
Third measurement direction b3.Then, ultrasonic probe 2 is placed in tested point O, so that 2 center of ultrasonic probe is overlapped with tested point O, with
And the central axes of ultrasonic probe 2 and the first measurement direction b1It is overlapped, and guarantees ultrasonic probe 2 and measured surface reliable contacts;It connects
, under the control of signals-modulating system, the ultrasonic pulse pumping signal that ultrasonic transmitter 4 issues, on 1 surface of metal specimen
After propagating certain distance L, received by ultrasonic receiver 3;Ultrasonic pulse pumping signal that ultrasonic transmitter 4 is issued and super
The reception signal that acoustic receiver 3 receives carries out cross-correlation calculation according to formula (2), takes two cross-correlation sequence maximum value institutes
Difference in position calculates and obtains the first measurement direction b1Sound time difference t1,
Wherein, X1For ultrasonic pulse pumping signal, X2For ultrasonic reception signal, TsFor sampling period, t1For the sound time difference, t is
Ultrasonic pulse pumping signal X1With ultrasonic reception signal X2Phase difference.
Centered on tested point O, by the increment counterclockwise of ultrasonic probe 2 rotate the angle θ so that the central axes of ultrasonic probe 2 with
Second measurement direction b2It is overlapped, according to the first measurement direction b1Operating procedure, obtain the second measurement direction b2Sound time difference t2。
On this basis, by ultrasonic probe 2, increment counterclockwise rotates the angle θ again, so that the central axes of ultrasonic probe 2 and third measurement side
To b3It is overlapped, according to the first measurement direction b1Operating procedure, obtain third measurement direction b3Sound time difference t3;
The longitudinal wave velocity of three measurement directions at tested point O is calculated by formula (3),
Wherein, v1For the first measurement direction b1Longitudinal wave velocity, v2For the second measurement direction b2Longitudinal wave velocity, v3For third
Measurement direction b3Longitudinal wave velocity, L be the distance between ultrasonic transmitter 4 and ultrasonic receiver 3.
Third step, Calculation Plane anisotropic characterize the factor
By the first measurement direction b1Longitudinal wave velocity v1, the second measurement direction b2Longitudinal wave velocity v2With third measurement direction b3
Longitudinal wave velocity v3It substitutes into formula (4), metal flat orthotropic parameter K is calculated22With metal flat coupling it is each to
Anisotropic parameter K12,
So far, detection calculates the in-plane anisotropy parameter of metal specimen.
Effect of the invention is: the present invention defines two plane anisotropics to characterize factor K12And K22To characterize metal
Anisotropy in plate face, using the method for multiangular measurement velocity of wave, it is only necessary to the refracted longitudinal wave velocity of wave in three directions
The anisotropic parameters of material are calculated, i.e. anisotropy characterizes the factor.Polarization side in ultrasonic wave communication process is fully considered
To the harmony birefringent phenomenon that changes, measurement error is small, improves the Stability and dependability of measurement, and easy to operate, at
This is low, applied widely.This method can be used for machine tool chief axis detection, realizes the automatic reliable measurements of contact ultrasound, improves
Measurement accuracy and detection efficiency.
Detailed description of the invention
Attached drawing 1- metal flat anisotropy characterizes factors check schematic diagram, in which: 1- metal specimen, 2- ultrasonic probe,
3- ultrasonic receiver, 4- ultrasonic transmitter.
Attached drawing 2- metal flat anisotropy characterizes factors check flow chart.
Specific embodiment
With reference to the accompanying drawing with the technical solution implementation process that the present invention will be described in detail, illustrate that metal material plane items are different
Property supersonic detection method.
Measurement parameter: material aluminium alloy plate, having a size of 150mm × 150mm, with a thickness of 10mm;Ultrasonic sensor 3 and 4
Resonance frequency be 5MHz, two ultrasonic sensor spacing L are 20mm.Attached drawing 2 is the metal flat anisotropy characterization factor
The specific implementation step of overhaul flow chart, this method is as follows:
The first step installs test specimen and ultrasonic probe
As shown in Figure 1, metal specimen 1 is fixed on measuring table, the measurement side in metal specimen 1 at tested point O is determined
To the present embodiment takes in 0 °, 45 °, 90 ° of three orientation measurements, is denoted as the first measurement direction b0, the second measurement direction b45And third
Measurement direction b90.Ultrasonic probe 2 is placed on metalwork 1 at tested point O again, guarantees that ultrasonic probe 2 can be abutted against with measured surface
Touching, so that 2 center of ultrasonic probe is overlapped with tested point O, and the central axes of ultrasonic probe 2 and the first measurement direction b0It is overlapped;
Second step introduces the plane anisotropic characterization factor, quantitatively portrays three direction of plane anisotropic survey calculation
The velocity of sound.Two characterization factors of definition material in-plane anisotropy, metal flat orthotropic parameter K22And metal flat
Couple anisotropic parameters K12.Metal flat orthotropic parameter K22, apply respectively for characterizing an equal amount of strain
Difference degree when two orthogonal main directions of test specimen plane, between the stress of corresponding direction generation;Metal flat coupling is each
Anisotropy parameter K12, for characterizing effects of strain when material plane a certain principal direction, anisotropic material is in another master of plane
Stress increment of the stress generated on direction relative to isotropic material.
Third step detects the ultrasonic velocity in plane
Under the control of signals-modulating system, the ultrasonic pulse pumping signal that ultrasonic transmitter 4 issues, along tested metal
After the distance L of 20mm is propagated on 1 surface of test specimen, received by ultrasonic receiver 3;The ultrasonic pulse that ultrasonic transmitter 4 is issued
The reception signal that pumping signal and ultrasonic receiver 3 receive carries out cross-correlation calculation, counts according to aforementioned formula (1), (2)
It calculates.The difference of two cross-correlation sequence maximum value positions is taken, calculates and obtains the first measurement direction b0Sound time difference t1。
Centered on tested point O, by the increment counterclockwise of ultrasonic probe 2 rotate 45 ° so that the central axes of ultrasonic probe 2 with
Second measurement direction b45It is overlapped, according to the first measurement direction b0Operating procedure, obtain the second measurement direction b45Sound time difference t2。
On this basis, by ultrasonic probe 2, increment counterclockwise rotates 45 ° again, so that the central axes of ultrasonic probe 2 and third measurement side
To b90It is overlapped, according to the first measurement direction b0Operating procedure, obtain third measurement direction b90Sound time difference t3。
By three direction sound time difference t1、t2And t3It substitutes into formula above-mentioned formula (3), calculates three measurement directions at tested point O
Longitudinal wave velocity.
4th step, Calculation Plane anisotropic characterize the factor
By the first measurement direction b0Longitudinal wave velocity vl0, the second measurement direction b45Longitudinal wave velocity vl45With third measurement side
To b90Longitudinal wave velocity vl90It substitutes into formula (4), metal flat orthotropic parameter K is calculated22With metal flat coupling
Close anisotropic parameters K12.So far, detection calculates the in-plane anisotropy parameter of metal specimen.
Invention defines two crystal grain orientation characterization factor Ks12And K22It characterizes the anisotropy in metal plate, gives
The anisotropic index in overall merit region to be measured out, can qualitative, quantitative metal material surface anisotropic is described;Using polygonal
The method of degree measurement velocity of wave, it is only necessary to which the refracted longitudinal wave velocity of wave in three directions can measure crystal grain orientation characterization factor K12With
K22, fully considered in ultrasonic wave communication process that polarization direction changes harmony birefringent phenomenon, measurement error is small, and measurement is steady
Qualitative and high reliablity, and it is easy to operate, it is at low cost, it is applied widely, it can be achieved that the ultrasonic automatic, reliable measurements of contact, mention
High measurement accuracy and efficiency.