[go: up one dir, main page]

CN109471080B - High-speed platform radar echo signal simulation system based on simulink - Google Patents

High-speed platform radar echo signal simulation system based on simulink Download PDF

Info

Publication number
CN109471080B
CN109471080B CN201811328332.7A CN201811328332A CN109471080B CN 109471080 B CN109471080 B CN 109471080B CN 201811328332 A CN201811328332 A CN 201811328332A CN 109471080 B CN109471080 B CN 109471080B
Authority
CN
China
Prior art keywords
module
radar
echo
scene
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811328332.7A
Other languages
Chinese (zh)
Other versions
CN109471080A (en
Inventor
李亚超
邹倩雅
全英汇
杜林鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201811328332.7A priority Critical patent/CN109471080B/en
Publication of CN109471080A publication Critical patent/CN109471080A/en
Application granted granted Critical
Publication of CN109471080B publication Critical patent/CN109471080B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于simulink的高速平台雷达回波信号模拟系统,主要解决现有技术模拟精度和回波效率低的问题。其方案是:在simulink中设计不同功能模块,其中PRT同步模块生成脉冲触发信号,控制时序同步;雷达脉冲发射模块模拟发射雷达脉冲基带信号;雷达轨迹导入模块输出雷达实时位置和运动信息;波束中心计算模块计算并输出实时波束中心坐标;子场景截取模块根据波束中心截取成像子场景;天线方向图模块计算并更新子场景中各点的天线增益;系统函数计算模块实时计算并更新回波的系统函数;回波产生模块卷积生成原始回波信号。本发明提高了回波模拟效率和精度,用于模拟不同雷达工作模式、环境、目标场景下的雷达回波信号。

Figure 201811328332

The invention discloses a high-speed platform radar echo signal simulation system based on simulink, which mainly solves the problems of low simulation accuracy and echo efficiency in the prior art. The scheme is: design different functional modules in simulink, among which the PRT synchronization module generates pulse trigger signals to control timing synchronization; the radar pulse transmission module simulates the transmission of radar pulse baseband signals; the radar track import module outputs the real-time position and motion information of the radar; the beam center The calculation module calculates and outputs real-time beam center coordinates; the sub-scene interception module intercepts the imaging sub-scene according to the beam center; the antenna pattern module calculates and updates the antenna gain of each point in the sub-scene; the system function calculation module calculates and updates the echo system in real time Function; the echo generation module convolutes to generate the original echo signal. The invention improves the echo simulation efficiency and precision, and is used for simulating radar echo signals under different radar working modes, environments and target scenes.

Figure 201811328332

Description

基于simulink的高速平台雷达回波信号模拟系统High-speed platform radar echo signal simulation system based on simulink

技术领域technical field

本发明属于雷达技术领域,特别涉及一种雷达回波信号模拟系统,可用于雷达系统设计、SAR系统性能的验证与评估。The invention belongs to the technical field of radar, in particular to a radar echo signal simulation system, which can be used for radar system design, verification and evaluation of SAR system performance.

背景技术Background technique

合成孔径雷达SAR是一种现代高分辨的微波成像雷达,已被广泛应用于各个领域,而在SAR系统的研发过程中,雷达回波数据对于成像算法的研究、雷达系统参数的设计、SAR系统性能的验证与评估具有极其重要的作用。但是SAR系统十分复杂,在实际应用时将会面临各种已知、复杂甚至未知、极端的情况和外界条件,因而,在整个系统的研发与研制阶段需要结合大量的回波数据对各个系统参数进行设计、修正,对算法进行优化、改进。如此巨大的回波数据量如果仅依靠将SAR挂载到实际的飞行装置,如飞机、卫星进行实测来获取,成本和安全性都是很大的问题,且容易出现误差。而SAR回波仿真模拟技术的出现与发展,为SAR系统的研发与研制带来很大的便利。Synthetic Aperture Radar (SAR) is a modern high-resolution microwave imaging radar that has been widely used in various fields. Performance verification and evaluation play an extremely important role. However, the SAR system is very complex, and it will face various known, complex or even unknown, extreme situations and external conditions in practical applications. Design, modify, optimize and improve the algorithm. If such a huge amount of echo data is obtained only by mounting the SAR to an actual flight device, such as an aircraft or a satellite for actual measurement, cost and safety are big problems, and errors are prone to occur. The emergence and development of SAR echo simulation technology has brought great convenience to the research and development of SAR systems.

回波模拟技术的应用,极大的降低了SAR系统的研发成本,在SAR的研发过程中,随时都可以对各个模块进行测试与调试,而不用等到整机制成后进行挂载测试,而且,通过回波模拟技术能得到各种各样的场景雷达回波,能在很大程度上提高SAR的可靠性。The application of echo simulation technology has greatly reduced the R&D cost of the SAR system. During the R&D process of SAR, each module can be tested and debugged at any time without waiting for the mounting test after the whole machine is completed. , Radar echoes of various scenarios can be obtained through echo simulation technology, which can greatly improve the reliability of SAR.

目前,国内外SAR回波模拟已取得很多成果,有纯理论模型、半实物模拟系统、计算机软件模拟、纯硬件平台实现FPGA和DPS。但是不同模型、系统都存在不足之处,或计算量过大尤其是针对大场景,或硬件系统过于庞大,且对自然场景的回波模拟支持较差。At present, many achievements have been made in SAR echo simulation at home and abroad, including pure theoretical model, semi-physical simulation system, computer software simulation, and pure hardware platform to realize FPGA and DPS. However, there are deficiencies in different models and systems, or the amount of calculation is too large, especially for large scenes, or the hardware system is too large, and the echo simulation support for natural scenes is poor.

1978年,堪萨斯大学的V.H.Kaupp和J.C.Holtaman等人研制出一种名叫RIS的Ku雷达模拟器,该模拟器基于点散射模型,能模拟出多种不同类型的场景,但因后向散射系数数据受限,并未广泛使用。In 1978, V.H.Kaupp and J.C.Holtaman of the University of Kansas developed a Ku radar simulator called RIS, which is based on the point scattering model and can simulate many different types of scenarios, but due to the backscattering coefficient Data are limited and not widely available.

2004年,Mori等人提出一种基于时域算法的多工作模式SAR回波模拟器,能模拟出多种非理想情况下的原始回波信号,但在场景过大的情况下,计算量较大。In 2004, Mori et al. proposed a multi-working-mode SAR echo simulator based on time-domain algorithms, which can simulate the original echo signals in various non-ideal situations, but the calculation amount is relatively large when the scene is too large. big.

2006年,清华大学的于明成等人提出一种基于逆波数域算法的SAR原始回波信号模拟方法,该方法通过对光学图像处理,得到场景后向散射系数,然后通过波数域算法反演得出原始回波信号,该方法的仿真效率虽说较高,但是在平台抖动、运动轨迹偏移这些非理想情况下,模拟精度较低。In 2006, Yu Mingcheng of Tsinghua University and others proposed a method for simulating the original echo signal of SAR based on the inverse wave number domain algorithm. This method obtains the backscattering coefficient of the scene by processing the optical image, and then inverts it through the wave number domain algorithm to obtain Although the simulation efficiency of this method is high, the simulation accuracy is low in non-ideal conditions such as platform jitter and motion track offset.

2010年,美国公司Mistral研制出一款新的SAR回波模拟器RTS-RF,系统功能多样,人机交互便捷,但是硬件系统过于庞大,且对自然场景的回波模拟支持较差。In 2010, the American company Mistral developed a new SAR echo simulator RTS-RF. The system has various functions and convenient human-computer interaction, but the hardware system is too large, and the echo simulation support for natural scenes is poor.

发明内容Contents of the invention

本发明的目的在于针对上述雷达回波模拟技术存在的不足,提出一种基于simulink的高速平台雷达回波信号模拟系统,以模拟出不同雷达工作模式、不同外界环境、不同目标场景下的雷达回波信号,且在保证精度的前提下,摆脱庞大的硬件系统,减少计算量,提高回波模拟的效率。The purpose of the present invention is to address the deficiencies in the above-mentioned radar echo simulation technology, and propose a high-speed platform radar echo signal simulation system based on simulink, so as to simulate radar echoes in different radar operating modes, different external environments, and different target scenarios. Wave signal, and under the premise of ensuring the accuracy, get rid of the huge hardware system, reduce the amount of calculation, and improve the efficiency of echo simulation.

为实现上述目的,本发明的技术方案是通过simulink生成不同模块,其特征在于,所生成的模块包括:In order to achieve the above object, the technical solution of the present invention is to generate different modules by simulink, and it is characterized in that, the generated modules include:

PRT同步模块,用于完成同步脉冲产生,并输出到各个模块,对整个系统的时钟进行同步;The PRT synchronization module is used to complete the synchronization pulse generation and output to each module to synchronize the clock of the whole system;

雷达脉冲信号发射模块,用于接收PRT同步脉冲输入,生成雷达脉冲发射信号,并将该雷达脉冲发射信号输出至回波生成模块;The radar pulse signal transmission module is used to receive the PRT synchronous pulse input, generate the radar pulse transmission signal, and output the radar pulse transmission signal to the echo generation module;

雷达轨迹导入模块,用于在PRT同步脉冲的控制下,读取雷达轨迹文件信息,并将读取的雷达轨迹信息分别输出至波束中心计算模块、子场景截取模块、天线方向图计算模块和系统函数计算模块;The radar trajectory import module is used to read the radar trajectory file information under the control of the PRT synchronous pulse, and output the read radar trajectory information to the beam center calculation module, sub-scene interception module, antenna pattern calculation module and system respectively function computing module;

波束中心计算模块,用于在PRT同步脉冲的控制下,根据输入的雷达和当前模式标示位,更新波束中心在场景图中的像素点坐标信息,并将波束中心坐标信息分别输出至子场景截取模块、天线方向图计算模块和系统函数计算模块;The beam center calculation module is used to update the pixel coordinate information of the beam center in the scene map according to the input radar and the current mode flag under the control of the PRT synchronization pulse, and output the beam center coordinate information to the sub-scene interception respectively module, antenna pattern calculation module and system function calculation module;

子场景截取模块,用于在PRT同步脉冲的控制下,根据雷达不同模式的不同波束照射方式和输入的波束中心坐标、雷达轨迹信息,从导入的大场景中截取成像的子场景,并将该子场景的数据分别输出至天线方向图计算模块和系统函数计算模块;The sub-scene interception module is used to intercept the imaging sub-scene from the imported large scene according to the different beam irradiation modes of different radar modes and the input beam center coordinates and radar track information under the control of the PRT synchronous pulse, and convert the sub-scene The data of the sub-scenes are respectively output to the antenna pattern calculation module and the system function calculation module;

天线方向图计算模块,用于在PRT同步脉冲的控制下,根据输入的雷达轨迹信息、波束中心坐标信息、子场景大小、接收波束偏置角度、距离向及方位向分辨率、天线波束宽度,计算子场景中各点的天线增益,并将结果输出至系统函数计算模块;The antenna pattern calculation module is used to, under the control of the PRT synchronization pulse, according to the input radar trajectory information, beam center coordinate information, sub-scene size, receiving beam offset angle, range and azimuth resolution, antenna beam width, Calculate the antenna gain of each point in the sub-scene, and output the result to the system function calculation module;

系统函数计算模块,用于在PRT同步脉冲的控制下,根据输入的雷达位置、波束中心坐标、子场景数据、天线方向图、回波的起始距离门信息,利用同心圆算法,计算回波的系统函数,并将该系统函数输出至回波生成模块;The system function calculation module is used to calculate the echo by using the concentric circle algorithm under the control of the PRT synchronous pulse, according to the input radar position, beam center coordinates, sub-scene data, antenna pattern, and initial range gate information of the echo system function, and output the system function to the echo generation module;

回波生成模块,用于将雷达脉冲发射信号与系统函数进行卷积,并在PRT同步脉冲的控制下,生成原始回波信号,并将结果输出至延时和距离门选通模块;The echo generation module is used to convolve the radar pulse transmission signal with the system function, and generate the original echo signal under the control of the PRT synchronous pulse, and output the result to the delay and range gate gating module;

延时和距离门选通模块,用于在PRT同步脉冲的控制下,使回波数据以“流”的方式输出,从而更好地模拟雷达回波信号流。The delay and range gate gating module is used to make the echo data output in a "stream" mode under the control of the PRT synchronous pulse, so as to better simulate the radar echo signal flow.

本发明具有如下优点:The present invention has the following advantages:

1.本发明由于是基于simulink进行模块化、层次化设计,系统构建相对简单,且功能庞大,即可根据输入的SAR模式标识符、导入的雷达轨迹信息文件和目标场景,方便灵活地模拟出不同雷达工作模式、不同外界环境、不同目标场景下的雷达回波信号;1. Since the present invention is based on simulink for modular and hierarchical design, the system construction is relatively simple, and the function is huge, and it can be conveniently and flexibly simulated according to the input SAR mode identifier, the imported radar trajectory information file and the target scene. Radar echo signals under different radar working modes, different external environments, and different target scenarios;

2.本发明由于采用同心圆算法计算回波的系统函数,可在保证精度的前提下,摆脱庞大的硬件系统,减少计算量,有较高的回波模拟效率。2. Since the present invention uses the concentric circle algorithm to calculate the system function of the echo, it can get rid of the huge hardware system, reduce the calculation amount, and have higher echo simulation efficiency under the premise of ensuring accuracy.

附图说明Description of drawings

图1是雷达回波信号模拟系统框图;Figure 1 is a block diagram of the radar echo signal simulation system;

图2是在simulink中生成雷达回波信号模拟系统的流程图;Fig. 2 is a flow chart of generating radar echo signal simulation system in simulink;

图3是使用本发明系统模拟雷达回波信号的流程图;Fig. 3 is the flow chart of using the system of the present invention to simulate the radar echo signal;

图4是正侧视下利用成像算法进行点目标成像的示意图;Fig. 4 is a schematic diagram of point target imaging using imaging algorithm under front and side view;

图5是本发明中系统函数计算模块利用同心圆算法生成回波系统函数的几何模型。Fig. 5 is a geometric model of the echo system function generated by the system function calculation module using the concentric circle algorithm in the present invention.

具体实施方式Detailed ways

以下参照附图对本发明作进一步详细描述:The present invention is described in further detail below with reference to accompanying drawing:

目前,国内外SAR回波模拟已取得很多成果,有纯理论模型、半实物模拟系统、计算机软件模拟、纯硬件平台实现FPGA和DPS。本发明是利用simulink对雷达回波信号模拟系统进行模块化设计。At present, many achievements have been made in SAR echo simulation at home and abroad, including pure theoretical model, semi-physical simulation system, computer software simulation, and pure hardware platform to realize FPGA and DPS. The invention utilizes simulink to carry out modular design on the radar echo signal simulation system.

simulink作为MATLAB中一个可视化仿真工具,它提供的动态系统建模、仿真和综合分析的集成环境,无需编写冗长的程序,通过简单直观的界面操作就能构造出复杂的系统,被广泛用于控制理论和数字信号处理的复杂仿真和设计。As a visual simulation tool in MATLAB, simulink provides an integrated environment for dynamic system modeling, simulation and comprehensive analysis. It does not need to write lengthy programs and can construct complex systems through simple and intuitive interface operations. It is widely used in control Complex simulation and design of theoretical and digital signal processing.

本发明利用simulink进行系统构建的流程如图2所示。首先,通过M脚本定义导引头系统所需要的基本参数,然后在simulink中构建各个模块的模型,设置输入、输出端口,实现各个模块的功能,再调用S函数对各个模块进行封装,生成参数设置界面,最后将各个模块中对应的输入、输出端口相连接,生成雷达回波信号模拟系统,如图1所示。The present invention uses simulink to carry out the flow chart of system construction as shown in Figure 2. First, define the basic parameters required by the seeker system through the M script, then build the model of each module in simulink, set the input and output ports, realize the functions of each module, and then call the S function to encapsulate each module and generate parameters Set up the interface, and finally connect the corresponding input and output ports of each module to generate a radar echo signal simulation system, as shown in Figure 1.

参照图1,本发明利用simulink生成的雷达回波信号模拟系统,包括PRT同步模块1、雷达脉冲信号发射模块2、雷达轨迹导入模块3、波束中心计算模块4、子场景截取模块5、天线方向图计算模块6、系统函数计算模块7、回波生成模块8以及延时和距离门选通模块9,其中:With reference to Fig. 1, the radar echo signal simulation system that the present invention utilizes simulink to generate, comprises PRT synchronous module 1, radar pulse signal transmission module 2, radar trajectory import module 3, beam center calculation module 4, sub-scene interception module 5, antenna direction Figure calculation module 6, system function calculation module 7, echo generation module 8 and time delay and range gate gating module 9, wherein:

PRT同步模块1,用于完成同步脉冲产生,并输出到各个模块,对整个系统的时钟进行同步;PRT synchronization module 1 is used to complete the synchronization pulse generation and output to each module to synchronize the clock of the whole system;

雷达脉冲信号发射模块2,用于接收PRT同步脉冲输入,生成雷达脉冲发射信号,并将该雷达脉冲发射信号输出至回波生成模块8;The radar pulse signal transmission module 2 is used to receive the PRT synchronous pulse input, generate the radar pulse transmission signal, and output the radar pulse transmission signal to the echo generation module 8;

雷达轨迹导入模块3,用于在PRT同步脉冲的控制下,读取雷达轨迹文件信息,并将读取的雷达轨迹信息分别输出至波束中心计算模块4、子场景截取模块5、天线方向图计算模块6和系统函数计算模块7;The radar trajectory import module 3 is used to read the radar trajectory file information under the control of the PRT synchronous pulse, and output the read radar trajectory information to the beam center calculation module 4, sub-scene interception module 5, and antenna pattern calculation Module 6 and system function calculation module 7;

波束中心计算模块4,用于在PRT同步脉冲的控制下,根据输入的雷达和当前模式标示位,更新波束中心在场景图中的像素点坐标信息,并将波束中心坐标信息输出至子场景截取模块5、天线方向图计算模块6和系统函数计算模块7;The beam center calculation module 4 is used to update the pixel coordinate information of the beam center in the scene graph according to the input radar and the current mode flag under the control of the PRT synchronization pulse, and output the beam center coordinate information to the sub-scene interception Module 5, antenna pattern calculation module 6 and system function calculation module 7;

子场景截取模块5,用于在PRT同步脉冲的控制下,根据雷达不同模式的不同波束照射方式和输入的波束中心坐标、雷达轨迹信息,从导入的大场景中截取成像的子场景,并将该子场景的数据输出至天线方向图计算模块6和系统函数计算模块7;The sub-scene interception module 5 is used to intercept the imaging sub-scene from the imported large scene according to the different beam irradiation modes of different modes of the radar and the input beam center coordinates and radar track information under the control of the PRT synchronous pulse. The data of the sub-scene is output to the antenna pattern calculation module 6 and the system function calculation module 7;

天线方向图计算模块6,用于在PRT同步脉冲的控制下,根据输入的雷达轨迹信息、波束中心坐标信息、子场景大小、接收波束偏置角度、距离向及方位向分辨率、天线波束宽度,计算子场景中各点的天线增益,并将结果输出至系统函数计算模块7;The antenna pattern calculation module 6 is used to, under the control of the PRT synchronous pulse, according to the input radar trajectory information, beam center coordinate information, sub-scene size, receiving beam offset angle, range and azimuth resolution, antenna beam width , calculate the antenna gain of each point in the sub-scene, and output the result to the system function calculation module 7;

系统函数计算模块7,用于在PRT同步脉冲的控制下,根据输入的雷达位置、波束中心坐标、子场景数据、天线方向图、回波的起始距离门信息,利用同心圆算法,计算回波的系统函数,并将该系统函数输出至回波生成模块8;The system function calculation module 7 is used to calculate the echo by using the concentric circle algorithm according to the input radar position, beam center coordinates, sub-scene data, antenna pattern, and initial range gate information of the echo under the control of the PRT synchronous pulse. The system function of the wave, and output the system function to the echo generating module 8;

回波生成模块8,用于将雷达脉冲发射信号与系统函数进行卷积,并在PRT同步脉冲的控制下,生成原始回波信号,并将结果输出至延时和距离门选通模块9;The echo generation module 8 is used to convolve the radar pulse transmission signal with the system function, and under the control of the PRT synchronous pulse, generate the original echo signal, and output the result to the delay and range gate gating module 9;

延时和距离门选通模块9,用于在PRT同步脉冲的控制下,使回波数据以“流”的方式输出,从而更好地模拟雷达回波信号流。The delay and range gate gating module 9 is used to output the echo data in a "stream" mode under the control of the PRT synchronous pulse, thereby better simulating the radar echo signal flow.

参照图3,使用本发明系统模拟雷达回波信号的过程如下:Referring to Fig. 3, the process of using the system of the present invention to simulate the radar echo signal is as follows:

过程1,PRT同步模块1从仿真交互界面读取各种模式下的雷达工作频率、采样频率、发射信号脉宽、发射信号带宽、脉冲重复时间及发射脉冲个数,输出PRT同步信号PRTTrigger至各个模块,并将雷达工作模式的标示符FrameTrigger输出至波束中心计算模块。Process 1, PRT synchronization module 1 reads the radar operating frequency, sampling frequency, transmit signal pulse width, transmit signal bandwidth, pulse repetition time and the number of transmit pulses in various modes from the simulation interface, and outputs the PRT synchronization signal PRTTrigger to each module, and output the identifier FrameTrigger of the radar working mode to the beam center calculation module.

过程2,雷达脉冲信号发射模块2接收PRT同步脉冲输入,检测上升沿,当上升沿来临时,生成基带线性调频信号LFM,并按照脉冲重复周期PRT输出Na个LFM脉冲信号至回波生成模块8;Process 2, the radar pulse signal transmitting module 2 receives the PRT synchronous pulse input, detects the rising edge, generates the baseband linear frequency modulation signal LFM when the rising edge comes, and outputs N a LFM pulse signals to the echo generation module according to the pulse repetition period PRT 8;

所述生成基带线性调频信号LFM表达式如下:Described generation baseband chirp signal LFM expression is as follows:

Figure BDA0001859287480000051
Figure BDA0001859287480000051

其中,

Figure BDA0001859287480000052
t为快时间,tm为慢时间,Tp为LFM信号脉宽,fc为载波频率,kr为线性调频率;in,
Figure BDA0001859287480000052
t is the fast time, t m is the slow time, T p is the pulse width of the LFM signal, f c is the carrier frequency, and k r is the linear modulation frequency;

过程3,雷达轨迹导入模块3接收PRT同步脉冲输入触发,检测上升沿,当上升沿来临时,读取轨迹文件信息,更新雷达位置、速度、加速度、入射角、速度矢量与波束在地面投影夹角以及带误差的雷达位置信息,并将结果输出至波束中心计算模块4、子场景截取模块5、天线方向图计算模块6和系统函数计算模块7。Process 3, the radar trajectory import module 3 receives the PRT synchronous pulse input trigger, detects the rising edge, and when the rising edge comes, reads the trajectory file information, updates the radar position, velocity, acceleration, incident angle, velocity vector and beam projection folder on the ground Angle and radar position information with errors, and output the results to beam center calculation module 4, sub-scene interception module 5, antenna pattern calculation module 6 and system function calculation module 7.

过程4,波束中心计算模块4接收PRT同步脉冲输入触发,检测上升沿,当上升沿来临时,输入雷达的位置、速度、目标位置坐标、当前模式标示位,计算波束中心在场景图中的像素点坐标信息,并将结果输出至子场景截取模块5、天线方向图计算模块6和系统函数计算模块7。Process 4, the beam center calculation module 4 receives the PRT synchronous pulse input trigger, detects the rising edge, when the rising edge comes, input the radar position, speed, target position coordinates, current mode flag, and calculate the pixel of the beam center in the scene map Point coordinate information, and output the result to sub-scene interception module 5, antenna pattern calculation module 6 and system function calculation module 7.

过程5,子场景截取模块5根据雷达不同模式的不同波束照射方式,输入波束中心坐标、雷达位置坐标,并由PRT同步触发,从导入的大场景中截取出成像的子场景,再将数据输出至天线方向图计算模块6和系统函数计算模块7。Process 5, the sub-scene interception module 5 inputs beam center coordinates and radar position coordinates according to different beam irradiation modes of different radar modes, and is triggered synchronously by the PRT to intercept the imaging sub-scene from the imported large scene, and then output the data To the antenna pattern calculation module 6 and the system function calculation module 7.

过程6,天线方向图计算模块6输入雷达位置信息、波束中心在大场景中的像素点坐标信息、子场景大小、接收波束偏置角度、距离向及方位向分辨率、天线波束宽度,并接收PRT同步脉冲输入触发,检测上升沿,当上升沿来临时,计算子场景中各点的天线增益,并将结果输出至系统函数计算模块7。Process 6, the antenna pattern calculation module 6 inputs radar position information, pixel coordinate information of the beam center in the large scene, sub-scene size, receiving beam offset angle, range and azimuth resolution, antenna beam width, and receives The PRT synchronization pulse input triggers, detects the rising edge, and when the rising edge comes, calculates the antenna gain of each point in the sub-scene, and outputs the result to the system function calculation module 7 .

所述计算子场景中各点的天线增益,有两种模式:There are two modes for calculating the antenna gain of each point in the sub-scene:

第一种是在SAR成像模式下,使用单根天线的方向图且接收天线偏置角为0进行计算,即先根据输入的雷达位置信息、波束中心在场景中心像素点的坐标,得到波束中心的方位角αc和俯仰角βc,目标相对雷达的方位角αRT和俯仰角βRT;再计算经过发射天线方向图调制后的天线增益rcs1The first is to calculate in the SAR imaging mode using the direction diagram of a single antenna and the offset angle of the receiving antenna is 0, that is, to obtain the beam center according to the input radar position information and the coordinates of the beam center at the pixel point in the center of the scene The azimuth angle α c and elevation angle β c , the azimuth angle α RT and elevation angle β RT of the target relative to the radar; then calculate the antenna gain rcs 1 after modulation of the transmitting antenna pattern:

rcs1=abs((sinc(αRTc))*(sinc(βRTc))) <2>rcs 1 =abs((sinc(α RTc ))*(sinc(β RTc ))) <2>

其中,abs为求绝对值函数,*表示相乘,

Figure BDA0001859287480000061
Among them, abs is the absolute value function, * means multiplication,
Figure BDA0001859287480000061

第二种是在单脉冲模式下,使用四个单根天线,并设置相应的接收偏置角组成四天线方向图进行计算,即先根据输入的雷达位置信息、波束中心在场景中心像素点的坐标以及子波束相对和波束的方位偏差角度±Δα、俯仰偏差角度±Δβ,得到波束中心的方位角αc和俯仰角βc,目标相对雷达的方位角αRT和俯仰角βRT;再分别计算经过不同偏置的发射天线方向图调制后的天线增益rcs21、rcs22、rcs23、rcs24The second is to use four single antennas in monopulse mode, and set the corresponding receiving offset angles to form a four-antenna pattern for calculation, that is, according to the input radar position information, the center of the beam at the pixel point of the center of the scene The coordinates and sub-beams are relative to the beam's azimuth deviation angle ±Δα, and the pitch deviation angle ±Δβ, to obtain the azimuth angle α c and elevation angle β c of the beam center, and the azimuth angle α RT and elevation angle β RT of the target relative to the radar; and then respectively Calculate the antenna gains rcs 21 , rcs 22 , rcs 23 , rcs 24 modulated by the transmitting antenna pattern with different offsets:

rcs21=abs((sinc(αRT+Δα-αc))*(sinc(βRT+Δβ-βc))) <3>rcs 21 =abs((sinc(α RT +Δα-α c ))*(sinc(β RT +Δβ-β c ))) <3>

rcs22=abs((sinc(αRT+Δα-αc))*(sinc(βRT-Δβ-βc))) <4>rcs 22 =abs((sinc(α RT +Δα-α c ))*(sinc(β RT -Δβ-β c ))) <4>

rcs23=abs((sinc(αRT-Δα-αc))*(sinc(βRT+Δβ-βc))) <5>rcs 23 =abs((sinc(α RT -Δα-α c ))*(sinc(β RT +Δβ-β c ))) <5>

rcs24=abs((sinc(αRT-Δα-αc))*(sinc(βRT-Δβ-βc))) <6>rcs 24 =abs((sinc(α RT -Δα-α c ))*(sinc(β RT -Δβ-β c ))) <6>

总的天线增益rcs2为:The total antenna gain rcs 2 is:

rcs2=rcs21*rcs22*rcs23*rcs24 <7>rcs 2 = rcs 21 * rcs 22 * rcs 23 * rcs 24 <7>

其中,rcs21是子波束相对和波束的方位偏差角度为Δα、俯仰偏差角度为Δβ的天线增益,rcs22是子波束相对和波束的方位偏差角度为Δα、俯仰偏差角度为-Δβ的天线增益,rcs23是子波束相对和波束的方位偏差角度为-Δα、俯仰偏差角度为Δβ的天线增益,rcs24是子波束相对和波束的方位偏差角度为-Δα、俯仰偏差角度为-Δβ的天线增益。Among them, rcs 21 is the antenna gain with the relative sub-beam azimuth deviation angle of Δα and the pitch deviation angle of Δβ, and rcs 22 is the antenna gain with the sub-beam relative and beam azimuth deviation angle of Δα and the pitch deviation angle of -Δβ , rcs 23 is the antenna gain with the sub-beam relative and beam azimuth deviation angle being -Δα, and the pitch deviation angle is Δβ, and rcs 24 is the antenna whose sub-beam relative and beam azimuth deviation angle is -Δα, and the pitch deviation angle is -Δβ gain.

过程7,系统函数计算模块7输入雷达的位置、波束中心坐标、子场景数据、天线方向图、回波的起始距离门信息,并接收PRT同步脉冲输入触发,检测上升沿,当上升沿来临时,利用同心圆算法,计算回波的系统函数,并将结果输出至回波生成模块8;Process 7, the system function calculation module 7 inputs the position of the radar, the coordinates of the center of the beam, the sub-scene data, the antenna pattern, and the initial range gate information of the echo, and receives the PRT synchronization pulse input trigger to detect the rising edge, when the rising edge comes When , use the concentric circle algorithm to calculate the system function of the echo, and output the result to the echo generation module 8;

所述同心圆算法原理如下:The principle of the concentric circle algorithm is as follows:

在不考虑波前弯曲的情况下,以正侧视为例,点目标的回波在二维平面上的分布如图4第一幅所示的矩形阵,经过距离向脉冲压缩后会变成第二幅图的结果,这是由于雷达运动产生了弯曲。在校正过弯曲后,该点目标的能量分布会在相同的距离单元内,如4中第三幅图所示,这时就可以沿方位向对目标进行方位成像,得到该点目标的成像结果,如4最后一个图所示。Without considering the bending of the wave front, taking the front side view as an example, the distribution of the echo of the point target on the two-dimensional plane is a rectangular array as shown in the first picture of Figure 4. After the range pulse compression, it will become The result of the second image, this is the curvature created by the radar motion. After correcting the bending, the energy distribution of the target at this point will be in the same distance unit, as shown in the third picture in 4. At this time, the azimuth imaging of the target can be performed along the azimuth direction, and the imaging result of the target at this point can be obtained , as shown in the last figure of 4.

可见,不同的点目标,由于到雷达的距离不同,它们将分布在不同的距离单元内,这是因为不同的目标点到雷达平台的距离不同,造成了延迟时间的不同,以距离采样频率fs对目标点的距离延迟进行采样,采样单元的间隔为c/2fs,c为光速,各个目标点的回波分布是按采样单元的间隔为整数倍关系分布开的;在不同的方位时刻对于场景中到达雷达作用距离相同的目标点而言,他们的采样单元整数倍关系相同,因此,他们复数回波将累加在相同的距离单元内,不难想象,在某一个方位时刻,分布在以雷达平台为原点的相同的同心圆上的点目标由于到雷达的作用距离相同,他们的能量应该累加的分布在相同的距离单元内。It can be seen that different point targets will be distributed in different distance units due to the different distances from the radar platform. This is because the distances from different target points to the radar platform are different, resulting in different delay times. The distance sampling frequency f s samples the distance delay of the target point, the sampling unit interval is c/2f s , c is the speed of light, and the echo distribution of each target point is distributed according to the integer multiple of the sampling unit interval; at different azimuth moments For target points in the scene with the same radar range, their integer multiples of sampling units are the same. Therefore, their complex echoes will be accumulated in the same distance unit. It is not difficult to imagine that at a certain azimuth moment, distributed in Point targets on the same concentric circle with the radar platform as the origin have the same distance to the radar, so their energy should be accumulated and distributed in the same distance unit.

由此,为了快速得到回波系统函数,以满足实时回波信号产生的要求,同时要保持回波信号的计算精度,考虑到距离雷达相同长度的点位于同一个距离单元上,首先将场景中的点沿着以雷达为圆心的同心圆进行累加,得到雷达的一维距离像,然后利用FFT在频域快速实现回波系统函数的生成,这样可以同时对多点进行处理,减少运算量。Therefore, in order to quickly obtain the echo system function to meet the requirements of real-time echo signal generation, and at the same time maintain the calculation accuracy of the echo signal, considering that the points with the same length from the radar are located on the same distance unit, firstly, the The points are accumulated along the concentric circle with the radar as the center to obtain the one-dimensional range image of the radar, and then the echo system function is quickly realized in the frequency domain by using FFT, so that multiple points can be processed at the same time, reducing the amount of calculation.

根据以上思想,计算回波系统函数的具体方法如下:According to the above ideas, the specific method of calculating the echo system function is as follows:

在每一个方位时刻,首先要计算场景内所有的点目标到雷达的距离R(k),并把该距离同距离采样单元进行比较,得到所有同心圆上点的分布情况,即At each azimuth moment, the distance R(k) from all point targets in the scene to the radar must be calculated first, and the distance is compared with the distance sampling unit to obtain the distribution of points on all concentric circles, namely

Figure BDA0001859287480000071
Figure BDA0001859287480000071

式<8>中,nk表示距离单元的位置,即该点分布在第几个同心圆上,δr为距离单元大小,且In formula <8>, nk represents the position of the distance unit, that is, on which concentric circle the point is distributed on, δ r is the size of the distance unit, and

Figure BDA0001859287480000072
Figure BDA0001859287480000072

如图5所示,在得到同心圆的分布情况之后,波束照射范围内,某个同心圆上共有P个点目标,根据式<9>可以知道,这P个散射点应该分布在相同的距离单元内,他们可以统一产生回波信号,而由于回波信号的方位相位信息比距离包络信息更加敏感,所以,要保证方位相位信息的完整性,即不能像距离包络一样,用式<9>进行距离近似计算,所以,各点的方位相位信号s(mT;RB)需独立计算:As shown in Figure 5, after obtaining the distribution of concentric circles, there are P point targets on a certain concentric circle within the beam irradiation range. According to formula <9>, it can be known that these P scattering points should be distributed at the same distance In the unit, they can uniformly generate the echo signal, and since the azimuth and phase information of the echo signal is more sensitive than the range envelope information, it is necessary to ensure the integrity of the azimuth phase information, that is, the formula <9> Carry out approximate distance calculation, so the azimuth phase signal s(mT; R B ) of each point needs to be calculated independently:

Figure BDA0001859287480000081
Figure BDA0001859287480000081

其中,σ为点目标的灰度值,mT是tm的离散形式,RB是雷达到目标的最近距离,λ为雷达工作波长,R(mT;R)是mT时刻雷达到散射点的距离,exp表示指数函数。Among them, σ is the gray value of the point target, mT is the discrete form of t m , R B is the shortest distance from the radar to the target, λ is the working wavelength of the radar, and R(mT; R) is the distance from the radar to the scattering point at mT , exp represents the exponential function.

之后,对式<10>进行求和得到相同同心圆上的点目标方位相位信号s2Afterwards, sum the formula <10> to obtain the azimuth phase signal s 2 of the point target on the same concentric circle:

Figure BDA0001859287480000082
Figure BDA0001859287480000082

其中,σi为相同同心圆上第i个点目标的灰度值。Among them, σ i is the gray value of the i-th point target on the same concentric circle.

对式<11>求和,得到整个时刻所有距离单元数据s3Sum the formula <11> to get all the distance unit data s 3 at the whole time:

Figure BDA0001859287480000083
Figure BDA0001859287480000083

式<12>中,δ为冲击响应函数,k表示落在第几个距离单元内,Pn表示第n个距离单元内的点目标数。不同的距离单元内其地面散射点的个数不一样,累加过程的难度也不相同。对式<12>进行傅里叶变换FFT把它变到频域乘以距离向的调频项,再利用逆傅里叶变换IFFT变回到时域就可以得到回波的系统函数s4(k,mT;RB):In formula <12>, δ is the shock response function, k represents the number of distance units that fall within, and P n represents the number of point targets within the nth distance unit. The number of ground scattering points in different distance units is different, and the difficulty of the accumulation process is also different. Carry out Fourier transform FFT to equation <12> and change it to the frequency domain multiplied by the FM item in the distance direction, and then use the inverse Fourier transform IFFT to transform back to the time domain to obtain the echo system function s 4 (k , mT; R B ):

Figure BDA0001859287480000084
Figure BDA0001859287480000084

其中,fr表示距离向频率。where f r represents the range frequency.

过程8,回波产生模块8输入系统函数以及基带线性调频信号LFM,进行卷积运算,生成原始回波信号,并接收PRT同步脉冲输入触发,检测上升沿,当上升沿来临时,将结果输出至延时和距离门选通模块9。Process 8, the echo generation module 8 inputs the system function and the baseband linear frequency modulation signal LFM, performs convolution operation, generates the original echo signal, and receives the PRT synchronous pulse input trigger, detects the rising edge, and outputs the result when the rising edge comes To delay and range gate gating module 9.

过程9,延时和距离门选通模块9在PRT同步脉冲的控制下,将输入的原始回波信号以“流”的方式进行输出。In process 9, the delay and range gate gating module 9 outputs the input original echo signal in the form of "stream" under the control of the PRT synchronous pulse.

综上,本文提出的基于simulink的高速平台雷达回波信号模拟系统,具有模块化、层次化的设计,能方便灵活地模拟出不同雷达工作模式、不同外界环境、不同目标场景下的雷达回波信号,帮助科研人员摆脱雷达设备条件的限制,不需要依靠昂贵的雷达设备获取相关雷达回波数据,比传统的实测数据方式更加高效、便捷。In summary, the high-speed platform radar echo signal simulation system based on simulink proposed in this paper has a modular and hierarchical design, which can conveniently and flexibly simulate radar echoes under different radar working modes, different external environments, and different target scenarios Signals help researchers get rid of the limitations of radar equipment conditions, and do not need to rely on expensive radar equipment to obtain relevant radar echo data, which is more efficient and convenient than traditional measured data methods.

以上所揭露的仅为本发明一种较佳实施例而已,显然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属于本发明所涵盖的范围。The above disclosure is only a preferred embodiment of the present invention, which obviously cannot limit the scope of rights of the present invention. Therefore, equivalent changes made according to the claims of the present invention still fall within the scope of the present invention.

Claims (4)

1. High-speed platform radar return signal analog system based on simulink generates different modules through simulink, its characterized in that, the module that generates includes:
the PRT synchronization module (1) is used for finishing the generation of synchronization pulses, outputting the synchronization pulses to each module and synchronizing the clock of the whole system;
the radar pulse signal transmitting module (2) is used for receiving PRT synchronous pulse input, generating a radar pulse transmitting signal and outputting the radar pulse transmitting signal to the echo generating module (8);
the radar track importing module (3) is used for reading radar track file information under the control of PRT synchronous pulse, and respectively outputting the read radar track information to the beam center computing module (4), the sub-scene intercepting module (5), the antenna directional diagram computing module (6) and the system function computing module (7);
the beam center calculating module (4) is used for updating pixel point coordinate information of a beam center in a scene graph according to the input radar and the current mode marking bit under the control of a PRT synchronous pulse, and outputting the beam center coordinate information to the sub-scene intercepting module (5), the antenna directional diagram calculating module (6) and the system function calculating module (7);
the sub-scene intercepting module (5) is used for intercepting an imaged sub-scene from a guided large scene according to different beam irradiation modes of different modes of the radar, input beam center coordinates and radar track information under the control of the PRT synchronous pulse, and outputting data of the sub-scene to the antenna directional diagram calculating module (6) and the system function calculating module (7);
an antenna directional pattern calculation module (6) for calculating the antenna gain of each point in the sub-scene according to the input radar track information, the beam center coordinate information, the sub-scene size, the receiving beam bias angle, the distance direction and azimuth direction resolution and the antenna beam width under the control of the PRT synchronous pulse, and outputting the result to a system function calculation module (7);
the system function calculation module (7) is used for calculating a system function of an echo by utilizing a concentric circle algorithm according to an input radar position, a beam center coordinate, sub-scene data, an antenna directional diagram and initial range gate information of the echo under the control of a PRT synchronous pulse, and outputting the system function to the echo generation module (8);
the echo generating module (8) is used for convolving the radar pulse transmitting signal with a system function, generating an original echo signal under the control of a PRT synchronous pulse, and outputting a result to the delay and range gate gating module (9);
and the time delay and range gate gating module (9) is used for outputting echo data in a 'streaming' mode under the control of the PRT synchronous pulse, so that the radar echo signal stream is better simulated.
2. The system of claim 1, wherein different modules are generated by simulink, which is implemented as follows:
defining basic parameters required by a seeker system through an M script, constructing a model of each module in a simulink, and setting input and output ports to realize the functions of each module;
calling an S function to package each module and generating a parameter setting interface;
and connecting corresponding input and output ports in each module.
3. The system according to claim 1, characterized in that the antenna pattern calculation module (6) calculates the antenna gain for each point in the sub-scene, which is implemented as follows:
firstly, according to the input radar position information, the beam center coordinate information, the receiving beam offset angle and the antenna beam width, the azimuth angle alpha of the beam center is obtained c And a pitch angle β c Azimuth angle alpha of target relative to radar RT And a pitch angle β RT
And then calculating the antenna gain rcs after the directional diagram modulation of the transmitting antenna:
rcs=abs((sinc(α RTc ))*(sinc(β RTc ))), <1>
wherein abs is a function of absolute value, which means multiplication,
Figure FDA0001859287470000021
4. the system according to claim 1, characterized in that the system function calculation module (7) calculates the system function of the echo using a concentric circle algorithm, which is implemented as follows:
calculating the distances R (k) from all point targets to the radar in the scene, and comparing the distances with a distance sampling unit to obtain the distribution condition of points of all concentric circles, namely obtaining P point targets on a certain concentric circle in total in the beam irradiation range;
distributing the P scattering points in the same range unit, and calculating azimuth phase signal s of each point 1 (mT;R B ):
Figure FDA0001859287470000022
Wherein σ is the gray value of the point target; mT is the slow time t m Of discrete form of (A), R B Is the closest distance of the radar to the scattering point, λ is the radar operating wavelength, R (mT; R) B ) Is the distance of the radar to the scattering point at time mT;
by adding point targets on the same concentric circle, i.e. pair<2>Summing to obtain a distance sheetData s of elements containing azimuth phase 2
Figure FDA0001859287470000023
In pair type<3>Summing to obtain all the distance unit data s at the whole moment 3
Figure FDA0001859287470000031
Wherein, δ is an impact response function, and k is within a few distance units;
in pair type<4>Fourier transform FFT is carried out, the FFT is converted into a frequency domain multiplied by a frequency modulation item in the distance direction, and then inverse Fourier transform IFFT is utilized to convert the frequency domain back into a time domain, so that a system function s of an echo can be obtained 4 (k,mT;R B ):
Figure FDA0001859287470000032
Wherein k is r Indicating the range chirp, f r Indicating the range-wise frequency.
CN201811328332.7A 2018-11-09 2018-11-09 High-speed platform radar echo signal simulation system based on simulink Active CN109471080B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811328332.7A CN109471080B (en) 2018-11-09 2018-11-09 High-speed platform radar echo signal simulation system based on simulink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811328332.7A CN109471080B (en) 2018-11-09 2018-11-09 High-speed platform radar echo signal simulation system based on simulink

Publications (2)

Publication Number Publication Date
CN109471080A CN109471080A (en) 2019-03-15
CN109471080B true CN109471080B (en) 2022-12-02

Family

ID=65672311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811328332.7A Active CN109471080B (en) 2018-11-09 2018-11-09 High-speed platform radar echo signal simulation system based on simulink

Country Status (1)

Country Link
CN (1) CN109471080B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109901165B (en) * 2019-03-28 2023-03-14 河南九乾电子科技有限公司 Satellite-borne SAR echo simulation device and method
CN109782241B (en) * 2019-03-29 2021-01-29 北京润科通用技术有限公司 Meteorological radar echo simulation method and system
CN110988858B (en) * 2019-11-11 2021-12-07 西安空间无线电技术研究所 High-precision distance measurement method and system for dual-beam microwave landing radar
CN110726977A (en) * 2019-11-29 2020-01-24 中国舰船研究设计中心 Ship radar performance evaluation method in interference environment
CN111323761B (en) * 2020-03-20 2022-04-08 北京华力创通科技股份有限公司 Echo system function construction method and device and echo simulator
CN111624564B (en) * 2020-05-27 2023-06-16 北京润科通用技术有限公司 Radar pitching angle target simulation system and method
CN112213721B (en) * 2020-09-16 2023-10-03 西安科技大学 Millimeter wave three-dimensional imaging method for scanning external or internal cylindrical scene facing security inspection
CN114442051B (en) * 2020-11-05 2024-05-24 北京华航无线电测量研究所 High-fidelity missile-borne radar echo simulation method
CN112578350B (en) * 2020-12-02 2022-04-19 西安电子科技大学 Simulation method of airborne SAR jamming effect under high-energy microwave jamming
CN112698280B (en) * 2020-12-09 2024-05-31 南京长峰航天电子科技有限公司 Double-base SAR real-time echo simulation method based on DSP and FPGA architecture
CN114325606B (en) * 2021-11-17 2024-06-25 西安电子科技大学 Multi-system agile radar radio frequency echo signal simulation method
CN114814747B (en) * 2022-03-18 2025-05-23 北京遥感设备研究所 Main beam multi-target angle resolution test system and test method
CN114636983B (en) * 2022-03-21 2024-06-11 中国电子科技集团公司第三十八研究所 SAR target scene generation and simulation device
CN114966585B (en) * 2022-04-12 2024-06-25 西安电子科技大学 Radar echo generation method for simulating high-speed motion by adopting near-field low-speed motion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022814A1 (en) * 2006-05-13 2007-11-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. High-resolution Synthetic Aperture Side View Radar System using Digital Beamforming
CN104090277B (en) * 2014-07-21 2016-09-28 中国科学院电子学研究所 A kind of slidingtype circumferential synthetic aperture radar formation method
CN107765226B (en) * 2017-09-18 2020-06-09 北京空间飞行器总体设计部 A SAR satellite radar echo simulation method, system and medium

Also Published As

Publication number Publication date
CN109471080A (en) 2019-03-15

Similar Documents

Publication Publication Date Title
CN109471080B (en) High-speed platform radar echo signal simulation system based on simulink
CN104614713B (en) A kind of ship that is suitable for carries the radar echo signal simulator of radar system
CN101526614B (en) SAR echo rapid simulation method based on sub-aperture and equivalent scatterer
CN107765226B (en) A SAR satellite radar echo simulation method, system and medium
CN107479038B (en) High-precision radar target echo real-time simulation method
CN102788979B (en) GPU (graphic processing unit) implementing method based on backward projection InSAR (interfering synthetic aperture radar) imaging registration
CN101281249A (en) A Modeling Method for Target Scattering Characteristics of High Resolution Synthetic Aperture Radar
CN107271977B (en) High-precision SAR echo simulation method based on mobile excitation source FDTD algorithm
CN103018740B (en) InSAR (Interferometric Synthetic Aperture Radar) imaging method based on curved surface projection
CN105467369B (en) A kind of target echo simulation method and apparatus
CN115128559B (en) Real-time signal-level echo simulation method and device for airborne phased array radar
CN108008389A (en) A kind of fast frequency-domain rear orientation projection three-D imaging method based on GPU
CN110618411B (en) Airborne radar clutter real-time signal generation method
CN113447896B (en) Undulating terrain SAR echo simulation method based on dynamic occlusion judgment
CN114740469A (en) ISAR echo real-time fine simulation generation method, device and storage medium
CN104698442B (en) Airborne down-looking array three-dimensional synthetic aperture radar distribution type three-dimensional scene simulation method
CN107907870B (en) Signal generation method for verifying intersection butt joint microwave radar angle measurement function
CN112710984A (en) Passive positioning method and system based on homotopy continuation
CN116381629A (en) Radar large-scale target simulation system and method based on real-time dynamic convolution
Wang et al. Study on motion compensation method for W-band UAV MISAR real-time imaging
Jun et al. Target echo simulation and implementation technology based on missile-borne sar scene matching guidance
Li et al. Design and simulation of terahertz near field SAR real-time imaging system
Yao et al. Improved Near-Field ISAR Imaging Algorithm for Far-Field Radar Cross Section Measurement
Zhang et al. The Real-Time Simulation Method for Dynamic Polarization Scattering Characteristics of Moving Target
CN114636983B (en) SAR target scene generation and simulation device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant