CN109456927A - The recombinant bacterium and its construction method of a kind of high yield 2,4- diacetyl phloroglucin and application - Google Patents
The recombinant bacterium and its construction method of a kind of high yield 2,4- diacetyl phloroglucin and application Download PDFInfo
- Publication number
- CN109456927A CN109456927A CN201811354253.3A CN201811354253A CN109456927A CN 109456927 A CN109456927 A CN 109456927A CN 201811354253 A CN201811354253 A CN 201811354253A CN 109456927 A CN109456927 A CN 109456927A
- Authority
- CN
- China
- Prior art keywords
- gene
- mara
- seq
- nucleotide sequence
- phld
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000894006 Bacteria Species 0.000 title claims abstract description 31
- 238000010276 construction Methods 0.000 title claims abstract description 15
- 229960001553 phloroglucinol Drugs 0.000 title claims description 16
- 108010016219 Acetyl-CoA carboxylase Proteins 0.000 claims abstract description 8
- 108010018763 Biotin carboxylase Proteins 0.000 claims abstract description 8
- 108090000623 proteins and genes Proteins 0.000 claims description 54
- 101150008274 marA gene Proteins 0.000 claims description 51
- 239000013612 plasmid Substances 0.000 claims description 49
- 239000002773 nucleotide Substances 0.000 claims description 31
- 125000003729 nucleotide group Chemical group 0.000 claims description 31
- 241000588724 Escherichia coli Species 0.000 claims description 29
- 108020004414 DNA Proteins 0.000 claims description 28
- 101150001698 phlD gene Proteins 0.000 claims description 24
- 238000012408 PCR amplification Methods 0.000 claims description 16
- 241000296989 Pseudomonas protegens CHA0 Species 0.000 claims description 14
- 238000000855 fermentation Methods 0.000 claims description 11
- 230000004151 fermentation Effects 0.000 claims description 11
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 9
- 150000007523 nucleic acids Chemical group 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 7
- 101150008263 accD gene Proteins 0.000 claims description 6
- 230000014509 gene expression Effects 0.000 claims description 6
- 241000589540 Pseudomonas fluorescens Species 0.000 claims description 5
- 108090000790 Enzymes Proteins 0.000 claims description 4
- 241000023308 Acca Species 0.000 claims description 3
- 102000000452 Acetyl-CoA carboxylase Human genes 0.000 claims description 3
- 101100378010 Bacillus subtilis (strain 168) accC1 gene Proteins 0.000 claims description 3
- 101100322122 Bacillus subtilis (strain 168) accC2 gene Proteins 0.000 claims description 3
- 101150013885 accB gene Proteins 0.000 claims description 3
- 101150070497 accC gene Proteins 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 229920001470 polyketone Polymers 0.000 claims description 2
- 230000002068 genetic effect Effects 0.000 claims 3
- 230000001939 inductive effect Effects 0.000 claims 2
- 241000193830 Bacillus <bacterium> Species 0.000 claims 1
- 108010064926 acyl-CoA carboxylase Proteins 0.000 claims 1
- 230000029087 digestion Effects 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 239000001963 growth medium Substances 0.000 claims 1
- 210000002429 large intestine Anatomy 0.000 claims 1
- 239000002609 medium Substances 0.000 claims 1
- 235000015097 nutrients Nutrition 0.000 claims 1
- PIFFQYJYNWXNGE-UHFFFAOYSA-N 2,4-diacetylphloroglucinol Chemical compound CC(=O)C1=C(O)C=C(O)C(C(C)=O)=C1O PIFFQYJYNWXNGE-UHFFFAOYSA-N 0.000 abstract description 38
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 238000010353 genetic engineering Methods 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- -1 2,4-diacetyl-m-phenylene Chemical group 0.000 abstract 1
- 239000012634 fragment Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 15
- 229940023064 escherichia coli Drugs 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000013598 vector Substances 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 9
- 238000011084 recovery Methods 0.000 description 8
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 6
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 6
- 239000012190 activator Substances 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- XLEYFDVVXLMULC-UHFFFAOYSA-N 2',4',6'-trihydroxyacetophenone Chemical compound CC(=O)C1=C(O)C=C(O)C=C1O XLEYFDVVXLMULC-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229960005091 chloramphenicol Drugs 0.000 description 3
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 3
- 230000004186 co-expression Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 108010030975 Polyketide Synthases Proteins 0.000 description 2
- 241000467496 Pseudomonas protegens Species 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101100135734 Haloferax mediterranei (strain ATCC 33500 / DSM 1411 / JCM 8866 / NBRC 14739 / NCIMB 2177 / R-4) pccB gene Proteins 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- LTYOQGRJFJAKNA-KKIMTKSISA-N Malonyl CoA Natural products S(C(=O)CC(=O)O)CCNC(=O)CCNC(=O)[C@@H](O)C(CO[P@](=O)(O[P@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C LTYOQGRJFJAKNA-KKIMTKSISA-N 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- JNLOWPWIIIHLQR-GORZOVPNSA-N [(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-[[3-oxo-3-(2-sulfanylethylamino)propyl]amino]butyl] [hydroxy-[[(2R,3S,4R,5R)-4-hydroxy-5-(6-isocyanatopurin-9-yl)-3-phosphonooxyoxolan-2-yl]methoxy]phosphoryl] hydrogen phosphate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N=C=O)=C2N=C1 JNLOWPWIIIHLQR-GORZOVPNSA-N 0.000 description 1
- 101150046124 accA gene Proteins 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 108091008053 gene clusters Proteins 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- LTYOQGRJFJAKNA-DVVLENMVSA-N malonyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 LTYOQGRJFJAKNA-DVVLENMVSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 101150027117 norA gene Proteins 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 244000000003 plant pathogen Species 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000032895 transmembrane transport Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/21—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/245—Escherichia (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/66—General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y604/00—Ligases forming carbon-carbon bonds (6.4)
- C12Y604/01—Ligases forming carbon-carbon bonds (6.4.1)
- C12Y604/01002—Acetyl-CoA carboxylase (6.4.1.2)
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
一种高产2,4‑二乙酰基间苯三酚的重组菌及其构建方法与应用,属于基因工程技术领域。本发明通过在2,4‑二乙酰基间苯三酚生产的工程菌株中整合编码多重抗性因子的基因marA和乙酰辅酶A羧化酶基因ACC,提高了2,4‑二乙酰基间苯三酚的产量。本发明可用于工业化生产2,4‑二乙酰基间苯三酚。
A recombinant bacterium with high production of 2,4-diacetylphloroglucinol and a construction method and application thereof belong to the technical field of genetic engineering. By integrating the gene marA encoding multiple resistance factors and the acetyl-CoA carboxylase gene ACC in the engineering strain produced by 2,4-diacetylphloroglucinol, the present invention improves 2,4-diacetyl-m-phenylene The yield of triphenols. The invention can be used for industrial production of 2,4-diacetylphloroglucinol.
Description
技术领域technical field
本发明属于基因工程技术领域,具体涉及一种高产2,4-二乙酰基间苯三酚的重组菌及其构建方法与应用。The invention belongs to the technical field of genetic engineering, and in particular relates to a recombinant bacterium with high yield of 2,4-diacetylphloroglucinol and a construction method and application thereof.
背景技术Background technique
2,4-二乙酰基间苯三酚(2,4-DAPG)是由多种荧光假单胞菌产生的酚类次生代谢产物,是一种光谱性抗生素,能防治多种植物病害。其分子结构简单,可以通过3分子乙酰辅酶A和1分子丙二酰CoA缩合成前单乙酰基间苯三酚MAPG,然后MAPG通过转乙酰基作用生成DAPG,对于多种植物病原菌有抑制作用,包括甜菜猝倒病、小麦全蚀病自然衰退、烟草黑根腐病等。2,4-Diacetylphloroglucinol (2,4-DAPG) is a phenolic secondary metabolite produced by a variety of Pseudomonas fluorescens. It is a spectrum antibiotic that can prevent and treat a variety of plant diseases. Its molecular structure is simple, and can be condensed into pre-monoacetylphloroglucinol MAPG by 3 molecules of acetyl-CoA and 1 molecule of malonyl-CoA, and then MAPG generates DAPG through transacetylation, which has inhibitory effect on a variety of plant pathogens. Including beet damping disease, natural decline of wheat take-all disease, tobacco black root rot, etc.
Bangear与Tomashow在1999年解析了菌株Pseudomnas fluorescens Q2-87中负责2,4-DAPG合成的基因簇。PhlD能够催化小分子底物碳酰CoA聚酮缩合形成长链及长链环化、苯环乙酰化过程中的一系列反应。而phlACB则催化间苯三酚的乙酰基化形成MAPG(2-乙酰基间苯三酚)和2,4-DAPG。phlE基因与金黄色葡萄球菌的norA基因同源性较高,含有跨膜结构域,可能编码一个膜通透酶,与2,4-DAPG代谢产生的有害物质的跨膜转运相关;PhlF蛋白能够阻遏PhlACB的表达,过量表达PhlF能够降低荧光假单胞菌的2,4-DAPG水平。目前2,4-DAPG的合成法包括化学合成和生物合成,其中生物法主要通过荧光假单胞菌合成。化学合成的条件严苛,耗能大,污染严重,而生物法合成由于污染小、原料可再生等优势越来越受到重视。生物法合成2,4-DAPG的研究具有重要的科学和应用价值。但是现有技术中合成2,4-DAPG的产量很低,难以用于工业生产。需要进一步对工程菌株进行基因改造,以期提高2,4-DAPG的合成能力。Bangear and Tomashow in 1999 analyzed the gene cluster responsible for 2,4-DAPG synthesis in the strain Pseudomnas fluorescens Q2-87. PhlD can catalyze a series of reactions in the condensation of small molecular substrate carbonyl-CoA polyketones to form long chains, cyclization of long chains, and acetylation of benzene rings. While phlACB catalyzes the acetylation of phloroglucinol to form MAPG (2-acetylphloroglucinol) and 2,4-DAPG. The phlE gene is highly homologous to the norA gene of Staphylococcus aureus and contains a transmembrane domain, which may encode a membrane permease, which is related to the transmembrane transport of harmful substances produced by the metabolism of 2,4-DAPG; PhlF protein can Repressing the expression of PhlACB and overexpressing PhlF can reduce the level of 2,4-DAPG in Pseudomonas fluorescens. At present, the synthesis methods of 2,4-DAPG include chemical synthesis and biosynthesis, and the biological method is mainly synthesized by Pseudomonas fluorescens. Chemical synthesis has harsh conditions, high energy consumption and serious pollution, while biological synthesis has received more and more attention due to its advantages of less pollution and renewable raw materials. The research on biosynthesis of 2,4-DAPG has important scientific and applied value. However, the yield of synthesizing 2,4-DAPG in the prior art is very low, making it difficult to use in industrial production. It is necessary to further genetically modify the engineered strains in order to improve the synthesis ability of 2,4-DAPG.
发明内容SUMMARY OF THE INVENTION
针对目前生物合成方法获得的2,4-DAPG产量低的问题,本发明通过整合2,4-DAPG合成相关基因phlD、phlACB、phlE以及编码多重抗性因子的基因marA和编码编码乙酰辅酶A羧化酶的acc基因,获得重组细胞,所述重组细胞能够提高2,4-二乙酰基间苯三酚在大肠杆菌中的合成能力。In view of the low yield of 2,4-DAPG obtained by the current biosynthesis method, the present invention integrates the 2,4-DAPG synthesis-related genes phlD, phlACB, phlE and the gene marA encoding a multi-resistance factor and encoding the acetyl-CoA carboxyl The acc gene of the enzyme is obtained, and the recombinant cells can improve the synthesis ability of 2,4-diacetylphloroglucinol in Escherichia coli.
本发明提供了一种高产2,4-二乙酰基间苯三酚的重组菌,所述重组菌过表达聚酮合成酶基因phlD、2,4-二乙酰基间苯三酚合成酶基因phlACB、外排蛋白phlE基因以及编码多重抗性因子的基因marA和编码乙酰辅酶A羧化酶的acc基因,出发菌株为大肠杆菌。The invention provides a recombinant bacterium with high production of 2,4-diacetylphloroglucinol, the recombinant bacterium overexpresses polyketide synthase gene phlD and 2,4-diacetylphloroglucinol synthase gene phlACB , efflux protein phlE gene and gene marA encoding multi-resistance factor and acc gene encoding acetyl-CoA carboxylase, the starting strain is Escherichia coli.
优选地,所述大肠杆菌为E.coli BL21(DE3)。Preferably, the E. coli is E. coli BL21 (DE3).
进一步地限定,所述基因phlD、phlACB、phlE,均来源于荧光假单胞菌(Pseudomonas protegens CHA0,DSM 19095T),或者为来源于其它生物体,和这些基因具有相同或相似功能的核酸序列;所述marA基因来源于大肠杆菌,Genebank ID:6060688,或者为和marA同源性超过70%的核酸序列;或者所述marA基因来源于其它生物体,和marA基因同源性低于70%,但和marA具有相同或相似功能的核酸序列;所述乙酰CoA羧化酶基因acc来源于大肠杆菌,其中,亚基accA的Genebank ID:6062185,亚基accB的Genebank ID:6058890,亚基accC的Genebank ID:6058863,亚基accD的Genebank ID:6059083,或者为和acc基因同源性超过70%的核酸序列;或者所述乙酰CoA羧化酶acc基因来源于其它生物体,和acc基因同源性低于70%,但和acc具有相同或相似功能的核苷酸序列。It is further defined that the genes phlD, phlACB, and phlE are all derived from Pseudomonas fluorescens (Pseudomonas protegens CHA0, DSM 19095 T ), or are derived from other organisms, and have the same or similar functions as these genes. Nucleic acid sequences ; The marA gene is derived from Escherichia coli, Genebank ID: 6060688, or a nucleic acid sequence with more than 70% homology to marA; or the marA gene is derived from other organisms, and the homology to the marA gene is less than 70% , but a nucleic acid sequence with the same or similar function as marA; the acetyl-CoA carboxylase gene acc is derived from Escherichia coli, wherein the Genebank ID of subunit accA: 6062185, the Genebank ID of subunit accB: 6058890, the subunit accC Genebank ID: 6058863, Genebank ID of subunit accD: 6059083, or a nucleic acid sequence with more than 70% homology to the acc gene; or the acetyl-CoA carboxylase acc gene is derived from other organisms and is identical to the acc gene A nucleotide sequence that is less than 70% in origin but has the same or similar function as acc.
更进一步地限定,所述phlD基因的核苷酸序列如SEQ ID No.1所示;phlACB基因的核苷酸序列如SEQ ID No.2所示;phlE基因的核苷酸序列如SEQ ID No.3所示;marA基因的核苷酸序列如SEQ ID No.4所示。To be further defined, the nucleotide sequence of the phlD gene is shown in SEQ ID No.1; the nucleotide sequence of the phlACB gene is shown in SEQ ID No.2; the nucleotide sequence of the phlE gene is shown in SEQ ID No. .3; the nucleotide sequence of the marA gene is shown in SEQ ID No.4.
本发明还提供了上述高产2,4-二乙酰基间苯三酚的重组菌的构建方法,步骤如下:The present invention also provides a method for constructing the above-mentioned recombinant bacteria with high yield of 2,4-diacetylphloroglucinol, the steps are as follows:
1)制备含有基因phlD、phlACB、phlE和多重抗性激活因子marA的重组质粒,记为p-phlDACBE/marA;1) Prepare a recombinant plasmid containing the genes phlD, phlACB, phlE and the multi-resistance activator marA, denoted as p-phlDACBE/marA;
2)将步骤1)所得的重组质粒和pA-accADBC重组质粒导入到宿主菌中获得重组菌,所述宿主菌为大肠杆菌。2) The recombinant plasmid obtained in step 1) and the pA-accADBC recombinant plasmid are introduced into a host bacteria to obtain a recombinant bacteria, and the host bacteria is Escherichia coli.
进一步地限定,步骤1)中所述重组质粒p-phlDACBE/marA的构建方法如下:Further limit, the construction method of the recombinant plasmid p-phlDACBE/marA described in step 1) is as follows:
以P.protegens CHA0基因组DNA为模板,通过PCR扩增获得phlD基因,所用正向引物序列phlD-F,核苷酸序列如SEQ ID No.5所示,反向引物phlD-R,核苷酸序列如SEQ IDNo.6所示;Using P.protegens CHA0 genomic DNA as a template, the phlD gene was obtained by PCR amplification, the used forward primer sequence phlD-F, the nucleotide sequence was as shown in SEQ ID No.5, the reverse primer phlD-R, nucleotide The sequence is shown in SEQ IDNo.6;
以P.protegens CHA0基因组DNA为模板,通过PCR扩增获得phlACB基因,所用正向引物序列phlACB-F,核苷酸序列如SEQ ID No.7所示,反向引物phlACB-R,核苷酸序列如SEQID No.8所示;Using P.protegens CHA0 genomic DNA as a template, the phlACB gene was obtained by PCR amplification, the used forward primer sequence phlACB-F, the nucleotide sequence was as shown in SEQ ID No.7, the reverse primer phlACB-R, the nucleotide sequence The sequence is shown in SEQID No.8;
以P.protegens CHA0基因组DNA为模板,通过PCR扩增获得phlE基因,所用正向引物序列phlE-F,核苷酸序列如SEQ ID No.9所示,反向引物phlE-R,核苷酸序列如SEQ IDNo.10所示;Using P.protegens CHA0 genomic DNA as a template, the phlE gene was obtained by PCR amplification, the used forward primer sequence phlE-F, the nucleotide sequence was as shown in SEQ ID No.9, the reverse primer phlE-R, nucleotide The sequence is shown in SEQ IDNo.10;
以E.coli基因组DNA为模板,通过PCR扩增获得marA基因,所用正向引物序列marA-F,核苷酸序列如SEQ ID No.11所示,反向引物marA-R,核苷酸序列如SEQ ID No.12所示;Using E. coli genomic DNA as a template, the marA gene was obtained by PCR amplification. The forward primer sequence marA-F was used, and the nucleotide sequence was shown in SEQ ID No. 11. The reverse primer marA-R, the nucleotide sequence As shown in SEQ ID No.12;
以pET28a(+)为载体,通过酶切连接的方式将上述phlD基因、phlACB基因、phlE基因和多重抗性激活因子marA基因,构建到pET28a(+)载体上,获得重组质粒pET28a-phlDACBE/marA。Using pET28a(+) as the vector, the above-mentioned phlD gene, phlACB gene, phlE gene and multiple resistance activator marA gene were constructed into the pET28a(+) vector by enzymatic ligation to obtain the recombinant plasmid pET28a-phlDACBE/marA .
本发明还提供了所述的重组菌在提高2,4-二乙酰基间苯三酚产量中的应用。The invention also provides the application of the recombinant bacteria in improving the yield of 2,4-diacetylphloroglucinol.
进一步地限定,将所述重组菌经发酵培养基培养后,再经IPTG诱导表达,获得2,4-二乙酰基间苯三酚。It is further defined that after the recombinant bacteria are cultured in a fermentation medium, the expression is induced by IPTG to obtain 2,4-diacetylphloroglucinol.
更进一步地限定,将重组菌接种到M9液体培养基中,培养至OD600达到0.6-0.8时,加入终浓度为0.25mM的IPTG诱导表达。To be further defined, the recombinant bacteria were inoculated into M9 liquid medium, cultured until the OD 600 reached 0.6-0.8, and IPTG with a final concentration of 0.25 mM was added to induce expression.
更进一步地限定,在所述加入0.25mM IPTG后,将重组菌于30℃、180rpm继续培养12h至发酵结束。To be further defined, after the addition of 0.25mM IPTG, the recombinant bacteria were further cultured at 30°C and 180rpm for 12h until the fermentation was completed.
有益效果beneficial effect
间苯三酚是生物合成2,4-DAPG的前体物质。多重抗性激活因子marA基因可以增强大肠杆菌对2,4-DAPG及间苯三酚的耐受性,acc基因可提高间苯三酚产量,本发明将重组质粒pET28a-phlDACBE/marA和pA-accADBC导入大肠杆菌BL21(DE3),通过在大肠杆菌中过表达marA基因和acc基因来提高2,4-DAPG合成,结果表明,在摇瓶水平,在含有两种重组质粒pET28a-phlDACBE/marA和pA-accADBC的基础上,间苯三酚的产量比含有质粒pET28a-phlDACBE的对照菌株有所提高。Phloroglucinol is a precursor for the biosynthesis of 2,4-DAPG. The multi-resistance activator marA gene can enhance the tolerance of Escherichia coli to 2,4-DAPG and phloroglucinol, and the acc gene can increase the production of phloroglucinol. In the present invention, the recombinant plasmids pET28a-phlDACBE/marA and pA- accADBC was introduced into Escherichia coli BL21(DE3), and the synthesis of 2,4-DAPG was enhanced by overexpressing the marA gene and acc gene in Escherichia coli. On the basis of pA-accADBC, the production of phloroglucinol was improved compared to the control strain containing the plasmid pET28a-phlDACBE.
因此,本发明所述的重组菌可用于2,4-DAPG的发酵生产,具有较高的应用价值。Therefore, the recombinant bacteria of the present invention can be used for the fermentation production of 2,4-DAPG, and have high application value.
定义和缩写:Definitions and Abbreviations:
在本发明中使用下列的缩写或简称:The following abbreviations or abbreviations are used in the present invention:
2,4-二乙酰基间苯三酚:2,4-DAPG2,4-Diacetylphloroglucinol: 2,4-DAPG
异丙基硫代半乳糖苷:IPTGIsopropylthiogalactoside: IPTG
多重抗性激活因子基因:marAMulti-resistance activator gene: marA
乙酰CoA羧化酶基因:accAcetyl-CoA carboxylase gene: acc
大肠杆菌(Escherichia coli):E.coliEscherichia coli: E.coli
荧光假单胞菌(Pseudomonas protegens):P.ProtegensPseudomonas protegens: P. Protegens
聚酮合成酶基因:phlDPolyketide synthase gene: phlD
2,4-二乙酰基间苯三酚合成酶基因:phlACB2,4-Diacetylphloroglucinol synthase gene: phlACB
外排蛋白基因:phlEefflux protein gene: phlE
“热激转化”或“热转化”指分子生物学中转染技术的一种,用来将外来基因整合到宿主基因中并稳定表达,其利用受到热激后,细胞膜出现裂隙,将外来基因导入宿主基因或将外来质粒导入宿主原生质体,又热激转化或热转化等。"Heat shock transformation" or "heat transformation" refers to a kind of transfection technology in molecular biology, which is used to integrate foreign genes into host genes and express them stably. Introducing host genes or introducing foreign plasmids into host protoplasts, and heat shock transformation or thermal transformation.
酶切连接:是指通过限制性内切酶对目的基因片段进行酶切,然后再将经同一限制性内切酶酶切后的一个或多个基因片段,通过连接酶进行连接。Enzymatic ligation: refers to the restriction of the target gene fragment by restriction endonuclease, and then one or more gene fragments that have been digested by the same restriction endonuclease are connected by ligase.
附图说明Description of drawings
图1 phlD、phlACB、phlE共表达载体示意图。Fig. 1 Schematic diagram of the co-expression vector of phlD, phlACB and phlE.
图2 phlD、phlACB、phlE、marA共表达载体示意图。Figure 2 Schematic diagram of the co-expression vectors of phlD, phlACB, phlE and marA.
图3 accA、accD、accB、accC共表达载体示意图。Figure 3 Schematic diagram of the co-expression vectors of accA, accD, accB, and accC.
图4为重组大肠杆菌发酵产物2,4-DAPG的高效液相色谱检测,图中,A为标准品2,4-二乙酰基间苯三酚高效液相色谱检测;B为实验组检测发酵产物高效液相色谱检测,横坐标为时间,单位为分钟,纵坐标为响应值,单位是AU。Figure 4 shows the high-performance liquid chromatography detection of recombinant Escherichia coli fermentation product 2,4-DAPG, in the figure, A is the standard product 2,4-diacetylphloroglucinol high-performance liquid chromatography detection; B is the experimental group detection fermentation The product is detected by high performance liquid chromatography, the abscissa is time, the unit is minutes, and the ordinate is the response value, and the unit is AU.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步说明,但本发明不受实施例的限制。The present invention will be further described below in conjunction with specific embodiments, but the present invention is not limited by the embodiments.
以下实施例中所用材料、试剂、仪器和方法,未经特殊说明,均为本领域中的常规材料、试剂、仪器和方法,均可通过商业渠道获得。The materials, reagents, instruments and methods used in the following examples, unless otherwise specified, are conventional materials, reagents, instruments and methods in the art, and can be obtained through commercial channels.
所用酶试剂购自Thermo公司,提取质粒所用的试剂盒和回收DNA片段所用的试剂盒购自美国Omega公司,相应的操作步骤按照产品说明书进行;所有培养基如无特别说明均用去离子水配制。The enzyme reagents used were purchased from Thermo Company, and the kits used for plasmid extraction and DNA fragment recovery were purchased from Omega Company in the United States. The corresponding operation steps were carried out according to the product instructions; all media were prepared with deionized water unless otherwise specified. .
质粒pACYCDuet-1购买自Novagen,货号71147-3。Plasmid pACYCDuet-1 was purchased from Novagen, cat. no. 71147-3.
质粒pET-28a(+)购买自Novagen,货号69864-3。Plasmid pET-28a(+) was purchased from Novagen, cat. no. 69864-3.
重组质粒pA-accADBC为中国科学院青岛生物能源与过程研究所按照现有技术自行构建,如图3所示,具体构建过程见已发表论文(Cao Y,Jiang X,Zhang R,XianM.Improved phloroglucinol production by metabolically engineered Escherichiacoli.Applied Microbiology and Biotechnology,2011,91:1545-1552)材料和方法的质粒构建内容。The recombinant plasmid pA-accADBC was constructed by Qingdao Institute of Bioenergy and Process, Chinese Academy of Sciences according to the existing technology, as shown in Figure 3. For the specific construction process, see published papers (Cao Y, Jiang X, Zhang R, Xian M. Improved phloroglucinol production by metabolically engineered Escherichiacoli. Applied Microbiology and Biotechnology, 2011, 91: 1545-1552) Plasmid Construction Contents of Materials and Methods.
培养基配方:Medium formula:
1)摇瓶种子培养基1) Shake flask seed medium
LB培养基:酵母粉5g/L,NaCl 10g/L,蛋白胨10g/L,121℃,20min灭菌,各成分浓度均为在培养基中的终浓度。LB medium: yeast powder 5g/L, NaCl 10g/L, peptone 10g/L, sterilized at 121°C for 20min, the concentration of each component is the final concentration in the medium.
2)摇瓶发酵培养基2) Shake flask fermentation medium
M9培养基(g/L):NH4Cl 1.0g/L,Na2HPO4·12H2O 15.2g/L,KH2PO4 3.0g/L,NaCl0.5g/L,其余为水,121℃,20min灭菌,各成分浓度均为在培养基中的终浓度。M9 medium (g/L): NH 4 Cl 1.0g/L, Na 2 HPO 4 12H 2 O 15.2g/L, KH 2 PO 4 3.0g/L, NaCl 0.5g/L, the rest are water, 121 ℃, 20min sterilization, the concentration of each component is the final concentration in the medium.
在实际培养过程中,可向上述培养基中添加葡萄糖、硫酸镁及一定浓度的抗生素以维持质粒的稳定性,如终浓度为50mg/L的卡那霉素和34mg/L的氯霉素。In the actual culture process, glucose, magnesium sulfate and a certain concentration of antibiotics can be added to the above medium to maintain the stability of the plasmid, such as kanamycin with a final concentration of 50 mg/L and chloramphenicol with a final concentration of 34 mg/L.
实施例1.高产2,4-二乙酰基间苯三酚的重组菌的构建过程。Example 1. Construction process of recombinant bacteria with high production of 2,4-diacetylphloroglucinol.
1)重组质粒构建:1) Construction of recombinant plasmid:
A.重组质粒I:pET28a-phlDACBE的构建A. Construction of recombinant plasmid I: pET28a-phlDACBE
phlD基因的克隆是以P.protegens CHA0基因组DNA为模板,通过PCR扩增获得,正向引物phlD-F序列为:5'-CATGCCATGGGCATGTCTACACTTTGCCTTCCACACGT-3',反向引物phlD-R序列为:5'-ATCGCATATGTCAGGCGGTCCACTCGCCCACCGCC-3';phlACB基因的克隆是以P.protegens CHA0基因组DNA为模板,通过PCR扩增获得,正向引物phlACB-F序列为:The phlD gene was cloned using P. protegens CHA0 genomic DNA as a template and obtained by PCR amplification. The sequence of the forward primer phlD-F was: 5'-CATGCCATGGGCATGTCTACACTTTGCCTTCCACACGT-3', and the sequence of the reverse primer phlD-R was: 5'- ATCGCATATGTCAGGCGGTCCACTCGCCCACCGCC-3'; phlACB gene was cloned using P. protegens CHA0 genomic DNA as a template and obtained by PCR amplification. The sequence of the forward primer phlACB-F is:
5'-ATCGCATATGTGTTTAAGAAGGAGATATACCATGAACGTGAAAAAGATAGGTATTGT5'-ATCGCATATGTGTTTAAGAAGGAGATATACCATGAACGTGAAAAAGATAGGTATTGT
-3',反向引物phlACB-R序列为:5'-CGGGATCCTTATATATCGAGTACGAACTTATAA-3';phlE基因克隆是以P.protegens CHA0基因组DNA为模板,通过PCR扩增获得,正向引物phlE-F序列为:-3', the reverse primer phlACB-R sequence is: 5'-CGGGATCCTTATATATCGAGTACGAACTTATAA-3'; the phlE gene clone is obtained by PCR amplification using P.protegens CHA0 genomic DNA as the template, and the forward primer phlE-F sequence is:
5'-CCCAAGCTTTTTAAGAAGGAGATATACCATGAACACTGGAATGCCGACCACG-3',反向引物phlE-R序列为:5'-CCGCTCGAGCTAGTCCTTCAGGGGCAAGGGGGC-3'。5'-CCCAAGCTTTTTAAGAAGGAGATATACCATGAACACTGGAATGCCGACCACG-3', the reverse primer phlE-R sequence is: 5'-CCGCTCGAGCTAGTCCTTCAGGGGCAAGGGGGC-3'.
克隆所得的phlD基因与载体pET28a(+)分别经NdeI、NcoI双酶切后,利用回收试剂盒分别回收酶切后目的phlD片段和载体pET28a(+)大片段,再进行连接,连接产物转化E.coliDH5α,筛选阳性克隆,得到重组质粒pET28a-phlD。The cloned phlD gene and the vector pET28a(+) were digested by NdeI and NcoI respectively, and the target phlD fragment and the vector pET28a(+) large fragment were recovered by the recovery kit respectively, and then connected, and the ligation product was transformed into E. .coliDH5α, screened positive clones, and obtained recombinant plasmid pET28a-phlD.
克隆所得phlACB基因与重组质粒pET28a-phlD分别经NdeI和EcoRI双酶切后,利用回收试剂盒分别回收酶切后目的phlACB片段和载体pET28a-phlD大片段,再进行连接,连接产物转化E.coli DH5α,筛选阳性克隆,得到重组质粒pET28a-phlDACB。The cloned phlACB gene and the recombinant plasmid pET28a-phlD were digested with NdeI and EcoRI, respectively, and then the target phlACB fragment and the large fragment of the vector pET28a-phlD were recovered using a recovery kit, respectively, and then ligated, and the ligated product was transformed into E.coli DH5α, screened positive clones, and obtained recombinant plasmid pET28a-phlDACB.
克隆所得phlE基因与重组质粒pET28a-phlDACB经HindIII和XhoI双酶切后,利用回收试剂盒回收酶切后的目的片段phlE和载体pET28a-phlDACB大片段,再进行连接,连接产物转化E.coli DH5α,筛选阳性克隆,得到重组质粒pET28a-phlDACBE,记为重组质粒I,质粒图谱如图1所示。The cloned phlE gene and the recombinant plasmid pET28a-phlDACB were double digested by HindIII and XhoI, and the digested target fragment phlE and the vector pET28a-phlDACB large fragment were recovered using a recovery kit, and then ligated, and the ligated product was transformed into E.coli DH5α , screened positive clones, and obtained the recombinant plasmid pET28a-phlDACBE, denoted as recombinant plasmid I, and the plasmid map is shown in Figure 1.
B.重组质粒II:pET28a-phlDACBE/marA的构建B. Construction of recombinant plasmid II: pET28a-phlDACBE/marA
制备含有2,4-二乙酰基间苯三酚合成相关基因phlD、phlACB、phlE和多重抗性激活因子marA的重组质粒,记为pET28a-phlDACBE/marA。A recombinant plasmid containing 2,4-diacetylphloroglucinol synthesis-related genes phlD, phlACB, phlE and multi-resistance activator marA was prepared, which was designated as pET28a-phlDACBE/marA.
phlD基因的克隆是以P.protegens CHA0基因组DNA为模板,通过PCR扩增获得,正向引物phlD-F序列为:5'-CATGCCATGGGCATGTCTACACTTTGCCTTCCACACGT-3',反向引物phlD-R序列为:5'-ATCGCATATGTCAGGCGGTCCACTCGCCCACCGCC-3';phlACB基因的克隆是以P.protegens CHA0基因组DNA为模板,通过PCR扩增获得,正向引物phlACB-F序列为:The phlD gene was cloned using P. protegens CHA0 genomic DNA as a template and obtained by PCR amplification. The sequence of the forward primer phlD-F was: 5'-CATGCCATGGGCATGTCTACACTTTGCCTTCCACACGT-3', and the sequence of the reverse primer phlD-R was: 5'- ATCGCATATGTCAGGCGGTCCACTCGCCCACCGCC-3'; phlACB gene was cloned using P. protegens CHA0 genomic DNA as a template and obtained by PCR amplification. The sequence of the forward primer phlACB-F is:
5'-ATCGCATATGTGTTTAAGAAGGAGATATACCATGAACGTGAAAAAGATAGGTATTGT5'-ATCGCATATGTGTTTAAGAAGGAGATATACCATGAACGTGAAAAAGATAGGTATTGT
-3',反向引物phlACB-R序列为:5'-CGGGATCCTTATATATCGAGTACGAACTTATAA-3';phlE基因克隆是以P.protegens CHA0基因组DNA为模板,通过PCR扩增获得,正向引物phlE-F序列为:-3', the reverse primer phlACB-R sequence is: 5'-CGGGATCCTTATATATCGAGTACGAACTTATAA-3'; the phlE gene clone is obtained by PCR amplification using P.protegens CHA0 genomic DNA as the template, and the forward primer phlE-F sequence is:
5'-CCCAAGCTTTTTAAGAAGGAGATATACCATGAACACTGGAATGCCGACCACG-3',反向引物phlE-R序列为:5'-CCGCTCGAGCTAGTCCTTCAGGGGCAAGGGGGC-3';marA基因克隆是以E.coliDH5α基因组DNA为模板,通过PCR扩增获得,正向引物marA-F序列为:5'-CCCAAGCTTTTTAAGAAGGAGATATACCATGAACACTGGAATGCCGACCACG-3', the reverse primer phlE-R sequence is: 5'-CCGCTCGAGCTAGTCCTTCAGGGGCAAGGGGGC-3'; the marA gene clone is obtained by PCR amplification with E.coliDH5α genomic DNA as the template, and the forward primer marA-F The sequence is:
5'-CGGAATTCATGTCCAGACGCAATACTGA-3',反向引物marA-R序列为:5'-CGGAATTCATGTCCAGACGACGCAATACTGA-3', the reverse primer marA-R sequence is:
5'-ATCGGTCGACCTAGCTGTTGTAATGATTTA-3'。5'-ATCGGTCGACCTAGCTGTTGTAATGATTTA-3'.
克隆所得的phlD基因与载体pET28a(+)分别经NdeI、NcoI双酶切后,利用回收试剂盒分别回收酶切后目的phlD片段和载体pET28a(+)大片段,再进行连接,连接产物转化E.coliDH5α,筛选阳性克隆,得到重组质粒pET28a-phlD。The cloned phlD gene and the vector pET28a(+) were digested by NdeI and NcoI respectively, and the target phlD fragment and the vector pET28a(+) large fragment were recovered by the recovery kit respectively, and then connected, and the ligation product was transformed into E. .coliDH5α, screened positive clones, and obtained recombinant plasmid pET28a-phlD.
克隆所得marA基因与步骤2)所得重组质粒pET28a-phlD分别经EcoRI和SalI酶双酶切后,利用回收试剂盒分别回收酶切后目的marA片段和载体pET28a-phlD大片段。再进行连接,连接产物转化E.coli DH5α,筛选阳性克隆,得到重组质粒pET28a-phlD/marA;The cloned marA gene and the recombinant plasmid pET28a-phlD obtained in step 2) were double digested with EcoRI and SalI enzymes, respectively, and then the target marA fragment and the large vector pET28a-phlD fragment were recovered using a recovery kit. The ligation was performed again, and the ligation product was transformed into E.coli DH5α, and positive clones were screened to obtain the recombinant plasmid pET28a-phlD/marA;
克隆所得phlACB基因与重组质粒pET28a-phlD/marA分别经NdeI和EcoRI双酶切后,利用回收试剂盒分别回收酶切后目的phlACB片段和载体pET28a-phlD/marA大片段。再进行连接,连接产物转化E.coli DH5α,筛选阳性克隆,得到重组质粒pET28a-phlDACB/marA。The cloned phlACB gene and the recombinant plasmid pET28a-phlD/marA were double digested with NdeI and EcoRI, respectively, and the digested phlACB fragment and the vector pET28a-phlD/marA large fragment were recovered using a recovery kit. The ligation was performed again, the ligation product was transformed into E.coli DH5α, and positive clones were screened to obtain the recombinant plasmid pET28a-phlDACB/marA.
克隆所得phlE基因与重组质粒pET28a-phlDACB/marA经HindIII和XhoI双酶切后,利用回收试剂盒回收酶切后的目的片段phlE和载体pET28a-phlDACB/marA大片段,再进行连接,连接产物转化E.coli DH5α,筛选阳性克隆,得到重组质粒pET28a-phlDACBE/marA,即为重组质粒II,质粒图谱如图2所示。The cloned phlE gene and the recombinant plasmid pET28a-phlDACB/marA were double digested by HindIII and XhoI, and the digested target fragment phlE and the vector pET28a-phlDACB/marA large fragment were recovered using a recovery kit, and then ligated, and the ligated product was transformed. E.coli DH5α, screen positive clones, and obtain recombinant plasmid pET28a-phlDACBE/marA, which is recombinant plasmid II, and the plasmid map is shown in FIG. 2 .
本实施例PCR扩增获得的phlD基因的核苷酸序列,如SEQ ID No.1所示;phlACB基因的核苷酸序列,如SEQ ID No.2所示,phlE基因的核苷酸序列,如SEQ ID No.3所示,marA基因的核苷酸序列,如SEQ ID No.4所示。The nucleotide sequence of the phlD gene obtained by PCR amplification in this example is shown in SEQ ID No. 1; the nucleotide sequence of the phlACB gene is shown in SEQ ID No. 2, and the nucleotide sequence of the phlE gene, As shown in SEQ ID No.3, the nucleotide sequence of the marA gene is shown in SEQ ID No.4.
2)重组菌株的构建2) Construction of recombinant strains
将步骤1)所得的重组质粒和pA-accADBC重组质粒导入到宿主菌中获得重组菌,所述宿主菌为大肠杆菌,方法如下:The recombinant plasmid obtained in step 1) and the pA-accADBC recombinant plasmid are introduced into the host bacteria to obtain recombinant bacteria, and the host bacteria is Escherichia coli, and the method is as follows:
按照TAKARA感受态制备试剂盒的操作步骤制备野生型对照菌株E.coli BL21(DE3)感受态。The wild-type control strain E. coli BL21(DE3) was prepared according to the operation steps of the TAKARA competent preparation kit.
对照组1:将重组质粒I,将质粒pET28a-phlDACBE通过热激法转化至宿主菌株E.coli BL21(DE3)感受态细胞,得到对照菌株,编号为Z0;Control group 1: The recombinant plasmid I and plasmid pET28a-phlDACBE were transformed into competent cells of host strain E.coli BL21 (DE3) by heat shock method to obtain a control strain, numbered Z0;
对照组2:将重组质粒II,即制备获得的pET28a-phlDACBE/marA通过热激法转化至宿主菌株E.coli BL21(DE3)感受态细胞,得到重组菌株,编号为Z1;Control group 2: The recombinant plasmid II, that is, the prepared pET28a-phlDACBE/marA, was transformed into competent cells of the host strain E.coli BL21 (DE3) by heat shock method to obtain a recombinant strain, numbered Z1;
实验组:将重组质粒II,即pET28a-phlDACBE/marA和重组质粒pA-accADBC通过热激法转化至宿主菌株E.coli BL21(DE3)感受态细胞,得到重组菌株,编号为Z2。Experimental group: The recombinant plasmid II, namely pET28a-phlDACBE/marA and recombinant plasmid pA-accADBC were transformed into competent cells of host strain E.coli BL21(DE3) by heat shock method to obtain a recombinant strain, numbered Z2.
实施例2.重组菌株的摇瓶发酵试验,考察本发明所述重组菌具有的提高2,4-二乙酰基间苯三酚产量的作用。Example 2. Shake flask fermentation test of the recombinant strain to investigate the effect of the recombinant strain of the present invention on increasing the production of 2,4-diacetylphloroglucinol.
本实施例共进行三组实验,以说明本发明的重要性。In this embodiment, three groups of experiments are carried out to illustrate the importance of the present invention.
对照组:菌株Z0。Control group: strain Z0.
实验组I:重组菌株Z1。Experimental group I: recombinant strain Z1.
实验组II:重组菌株Z2。Experimental group II: recombinant strain Z2.
1)将活化后的对照菌株及重组菌株分别接种至5mL LB液体培养基中,并加入50μg/mL卡那霉素和50μg/mL氯霉素,37℃生长8-12h。按1:100的比例接种到含有50mL的M9液体培养基的250mL摇瓶中,摇瓶中根据质粒选择添加50mg/L的卡那霉素和34mg/L的氯霉素,加入20g/L葡萄糖和2mM的MgSO4·7H2O。37℃、180rpm条件下振荡培养。OD600达到0.6-0.8时,加入0.25mM的IPTG诱导表达,诱导后置于30℃、180rpm继续培养12h至发酵结束,所述各浓度均为在培养基中的终浓度。1) The activated control strain and recombinant strain were inoculated into 5 mL LB liquid medium, respectively, and 50 μg/mL kanamycin and 50 μg/mL chloramphenicol were added, and grown at 37°C for 8-12 h. The ratio of 1:100 was inoculated into a 250 mL shake flask containing 50 mL of M9 liquid medium, and 50 mg/L of kanamycin and 34 mg/L of chloramphenicol were added to the shake flask according to plasmid selection, and 20 g/L of glucose was added. and 2 mM MgSO 4 ·7H 2 O. Shake culture at 37°C and 180 rpm. When the OD 600 reached 0.6-0.8, 0.25 mM IPTG was added to induce expression, and after induction, the cells were placed at 30° C. and 180 rpm to continue culturing for 12 h until the end of the fermentation. The above concentrations were the final concentrations in the medium.
2)取发酵液,4℃,8000rpm离心10min,取20ml上清液,用1mol/L HCl酸化至pH=2后用乙酸乙酯萃取,1ml无水甲醇溶解,高效液相色谱检测发酵液的萃取物。2) Take the fermentation broth, centrifuge at 8000 rpm for 10 min at 4°C, take 20 ml of the supernatant, acidify with 1mol/L HCl to pH=2, extract with ethyl acetate, dissolve in 1 ml of anhydrous methanol, and detect the fermentation broth by high performance liquid chromatography. Extracts.
根据本实施例操作步骤,摇瓶水平,对照菌株Z0的2,4-DAPG产量为5.7mg/L,含质粒II,即pET28a-phlDACBE/marA的重组菌株Z1的2,4-DAPG产量为14.9mg/L;含有两种重组质粒pET28a-phlDACBE/marA和pA-accADBC的重组菌株Z2的2,4-DAPG的产量为18.6mg/L。即本发明所述的整合了编码多重抗性因子的基因marA和乙酰辅酶A羧化酶基因ACC的重组菌Z2,2,4-DAPG的产量比对照菌株提高了3.3倍。According to the operation steps of this example, at the shake flask level, the 2,4-DAPG yield of the control strain Z0 was 5.7 mg/L, and the 2,4-DAPG yield of the recombinant strain Z1 containing plasmid II, namely pET28a-phlDACBE/marA was 14.9 mg/L; the yield of 2,4-DAPG of recombinant strain Z2 containing two recombinant plasmids pET28a-phlDACBE/marA and pA-accADBC was 18.6 mg/L. That is, the recombinant strain Z2, 2,4-DAPG, which integrates the multi-resistance factor-encoding gene marA and the acetyl-CoA carboxylase gene ACC according to the present invention, is 3.3 times higher than the control strain.
本领域技术人员应该理解,上述各个步骤均按照标准的分子克隆技术进行;上述表达的10种基因共同克隆到大肠杆菌中,各个步骤均按照标准的分子克隆技术进行。Those skilled in the art should understand that each of the above steps is performed according to standard molecular cloning technology; the 10 genes expressed above are co-cloned into Escherichia coli, and each step is performed according to standard molecular cloning technology.
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明精神和范围内,都可以做各种的改动与修饰,因此,本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, , the protection scope of the present invention should be defined by the claims.
核苷酸序列表Nucleotide sequence listing
<110> 中国科学院青岛生物能源与过程研究所<110> Qingdao Institute of Bioenergy and Processes, Chinese Academy of Sciences
<120> 一种高产2,4-二乙酰基间苯三酚的重组菌及其构建方法与应用<120> A kind of recombinant bacteria with high yield of 2,4-diacetylphloroglucinol and its construction method and application
<130><130>
<160> 12<160> 12
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 1050<211> 1050
<212> DNA<212> DNA
<213> phlD基因<213>phlD gene
<400> 1<400> 1
atgtctacac tttgccttcc acacgtcatg tttccgcaac acaagatcac ccagcaacag 60atgtctacac tttgccttcc acacgtcatg tttccgcaac acaagatcac ccagcaacag 60
atggtcgatc acctggaaaa cctgcacgcc gaccatccac gcatggccct ggccaagcgc 120atggtcgatc acctggaaaa cctgcacgcc gaccatccac gcatggccct ggccaagcgc 120
atgatcgcca acaccgaagt caacgagcgc cacctggtgt tgccgatcga cgaactggca 180atgatcgcca acaccgaagt caacgagcgc cacctggtgt tgccgatcga cgaactggca 180
gtgcacaccg gcttcaccca ccgcagcatc gtctacgagc gtgaagcccg gcagatgtcg 240gtgcacaccg gcttcaccca ccgcagcatc gtctacgagc gtgaagcccg gcagatgtcg 240
tcggccgcgg cgcgccaggc catcgagaat gccgggctgc agatcagcga cattcgcatg 300tcggccgcgg cgcgccaggc catcgagaat gccgggctgc agatcagcga cattcgcatg 300
gtgatcgtca cttcctgcac cggcttcatg atgccgtcgc tgaccgcgca cctgatcaac 360gtgatcgtca cttcctgcac cggcttcatg atgccgtcgc tgaccgcgca cctgatcaac 360
gacctggccc tgccaacctc caccgtgcag ttgccgatcg cccagctggg ctgcgtggcc 420gacctggccc tgccaacctc caccgtgcag ttgccgatcg cccagctggg ctgcgtggcc 420
ggtgccgcgg ccatcaaccg cgccaacgac ttcgcccggc tcgatgcccg caaccacgta 480ggtgccgcgg ccatcaaccg cgccaacgac ttcgcccggc tcgatgcccg caaccacgta 480
ctgatcgtgt ccctggagtt ctcctcgctg tgctaccagc cggacgacac caagctgcac 540ctgatcgtgt ccctggagtt ctcctcgctg tgctaccagc cggacgacac caagctgcac 540
gccttcatct ccgcggcgct gttcggcgat gcggtatccg cctgcgtgct gcgcgccgat 600gccttcatct ccgcggcgct gttcggcgat gcggtatccg cctgcgtgct gcgcgccgat 600
gaccaggccg gcggcttcaa gatcaagaag accgagtcgt acttcctgcc caagagcgag 660gaccaggccg gcggcttcaa gatcaagaag accgagtcgt acttcctgcc caagagcgag 660
cactacatca agtacgacgt gaaggacacc ggctttcact tcaccctcga caaggcggtg 720cactacatca agtacgacgt gaaggacacc ggctttcact tcaccctcga caaggcggtg 720
atgaactcca tcaaggacgt ggcaccggtc atggagcggc tcaactacga gagtttcgaa 780atgaactcca tcaaggacgt ggcaccggtc atggagcggc tcaactacga gagtttcgaa 780
cagaactgtg cgcacaacga cttcttcatc ttccacaccg gtggtcgcaa gatcctcgac 840cagaactgtg cgcacaacga cttcttcatc ttccacaccg gtggtcgcaa gatcctcgac 840
gagctggtga tgcacctgga cctggcatcc aaccgggtct cgcaatcgcg cagcagcctg 900gagctggtga tgcacctgga cctggcatcc aaccgggtct cgcaatcgcg cagcagcctg 900
tcggaagccg gcaacattgc cagcgtggtg gtgttcgacg tactcaagcg gcagttcgat 960tcggaagccg gcaacattgc cagcgtggtg gtgttcgacg tactcaagcg gcagttcgat 960
tccaacctca atcgcggcga catcggcctg ctggcggcct tcggcccggg gttcaccgcg 1020tccaacctca atcgcggcga catcggcctg ctggcggcct tcggcccggg gttcaccgcg 1020
gaaatggcgg tgggcgagtg gaccgcctga 1050gaaatggcgg tgggcgagtg gaccgcctga 1050
<210> 2<210> 2
<211> 2768<211> 2768
<212> DNA<212> DNA
<213> phlACB基因<213> phlACB gene
<400> 2<400> 2
atgaacgtga aaaagatagg tattgtcagc tatggcgcgg gtattccggt atgccgcctg 60atgaacgtga aaaagatagg tattgtcagc tatggcgcgg gtattccggt atgccgcctg 60
aaagtccagg aagtgatcaa cgtctggaaa aacaccgacc tcaagctggt ggaggaaaac 120aaagtccagg aagtgatcaa cgtctggaaa aacaccgacc tcaagctggt ggaggaaaac 120
ctcggcgtca cggaaagagc cgtgctgcaa ccggatgaag atgtcatcac cctcggggtg 180ctcggcgtca cggaaagagc cgtgctgcaa ccggatgaag atgtcatcac cctcggggtg 180
ctggcggcgc aacgggccct ggataaagtc cccggtcatc agatcgaagc cctgtacctg 240ctggcggcgc aacgggccct ggataaagtc cccggtcatc agatcgaagc cctgtacctg 240
ggcacctgca ccaatcccta tgactcacgg gcctcggctt cgatcatcct ggaaatgctc 300ggcacctgca ccaatcccta tgactcacgg gcctcggctt cgatcatcct ggaaatgctc 300
ggcagcggct acgacgccta ttgcgccgac gtgcagttcg ccggcaagtc cggaacttct 360ggcagcggct acgacgccta ttgcgccgac gtgcagttcg ccggcaagtc cggaacttct 360
gccctgcaga tctgccaggc gctggtggct tccggcatga cgggcagcgc cctggccatc 420gccctgcaga tctgccaggc gctggtggct tccggcatga cgggcagcgc cctggccatc 420
ggcgccgaca ccatcaaccg caacaccgcg ccgggcgacc tgaccgaatc ctatgccggg 480ggcgccgaca ccatcaaccg caacaccgcg ccgggcgacc tgaccgaatc ctatgccggg 480
gccggagccg ctgcgctgct gatcggcagc caggatgtca tcgccgaatt cgacgccagc 540gccggagccg ctgcgctgct gatcggcagc caggatgtca tcgccgaatt cgacgccagc 540
ttctcctgcg ccgccgatgt cgccgacaac atccgccccc agggcgatcg ctacattcgt 600ttctcctgcg ccgccgatgt cgccgacaac atccgccccc agggcgatcg ctacattcgt 600
tcgggcatgg gcctgggctc ggacaagaac agcatcggcc tggaagacca gacccgccgc 660tcgggcatgg gcctgggctc ggacaagaac agcatcggcc tggaagacca gacccgccgc 660
gccgccgaag gcctgatggc caagctgcac accagccccg ccgactatga ctatgtggtg 720gccgccgaag gcctgatggc caagctgcac accagccccg ccgactatga ctatgtggtg 720
ttccagcaaa acctggtgtc cacgccctac tccctggcca agcacctggg cttcaacccc 780ttccagcaaa acctggtgtc cacgccctac tccctggcca agcacctggg cttcaacccc 780
aagcaggtgg aaccgggcat ctatgccggc aacgttggcg atgccggatc ggccagcccg 840aagcaggtgg aaccgggcat ctatgccggc aacgttggcg atgccggatc ggccagcccg 840
ctgctcggcc tgatcaacgt actggaccag gcacgcccgg ggcagaaaat tcttttggtg 900ctgctcggcc tgatcaacgt actggaccag gcacgcccgg ggcagaaaat tcttttggtg 900
tcctacggtt tcggcgccgg cagcgacgcc atcgccctga ccgtcaccga cgccatcgag 960tcctacggtt tcggcgccgg cagcgacgcc atcgccctga ccgtcaccga cgccatcgag 960
cagtaccaga agcacaacaa gcctctgcgc gaactgctgg aatccaagat ctacgtcgac 1020cagtaccaga agcacaacaa gcctctgcgc gaactgctgg aatccaagat ctacgtcgac 1020
tacggcacgt ccatcaagta cgagttcaag tacctgcggg ctgactacgc cctgaccgcc 1080tacggcacgt ccatcaagta cgagttcaag tacctgcggg ctgactacgc cctgaccgcc 1080
tatctctgat tacgcctgtc tacgcaagga gcatgcacat gtgcgcacgt cgtgttgcaa 1140tatctctgat tacgcctgtc tacgcaagga gcatgcacat gtgcgcacgt cgtgttgcaa 1140
tcgtttcggc cgcctatacg ccgaaacccg gaagttcacg agttcggcag acgttcaagg 1200tcgtttcggc cgcctatacg ccgaaacccg gaagttcacg agttcggcag acgttcaagg 1200
aaatgatcgt cgagtccgcc tacaaggcac tcaaggacgc caagatgcac ccccgggaaa 1260aaatgatcgt cgagtccgcc tacaaggcac tcaaggacgc caagatgcac ccccgggaaa 1260
tccaggccgt ggcctatggt tatcacggtg aaggcatttc cgaatatggc ggcctgggcc 1320tccaggccgt ggcctatggt tatcacggtg aaggcatttc cgaatatggc ggcctgggcc 1320
cgaccatttc cgacgccctg ggcatcagcc cggcgccgac cttcatgagc accgccaact 1380cgaccatttc cgacgccctg ggcatcagcc cggcgccgac cttcatgagc accgccaact 1380
gcaccagcag ctcggtgtcg ttccagatgg gccaccagat ggtggcgtcc ggggagtacg 1440gcaccagcag ctcggtgtcg ttccagatgg gccaccagat ggtggcgtcc ggggagtacg 1440
acatcgtcct gtgcggcggc ttcgagaaga tgaccgatca cttcaactac gccgaataca 1500acatcgtcct gtgcggcggc ttcgagaaga tgaccgatca cttcaactac gccgaataca 1500
tcggctccag cactgaatgt gaatacgatt atttcctcgg catttcccac accgatgcct 1560tcggctccag cactgaatgt gaatacgatt atttcctcgg catttcccac accgatgcct 1560
tcgccctggc caccgccgag tacttccaga agttcggcta tgccggtcgc gaggccgacg 1620tcgccctggc caccgccgag tacttccaga agttcggcta tgccggtcgc gaggccgacg 1620
tactggccac cttcggccgg cagatgcgca tctacgcaca gaacaccccc accgccaccc 1680tactggccac cttcggccgg cagatgcgca tctacgcaca gaacaccccc accgccaccc 1680
gttatggcca gccgattcca tccctggaag tgttgaagaa cagcgaagcc tgcggctcga 1740gttatggcca gccgattcca tccctggaag tgttgaagaa cagcgaagcc tgcggctcga 1740
tgctggcctg gggcgaagcc agtggctgcg cgatcctggt ggccgaacac ctggcccaca 1800tgctggcctg gggcgaagcc agtggctgcg cgatcctggt ggccgaacac ctggcccaca 1800
agtacaccga taaaccggtg ttcgtacgcg gttgcgccta taccggggtc tcccactatt 1860agtacaccga taaaccggtg ttcgtacgcg gttgcgccta taccggggtc tcccactatt 1860
tcggtacgcg ctttcacaac ccgaccctgc atcatccggg cctgcccaag gatgtgggca 1920tcggtacgcg ctttcacaac ccgaccctgc atcatccggg cctgcccaag gatgtgggca 1920
tggcggtttc ggccaactcc atcgcctgtg cggagatcgc ctacaagaaa gccgggatca 1980tggcggtttc ggccaactcc atcgcctgtg cggagatcgc ctacaagaaa gccgggatca 1980
ccgccaagga catcgacgtg gcccaggtct acgacctgct cggcgcaggg ctgatccaga 2040ccgccaagga catcgacgtg gcccaggtct acgacctgct cggcgcaggg ctgatccaga 2040
tggaatccat gggcatctgt ggcaagggcc aggccggcga cttcgtgctc gaaggcggca 2100tggaatccat gggcatctgt ggcaagggcc aggccggcga cttcgtgctc gaaggcggca 2100
ttgccctgga tggccagctg ccgctcaata ccgacggcgg caacatcggc cgcggccatg 2160ttgccctgga tggccagctg ccgctcaata ccgacggcgg caacatcggc cgcggccatg 2160
cctccggctg cgacggcatc ctgcacatca ccgagctgtt ccggcagctg aggggtgaat 2220cctccggctg cgacggcatc ctgcacatca ccgagctgtt ccggcagctg aggggtgaat 2220
ccgacaacca ggtcaagggc gcgcgcatcg gcgtgtcgca gaaccttggc ggttacgcgg 2280ccgacaacca ggtcaagggc gcgcgcatcg gcgtgtcgca gaaccttggc ggttacgcgg 2280
cgcacaactc agtgattgtc ctctcgaacg actaaggagc ccggaccatg tccatgtacc 2340cgcacaactc agtgattgtc ctctcgaacg actaaggagc ccggaccatg tccatgtacc 2340
cagaacagat ccacagaatg accaccgcca gcatgcttcg cgaatggcgc gagcatggcg 2400cagaacagat ccacagaatg accaccgcca gcatgcttcg cgaatggcgc gagcatggcg 2400
gcaagtaccg cctcgaaggc agccagtgcg aagaatgcaa cgaaatcttc ttcccccggc 2460gcaagtaccg cctcgaaggc agccagtgcg aagaatgcaa cgaaatcttc ttcccccggc 2460
gcaccgtctg cggcgcttgc aactccctga gtgtgaagcc gtatcgctgc gcgcgcagtg 2520gcaccgtctg cggcgcttgc aactccctga gtgtgaagcc gtatcgctgc gcgcgcagtg 2520
gcaagatcga ggtcatggcc ccggccgaga acccgatcct ggccgccatg ggctatggcg 2580gcaagatcga ggtcatggcc ccggccgaga acccgatcct ggccgccatg ggctatggcg 2580
aaaccgtgcc gcgcatcatg gccatggtgc gcctggacga cggcctggtg atcgcttcgg 2640aaaccgtgcc gcgcatcatg gccatggtgc gcctggacga cggcctggtg atcgcttcgg 2640
aaatcgtcga tgtgtgcgat cagcaacagc tgaaagtcgg tgcgccggtg cgcatggtga 2700aaatcgtcga tgtgtgcgat cagcaacagc tgaaagtcgg tgcgccggtg cgcatggtga 2700
tccgcaagca tgtgcgcgaa agcaacctgg cctggcaata cgcttataag ttcgtactcg 2760tccgcaagca tgtgcgcgaa agcaacctgg cctggcaata cgcttataag ttcgtactcg 2760
atatataa 2768atatataa 2768
<210> 3<210> 3
<211> 1266<211> 1266
<212> DNA<212> DNA
<213> phlE基因<213> phlE gene
<400> 3<400> 3
atgaacactg gaatgccgac cacggctgcc aacagccgtt acgaaagatc catggtgctg 60atgaacactg gaatgccgac cacggctgcc aacagccgtt acgaaagatc catggtgctg 60
ttgctgtcac tgagtttcgg gctggtgggg ctggatcgct tcatcatcct gccgctgttt 120ttgctgtcac tgagtttcgg gctggtgggg ctggatcgct tcatcatcct gccgctgttt 120
ccggtgatca tgcacgacct gcaactggac tatcaggacc tgggctacct gtccgccgcg 180ccggtgatca tgcacgacct gcaactggac tatcaggacc tgggctacct gtccgccgcg 180
ctggccttca cctgggggct gtccgccctg ggcatgggca gcgtgatcga gcgcctgggc 240ctggccttca cctgggggct gtccgccctg ggcatgggca gcgtgatcga gcgcctgggc 240
acccgccgcg tgctggtgac ctcgattgcc gtgctttcgc tactgtccgg tttttccgcg 300acccgccgcg tgctggtgac ctcgattgcc gtgctttcgc tactgtccgg tttttccgcg 300
ctggccaccg gcgtgctggg gctggtgatt ctgcgcgggc tgatgggcat ctgcgagggt 360ctggccaccg gcgtgctggg gctggtgatt ctgcgcgggc tgatgggcat ctgcgagggt 360
gccttcaccc ccaccagcat cattgtcacc aatgaagtct cgcgccccga ccggcgcggg 420gccttcaccc ccaccagcat cattgtcacc aatgaagtct cgcgccccga ccggcgcggg 420
ctgaacctgg gtatccagca ggcgctgttc ccgattctcg gcctgtgcct ggggccgctg 480ctgaacctgg gtatccagca ggcgctgttc ccgattctcg gcctgtgcct ggggccgctg 480
atcgccgcat acctcctgca aatcactggc tcgtggcgtg cggtgttcgc catcatttcc 540atcgccgcat acctcctgca aatcactggc tcgtggcgtg cggtgttcgc catcatttcc 540
ctgccgggcc tgctgctggc cggctacctg tggaaaatct accgaccgct gccggcgccc 600ctgccgggcc tgctgctggc cggctacctg tggaaaatct accgaccgct gccggcgccc 600
caggccgacc gcaccgcagg cacctggctg gcggccttca agagcggcaa cgtgagcctg 660caggccgacc gcaccgcagg cacctggctg gcggccttca agagcggcaa cgtgagcctg 660
aacatcctga tcatgttctg catactcacc tgccagttcg tcctctgcgc catgctgccc 720aacatcctga tcatgttctg catactcacc tgccagttcg tcctctgcgc catgctgccc 720
agctacctga ccgaccatat gcacctggaa accctgtcca tggccttcgt catctcggcc 780agctacctga ccgaccatat gcacctggaa accctgtcca tggccttcgt catctcggcc 780
atcggcgtgg gcggcttcat cggccaattg atcatccccg gcatgtccga ccgtctcggg 840atcggcgtgg gcggcttcat cggccaattg atcatccccg gcatgtccga ccgtctcggg 840
cgcaagccgg tggtgtcggt gtgcttcatg accagcagca ccctggtggg cctgctgatc 900cgcaagccgg tggtgtcggt gtgcttcatg accagcagca ccctggtggg cctgctgatc 900
gtcagcccgc cccttccctg gctgctgttc ctgctgctgt tcctgctgtc gttcttcaac 960gtcagcccgc cccttccctg gctgctgttc ctgctgctgt tcctgctgtc gttcttcaac 960
ttcagcctga tctgcatgac agtcggccct ttgaccagcg aatcggtcac cccggccctg 1020ttcagcctga tctgcatgac agtcggccct ttgaccagcg aatcggtcac cccggccctg 1020
ctgccggcgg cgaccggaat cgtggtgggg ttcggcgaga tcctgggtgg cgggttgtca 1080ctgccggcgg cgaccggaat cgtggtgggg ttcggcgaga tcctgggtgg cgggttgtca 1080
ccggccgtgg ccgggttcgc cgccagccat ttcggcctgc catcgatcct gtacgtggcc 1140ccggccgtgg ccgggttcgc cgccagccat ttcggcctgc catcgatcct gtacgtggcc 1140
ctgagcggca gcctggccgg cttgctgctg tcattcctgc tcaaggaaca ggccctcgaa 1200ctgagcggca gcctggccgg cttgctgctg tcattcctgc tcaaggaaca ggccctcgaa 1200
ccgcgccgtt cgcgcgtgcg cgaagcgctg cccatcctcc ccgccccctt gcccctgaag 1260ccgcgccgtt cgcgcgtgcg cgaagcgctg cccatcctcc ccgccccctt gcccctgaag 1260
gactag 1266gactag 1266
<210> 4<210> 4
<211> 384<211> 384
<212> DNA<212> DNA
<213> marA基因<213> marA gene
<400> 4<400> 4
atgtccagac gcaatactga cgctattacc attcatagca ttttggactg gatcgaggac 60atgtccagac gcaatactga cgctattacc attcatagca ttttggactg gatcgaggac 60
aacctggaat cgccactgtc actggagaaa gtgtcagagc gttcgggtta ctccaaatgg 120aacctggaat cgccactgtc actggagaaa gtgtcagagc gttcgggtta ctccaaatgg 120
cacctgcaac ggatgtttaa aaaagaaacc ggtcattcat taggccaata catccgcagc 180cacctgcaac ggatgtttaa aaaagaaacc ggtcattcat taggccaata catccgcagc 180
cgtaagatga cggaaatcgc gcaaaagctg aaggaaagta acgagccgat actctatctg 240cgtaagatga cggaaatcgc gcaaaagctg aaggaaagta acgagccgat actctatctg 240
gcagaacgat atggcttcga gtcgcaacaa actctgaccc gaaccttcaa aaattacttt 300gcagaacgat atggcttcga gtcgcaacaa actctgaccc gaaccttcaa aaattacttt 300
gatgttccgc cgcataaata ccggatgacc aatatgcagg gcgaatcgcg ctttttacat 360gatgttccgc cgcataaata ccggatgacc aatatgcagg gcgaatcgcg ctttttacat 360
ccattaaatc attacaacag ctag 384ccattaaatc attacaacag ctag 384
<210> 5<210> 5
<211> 38<211> 38
<212> DNA<212> DNA
<213> phlD-F<213>phlD-F
<400> 5<400> 5
catgccatgg gcatgtctac actttgcctt ccacacgt 38catgccatgg gcatgtctac actttgcctt ccacacgt 38
<210> 6<210> 6
<211> 35<211> 35
<212> DNA<212> DNA
<213> phlD-R<213>phlD-R
<400> 6<400> 6
atcgcatatg tcaggcggtc cactcgccca ccgcc 35atcgcatatg tcaggcggtc cactcgccca ccgcc 35
<210> 7<210> 7
<211> 57<211> 57
<212> DNA<212> DNA
<213> phlACB-F<213>phlACB-F
<400> 7<400> 7
atcgcatatg tgtttaagaa ggagatatac catgaacgtg aaaaagatag gtattgt 57atcgcatatg tgtttaagaa ggagatatac catgaacgtg aaaaagatag gtattgt 57
<210> 8<210> 8
<211> 33<211> 33
<212> DNA<212> DNA
<213> phlACB-R<213>phlACB-R
<400> 8<400> 8
cggaattctt atatatcgag tacgaactta taa 33cggaattctt atatatcgag tacgaactta taa 33
<210> 9<210> 9
<211> 52<211> 52
<212> DNA<212> DNA
<213> phlE-F<213>phlE-F
<400> 9<400> 9
cccaagcttt ttaagaagga gatataccat gaacactgga atgccgacca cg 52cccaagcttt ttaagaagga gatataccat gaacactgga atgccgacca cg 52
<210> 10<210> 10
<211> 33<211> 33
<212> DNA<212> DNA
<213> phlE-R<213>phlE-R
<400> 10<400> 10
ccgctcgagc tagtccttca ggggcaaggg ggc 33ccgctcgagc tagtccttca ggggcaaggg ggc 33
<210> 11<210> 11
<211> 47<211> 47
<212> DNA<212> DNA
<213> marA-F<213> marA-F
<400> 11<400> 11
cggaattctt taagaaggag atataccatg tccagacgca atactga 47cggaattctt taagaaggag atataccatg tccagacgca atactga 47
<210> 12<210> 12
<211> 30<211> 30
<212> DNA<212> DNA
<213> marA-R<213> marA-R
<400> 12<400> 12
atcggtcgac ctagctgttg taatgattta 30atcggtcgac ctagctgttg taatgattta 30
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811354253.3A CN109456927A (en) | 2018-11-14 | 2018-11-14 | The recombinant bacterium and its construction method of a kind of high yield 2,4- diacetyl phloroglucin and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811354253.3A CN109456927A (en) | 2018-11-14 | 2018-11-14 | The recombinant bacterium and its construction method of a kind of high yield 2,4- diacetyl phloroglucin and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109456927A true CN109456927A (en) | 2019-03-12 |
Family
ID=65610556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811354253.3A Pending CN109456927A (en) | 2018-11-14 | 2018-11-14 | The recombinant bacterium and its construction method of a kind of high yield 2,4- diacetyl phloroglucin and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109456927A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109439606A (en) * | 2018-11-14 | 2019-03-08 | 中国科学院青岛生物能源与过程研究所 | A kind of genetic engineering bacterium improving phloroglucin yield and its construction method and application |
CN115838403A (en) * | 2022-10-28 | 2023-03-24 | 安徽大学 | A PhlH protein mutant and its application in high yield 2,4-diacetylphloroglucinol |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101084311A (en) * | 2004-10-12 | 2007-12-05 | 密歇根州州立大学托管理事会 | Biosynthesis of phloroglucinol and preparation of 1,3-dihydroxybenzene therefrom |
WO2012003461A2 (en) * | 2010-07-02 | 2012-01-05 | Draths Corporation | Phloroglucinol synthases and methods of making and using the same |
WO2012006244A1 (en) * | 2010-07-06 | 2012-01-12 | Draths Corporation | Method for producing phloroglucinol and dihydrophloroglucinol |
WO2012006245A1 (en) * | 2010-07-06 | 2012-01-12 | Draths Corporation | Phloroglucinol reductase and methods of making and using the same |
CN102787135A (en) * | 2011-05-18 | 2012-11-21 | 中国科学院青岛生物能源与过程研究所 | Method for improving phloroglucinol synthetic capability of engineering escherichia coli |
EP2788371A2 (en) * | 2011-12-08 | 2014-10-15 | Biocartis NV | Biomarkers and test panels useful in systemic inflammatory conditions |
CN104357495A (en) * | 2014-11-05 | 2015-02-18 | 中国科学院青岛生物能源与过程研究所 | Method for increasing cell phloroglucinol synthesis yield and application |
CN104371966A (en) * | 2014-11-12 | 2015-02-25 | 中国科学院青岛生物能源与过程研究所 | Gene engineering strain capable of synthesizing phloroglucinol from acetic acid and construction method and application thereof |
CN104388371A (en) * | 2014-12-02 | 2015-03-04 | 中国科学院青岛生物能源与过程研究所 | Genetic engineering bacterium for high-yield phloroglucinol as well as construction method and application of genetic engineering bacterium |
CN104388457A (en) * | 2014-12-02 | 2015-03-04 | 中国科学院青岛生物能源与过程研究所 | Gene modification method for increasing yield of phloroglucinol and application of same |
CN104725208A (en) * | 2013-12-18 | 2015-06-24 | 上海塞恩泰恩生物科技有限公司 | 2,4-diacetylphloroglucinol separation and purification method |
CN104988172A (en) * | 2015-07-30 | 2015-10-21 | 中国科学院青岛生物能源与过程研究所 | Construction method and application of high-yield phloroglucinol gene engineering bacterium |
CN105622379A (en) * | 2016-03-15 | 2016-06-01 | 中国科学院华南植物园 | 2,4-DAPG (2,4-Diacetylphloroglucinol) analogue and preparation method and application thereof |
CN106905157A (en) * | 2017-01-10 | 2017-06-30 | 西北农林科技大学 | 2,4 diacetyl phloroglucin ester type compounds and its application of sterilization |
CN106929527A (en) * | 2017-04-24 | 2017-07-07 | 中国科学院青岛生物能源与过程研究所 | A kind of genetic engineering bacterium of phloroglucin synthesis capability high and construction method and application |
CN107557326A (en) * | 2017-10-27 | 2018-01-09 | 山东大学 | One plant of sterilization fixed nitrogen Pseudomonas fluorescens and its fermentation process and application |
CN105018511B (en) * | 2015-07-30 | 2018-08-17 | 中国科学院青岛生物能源与过程研究所 | A kind of method of external enzyme reaction method for synthesizing phloroglucinol and application |
-
2018
- 2018-11-14 CN CN201811354253.3A patent/CN109456927A/en active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101084311A (en) * | 2004-10-12 | 2007-12-05 | 密歇根州州立大学托管理事会 | Biosynthesis of phloroglucinol and preparation of 1,3-dihydroxybenzene therefrom |
WO2012003461A2 (en) * | 2010-07-02 | 2012-01-05 | Draths Corporation | Phloroglucinol synthases and methods of making and using the same |
WO2012006244A1 (en) * | 2010-07-06 | 2012-01-12 | Draths Corporation | Method for producing phloroglucinol and dihydrophloroglucinol |
WO2012006245A1 (en) * | 2010-07-06 | 2012-01-12 | Draths Corporation | Phloroglucinol reductase and methods of making and using the same |
CN102787135A (en) * | 2011-05-18 | 2012-11-21 | 中国科学院青岛生物能源与过程研究所 | Method for improving phloroglucinol synthetic capability of engineering escherichia coli |
EP2788371A2 (en) * | 2011-12-08 | 2014-10-15 | Biocartis NV | Biomarkers and test panels useful in systemic inflammatory conditions |
CN104725208A (en) * | 2013-12-18 | 2015-06-24 | 上海塞恩泰恩生物科技有限公司 | 2,4-diacetylphloroglucinol separation and purification method |
CN104357495A (en) * | 2014-11-05 | 2015-02-18 | 中国科学院青岛生物能源与过程研究所 | Method for increasing cell phloroglucinol synthesis yield and application |
CN104371966A (en) * | 2014-11-12 | 2015-02-25 | 中国科学院青岛生物能源与过程研究所 | Gene engineering strain capable of synthesizing phloroglucinol from acetic acid and construction method and application thereof |
CN104388371A (en) * | 2014-12-02 | 2015-03-04 | 中国科学院青岛生物能源与过程研究所 | Genetic engineering bacterium for high-yield phloroglucinol as well as construction method and application of genetic engineering bacterium |
CN104388457A (en) * | 2014-12-02 | 2015-03-04 | 中国科学院青岛生物能源与过程研究所 | Gene modification method for increasing yield of phloroglucinol and application of same |
CN104988172A (en) * | 2015-07-30 | 2015-10-21 | 中国科学院青岛生物能源与过程研究所 | Construction method and application of high-yield phloroglucinol gene engineering bacterium |
CN104988172B (en) * | 2015-07-30 | 2018-05-04 | 中国科学院青岛生物能源与过程研究所 | A kind of construction method of high yield phloroglucin genetic engineering bacterium and application |
CN105018511B (en) * | 2015-07-30 | 2018-08-17 | 中国科学院青岛生物能源与过程研究所 | A kind of method of external enzyme reaction method for synthesizing phloroglucinol and application |
CN105622379A (en) * | 2016-03-15 | 2016-06-01 | 中国科学院华南植物园 | 2,4-DAPG (2,4-Diacetylphloroglucinol) analogue and preparation method and application thereof |
CN106905157A (en) * | 2017-01-10 | 2017-06-30 | 西北农林科技大学 | 2,4 diacetyl phloroglucin ester type compounds and its application of sterilization |
CN106929527A (en) * | 2017-04-24 | 2017-07-07 | 中国科学院青岛生物能源与过程研究所 | A kind of genetic engineering bacterium of phloroglucin synthesis capability high and construction method and application |
CN107557326A (en) * | 2017-10-27 | 2018-01-09 | 山东大学 | One plant of sterilization fixed nitrogen Pseudomonas fluorescens and its fermentation process and application |
Non-Patent Citations (8)
Title |
---|
JIHANE ACHKAR 等: "Biosynthesis of Phloroglucinol", 《JACS》 * |
M. GITA BANGERA 等: "Identification and Characterization of a Gene Cluster for Synthesis of the Polyketide Antibiotic 2,4-Diacetylphloroglucinol from Pseudomonas fluorescens Q2-87", 《JOURNAL OF BACTERIOLOGY》 * |
NCBI: "Pseudomonas protegens CHA0 genome assembly, chromosome: 1", 《GENBANK DATABASE》 * |
NCBI: "Pseudomonas protegens CHA0, complete genome", 《GENBANK DATABASE》 * |
XU YAN 等: "Transcriptional Regulator PhlH Modulates 2,4-Diacetylphloroglucinol Biosynthesis in Response to the Biosynthetic Intermediate and End Product", 《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》 * |
周洪友 等: "抗生素2,4-二乙酰基间苯三酚合成基因在假单胞杆菌P32中的异源表达", 《中国植物病理学会2004年学术年会论文集》 * |
周洪友: "荧光假单胞菌2P24抗生素2,4-二乙酰基间苯三酚生物合成的基因调控研究", 《中国优秀博士学位论文全文数据库(电子期刊)农业科技辑》 * |
周田甜: "番茄青枯病拮抗菌J12和J2的分离鉴定及抗生素2,4-DAPG合成和调控研究", 《中国优秀博士学位论文全文数据库(电子期刊)农业科技辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109439606A (en) * | 2018-11-14 | 2019-03-08 | 中国科学院青岛生物能源与过程研究所 | A kind of genetic engineering bacterium improving phloroglucin yield and its construction method and application |
CN115838403A (en) * | 2022-10-28 | 2023-03-24 | 安徽大学 | A PhlH protein mutant and its application in high yield 2,4-diacetylphloroglucinol |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Biosynthesis of phloroglucinol compounds in microorganisms | |
US20180208948A1 (en) | Drimenol synthases i | |
CN111117942B (en) | Genetic engineering bacterium for producing lincomycin and construction method and application thereof | |
CN110343709B (en) | Nocardiopsis arctica lasso peptide gene cluster and cloning and expression method thereof | |
US11773414B2 (en) | Sesquiterpene synthases for production of drimenol and mixtures thereof | |
CN110656075B (en) | Universal underpan cell for synthesizing acetyl coenzyme A derivative product and construction method and application thereof | |
CN110777155A (en) | Minimycin Biosynthetic Gene Cluster, Recombinant Bacteria and Their Applications | |
CN101463358A (en) | Nitrile hydratase gene cluster and use thereof | |
CN109456927A (en) | The recombinant bacterium and its construction method of a kind of high yield 2,4- diacetyl phloroglucin and application | |
CN103215281B (en) | Biosynthetic gene cluster of grincamycin and P-1894B and application thereof | |
EP3140410B1 (en) | Drimenol synthases and method of producing drimenol | |
JP6249456B2 (en) | How to produce plastic raw materials in cyanobacteria | |
US10550409B2 (en) | Drimenol synthases III | |
CN116875524B (en) | A method for regulating multi-gene expression in microorganisms and its application | |
CN104046635B (en) | Application and usage method of nfiS gene for specific response of adversity signal | |
CN112410353A (en) | A kind of fkbS gene, genetically engineered bacteria containing same, preparation method and use thereof | |
Xue et al. | Directed evolution of the transglutaminase from Streptomyces mobaraensis and its enhanced expression in Escherichia coli | |
CN112375725B (en) | Metabolic engineering strain for producing vitamin B6 and construction method and application thereof | |
CN107849586B (en) | Production of aromatic compounds | |
CN108753802B (en) | A malate dehydrogenase gene CIMDH1 and its recombinant expression vector | |
JP5896414B2 (en) | Genes encoding acyl homoserine lactone synthase and their use | |
CN103865946B (en) | Method based on metabolic regulation high yield oxytetracycline | |
CN111548978B (en) | Bacillus subtilis for producing mannan and application thereof | |
CN118638706B (en) | An engineered strain with high production of spinosad by optimizing the mannose metabolic pathway | |
US20250092431A1 (en) | Method for Regulating and Controlling Heterologous Synthetic Flavonoid Compound and Use Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190312 |
|
RJ01 | Rejection of invention patent application after publication |