CN109379183B - Multi-hop lossless invisible state transfer method based on non-maximum entangled chain channel - Google Patents
Multi-hop lossless invisible state transfer method based on non-maximum entangled chain channel Download PDFInfo
- Publication number
- CN109379183B CN109379183B CN201811114165.6A CN201811114165A CN109379183B CN 109379183 B CN109379183 B CN 109379183B CN 201811114165 A CN201811114165 A CN 201811114165A CN 109379183 B CN109379183 B CN 109379183B
- Authority
- CN
- China
- Prior art keywords
- particle
- quantum
- information
- teleportation
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000012546 transfer Methods 0.000 title description 2
- 239000002245 particle Substances 0.000 claims abstract description 162
- 238000004891 communication Methods 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 20
- 238000005259 measurement Methods 0.000 claims description 57
- 239000011159 matrix material Substances 0.000 claims description 12
- 230000009466 transformation Effects 0.000 claims description 11
- 108091006146 Channels Proteins 0.000 description 57
- 239000002096 quantum dot Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000005283 ground state Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 235000008694 Humulus lupulus Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000005610 quantum mechanics Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0852—Quantum cryptography
- H04L9/0858—Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本发明涉及了一种基于非最大纠缠链式信道的多跳无损隐形传态方法,最初没有直接共享量子纠缠对的通信双方Alice与Bob,通过p个中间节点的帮助,不断进行纠缠交换,最终建立起量子纠缠信道,完成发送方Alice与向接收方Bob传送一个单粒子多能级未知量子态的多跳隐形传态过程。本发明应用非最大纠缠链式信道,即使发送方与接收方没有直接共享量子纠缠对,依然能在双方之间传输量子态信息,能够满足构建复杂量子通信网络的要求;在本发明的多跳无损隐形传态体系中,如果隐形传态过程执行成功,则信息接收方Bob可以得到传送的量子态信息;如果隐形传态过程失败,信息发送方Alice可以恢复出传送的未知量子态信息,该未知量子态信息不会丢失。
The invention relates to a multi-hop lossless teleportation method based on a non-maximum entangled chain channel. At first, Alice and Bob, both communicating parties who do not directly share a quantum entanglement pair, continuously perform entanglement exchanges with the help of p intermediate nodes, and finally A quantum entanglement channel is established to complete the multi-hop teleportation process between the sender Alice and the receiver Bob to transmit a single-particle multi-level unknown quantum state. The invention applies the non-maximum entanglement chain channel, even if the sender and the receiver do not directly share the quantum entanglement pair, quantum state information can still be transmitted between the two parties, which can meet the requirements of building a complex quantum communication network; in the multi-hop of the invention In the lossless teleportation system, if the teleportation process is successfully executed, the information receiver Bob can obtain the transmitted quantum state information; if the teleportation process fails, the information sender Alice can recover the transmitted unknown quantum state information. The unknown quantum state information is not lost.
Description
技术领域technical field
本发明涉及量子通信网络及信息传播方法,特别是涉及基于非最大纠缠链式信道的多跳无损隐形传态方法。The invention relates to a quantum communication network and an information dissemination method, in particular to a multi-hop lossless teleportation method based on a non-maximally entangled chain channel.
背景技术Background technique
量子信息学是经典信息论与量子力学的交叉学科,其研究领域主要包括量子计算与量子通信等。量子通信是利用量子纠缠效应进行信息传递的一种新型通讯方式,其传递的信息主体是量子信息或经典信息,信道则是量子信道或量子信道辅以经典信道。近年来,随着量子通信技术的发展,量子通信也逐渐走向网络化的发展方向。在量子通信网络中,多跳隐形传态协议可以实现两个不直接共享纠缠对的节点间的量子隐形传态。目前,量子通信技术得到了快速发展,并以通信容量大、安全性高等方面的独特优势渐渐成为世界范围内量子学和信息学的主要钻研热点。Quantum informatics is an interdisciplinary subject between classical information theory and quantum mechanics, and its research fields mainly include quantum computing and quantum communication. Quantum communication is a new type of communication method that uses quantum entanglement effect to transmit information. The main body of information transmitted is quantum information or classical information, and the channel is quantum channel or quantum channel supplemented by classical channel. In recent years, with the development of quantum communication technology, quantum communication has gradually moved towards the development direction of networking. In quantum communication networks, multi-hop teleportation protocols can realize quantum teleportation between two nodes that do not directly share entangled pairs. At present, quantum communication technology has developed rapidly, and has gradually become the main research focus of quantum and informatics worldwide due to its unique advantages in terms of large communication capacity and high security.
量子纠缠在量子隐形传态[1]系统中,是一个不可或缺的物理资源,纠缠交换[2-4]则是量子纠缠性质的一个特殊应用,其使原本不相关的两对纠缠粒子,利用贝尔测量的方法,产生相互作用。纠缠这一性质在量子通信中,有着很重要的作用。量子纠缠最初是由爱因斯坦(Einstein),波多尔斯基(Podolsky)和罗森(Rosen)三位科学家为证明量子力学的不完备性概念而提出的。1935年,爱因斯坦、波多尔斯基和罗森提出了一个思想实验,后来被称为EPR实验。首先准备A和B两个粒子,使这两个粒子的一些属性(如电子的自旋角动量、光子的偏振等)加和为零,但单独一个粒子的属性是不确定的,这样的一对粒子称为EPR对,它们处于一个纠缠态,因为两个粒子的属性紧密联系。然后把这两个粒子在空间中分开任意远的距离,此时测量粒子A的状态,假如测量结果为“0”,那么可以立刻得到B的状态为“1”。EPR认为在纠缠粒子A和B之间有“鬼魅般的超距作用”。Quantum entanglement is an indispensable physical resource in the quantum teleportation [1] system, and entanglement exchange [2-4] is a special application of the properties of quantum entanglement, which makes two pairs of entangled particles that were originally unrelated, The interaction is generated using the method of Bell measurement. The property of entanglement plays an important role in quantum communication. Quantum entanglement was originally proposed by three scientists, Einstein, Podolsky and Rosen, to prove the concept of incompleteness in quantum mechanics. In 1935, Einstein, Podolski, and Rosen proposed a thought experiment that later became known as the EPR experiment. First, prepare two particles A and B, so that the sum of some properties of these two particles (such as the spin angular momentum of electrons, the polarization of photons, etc.) is zero, but the properties of a single particle are uncertain, such a Pairs of particles, called EPR pairs, are in an entangled state because the properties of the two particles are closely linked. Then the two particles are separated by any distance in space, and the state of particle A is measured at this time. If the measurement result is "0", then the state of B can be immediately obtained as "1". EPR believes that there is a "spooky action at a distance" between the entangled particles A and B.
量子隐形传态的概念于1993年由Bennett,Brassard等[5]几位科学家提出,并利用量子纠缠性质来实现量子隐形传态,由此开创了量子隐形传态研究的先河。量子隐形传态的基本原理是:对待传送的未知量子态与EPR纠缠对的其中一个粒子实施联合Bell基测量,由于EPR对的量子非局域关联特性,此时未知态的全部量子信息将会"转移"到EPR对的第二个粒子上,只要根据经典通道传送的Bell基测量结果,对EPR对的第二个粒子的量子态施行适当的幺正变换,就可使这个粒子处于与待传送的未知态完全相同的量子态,从而在EPR的第二个粒子上实现对未知量子态的重现。1997年,奥地利Zeilinger小组在室内首次完成了量子隐形传态的原理性实验验证,成为量子信息实验领域的经典之作。The concept of quantum teleportation was proposed by several scientists such as Bennett, Brassard, etc. [5] in 1993, and used the properties of quantum entanglement to realize quantum teleportation, thus creating a precedent for quantum teleportation research. The basic principle of quantum teleportation is: joint Bell basis measurement is performed between the unknown quantum state to be transmitted and one of the particles of the EPR entanglement pair. "Transfer" to the second particle of the EPR pair, as long as the quantum state of the second particle of the EPR pair is subjected to an appropriate unitary transformation according to the Bell basis measurements transmitted by the classical channel, this particle can be placed in the same The transmitted unknown state is exactly the same quantum state, thereby realizing the reconstruction of the unknown quantum state on the second particle of the EPR. In 1997, the Austrian Zeilinger group completed the first indoor experimental verification of quantum teleportation, which became a classic work in the field of quantum information experiments.
随着量子通信研究的深入,网络化是不可避免的发展趋势,量子通信网络[6,7]中的量子中继节点因此得到了人们的广泛重视。量子中继节点方案中,发信节点和收信节点之间还有很多的中间节点,每两个相邻节点由一段纠缠信道连接,形成链式信道,所有的节点(包括发信节点和收信节点)与自己的相邻节点进行纠缠交换,并对自己拥有的粒子进行Bell测量,得到一个纠缠态,最终可以建立起发信节点和收信节点之间的纠缠态,利用这个纠缠态,就能基于EPR协议最终可实现两个节点之间的通信。近年,以量子中继节点为基础进行量子隐形传态的理论研究取得重大突破。2005年,Sheng-Tzong Cheng等[8]提出了一种针对分级网络结构的路由机制,用来在两个没有直接共享纠缠对的节点建传送一个量子态信息;2014年,Wang Kan等[9]提出一种基于任意Bell对的量子无线多跳隐形传态体系,用以构建量子通信网络。但是,现有的多跳量子隐形传态方法[10,11]大多是概率隐形传态,未知量子态的成功传送有一定的概率,一旦传送失败,会丢失未知量子态信息,造成量子资源的浪费,部分实现量子无损[12]隐形传态体系的方法又未能扩展到量子网络领域。With the deepening of quantum communication research, networking is an inevitable development trend, and quantum relay nodes in quantum communication networks [6,7] have therefore received extensive attention. In the quantum relay node scheme, there are many intermediate nodes between the sending node and the receiving node. Every two adjacent nodes are connected by an entangled channel to form a chain channel. All nodes (including the sending node and the receiving node) The letter node) exchanges entanglement with its adjacent nodes, and performs Bell measurement on the particles it owns to obtain an entangled state. Finally, the entangled state between the sender node and the receiver node can be established. Using this entanglement state, Based on the EPR protocol, the communication between the two nodes can finally be realized. In recent years, major breakthroughs have been made in the theoretical research of quantum teleportation based on quantum relay nodes. In 2005, Sheng-Tzong Cheng et al. [8] proposed a routing mechanism for hierarchical network structure to transmit a quantum state information between two nodes that do not directly share entangled pairs; in 2014, Wang Kan et al. [9] ] A quantum wireless multi-hop teleportation system based on any Bell pair is proposed to construct a quantum communication network. However, most of the existing multi-hop quantum teleportation methods [10, 11] are probabilistic teleportation, and the successful transmission of unknown quantum states has a certain probability. Once the transmission fails, the unknown quantum state information will be lost, resulting in the loss of quantum resources It is wasteful, and some methods of realizing quantum lossless [12] teleportation systems have not been extended to the field of quantum networks.
多能级量子态[13,14]在量子信息以及量子计算中是非常重要的量子资源,对于一个多能级未知量子态的隐形传态,需要建立多能级的量子隐形传态信道,执行隐形传态过程时,要将两能级的CNOT门操作,H门操作,Bell测量等量子操作扩展到多能级的广义CNOT门操作,广义H门操作以及广义Bell测量等。Yan Xia等[15]基于d能级N粒子GHZ信道传送多比特未知量子态信息,实现一种广义的隐形传态体系;Ping Zhou等[16]基于非最大纠缠量子信道提出了d维量子系统的多方控制隐形传态,用于将量子隐形传态扩展到多能级形式。这些d能级量子隐形传态方法也是概率隐形传态,如果隐形传态过程失败,无法保留未知待传量子态信息。Multi-level quantum states [13, 14] are very important quantum resources in quantum information and quantum computing. For the teleportation of a multi-level unknown quantum state, a multi-level quantum teleportation channel needs to be established to execute In the teleportation process, quantum operations such as two-level CNOT gate operations, H gate operations, and Bell measurements should be extended to multi-level generalized CNOT gate operations, generalized H gate operations, and generalized Bell measurements. Yan Xia et al. [15] realized a generalized teleportation system by transmitting multi-bit unknown quantum state information based on d-level N particle GHZ channel; Ping Zhou et al. [16] proposed a d-dimensional quantum system based on non-maximally entangled quantum channel Multi-party controlled teleportation for extending quantum teleportation to multi-level forms. These d-level quantum teleportation methods are also probabilistic teleportation. If the teleportation process fails, the unknown quantum state information to be transmitted cannot be preserved.
本发明参考文献如下:References of the present invention are as follows:
[1]YANG C P,GUO G C.Multi-particle generalization of teleportation[J].Chin Phys Lett,2000,17:162.[1]YANG C P,GUO G C.Multi-particle generalization of teleportation[J].Chin Phys Lett,2000,17:162.
[2]PAN J W,BOUWMEESTER D,WEINFURTER H,et a1.Experimental entanglementswapping:Entangling photons that never interacted[J].Physical Review Letters,1998,80(18):3891—3894.[2] PAN J W, BOUWMEESTER D, WEINFURTER H, et a1. Experimental entanglementswapping: Entangling photons that never interacted [J]. Physical Review Letters, 1998, 80(18): 3891-3894.
[3]LU H,GUO G C.Teleportation of two-particle entangled state viaentanglement swapping[J].Phys LettA,2000,276:209.[3]LU H,GUO G C.Teleportation of two-particle entangled state viaentanglement swapping[J].Phys LettA,2000,276:209.
[4]M.A.Sol′1s-Prosser,A.Delgado,O.Jim′enez,and L.Neves.Deterministicand probabilistic entanglement swapping of nonmaximally entangled statesassisted by optimal quantum state discrimination[J].PHYSICAL REVIEW A 89,012337(2014).[4] M.A.Sol'1s-Prosser, A.Delgado, O.Jim'enez, and L.Neves. Deterministic and probabilistic entanglement swapping of nonmaximally entangled states assisted by optimal quantum state discrimination[J].PHYSICAL REVIEW A 89,012337(2014 ).
[5]Bennett C.H.Brassard G,Crepeau C,et al.Teleporting an UnknownQuantum State via Dual Classical and Einstein-Podolsky-Rosen Channels[J],Phys.Rev.Lett.,1993,70:1895-1899.[5]Bennett C.H.Brassard G, Crepeau C, et al.Teleporting an UnknownQuantum State via Dual Classical and Einstein-Podolsky-Rosen Channels[J],Phys.Rev.Lett.,1993,70:1895-1899.
[6]Xiu-Bo Chen,Yuan Su,Gang Xu,Ying Sun,Yi-Xian Yang.Quantum statesecure transmission in network communications[J].Information Sciences 276(2014)363-376.[6] Xiu-Bo Chen, Yuan Su, Gang Xu, Ying Sun, Yi-Xian Yang. Quantum statesecure transmission in network communications[J]. Information Sciences 276(2014) 363-376.
[7]Zhen-Zhen Li,Gang Xu,Xiu-Bo Chen,Xingming Sun,and Yi-XianYang.Multi-User Quantum Wireless Network Communication Based on Multi-QubitGHZ State[J].IEEE COMMUNICATIONS LETTERS,VOL.20,NO.12,DECEMBER 2016.[7]Zhen-Zhen Li,Gang Xu,Xiu-Bo Chen,Xingming Sun,and Yi-XianYang.Multi-User Quantum Wireless Network Communication Based on Multi-QubitGHZ State[J].IEEE COMMUNICATIONS LETTERS,VOL.20,NO .12, DECEMBER 2016.
[8]Sheng-Tzong Cheng,Chun-Yen Wang,Ming-Hon Tao.Quantum communicationfor wireless wide-area networks[J],IEEE.Journal on SelectedAreas inCommunications,2005,23(7):1424-1432.[8] Sheng-Tzong Cheng, Chun-Yen Wang, Ming-Hon Tao.Quantum communication for wireless wide-area networks[J],IEEE.Journal on SelectedAreas inCommunications,2005,23(7):1424-1432.
[9]Kan Wang,Xu-Tao Yu,Sheng-Li Lu,Yan-Xiao Gong.Quantum wirelessmultihop communication based on arbitrary Bell pairs and teleportation.[J].Physical ReviewA,2014,89(2A):1-10.[9] Kan Wang, Xu-Tao Yu, Sheng-Li Lu, Yan-Xiao Gong.Quantum wirelessmultihop communication based on arbitrary Bell pairs and teleportation.[J].Physical ReviewA, 2014,89(2A):1-10.
[10]Zhen-Zhen Zou,Xu-Tao Yu,Yan-Xiao Gong,Zai-Chen Zhang.Multihopteleportation of two-qubit state via the composite GHZ-Bell channel[J].Physical ReviewA,2017,381(2):76-81.[10]Zhen-Zhen Zou,Xu-Tao Yu,Yan-Xiao Gong,Zai-Chen Zhang.Multihopteleportation of two-qubit state via the composite GHZ-Bell channel[J].Physical ReviewA,2017,381(2): 76-81.
[11]Meiyu Wang,Fengli Yan.General probabilistic chain teleportation[J].Optics Communications 284(2011)2408–2411.[11]Meiyu Wang,Fengli Yan.General probabilistic chain teleportation[J].Optics Communications 284(2011)2408–2411.
[12]Luis Roa,Caspar Groiseau.Probabilistic teleportation without lossof information[J].Phys.Rev.A(3),2015,91(1):012344.[12]Luis Roa,Caspar Groiseau.Probabilistic teleportation without lossof information[J].Phys.Rev.A(3),2015,91(1):012344.
[13]郑玉红,赵素倩,杜占乐,阎凤利.多能级多粒子量子态的传输.河北师范大学学报(自然科学版),Vo l.26No.2,Ma r.2002.[13] Zheng Yuhong, Zhao Suqian, Du Zhanle, Yan Fengli. Transport of multi-level multi-particle quantum states. Journal of Hebei Normal University (Natural Science Edition), Vol.26No.2, Mar.2002.
[14]CAO Min,ZHU Shi-Qun.Probabilistic Teleportation of Multi-particled-Level Quantum State[J].Communications in Theoretical Physics.2005,Vol.43(5):803–805.[14] CAO Min, ZHU Shi-Qun. Probabilistic Teleportation of Multi-particled-Level Quantum State[J]. Communications in Theoretical Physics. 2005, Vol.43(5):803–805.
[15]Yan Xia,Jie Song,He-Shan Song,Bo-YingWang.GeneralizedTeleportation ofa d-Level N-Particle GHZ State with One Pair ofEntangledParticles as the Quantum Channel[J].Int J Theor Phys(2008)47:2835–2840.[15] Yan Xia, Jie Song, He-Shan Song, Bo-Ying Wang. Generalized Teleportation of a d-Level N-Particle GHZ State with One Pair of Entangled Particles as the Quantum Channel [J]. Int J Theor Phys (2008) 47:2835 –2840.
[16]Ping Zhou,Xi-Han Li,Fu-Guo Deng,Hong-Yu Zhou.Multiparty-controlled teleportation of an arbitrary m-qudit state with pure entangledquantum channel[J],Journal ofPhysics,2007,40(43):13121-13130.[16] Ping Zhou, Xi-Han Li, Fu-Guo Deng, Hong-Yu Zhou. Multiparty-controlled teleportation of an arbitrary m-qudit state with pure entangled quantum channel [J], Journal of Physics, 2007, 40(43): 13121-13130.
发明内容SUMMARY OF THE INVENTION
基于此,本发明提供一种基于非最大纠缠链式信道的多跳无损隐形传态方法,解决通信网络中通信双方不直接共享纠缠对的问题。并且,在这个多跳无损隐形传态体系中,如果隐形传态过程执行成功,则信息接收方Bob可以得到传送的量子态信息;如果隐形传态过程失败,信息发送方Alice可以恢复出传送的未知量子态信息,该未知量子态信息不会丢失。它包括以下步骤:Based on this, the present invention provides a multi-hop lossless teleportation method based on a non-maximally entangled chain channel, which solves the problem that the two communicating parties do not directly share entangled pairs in a communication network. Moreover, in this multi-hop lossless teleportation system, if the teleportation process is successfully executed, the information receiver Bob can obtain the transmitted quantum state information; if the teleportation process fails, the information sender Alice can recover the transmitted quantum state information. Unknown quantum state information, the unknown quantum state information will not be lost. It includes the following steps:
步骤1:链式信道构建。通信双方为信息发送方Alice与信息接收方Bob,粒子src携带未知量子态,由信息发送方Alice所持有。发送方Alice持有粒子src和粒子1,第1个中间节点持有粒子2和粒子3,第2个中间节点持有粒子4和粒子5……第i(i=1,2,3,…,p)个中间节点持有粒子2i和粒子2i+1,其中,p是正整数;处于目标节点的信息接收方Bob是多跳量子隐形传态系统的第p+2个节点,持有粒子2p+2;各个相邻节点之间彼此两两共享两比特Bell态量子信道,形成链式通信信道;各纠缠信道的形式为:Step 1: Chain channel construction. The two communicating parties are the information sender Alice and the information receiver Bob. The particle src carries an unknown quantum state, which is held by the information sender Alice. The sender Alice holds particle src and
步骤2:直接信道构建。p个中间节点对自己所拥有的两个粒子作广义Bell测量,使信息发送方Alice与信息接收方Bob之间形成两粒子纠缠信道,其纠缠态形式为:Step 2: Direct channel construction. The p intermediate nodes perform generalized Bell measurements on the two particles they own, so that a two-particle entanglement channel is formed between the information sender Alice and the information receiver Bob, and the entangled state is in the form of:
步骤3:信道调整。p个中间节点分别将自己的广义Bell测量结果发送给信息接收方Bob,Bob根据这p个测量结果确定需要对信道进行的矩阵变换操作,调整纠缠信道。调整后量子信道系统有如下形式:Step 3: Channel adjustment. The p intermediate nodes respectively send their own generalized Bell measurement results to the information receiver Bob, and Bob determines the matrix transformation operation that needs to be performed on the channel according to the p measurement results, and adjusts the entangled channel. The adjusted quantum channel system has the following form:
其中,表示第i个中间节点的广义Bell测量结果,表示当第i个中间节点对自己所拥有的粒子2i和2i+1测得后,需要对粒子1和粒子2i+2的纠缠态实施操作,使这两个粒子的纠缠态转换为的形式。是矩阵变换的逆变换操作。信息发送方Alice的粒子1与接收方Bob的粒子2p+2的纠缠态为:in, represents the generalized Bell measurement of the ith intermediate node, Indicates that when the i-th intermediate node measures the particles 2i and 2i+1 it owns After that, the entangled state of
信道参数的取值与和第i+1个中间节点的广义Bell测量结果有关。假设第i+1个中间节点的测量结果为则存在:channel parameters The value of and It is related to the generalized Bell measurement result of the i+1th intermediate node. Suppose the measurement result of the i+1th intermediate node is then exists:
至此,可以得到d能级多跳无损量子隐形传态系统的信道形式,该信道由三个部分构成:一是p个中间节点的广义Bell测量结果;二是对应于各个测量结果,为调整源节点与各个中间节点直接纠缠态形式应进行的矩阵变换操作;三是信息发送方Alice的粒子1与信息接收方Bob的粒子2p+2的纠缠态。So far, the channel form of the d-level multi-hop lossless quantum teleportation system can be obtained. The channel consists of three parts: one is the generalized Bell measurement results of p intermediate nodes; the other is corresponding to each measurement result, which is the adjustment source. The matrix transformation operation that should be performed in the form of direct entanglement between the node and each intermediate node; the third is the entangled state of the
步骤4:信息传送。将多跳隐形传态系统简化为单跳隐形传态系统形式,执行单跳无损量子隐形传态过程;在系统中引入一个辅助粒子|0>e,由信息接收方Bob所持有,同时进行以下两项操作:(1)信息发送方Alice对其所拥有的粒子src和粒子1执行广义CNOT和广义H门操作;(2)信息接收方Bob对其持有的粒子2p+2和辅助粒子e执行两比特态幺正操作 Step 4: Information transmission. The multi-hop teleportation system is simplified to the form of a single-hop teleportation system, and the single-hop lossless quantum teleportation process is performed; an auxiliary particle |0> e is introduced into the system, which is held by the information receiver Bob, and the process is carried out simultaneously. The following two operations: (1) Alice, the information sender, performs generalized CNOT and generalized H-gate operations on the particle src and
步骤5:信息接收或信息留存。信息接收方Bob对辅助粒子e进行测量,若测量结果为|0>e,则信息发送方Alice再对其所拥有的粒子src和粒子1分别在基|0>,|1>下进行测量,并将测量结果发送给信息接收方Bob,Bob执行相应的幺正操作恢复出传送的未知量子态;若测量结果为|1>e,信息发送方Alice对其所拥有的粒子src和粒子1执行广义H门和广义CNOT门的操作,从而保留待传未知量子态信息。Step 5: Information reception or information retention. The information receiver Bob measures the auxiliary particle e. If the measurement result is |0> e , the information sender Alice then measures the particle src and
其特征在于:在该多跳无损隐形传态体系中,如果隐形传态过程执行成功,则信息接收方Bob可以得到传送的量子态信息;如果隐形传态过程失败,信息发送方Alice可以恢复出传送的未知量子态信息,该未知量子态信息不会丢失。由于上述技术方案运用,本发明与现有技术相比具有下列优点:It is characterized in that: in the multi-hop lossless teleportation system, if the teleportation process is successfully executed, the information receiver Bob can obtain the transmitted quantum state information; if the teleportation process fails, the information sender Alice can recover Unknown quantum state information transmitted, the unknown quantum state information will not be lost. Due to the application of the above-mentioned technical solutions, the present invention has the following advantages compared with the prior art:
1、本发明的多跳无损量子隐形传态方法,由于信息接收方Bob引入了一个辅助粒子|0>e,能够在隐形传态不成功时保留未知的待传量子态信息,不会造成量子资源的丢失。1. The multi-hop lossless quantum teleportation method of the present invention, because the information receiver Bob introduces an auxiliary particle |0> e , can retain the unknown quantum state information to be transmitted when the teleportation is unsuccessful, and will not cause quantum loss of resources.
2、本发明各个中间节点的测量结果可同时传送给信息接收方Bob,因此本发明提高了信息传输的效率。2. The measurement results of each intermediate node of the present invention can be simultaneously transmitted to the information receiver Bob, so the present invention improves the efficiency of information transmission.
3、本发明应用非最大纠缠链式信道,即使发送方与接收方没有直接共享量子纠缠对,依然能在双方之间传输量子态信息,能够满足构建复杂量子通信网络的要求。3. The present invention applies the non-maximum entanglement chain channel, even if the sender and the receiver do not directly share the quantum entanglement pair, quantum state information can still be transmitted between the two parties, which can meet the requirements of building a complex quantum communication network.
附图说明Description of drawings
图1为本发明的基于非最大纠缠链式信道的多跳无损隐形传态方法的流程图。FIG. 1 is a flow chart of a multi-hop lossless teleportation method based on a non-maximally entangled chain channel of the present invention.
图2为本发明的基于非最大纠缠链式信道的多跳无损隐形传态方法的粒子分配图。FIG. 2 is a particle allocation diagram of the multi-hop lossless teleportation method based on the non-maximally entangled chain channel of the present invention.
图3为本发明信息发送方Alice、信息接收方Bob与p个中间节点进行纠缠交换建立量子信道的示意图。FIG. 3 is a schematic diagram of the information sender Alice, the information receiver Bob and p intermediate nodes performing entanglement exchange to establish a quantum channel according to the present invention.
图4为本发明实施例一中两能级两跳的无损隐形传态方法粒子分配示意图。FIG. 4 is a schematic diagram of particle allocation in the lossless teleportation method with two energy levels and two hops in
图5为本发明实施例二中三能级单跳的无损隐形传态方法粒子分配示意图。FIG. 5 is a schematic diagram of particle allocation in a three-level single-hop lossless teleportation method in
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
本发明技术名词说明:Description of the technical terms of the present invention:
1、广义Bell基1. Generalized Bell basis
广义Bell基是由多能级两粒子构成的最大纠缠态,它构成了d(能级数)维Hilbert空间的一组完备正交基,具体形式如下:The generalized Bell basis is the largest entangled state composed of two particles with multiple energy levels, and it constitutes a set of complete orthonormal basis of d (energy level)-dimensional Hilbert space. The specific form is as follows:
2、Z基测量2. Z-based measurement
Z基测量是在单比特粒子基态下进行的投影测量,d能级单比特粒子基态为:|m>(m=0,1,2,…,d-1)。The Z-based measurement is a projection measurement carried out in the ground state of the single-bit particle, and the ground state of the single-bit particle at the d level is: |m>(m=0,1,2,...,d-1).
3、广义受控非门3. Generalized controlled NOT gate
量子广义受控非门(CNOT门)是一个典型的多量子比特量子逻辑门,它有两个输入量子比特,分别是控制量子比特和目标量子比特。其作用是:控制量子比特保持不变,目标量子比特是控制量子比特与目标量子比特的模d加的结果。两能级受控非门对应的矩阵形式为:A quantum generalized controlled NOT gate (CNOT gate) is a typical multi-qubit quantum logic gate, which has two input qubits, the control qubit and the target qubit. Its function is: the control qubit remains unchanged, and the target qubit is the result of the modulo d addition of the control qubit and the target qubit. The matrix form corresponding to the two-level controlled NOT gate is:
将输入的两个量子比特扩展到d能级,广义受控非门对应的表达式为:Extending the input two qubits to the d level, the corresponding expression of the generalized controlled NOT gate is:
4、广义H门4. Generalized H gate
本发明中会用到d能级H门操作,具体形式如下:In the present invention, the d-level H gate operation will be used, and the specific form is as follows:
5、纠缠信道形式统一操作5. Unified operation in the form of entangled channels
本发明中信息发送方Alice与信息接收方Bob的纠缠信道系统形式如下:The entangled channel system form of the information sender Alice and the information receiver Bob in the present invention is as follows:
当第i个中间节点对自己所拥有的粒子2i和2i+1测得后,需要对粒子1和粒子2i+2的纠缠态实施操作,使这两个粒子的纠缠态转换为统一形式: 的矩阵表达式如下:When the i-th intermediate node measures the particles 2i and 2i+1 it owns After that, the entangled state of
6、信息接收方Bob拥有的粒子2p+2与辅助粒子e的联合幺正操作6. The joint unitary operation of the
本发明确定d能级多跳无损量子隐形传态系统信道之后,信息发送方Alice的粒子1与信息接收方Bob的粒子2p+2的纠缠态有如下表示形式:After the invention determines the d-level multi-hop lossless quantum teleportation system channel, the entangled state of the
设且P0=min{P0,P1,P2,…,Pd-1}。本发明中步骤4将多跳无损隐形传态系统简化为单跳无损隐形传态系统形式,执行单跳无损量子隐形传态过程,需要在系统中引入一个由信息接收方Bob持有的辅助粒子|0>e,并执行幺正操作幺正操作的形式表示如下:Assume And P 0 =min{P 0 , P 1 , P 2 , . . . , P d-1 }. Step 4 in the present invention simplifies the multi-hop lossless teleportation system into the form of a single-hop lossless teleportation system, and to perform the single-hop lossless quantum teleportation process, it is necessary to introduce an auxiliary particle held by the information receiver Bob into the system |0> e , and perform a unitary operation Unitary operation is expressed in the form of:
链式无损隐形传态通信系统中,没有直接共享纠缠对的信息发送方Alice与信息接收方Bob,通过p个中间节点的帮助,能够产生量子纠缠态,建立起量子纠缠信道,完成信息发送方Alice向信息接收方Bob传送一个单粒子多能级未知量子态的过程。在这个多跳无损隐形传态体系中,如果隐形传态过程执行成功,则信息接收方Bob可以得到传送的量子态信息;如果隐形传态过程失败,信息发送方Alice可以恢复出传送的未知量子态信息,该未知量子态信息不会丢失。包括以下步骤:In the chain lossless teleportation communication system, the information sender Alice and the information receiver Bob who do not directly share entangled pairs can generate quantum entangled states with the help of p intermediate nodes, establish a quantum entanglement channel, and complete the information sender. The process in which Alice transmits a single-particle multi-level unknown quantum state to the information receiver Bob. In this multi-hop lossless teleportation system, if the teleportation process is successfully executed, the information receiver Bob can obtain the transmitted quantum state information; if the teleportation process fails, the information sender Alice can recover the transmitted unknown quantum state information. state information, the unknown quantum state information will not be lost. Include the following steps:
步骤1:链式信道构建。通信双方为信息发送方Alice与信息接收方Bob,粒子src携带未知量子态,由信息发送方Alice所持有。发送方Alice持有粒子src和粒子1,第1个中间节点持有粒子2和粒子3,第2个中间节点持有粒子4和粒子5……第i(i=1,2,3,…,p)个中间节点持有粒子2i和粒子2i+1,其中,p是正整数;处于目标节点的信息接收方Bob是多跳量子隐形传态系统的第p+2个节点,持有粒子2p+2;各个相邻节点之间彼此两两共享两比特Bell态量子信道,形成链式通信信道;各纠缠信道的形式为:Step 1: Chain channel construction. The two communicating parties are the information sender Alice and the information receiver Bob. The particle src carries an unknown quantum state, which is held by the information sender Alice. The sender Alice holds particle src and
步骤2:直接信道构建。p个中间节点对自己所拥有的两个粒子作广义Bell测量,使信息发送方Alice与信息接收方Bob之间形成两粒子纠缠信道,其纠缠态形式为:Step 2: Direct channel construction. The p intermediate nodes make generalized Bell measurements on the two particles they own, so that a two-particle entanglement channel is formed between the information sender Alice and the information receiver Bob, and the entangled state is in the form of:
步骤3:信道调整。p个中间节点分别将自己的广义Bell测量结果发送给信息接收方Bob,Bob根据这p个测量结果确定需要对信道进行的矩阵变换操作,调整纠缠信道。调整后量子信道系统有如下形式:Step 3: Channel adjustment. The p intermediate nodes respectively send their own generalized Bell measurement results to the information receiver Bob, and Bob determines the matrix transformation operation that needs to be performed on the channel according to the p measurement results, and adjusts the entangled channel. The adjusted quantum channel system has the following form:
其中,表示第i个中间节点的广义Bell测量结果,表示当第i个中间节点对自己所拥有的粒子2i和2i+1测得后,需要对粒子1和粒子2i+2的纠缠态实施操作,使这两个粒子的纠缠态转换为的形式。是矩阵变换的逆变换操作。信息发送方Alice的粒子1与接收方Bob的粒子2p+2的纠缠态为:in, represents the generalized Bell measurement of the ith intermediate node, Indicates that when the i-th intermediate node measures the particles 2i and 2i+1 it owns After that, the entangled state of
信道参数的取值与和第i+1个中间节点的广义Bell测量结果有关。假设第i+1个中间节点的测量结果为则存在:channel parameters The value of and It is related to the generalized Bell measurement result of the i+1th intermediate node. Suppose the measurement result of the i+1th intermediate node is then exists:
至此,可以得到d能级多跳无损量子隐形传态系统的信道形式,该信道由三个部分构成:一是p个中间节点的广义Bell测量结果;二是对应于各个测量结果,为调整源节点与各个中间节点直接纠缠态形式应进行的矩阵变换操作;三是信息发送方Alice的粒子1与信息接收方Bob的粒子2p+2的纠缠态。So far, the channel form of the d-level multi-hop lossless quantum teleportation system can be obtained. The channel consists of three parts: one is the generalized Bell measurement results of p intermediate nodes; the other is corresponding to each measurement result, which is the adjustment source. The matrix transformation operation that should be performed in the form of direct entanglement between the node and each intermediate node; the third is the entangled state of the
步骤4:信息传送。将多跳隐形传态系统简化为单跳隐形传态系统形式,执行单跳无损量子隐形传态过程;在系统中引入一个辅助粒子|0>e,由信息接收方Bob所持有,同时进行以下两项操作:(1)信息发送方Alice对其所拥有的粒子src和粒子1执行广义CNOT和广义H门操作;(2)信息接收方Bob对其持有的粒子2p+2和辅助粒子e执行两比特态幺正操作 Step 4: Information transmission. The multi-hop teleportation system is simplified to the form of a single-hop teleportation system, and the single-hop lossless quantum teleportation process is performed; an auxiliary particle |0> e is introduced into the system, which is held by the information receiver Bob, and the process is carried out simultaneously. The following two operations: (1) Alice, the information sender, performs generalized CNOT and generalized H-gate operations on the particle src and
步骤5:信息接收或信息留存。信息接收方Bob对辅助粒子e进行测量,若测量结果为|0>e,则信息发送方Alice再对其所拥有的粒子src和粒子1分别在基|0>,|1>下进行测量,并将测量结果发送给信息接收方Bob,信息接收方Bob执行相应的幺正操作恢复出传送的未知量子态;若测量结果为|1>e,信息发送方Alice对其所拥有的粒子src和粒子1执行广义H门和广义CNOT门的操作,从而保留待传未知量子态信息。Step 5: Information reception or information retention. The information receiver Bob measures the auxiliary particle e. If the measurement result is |0> e , the information sender Alice then measures the particle src and
更具体地:More specifically:
实施例一:一种基于非最大纠缠链式信道的多跳无损隐形传态方法,以两能级两跳为例,实现信息发送方Alice向信息接收方Bob传送未知单粒子态|χ>src,具体步骤:Embodiment 1: A multi-hop lossless teleportation method based on a non-maximally entangled chain channel, taking two energy levels and two hops as an example, the information sender Alice transmits the unknown single-particle state |χ> src to the information receiver Bob ,Specific steps:
步骤1:构建两能级两跳量子无损隐形传态链式信道。通信双方为Alice与Bob,粒子src携带未知量子态|χ>src=c0|0>+c1|1>,由信息发送方Alice所持有,Alice想要将该未知单粒子量子态通过一个中间节点发送给信息接收方Bob。发送方Alice与中间节点的纠缠信道为:中间节点与接收方Bob的纠缠信道为: Step 1: Construct a two-level two-hop quantum lossless teleportation chain channel. The two communicating parties are Alice and Bob. The particle src carries the unknown quantum state |χ> src =c 0 |0>+c 1 |1>, which is held by the information sender Alice, who wants to pass the unknown single-particle quantum state through An intermediate node sends the message to Bob, the receiver of the message. The entangled channel between the sender Alice and the intermediate node is: The entangled channel between the intermediate node and the receiver Bob is:
步骤2:直接信道构建。源节点的信息发送方Alice、中间节点与作为目标节点的信息接收方Bob三者进行纠缠交换,使Alice与Bob建立量子纠缠信道。纠缠信道与作张量积运算,运算之后四个纠缠粒子的态表示为:Step 2: Direct channel construction. The source node's information sender Alice, the intermediate node and the target node's information receiver Bob exchange entanglement, so that Alice and Bob establish a quantum entanglement channel. entangled channel and For the tensor product operation, the states of the four entangled particles after the operation are expressed as:
中间节点对自己所拥有的粒子2和粒子3执行联合Bell测量,可能得到四种测量结果,对应地,粒子1,4会分别坍塌到四种纠缠状态:The intermediate node performs joint Bell measurement on
中间节点所拥有的粒子2和粒子3有四种Bell测量结果,以测量结果是为例,则Alice的粒子1和Bob的粒子4坍塌到纠缠态:There are four kinds of Bell measurement results for
|φ11>14=[a21a10|01>-a20a11|10>]14 |φ 11 > 14 = [a 21 a 10 |01>-a 20 a 11 |10>] 14
步骤3:信道调整。执行矩阵变换操作:U11=|1><0|+eπi|0><1|之后,纠缠态形式变为|Φ>14=[a20a11|00>+a21a10|11>]14,则整个系统信道表达为:Step 3: Channel adjustment. Perform the matrix transformation operation: U 11 =|1><0|+e πi |0><1| After that, the entangled state form becomes |Φ> 14 =[a 20 a 11 |00>+a 21 a 10 |11 >] 14 , then the entire system channel is expressed as:
步骤4:信息传送。设a20a11=P0,a21a10=P1。将两跳无损隐形传态系统简化为单跳无损隐形传态系统形式,执行单跳无损量子隐形传态过程。在系统中引入一个辅助粒子|0>e,由接收方Bob所持有,无损隐形传态系统变为如下形式:Step 4: Information transmission. Let a 20 a 11 =P 0 and a 21 a 10 =P 1 . The two-hop lossless teleportation system is simplified to the form of a single-hop lossless teleportation system, and the single-hop lossless quantum teleportation process is performed. Introducing an auxiliary particle |0> e into the system, which is held by the receiver Bob, the lossless teleportation system becomes the following form:
步骤5:信息接收或信息留存。同时进行以下两项操作:(1)Alice对其所拥有的粒子src和粒子1执行CNOT和H门操作;(2)Bob对其持有的粒子2p+2和辅助粒子e执行幺正操作两项操作执行完毕后,无损隐形传态系统变为如下形式:Step 5: Information reception or information retention. Perform the following two operations at the same time: (1) Alice performs CNOT and H gate operations on the particle src and
Bob对辅助粒子e进行测量,可能得到两种不同的测量结果:|0>e和|1>e。当测量结果为|0>e,即Bob measures the auxiliary particle e, and may get two different measurement results: |0> e and |1> e . When the measurement result is |0> e , that is
则Alice再对其所拥有的粒子src和粒子1在基态|00>,|01>,|10>,|11>下进行Z基测量,并将测量结果发送给Bob,Bob执行相应的幺正操作恢复出传送的未知粒子态。Then Alice performs Z-based measurement on the particle src and
当测量结果为|1>e,即When the measurement result is |1> e , that is
Alice对其所拥有的粒子src和粒子1执行H门和CNOT门操作,从而保留未知待传粒子态信息,该未知量子子态信息不会丢失。Alice performs H gate and CNOT gate operations on the particle src and
实施例二:一种基于非最大纠缠链式信道的多跳无损隐形传态方法,以三能级单跳为例,实现信息发送方Alice向信息接收方Bob传送未知单粒子态|χ>src,具体步骤:Embodiment 2: A multi-hop lossless teleportation method based on a non-maximally entangled chain channel, taking a three-level single hop as an example, the information sender Alice transmits an unknown single-particle state |χ> src to the information receiver Bob ,Specific steps:
步骤1:构建三能级单跳无损量子隐形传态模型。通信双方为Alice与Bob,粒子src携带未知量子态|χ>src=c0|0>+c1|1>+c2|2>,由发送方Alice所持有,Alice想要将该未知单粒子量子态直接发送给接收方Bob。发送方Alice与中间节点的纠缠信道为: Step 1: Build a three-level single-hop lossless quantum teleportation model. The two communicating parties are Alice and Bob. The particle src carries an unknown quantum state |χ> src =c 0 |0>+c 1 |1>+c 2 |2>, which is held by the sender Alice, who wants to make the unknown quantum state |χ> src =c 0 |0>+
步骤2:执行单跳无损量子隐形传态过程。在系统中引入一个辅助粒子|0>e,由信息接收方Bob所持有,无损隐形传态系统变为如下形式:Step 2: Perform a single-hop lossless quantum teleportation process. Introducing an auxiliary particle |0> e into the system, which is held by the information receiver Bob, the lossless teleportation system becomes the following form:
步骤3:设a10=min{a10,a11,a12}同时进行以下两项操作:(1)Alice对其所拥有的粒子src和粒子1执行广义CNOT门和广义H门操作;(2)Bob对其持有的粒子2和辅助粒子e执行幺正操作两项操作执行完毕后,无损隐形传态系统变为如下形式:Step 3: Set a 10 =min{a 10 ,a 11 ,a 12 } to perform the following two operations at the same time: (1) Alice performs generalized CNOT gate and generalized H gate operations on the particle src and
步骤4:Bob对辅助粒子e进行测量,可能得到两种不同的测量结果:|0>e和|1>e。当测量结果为|0>e,即Step 4: Bob measures the auxiliary particle e, and may obtain two different measurement results: |0> e and |1> e . When the measurement result is |0> e , that is
则Alice可以对其所拥有的粒子src和粒子1执行Z基测量,并将测量结果发送给Bob,Bob执行相应的幺正操作Usr恢复出传送的未知粒子态;当测量结果为|1>e,即Then Alice can perform Z-based measurement on the particle src and
则Alice对其所拥有的粒子src和粒子1执行广义H门和广义CNOT门的操作,从而保留未知待传粒子态信息,该未知量子子态信息不会丢失。Then Alice performs the operations of the generalized H gate and the generalized CNOT gate on the particle src and the
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811114165.6A CN109379183B (en) | 2018-09-25 | 2018-09-25 | Multi-hop lossless invisible state transfer method based on non-maximum entangled chain channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811114165.6A CN109379183B (en) | 2018-09-25 | 2018-09-25 | Multi-hop lossless invisible state transfer method based on non-maximum entangled chain channel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109379183A CN109379183A (en) | 2019-02-22 |
CN109379183B true CN109379183B (en) | 2021-03-23 |
Family
ID=65401723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811114165.6A Active CN109379183B (en) | 2018-09-25 | 2018-09-25 | Multi-hop lossless invisible state transfer method based on non-maximum entangled chain channel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109379183B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617620B (en) * | 2019-02-25 | 2020-03-10 | 苏州大学 | Multi-hop quantum invisible state transfer method based on channel error correction |
CN110350968B (en) * | 2019-07-16 | 2020-06-30 | 苏州大学 | d-dimensional chain teleportation method based on random transmission of relay node measurement results |
CN111130771B (en) * | 2019-12-24 | 2021-08-24 | 北方工业大学 | A quantum network coding method based on non-loss of quantum state |
CN111555821B (en) * | 2020-04-27 | 2023-04-21 | 太原师范学院 | Flexible and controllable multi-component quantum ion state transport network system and its construction method |
CN111865581B (en) * | 2020-07-16 | 2021-05-25 | 西南大学 | Quantum secret sharing method and quantum communication system based on tensor network |
CN112217576B (en) * | 2020-10-09 | 2021-11-19 | 苏州大学 | Long-distance remote quantum state preparation method based on GHZ state and Bell state |
CN112804009B (en) * | 2021-03-05 | 2022-02-22 | 苏州大学 | Joint quantum remote state acceleration preparation method based on terminal uncertainty |
CN113438032B (en) * | 2021-07-06 | 2023-02-17 | 中国工商银行股份有限公司 | Quantum communication method and device |
CN114422120B (en) * | 2021-12-21 | 2023-01-17 | 苏州大学 | High-dimensional multi-hop lossless teleportation method for channel modulation weight transfer |
CN114422128B (en) * | 2021-12-30 | 2023-01-06 | 苏州大学 | Joint remote preparation method of arbitrary high-dimensional single-particle quantum state based on chain network |
CN114978349B (en) * | 2022-04-20 | 2023-09-15 | 苏州大学 | A multi-hop lossless teleportation method based on non-maximally entangled cluster states |
CN114978351B (en) * | 2022-05-09 | 2023-07-11 | 苏州大学 | Combined remote quantum state preparation method based on non-maximum entanglement pattern |
CN114629562A (en) * | 2022-05-11 | 2022-06-14 | 四川师范大学 | Quantum communication invisible state transfer optimization method based on non-maximum entangled state |
CN115242316B (en) * | 2022-06-21 | 2023-06-09 | 苏州大学 | A Lossless Teleportation Method Based on W-State Channel |
CN116781253B (en) * | 2023-05-05 | 2024-09-27 | 苏州大学 | A bilateral fault-tolerant multi-hop quantum teleportation method and device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014055875A1 (en) * | 2012-10-04 | 2014-04-10 | Applied Communication Sciences | Mitigate propagation loss in waveguide transmission method |
US9264225B1 (en) * | 2013-02-27 | 2016-02-16 | The Boeing Company | Quantum communication using quantum teleportation |
CN106059680A (en) * | 2016-07-08 | 2016-10-26 | 东南大学 | Method for transmitting two-particle entangled state in multi-hop way |
CN107612689A (en) * | 2017-10-16 | 2018-01-19 | 苏州大学 | A kind of quantum state teleportation method transmitted based on bypass flow in quantum network |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9270385B2 (en) * | 2004-08-04 | 2016-02-23 | The United States Of America As Represented By The Secretary Of The Army | System and method for quantum based information transfer |
-
2018
- 2018-09-25 CN CN201811114165.6A patent/CN109379183B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014055875A1 (en) * | 2012-10-04 | 2014-04-10 | Applied Communication Sciences | Mitigate propagation loss in waveguide transmission method |
US9264225B1 (en) * | 2013-02-27 | 2016-02-16 | The Boeing Company | Quantum communication using quantum teleportation |
CN106059680A (en) * | 2016-07-08 | 2016-10-26 | 东南大学 | Method for transmitting two-particle entangled state in multi-hop way |
CN107612689A (en) * | 2017-10-16 | 2018-01-19 | 苏州大学 | A kind of quantum state teleportation method transmitted based on bypass flow in quantum network |
Non-Patent Citations (1)
Title |
---|
基于量子纠缠态的信息传输协议设计;向毅;《中国优秀硕士学位论文期刊全文数据库》;20180925;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109379183A (en) | 2019-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109379183B (en) | Multi-hop lossless invisible state transfer method based on non-maximum entangled chain channel | |
CN110350968B (en) | d-dimensional chain teleportation method based on random transmission of relay node measurement results | |
CN109617620B (en) | Multi-hop quantum invisible state transfer method based on channel error correction | |
CN110572219B (en) | Multi-hop teleportation method for four-particle cluster states based on non-maximally entangled cluster states | |
CN107612689B (en) | Quantum state invisible transmission method based on flow distribution transmission in quantum network | |
Chen et al. | Controlled bidirectional remote preparation of three-qubit state | |
Jiang et al. | Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments | |
CN108900254B (en) | Remote invisible state transfer method based on four-bit Cluster state | |
Peng et al. | Annular controlled teleportation | |
CN109379144B (en) | A quantum network coding method based on quantum detuning | |
CN111314068B (en) | An optimized method for the preparation of GHZ states based on non-maximally entangled Bell states | |
Peng et al. | Cyclic teleportation in noisy channel with nondemolition parity analysis and weak measurement | |
CN109347631B (en) | Probability remote complex coefficient quantum state preparation method based on unknown parameter GHZ channel | |
Yuan et al. | Simplistic quantum operation sharing with a five-qubit genuinely entangled state: H. Yuan et al. | |
CN114422128B (en) | Joint remote preparation method of arbitrary high-dimensional single-particle quantum state based on chain network | |
CN112953648B (en) | Coding Method for Butterfly Networks Based on Two-way Mixed Quantum Information Communication | |
Peng et al. | Controlled quantum broadcast and multi-cast communications of complex coefficient single-qubit states | |
Zhao et al. | Multicast-based N-party remote-state preparation of arbitrary Greenberger-Horne-Zeilinger–class states | |
CN112202502A (en) | Single-particle-state remote preparation method based on non-maximum entangled GHZ channel | |
CN110086547B (en) | An Optimal Controlled Quantum Teleportation Method for Arbitrary Unknown n-Particles with Adjustable Threshold | |
Chen et al. | Measurement-based quantum repeater network coding | |
CN114978349B (en) | A multi-hop lossless teleportation method based on non-maximally entangled cluster states | |
Behera et al. | Experimental Demonstration of Quantum Repeater in IBM Quantum Computer | |
Wang et al. | Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system | |
CN116488807B (en) | A method for remote preparation of quantum states based on bidirectional fault-tolerant multi-hop joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |