CN109376372B - Method for optimizing postweld coupling efficiency of key position of optical interconnection module - Google Patents
Method for optimizing postweld coupling efficiency of key position of optical interconnection module Download PDFInfo
- Publication number
- CN109376372B CN109376372B CN201810998239.0A CN201810998239A CN109376372B CN 109376372 B CN109376372 B CN 109376372B CN 201810998239 A CN201810998239 A CN 201810998239A CN 109376372 B CN109376372 B CN 109376372B
- Authority
- CN
- China
- Prior art keywords
- interconnection module
- coupling efficiency
- optical interconnection
- solder joint
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 47
- 230000008878 coupling Effects 0.000 title claims abstract description 44
- 238000010168 coupling process Methods 0.000 title claims abstract description 43
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000004458 analytical method Methods 0.000 claims abstract description 20
- 230000002068 genetic effect Effects 0.000 claims abstract description 16
- 238000013461 design Methods 0.000 claims abstract description 10
- 238000003466 welding Methods 0.000 claims abstract description 10
- 229910000679 solder Inorganic materials 0.000 claims description 35
- 238000005476 soldering Methods 0.000 claims description 10
- 239000013307 optical fiber Substances 0.000 claims description 6
- 150000003071 polychlorinated biphenyls Chemical class 0.000 claims description 4
- 230000035772 mutation Effects 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 238000000540 analysis of variance Methods 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 abstract description 18
- 238000005457 optimization Methods 0.000 abstract description 9
- 230000004044 response Effects 0.000 abstract description 9
- 238000004364 calculation method Methods 0.000 abstract description 5
- 238000004088 simulation Methods 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000010191 image analysis Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005211 surface analysis Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 101150012195 PREB gene Proteins 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Physiology (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
技术领域technical field
本发明涉及微电子封装光互连技术领域,具体是一种基于响应曲面法和遗传算法优化光互连模块关键位置焊后耦合效率的方法。The invention relates to the technical field of microelectronic packaging optical interconnection, in particular to a method for optimizing post-soldering coupling efficiency at key positions of an optical interconnection module based on a response surface method and a genetic algorithm.
背景技术Background technique
光互连技术作为一种解决因电气互联技术在表面组装技术(Surface MountTechnology,SMT)和微组装方面因高密度和微型化的原因遇到的信号传输瓶颈问题的新的互连方式之一,有着很好的发展前景。但因封装组装过程中因工艺和工作环境存在的热与振动等因素的影响,光路对准位置处会产生偏移,引起耦合效率的降低,已成为该技术应用方面急需解决的关键问题。本发明一种典型的光互连模块作为研究对象,对光互连模块在组装完成之后,实际应用所处工作环境的热与振动对模块对准位置处的偏移可能产生的影响。利用有限元法,在温度变化和振动耦合条件下,对光互连模块对准位置处在笛卡尔坐标系三轴向和相对角度产生的偏移量进行了分析,并根据偏移量数据对耦合效率进行了仿真计算,为提高光互连模块在多物理场环境共同作用下的效率耦合,完成了焊点材料和结构几何形态参数单因素变化时光互连模块的有限元建模,并进行了多物理场的耦合仿真,及对准位置处偏移量分析和耦合效率的分析优化,即通过ANSYS有限元分析软件仿真分析了对准位置处的偏移量,然后使用ZEMAX软件对耦合效率进行了仿真分析,并对分析结果分析处理之后,使用Design-Expert响应面分析软件与Matlab软件对分析因素对光互连模块的耦合效率进行反应曲面算法和遗传算法的优化分析,以达到提高光互连模块的耦合效率。遗传算法是计算数学中的一种全局优化算法,非常适合解决大规模的组合优化问题。电子元件的布局属于组合优化中的旅行商(TSP)问题,近年来已有学者将遗传算法应用到该领域研究中,因此,采用标准遗传算法进行优化可以得到比较好的结果,容易实现优化效果。Optical interconnection technology is one of the new interconnection methods to solve the signal transmission bottleneck problem encountered by electrical interconnection technology in surface mount technology (Surface Mount Technology, SMT) and micro-assembly due to high density and miniaturization. Has a very good development prospects. However, due to the influence of factors such as heat and vibration in the process and working environment during the packaging and assembly process, the alignment position of the optical path will shift, resulting in a decrease in coupling efficiency, which has become a key problem that needs to be solved urgently in the application of this technology. A typical optical interconnection module of the present invention is taken as the research object, and after the optical interconnection module is assembled, the heat and vibration of the working environment where the actual application is located may affect the offset of the module alignment position. Using the finite element method, under the conditions of temperature change and vibration coupling, the offset generated by the alignment position of the optical interconnection module in the three axes and relative angles of the Cartesian coordinate system was analyzed, and the offset data was analyzed The coupling efficiency has been simulated and calculated. In order to improve the coupling efficiency of the optical interconnection module under the joint action of multiple physical fields, the finite element modeling of the optical interconnection module with single-factor changes in the solder joint material and structural geometric parameters has been completed, and carried out Coupling simulation of multi-physics field, analysis of offset at the alignment position and analysis and optimization of coupling efficiency, that is, through ANSYS finite element analysis software simulation analysis of the offset at the alignment position, and then use ZEMAX software to analyze the coupling efficiency After the simulation analysis and the analysis and processing of the analysis results, use the Design-Expert response surface analysis software and Matlab software to analyze the analysis factors on the coupling efficiency of the optical interconnection module by optimizing the response surface algorithm and the genetic algorithm, so as to improve the efficiency of the optical interconnection module. Coupling efficiency of interconnected modules. Genetic algorithm is a global optimization algorithm in computational mathematics, which is very suitable for solving large-scale combinatorial optimization problems. The layout of electronic components belongs to the traveling salesman (TSP) problem in combinatorial optimization. In recent years, some scholars have applied genetic algorithms to research in this field. Therefore, using standard genetic algorithms for optimization can get better results, and it is easy to achieve optimization results .
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,而提供一种优化光互连模块关键位置焊后耦合效率的方法,该方法具有优良鲁棒性能,计算较为简单,为后期参数优化设计带来极大方便,优化后的计算结果较为理想。The purpose of the present invention is to overcome the deficiencies of the prior art, and provide a method for optimizing the post-welding coupling efficiency of the key position of the optical interconnection module. The method has excellent robust performance, and the calculation is relatively simple. It is very convenient, and the calculation result after optimization is ideal.
实现本发明目的的技术方案是:The technical scheme that realizes the object of the present invention is:
一种优化光互连模块关键位置焊后耦合效率方法,具体包括如下步骤:A method for optimizing post-soldering coupling efficiency at key positions of an optical interconnection module, specifically comprising the following steps:
1)建立光互连模块有限元分析模型;1) Establish the finite element analysis model of the optical interconnection module;
2)光互连模块有限元分析模型经再流焊有限元分析后,获得光互连模块关键位置处的对准偏移量;2) After the finite element analysis model of the optical interconnection module is analyzed by the reflow soldering finite element, the alignment offset at the key position of the optical interconnection module is obtained;
3)利用ZEMAX计算获取光互连模块关键位置焊后的耦合效率;3) Use ZEMAX to calculate and obtain the coupling efficiency of the key position of the optical interconnection module after welding;
4)确立影响耦合效率的影响因素;4) Establish the influencing factors that affect the coupling efficiency;
5)确立影响因素的参数水平值;5) Establish parameter level values of influencing factors;
6)利用采用BOX-Behnken的中心组合设计模型设计需要的32组实验样本;6) Use the BOX-Behnken central composite design model to design the required 32 groups of experimental samples;
7)获得影响因素与耦合效率的函数关系式;7) Obtain the functional relationship between influencing factors and coupling efficiency;
8)对所得函数关系是进行方差分析;8) Analysis of variance is performed on the obtained functional relationship;
9)确立所得函数关系式的正确性;9) Establish the correctness of the obtained functional relationship;
10)采用随机方式生成初始种群;10) Randomly generate the initial population;
11)获得当前进化代数gen和最优适应度值;11) Obtain the current evolution algebra gen and optimal fitness value;
12)分别对种群实施交叉操作;12) Implement cross-operation on populations respectively;
13)分别对种群实施变异操作;13) Implement mutation operations on the populations respectively;
14)分别对种群实施进化逆转;14) Implement evolutionary reversal on the populations respectively;
15)将两个种群作为整体计算适应度函数值,并采用最优保存策略选择最佳个体;15) Calculate the fitness function value of the two populations as a whole, and use the optimal preservation strategy to select the best individual;
16)种群更新后重新判断,若gen值小于50且num值大于0,则对种群实施局部灾变。16) Re-judgment after the population is updated, if the gen value is less than 50 and the num value is greater than 0, a local catastrophe will be implemented on the population.
步骤1)中,所述的模型包括三层PCB、焊球、光耦合元件和埋入式光纤,焊球设在相邻两层的PCB之间,光耦合元件设在下层PCB的正中心,埋入式光纤设在下层的PCB上,上层PCB的尺寸为27×27×1.52mm;中层PCB的尺寸为35×35×1.52mm;下层PCB的尺寸为55×50×1.52mm;光耦合元件半径为0.0625mm,长度为2.76mm;埋入式光纤半径为0.0625mm,长度为30mm;焊盘半径为0.3mm;上层焊球体积为0.2mm3,高度为0.52mm,间距为1.5mm;下层焊球体积为0.2mm3,高度为0.48mm,间距为1.5mm。In step 1), the model includes three layers of PCBs, solder balls, optical coupling elements and embedded optical fibers. The solder balls are set between two adjacent layers of PCBs, and the optical coupling elements are set at the center of the lower PCB. The embedded optical fiber is set on the lower PCB. The size of the upper PCB is 27×27×1.52mm; the size of the middle PCB is 35×35×1.52mm; the size of the lower PCB is 55×50×1.52mm; the optical coupling element The radius is 0.0625mm and the length is 2.76mm; the radius of the embedded optical fiber is 0.0625mm and the length is 30mm ; the radius of the welding pad is 0.3mm; The volume of the solder balls is 0.2mm 3 , the height is 0.48mm, and the pitch is 1.5mm.
步骤4)中,所述的影响因素为上层焊点高度H1、下层焊点高度H2、焊盘半径R、焊点中心距离L和焊点体积V。In step 4), the influencing factors are the height H 1 of the upper solder joint, the height H 2 of the lower solder joint, the radius R of the solder pad, the center distance L of the solder joint and the volume V of the solder joint.
步骤5)中,所述的参数水平值的水平数为5,因素数为5。In step 5), the number of levels of the parameter level value is 5, and the number of factors is 5.
步骤6)中,是利用采用BOX-Behnken的中心组合设计模型设计需要的32组实验样本,其中26组为分析因子,6组为零点因子,即参数水平组合相同,用于实验误差估计。In step 6), 32 groups of experimental samples are designed using the BOX-Behnken central combination design model, of which 26 groups are analysis factors and 6 groups are zero-point factors, that is, the same parameter level combination is used for experimental error estimation.
步骤10)中,所述的初始种群,种群规模设置为40。In step 10), the initial population, the population size is set to 40.
步骤11)中,所述的代数gen,遗传代数设置为50。In step 11), the algebra gen and genetic algebra are set to 50.
本发明提供的一种优化光互连模块关键位置焊后耦合效率方法,该方法通过较少的实验次数在一定范围内比较精确地逼近因素与目标值之间的函数关系,并用简单表达式展现出来,而且通过对回归模型的选择在一定范围内可以拟复杂响应关系,具有优良鲁棒性能,计算较为简单,为后期参数优化设计带来极大方便。The present invention provides a method for optimizing the post-solder coupling efficiency of the key position of the optical interconnection module. The method accurately approximates the functional relationship between the factor and the target value within a certain range through a small number of experiments, and uses a simple expression to show In addition, complex response relationships can be simulated within a certain range through the selection of the regression model, which has excellent robust performance, and the calculation is relatively simple, which brings great convenience to the later parameter optimization design.
附图说明Description of drawings
图1为光互连模块基础模型图;Figure 1 is a basic model diagram of the optical interconnection module;
图2为基础模型的ZEMAX分析结果图;Figure 2 is the ZEMAX analysis result diagram of the basic model;
图3为回归方程经过遗传算法优化后均值变化图;Fig. 3 is the mean value change diagram after the regression equation is optimized by the genetic algorithm;
图4为回归方程经过遗传算法优化后最优解的变化图;Fig. 4 is the change diagram of the optimal solution after the regression equation is optimized by the genetic algorithm;
图5为最优组合的ZEMAX的几何图像分析结果图。Fig. 5 is the geometric image analysis result diagram of the optimal combination ZEMAX.
具体实施方式Detailed ways
下面结合附图和实施例对本发明做进一步阐述,但不是对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the present invention is not limited thereto.
实施例:Example:
一种优化光互连模块关键位置焊后耦合效率方法,具体包括如下步骤:A method for optimizing post-soldering coupling efficiency at key positions of an optical interconnection module, specifically comprising the following steps:
(1)建立光互连模块基础模型,模型基本尺寸如表1所示,模型如图1所示;(1) Establish the basic model of the optical interconnection module. The basic dimensions of the model are shown in Table 1, and the model is shown in Figure 1;
(2)模型经再流焊有限元分析之后获得光互连模块关键位置:发光中心点A和光耦合中心点B处的对准偏移量如表2所示;(2) The key position of the optical interconnection module is obtained after the model is analyzed by the reflow soldering finite element: the alignment offsets at the center point A of light emission and the center point B of optical coupling are shown in Table 2;
(3)利用ZEMAX的几何图像分析功能获得光互连模块关键位置焊后的耦合效率为87.89%,分析结果图如图2所示;(3) Using the geometric image analysis function of ZEMAX, the coupling efficiency after soldering at the key position of the optical interconnection module is 87.89%, and the analysis result is shown in Figure 2;
(4)获取影响耦合效率的影响因素为:上层焊点高度、下层焊点高度、焊盘半径、焊点中心距离和焊点体积;分别对各个因素选取5个水平值,其因素水平表如表3所示;(4) Obtain the influencing factors that affect the coupling efficiency: the height of the upper solder joint, the height of the lower solder joint, the radius of the solder pad, the center distance of the solder joint and the volume of the solder joint; select 5 levels for each factor, and the factor levels are as follows Shown in Table 3;
(5)利用采用BOX-Behnken的中心组合设计模型,有32组仿真模型水平组合,其中26组为分析因子,6组为零点因子,即参数水平组合相同,用于实验误差估计;32组参数组合结果如表4所示;(5) Using the BOX-Behnken central combination design model, there are 32 groups of simulation model level combinations, of which 26 groups are analysis factors and 6 groups are zero-point factors, that is, the same parameter level combination is used for experimental error estimation; 32 groups of parameters The combined results are shown in Table 4;
(6)根据微积分知识,任一函数都可由若干个多项式分段近似表示,因此在实际问题中,无论变量和结果间关系复杂程度如何,总可以用多项式回归来分析计算,由于本文设计变量为5个且变量与目标之间函数关系为非线性,结合表4的实验样本数,选用基于泰勒展开式的二阶多项式模型:(6) According to calculus knowledge, any function can be approximated by several polynomial pieces, so in practical problems, regardless of the complexity of the relationship between variables and results, polynomial regression can always be used to analyze and calculate. There are 5 variables and the functional relationship between the variables and the target is non-linear. Combined with the number of experimental samples in Table 4, a second-order polynomial model based on Taylor expansion is selected:
(A) (A)
(A)式中包括常数项、线性项、线性交叉项、二次项。为线性项系数;为线性交叉项系数;为二次项系数;为随机误差;x为设计变量;Y为耦合效率;n为变量个数。(A) Include a constant term in the formula , linear term , linear cross term , quadratic term . is the coefficient of the linear term; is the linear cross-term coefficient; is the quadratic coefficient; is the random error; x is the design variable; Y is the coupling efficiency; n is the number of variables.
(7)对表1中实验因子组合及其结果进行二次多元回归拟合,得到耦合效率(Y)对上层焊点高度(X1)、下层焊点高度(X2)、焊盘半径(X3)、焊点中心距离(X4)和焊点体积(X5)的二次多项式回归方程为:(7) Perform quadratic multiple regression fitting on the experimental factor combinations and their results in Table 1 to obtain the coupling efficiency (Y) effect on the height of the upper solder joint (X 1 ), the lower solder joint height (X 2 ), and the pad radius ( The quadratic polynomial regression equations of X 3 ), solder joint center distance (X 4 ) and solder joint volume (X 5 ) are:
(B) (B)
(8)为了确保回归方程可信,对表3中数据进行了方差分析和模型的显著性验证,得到回归方程相关评价指标,结果如表5所示;(8) In order to ensure the credibility of the regression equation, variance analysis and model significance verification were carried out on the data in Table 3, and relevant evaluation indicators of the regression equation were obtained. The results are shown in Table 5;
(9)响应面分析得到的模型“Preb>F”小于0.0001(一般小于0.05即表示该项显著),说明响应面模型回归效果特别显著;回归方程系数(R-Squared)为0.9979,表明回归方程拟合度很高;回归方程调整系数(Adi R-Squared―表示去除不显著指标后的拟合精度)为0.994,更准确地反映出方程的拟合精度高;回归方程预测系数(Pred R-Squared)为0.9505,说明方程的预测准确度很高;方程信噪比(Adeq Precision)为71.319,说明回归方程的受干扰因素影响小;方程变异系数(CV)为0.068,说明试验操作可信。以上结果系数都表明式(B)能够高度拟合表4中的试验结果,回归方程准确可信;(9) The model "Preb>F" obtained by the response surface analysis is less than 0.0001 (generally less than 0.05 means that the item is significant), indicating that the regression effect of the response surface model is particularly significant; the regression equation coefficient (R-Squared) is 0.9979, indicating that the regression equation The fitting degree is very high; the regression equation adjustment coefficient (Adi R-Squared—represents the fitting accuracy after removing insignificant indicators) is 0.994, which more accurately reflects the high fitting accuracy of the equation; the regression equation prediction coefficient (Pred R- Squared) is 0.9505, indicating that the prediction accuracy of the equation is very high; the signal-to-noise ratio (Adeq Precision) of the equation is 71.319, indicating that the regression equation is less affected by interference factors; the coefficient of variation (CV) of the equation is 0.068, indicating that the test operation is reliable. The above result coefficients all show that formula (B) can highly fit the test results in Table 4, and the regression equation is accurate and credible;
(10)利用遗传算法对上诉回归方程进行优化,该算法首先从定义域中随机确一组初始解,进而搜索领范围内目标函数的最优或算法首先从定义域中随机确一组初始解,进而搜索领范围内目标函数的最优或次优解;(10) The genetic algorithm is used to optimize the appeal regression equation. The algorithm first randomly determines a set of initial solutions from the definition domain, and then searches for the optimum of the objective function within the domain or the algorithm first randomly determines a set of initial solutions from the definition domain , and then search for the optimal or suboptimal solution of the objective function within the range;
所述的遗传算法优化回归方程,具体如下步骤:The genetic algorithm optimizes the regression equation, specifically as follows:
步骤a:采用随机方式生成初始种群;Step a: Randomly generate the initial population;
步骤b:获得当前进化代数gen和最优适应度值;Step b: Obtain the current evolution algebra gen and optimal fitness value;
步骤c:分别对种群实施交叉操作;Step c: Carry out the cross operation on the population respectively;
步骤d:分别对种群实施变异操作;Step d: Carry out mutation operations on the populations respectively;
步骤e:分别对种群实施进化逆转;Step e: implement evolutionary reversal on the populations respectively;
步骤f:将种群作为整体计算适应度函数值,并采用最优保存策略选择最佳个体;Step f: Calculate the fitness function value of the population as a whole, and use the optimal preservation strategy to select the best individual;
步骤g:种群更新后重新判断,若gen值小于50且num值大于0,则对种群实施局部灾变,然后返回步骤b,否则直接返回步骤b;算法的最大遗传代数设为50代,gen值超过50则终止进化。Step g: re-judgment after the population is updated, if the gen value is less than 50 and the num value is greater than 0, implement a local catastrophe on the population, and then return to step b, otherwise directly return to step b; the maximum genetic generation of the algorithm is set to 50 generations, and the gen value If it exceeds 50, the evolution will be terminated.
(11)通过MATLAB遗传算法工具箱以耦合效率最高为目标进行参数优化;问题均值和最优解变化如图3、图4所示。(11) Through the MATLAB genetic algorithm toolbox, optimize the parameters with the goal of the highest coupling efficiency; the average value of the problem and the change of the optimal solution are shown in Figure 3 and Figure 4.
(12)根据上诉因素参数表里设定影响因子的取值范围,获得最优组合为:上层焊点高度为0.45mm、下层焊点高度为0.65mm、焊盘半径为0.43mm、焊点中心距离为1.5mm和焊点体积0.43mm3,此时获得耦合效率值为98.13%。(12) According to the value range of the influence factor set in the appeal factor parameter table, the optimal combination is obtained: the height of the upper solder joint is 0.45mm, the height of the lower solder joint is 0.65mm, the radius of the solder pad is 0.43mm, and the center of the solder joint The distance is 1.5mm and the solder joint volume is 0.43mm 3 , and the coupling efficiency value is 98.13%.
(13)根据上述所获得最后参数组合,建立相应的光互连模块仿真模型,经再流焊有限元分析之后获得光互连模块关键位置:发光中心点A和光耦合中心点B处的对准偏移量如表6所示;利用ZEMAX的几何图像分析功能计算得到耦合效率值为98.172% ,如图5所示,与遗传算法预测值极为接近,证明了遗传算法优化光互连模块关键位置焊后耦合效率的有效性。(13) According to the final parameter combination obtained above, establish the corresponding optical interconnection module simulation model, and obtain the key position of the optical interconnection module after reflow soldering finite element analysis: the alignment of the light-emitting center point A and the optical coupling center point B The offset is shown in Table 6; the coupling efficiency calculated by using the geometric image analysis function of ZEMAX is 98.172%, as shown in Figure 5, which is very close to the predicted value of the genetic algorithm, which proves that the genetic algorithm optimizes the key position of the optical interconnection module Effectiveness of coupling efficiency after welding.
表1 模型基本尺 Table 1 Basic dimensions of the model
。 .
表2 2080s关键点A、B对准偏移 Table 2 Alignment offset of key points A and B in 2080s
。 .
表3 光互连模块结构参数因素水平表 Table 3 Structural parameter factor level table of optical interconnection module
。 .
表4 32组参数组合结果 Table 4 Combination results of 32 groups of parameters
。 .
表5 响应面分析结果 Table 5 Response surface analysis results
。 .
表6最优模型关键点A、B对准偏移量Table 6 Alignment offsets of key points A and B of the optimal model
。 .
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810998239.0A CN109376372B (en) | 2018-08-29 | 2018-08-29 | Method for optimizing postweld coupling efficiency of key position of optical interconnection module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810998239.0A CN109376372B (en) | 2018-08-29 | 2018-08-29 | Method for optimizing postweld coupling efficiency of key position of optical interconnection module |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109376372A CN109376372A (en) | 2019-02-22 |
CN109376372B true CN109376372B (en) | 2022-11-18 |
Family
ID=65404217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810998239.0A Active CN109376372B (en) | 2018-08-29 | 2018-08-29 | Method for optimizing postweld coupling efficiency of key position of optical interconnection module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109376372B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101984442A (en) * | 2010-10-29 | 2011-03-09 | 北京工业大学 | Method for predicting fatigue life of lead-free solder joint in electronic packaging |
CN103955591A (en) * | 2014-05-21 | 2014-07-30 | 吉林大学 | Vehicle body column B welding point arrangement optimization method |
CN104965963A (en) * | 2015-07-31 | 2015-10-07 | 桂林电子科技大学 | Parametric modeling method of rigid-flexible coupled model |
CN106529034A (en) * | 2016-11-09 | 2017-03-22 | 重庆邮电大学 | Gold wire bonding process optimization method |
CN106650289A (en) * | 2016-12-30 | 2017-05-10 | 西安电子科技大学 | Optimization method of cooling curve in vacuum brazing process of flat cracked antenna |
CN106844924A (en) * | 2017-01-12 | 2017-06-13 | 桂林电子科技大学 | Method based on Response Surface Method and genetic algorithm optimization PCB microstrip line constructions |
CN107480404A (en) * | 2017-09-13 | 2017-12-15 | 桂林电子科技大学 | Based on the optical interconnection module coupling efficiency Forecasting Methodology with momentum term neutral net |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4761859B2 (en) * | 2005-07-14 | 2011-08-31 | ルネサスエレクトロニクス株式会社 | Layout design method for semiconductor integrated circuit |
TWI397995B (en) * | 2006-04-17 | 2013-06-01 | Omnivision Tech Inc | Array imaging system and related method |
JP2009003309A (en) * | 2007-06-25 | 2009-01-08 | Mitsubishi Electric Corp | Assembling method for optical module, and optical module |
US8746989B2 (en) * | 2007-10-15 | 2014-06-10 | Hewlett-Packard Development Company, L.P. | Board to board optical interconnect using an optical interconnect assembly |
US9164679B2 (en) * | 2011-04-06 | 2015-10-20 | Patents1, Llc | System, method and computer program product for multi-thread operation involving first memory of a first memory class and second memory of a second memory class |
CN104331557B (en) * | 2014-10-30 | 2017-11-07 | 桂林航天工业学院 | Optimize the method for two layers of embedded resistor layout using fuzzy genetic algorithm |
CN104573189A (en) * | 2014-12-16 | 2015-04-29 | 中国电子科技集团公司第十研究所 | Method for designing optical fiber embedded structure of optoelectronic interconnected baseplate |
CN107832526B (en) * | 2017-11-09 | 2020-11-17 | 桂林电子科技大学 | Method for optimizing return loss of BGA welding spot |
-
2018
- 2018-08-29 CN CN201810998239.0A patent/CN109376372B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101984442A (en) * | 2010-10-29 | 2011-03-09 | 北京工业大学 | Method for predicting fatigue life of lead-free solder joint in electronic packaging |
CN103955591A (en) * | 2014-05-21 | 2014-07-30 | 吉林大学 | Vehicle body column B welding point arrangement optimization method |
CN104965963A (en) * | 2015-07-31 | 2015-10-07 | 桂林电子科技大学 | Parametric modeling method of rigid-flexible coupled model |
CN106529034A (en) * | 2016-11-09 | 2017-03-22 | 重庆邮电大学 | Gold wire bonding process optimization method |
CN106650289A (en) * | 2016-12-30 | 2017-05-10 | 西安电子科技大学 | Optimization method of cooling curve in vacuum brazing process of flat cracked antenna |
CN106844924A (en) * | 2017-01-12 | 2017-06-13 | 桂林电子科技大学 | Method based on Response Surface Method and genetic algorithm optimization PCB microstrip line constructions |
CN107480404A (en) * | 2017-09-13 | 2017-12-15 | 桂林电子科技大学 | Based on the optical interconnection module coupling efficiency Forecasting Methodology with momentum term neutral net |
Non-Patent Citations (1)
Title |
---|
The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers;Tianxiao Fang等;《Journal of Semiconductors》;20180215(第02期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109376372A (en) | 2019-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102607552B (en) | Industrial robot space grid precision compensation method based on neural network | |
CN107832526B (en) | Method for optimizing return loss of BGA welding spot | |
CN109408844B (en) | Optimization Method of Random Vibration Stress and Return Loss of Chip Package Solder Joints | |
CN106844924B (en) | Method for optimizing PCB microstrip line structure based on response surface method and genetic algorithm | |
CN109190152B (en) | CSP welding spot structural parameter optimization method for reducing stress under power cycle-harmonic response coupling | |
CN108875219A (en) | A kind of BGA welding spot structure parameter optimization method reducing power cycle stress | |
CN103020349B (en) | Modeling method of etching yield in plasma etching process | |
CN113434971A (en) | Multi-scale welding fatigue life prediction method, device and equipment | |
CN117313552B (en) | Semiconductor device modeling methods, systems and electronic equipment | |
CN111158059A (en) | Gravity inversion method based on cubic B spline function | |
CN113408192B (en) | Error prediction method of smart meter based on GA-FSVR | |
CN109376372B (en) | Method for optimizing postweld coupling efficiency of key position of optical interconnection module | |
CN116559579A (en) | Fault location method based on improved VMD and Teager energy operator | |
CN103258082A (en) | Optimization method of production parameters for solid ground curing rapid prototyping system | |
CN115157236B (en) | Robot stiffness model accuracy modeling method, system, medium, equipment and terminal | |
CN116341180A (en) | Optimal arrangement method for optical fiber temperature sensors of power equipment based on temperature field analysis | |
CN118330443B (en) | Intelligent detection method and system for aircraft needle machine for large-scale circuit board test | |
CN113868863A (en) | Statistical electromagnetic DGTD (differential gradient time division) calculation method for uncertain structure target | |
CN111950187A (en) | A method for optimizing the coupling stress of bending vibration of micro-scale CSP solder joints | |
CN113553731A (en) | A Vibration Modeling Method for a Commutator Tap-changer | |
CN111775140A (en) | An optimization method for dynamic parameter identification of excitation trajectory of multi-joint manipulator | |
CN112290955A (en) | Grid node coding method and system based on integrated circuit impedance network extraction | |
CN103353277A (en) | Site-establishing method for laser trackers used for digital measurement of aircraft assembly fixture | |
CN113836667A (en) | A method for optimizing BGA solder joint structure based on response surface method and differential evolution algorithm | |
CN113536489B (en) | Method for determining connection configuration and process parameters of component package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190222 Assignee: Guilin Gaopu Electronic Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2022450000412 Denomination of invention: A method for optimizing the post weld coupling efficiency of key positions in optical interconnection modules Granted publication date: 20221118 License type: Common License Record date: 20221227 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190222 Assignee: Guilin Yuanjing Electronic Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2024980028570 Denomination of invention: A method for optimizing the post weld coupling efficiency of key positions in optical interconnect modules Granted publication date: 20221118 License type: Common License Record date: 20241202 |