CN109368628B - Ultrasound-assisted nano film preparation device and preparation method - Google Patents
Ultrasound-assisted nano film preparation device and preparation method Download PDFInfo
- Publication number
- CN109368628B CN109368628B CN201811415695.4A CN201811415695A CN109368628B CN 109368628 B CN109368628 B CN 109368628B CN 201811415695 A CN201811415695 A CN 201811415695A CN 109368628 B CN109368628 B CN 109368628B
- Authority
- CN
- China
- Prior art keywords
- substrate
- liquid storage
- storage groove
- ultrasonic
- piezoelectric transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/194—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1262—Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明公开了一种超声辅助的纳米薄膜制备装置及制备方法,制备装置包括压电换能单元、储存纳米材料悬浊液的储液凹槽和衬底,所述压电换能单元底部设有四维调节平台,所述四维调节平台使所述压电换能单元作X轴、Y轴和Z轴方向移动以及绕Z轴旋转;所述储液凹槽通过粘结层与压电换能单元的辐射面进行连接,并固化为一个整体。本发明不需要提供特殊气氛范围,设备工艺简单,在成膜过程中依靠压电换能单元辐射面与衬底之间的超声场所产生声辐射力和声学流等非线性效应,并借助声辐射力和声空化作用等将纳米材料沉积吸附于衬底表面,衬底经过溶剂的蒸发,溶质热分解等反应过程,最终在衬底上形成固体纳米薄膜。
The invention discloses an ultrasonic-assisted nanometer film preparation device and a preparation method. The preparation device includes a piezoelectric transduction unit, a liquid storage groove for storing a suspension of nanomaterials, and a substrate. The bottom of the piezoelectric transduction unit is provided with a There is a four-dimensional adjustment platform, and the four-dimensional adjustment platform makes the piezoelectric transducer unit move in the directions of X-axis, Y-axis and Z-axis and rotate around the Z-axis; The radiating faces of the elements are connected and solidified as a whole. The present invention does not need to provide a special atmosphere range, and the equipment process is simple. In the process of film formation, the acoustic radiation force and acoustic flow and other nonlinear effects are generated by the ultrasonic field between the radiation surface of the piezoelectric transducer unit and the substrate. Nanomaterials are deposited and adsorbed on the surface of the substrate by force and acoustic cavitation, and the substrate undergoes reaction processes such as solvent evaporation and solute thermal decomposition, and finally forms a solid nanofilm on the substrate.
Description
技术领域technical field
本发明涉及纳米材料技术领域,具体涉及一种超声辅助的纳米薄膜制备装置及制备方法。The invention relates to the technical field of nanomaterials, in particular to an ultrasonic-assisted nanometer film preparation device and a preparation method.
背景技术Background technique
纳米薄膜是指由尺寸为纳米数量级(1~100nm)的组元连接生长于基体所形成的薄膜材料,包括纳米尺寸量级的敏感功能材料(如半导体材料、导电聚合物等)构成的薄膜,将纳米晶粒镶嵌于薄膜之中构成的复合薄膜,以及每层厚度在纳米量级的单层膜或多层复合薄膜等,其组元一般为1~100nm的零维或一维纳米材料。由于纳米材料在其薄膜化过程的特殊性而出现的特异性结构和形状效应,它的载流子运输行为、机械性能、磁性、光学和热学性质均发生了较大的改变。纳米敏感薄膜的性能强烈依赖于组元的粒径、膜厚、表面形貌及内部结构等。同传统宏观尺寸的薄膜相比,纳米敏感薄膜具有超电导、巨霍尔效应、可见光区发射等独特性能。现有的纳米敏感薄膜制备方法主要分为物理方法(真空蒸发法、溅射沉积法等)和化学方法(化学气相沉积法、溶胶-凝胶法、电化学法等)。Nano-film refers to the thin-film material formed by connecting and growing on the substrate with nanometer-sized (1-100nm) components, including thin-films composed of nano-sized sensitive functional materials (such as semiconductor materials, conductive polymers, etc.), Composite films formed by embedding nanocrystalline grains in films, and single-layer films or multi-layer composite films with a thickness of nanometers, etc., whose components are generally zero-dimensional or one-dimensional nanomaterials of 1 to 100 nm. Due to the specific structure and shape effect of nanomaterials in its thin film process, its carrier transport behavior, mechanical properties, magnetic, optical and thermal properties have undergone major changes. The performance of nano-sensitive thin films strongly depends on the particle size, film thickness, surface morphology and internal structure of the components. Compared with traditional macro-sized films, nano-sensitive films have unique properties such as superconductivity, giant Hall effect, and emission in the visible light region. The existing nano-sensitive film preparation methods are mainly divided into physical methods (vacuum evaporation method, sputtering deposition method, etc.) and chemical methods (chemical vapor deposition method, sol-gel method, electrochemical method, etc.).
在现有的纳米敏感薄膜制作过程中,传统的物理和化学制备方法对敏感纳米材料的沉积或生长环境(高温或特殊气氛环境)有极为苛刻的要求,存在设备工艺复杂、能耗高、耗时长等缺点;同时,在制备过程中纳米薄膜的厚度较难控制。较高的生产成本和复杂的制备工艺限制了纳米敏感薄膜技术的推广。In the existing nano-sensitive film production process, the traditional physical and chemical preparation methods have extremely strict requirements on the deposition or growth environment (high temperature or special atmosphere environment) of sensitive nano-materials, and there are complex equipment processes, high energy consumption, and high energy consumption. At the same time, it is difficult to control the thickness of the nano-film during the preparation process. Higher production cost and complex preparation process limit the popularization of nano-sensitive thin film technology.
发明内容Contents of the invention
发明目的:为了克服上述现有技术中存在的不足,本发明提供一种超声辅助的纳米薄膜制备装置及制备方法,该制备工艺简单、能耗低且制备过程中纳米薄膜的厚度易于控制。Purpose of the invention: In order to overcome the deficiencies in the above-mentioned prior art, the present invention provides an ultrasonic-assisted nano-film preparation device and a preparation method. The preparation process is simple, low energy consumption and the thickness of the nano-film is easy to control during the preparation process.
技术方案:本发明一种超声辅助的纳米薄膜制备装置,包括压电换能单元、储存纳米材料悬浊液的储液凹槽和衬底,所述压电换能单元底部设有四维调节平台,所述四维调节平台使所述压电换能单元作X轴、Y轴和Z轴方向移动以及绕Z轴旋转;所述储液凹槽通过粘结层与压电换能单元的辐射面进行连接,并固化为一个整体;所述衬底通过支架固定于储液凹槽内且位于储液凹槽内纳米材料悬浊液的液面以下或恰好与纳米材料悬浊液液面浸润接触,所述衬底与储液凹槽的底面保持一定距离且所述衬底与储液凹槽无接触。Technical solution: The present invention is an ultrasonic-assisted nano-film preparation device, which includes a piezoelectric transduction unit, a liquid storage groove for storing nanomaterial suspensions and a substrate, and a four-dimensional adjustment platform is provided at the bottom of the piezoelectric transduction unit , the four-dimensional adjustment platform makes the piezoelectric transducer unit move in the direction of X axis, Y axis and Z axis and rotate around the Z axis; the liquid storage groove passes through the bonding layer and the radiation surface of the piezoelectric transducer unit Connect and solidify as a whole; the substrate is fixed in the liquid storage groove through the bracket and located below the liquid level of the nanomaterial suspension in the liquid storage groove or just in wetting contact with the liquid surface of the nanomaterial suspension , the substrate is kept at a certain distance from the bottom surface of the liquid storage groove and the substrate is not in contact with the liquid storage groove.
进一步的,所述四维调节平台设置在水平工作台上,所述衬底与水平工作台的水平面平行且衬底与压电换能单元的辐射面平行。Further, the four-dimensional adjustment platform is set on a horizontal workbench, the substrate is parallel to the horizontal plane of the horizontal workbench, and the substrate is parallel to the radiation surface of the piezoelectric transducer unit.
进一步的,所述支架与衬底固定并调节所述衬底升降。Further, the support is fixed to the substrate and adjusts the lifting of the substrate.
进一步的,所述储液凹槽内部结构为圆柱体、长方体或半球体中的一种。Further, the internal structure of the liquid storage groove is one of cylinder, cuboid or hemisphere.
进一步的,所述压电换能单元采用单层压电片、压电叠堆或夹心式超声换能器中的一种。Further, the piezoelectric transducer unit adopts one of a single-layer piezoelectric sheet, a piezoelectric stack, or a sandwich ultrasonic transducer.
本发明还提供了一种超声辅助的纳米薄膜制备方法,包括如下步骤:The present invention also provides a method for preparing an ultrasonically assisted nano film, comprising the steps of:
(1)配置一定浓度的纳米材料悬浊液,将其倒入储液凹槽中;(1) Configure a nanomaterial suspension with a certain concentration and pour it into the liquid storage groove;
(2)将衬底设于所述储液凹槽内,且衬底与储液凹槽无接触,调整衬底位置,使衬底位于储液凹槽内纳米材料悬浊液的液面以下或恰好与纳米材料悬浊液液面浸润接触;(2) Set the substrate in the liquid storage groove, and the substrate is not in contact with the liquid storage groove, adjust the position of the substrate so that the substrate is located below the liquid level of the nanomaterial suspension in the liquid storage groove Or just in contact with the liquid surface of the nanomaterial suspension;
(3)开启压电换能单元,调整共振频率为10~100kHz之间,设定反应时间为1~2小时,使储液凹槽的内表面与衬底之间产生超声场,储液凹槽内的纳米材料会在超声场作用下均匀沉积吸附于衬底表面;(3) Turn on the piezoelectric transducer unit, adjust the resonance frequency between 10 and 100 kHz, and set the reaction time to 1 to 2 hours, so that an ultrasonic field is generated between the inner surface of the liquid storage groove and the substrate, and the liquid storage groove The nanomaterials in the groove will be evenly deposited and adsorbed on the surface of the substrate under the action of the ultrasonic field;
(4)关闭装置,将衬底移出储液凹槽,再将衬底经过溶剂蒸发和溶质热分解处理,最终在衬底上形成固体纳米材料薄膜。(4) Close the device, move the substrate out of the liquid storage groove, and then process the substrate through solvent evaporation and solute thermal decomposition, and finally form a solid nanomaterial film on the substrate.
进一步的,所述纳米材料薄膜的厚度通过纳米材料的沉积时间和压电换能单元的共振频率共同调整。Further, the thickness of the nanomaterial thin film is jointly adjusted by the deposition time of the nanomaterial and the resonance frequency of the piezoelectric transducer unit.
有益效果:本发明的制备装置不需要提供特殊气氛范围,设备工艺简单,在成膜过程中依靠压电换能单元与衬底之间的超声场所产生声辐射力和声学流等非线性效应,并借助声辐射力和声空化作用等将纳米材料沉积吸附于衬底表面,经过反应最终在衬底上形成固体薄膜;制备方法可以用于制备半导体纳米材料、金属纳米材料、导电聚合物纳米材料等纳米薄膜,应用领域广,操作简单、效果优良;同时本发明的制备装置与制备方法具有无噪音、可靠性好、可小型化、成本低等优点,具有一定的推广价值。Beneficial effects: the preparation device of the present invention does not need to provide a special atmosphere range, the equipment process is simple, and the nonlinear effects such as acoustic radiation force and acoustic flow are generated by relying on the ultrasonic field between the piezoelectric transducer unit and the substrate during the film formation process, And with the help of acoustic radiation force and acoustic cavitation, nanomaterials are deposited and adsorbed on the surface of the substrate, and finally a solid film is formed on the substrate after reaction; the preparation method can be used to prepare semiconductor nanomaterials, metal nanomaterials, conductive polymer nanomaterials, etc. Nano-films such as materials have wide application fields, simple operation, and excellent effect; meanwhile, the preparation device and preparation method of the present invention have the advantages of no noise, good reliability, miniaturization, and low cost, and have certain promotional value.
附图说明Description of drawings
图1为本发明超声辅助的纳米薄膜制备装置的结构示意图。Fig. 1 is a structural schematic diagram of the ultrasonic-assisted nano-thin film preparation device of the present invention.
具体实施方式Detailed ways
下面结合附图和实施方式对本发明做进一步描述:The present invention will be further described below in conjunction with accompanying drawing and embodiment:
如图1所示,本发明的一种超声辅助的纳米薄膜制备装置,包括压电换能单元2、储存纳米材料悬浊液4的储液凹槽3和衬底5,压电换能单元2采用单层压电片、压电叠堆或夹心式超声换能器中的一种;压电换能单元2底部设有四维调节平台1,四维调节平台1设置在水平工作台上,压电换能单元2可以伴随四维调节平台1的运动而产生位置改变,即四维调节平台1使压电换能单元2实现沿笛卡尔直角坐标系X轴、Y轴和Z轴方向移动以及绕Z轴旋转;同时保证压电换能单元2的辐射面与水平工作台的水平面平行;储液凹槽3通过粘结层7与压电换能单元2的辐射面进行连接,并固化为一个整体;储液凹槽3用来储存纳米材料悬浊液4,其凹槽内部结构可以为圆柱体、长方体或半球体中的一种以及其他立体几何结构;衬底5通过支架6固定于储液凹槽3内,支架6与衬底5固定并调节衬底5升降,使衬底5位于储液凹槽3内纳米材料悬浊液4的液面以下或恰好与纳米材料悬浊液4液面浸润接触,衬底5与水平工作台的水平面平行且衬底5与压电换能单元2的辐射面平行,衬底5与储液凹槽3的底面保持一定距离且衬底5与储液凹槽3无接触。As shown in Fig. 1, a kind of ultrasonic-assisted nano film preparation device of the present invention comprises
本发明还提供了一种超声辅助的纳米薄膜制备方法,包括如下步骤:The present invention also provides a method for preparing an ultrasonically assisted nano film, comprising the steps of:
(1)配置一定浓度的纳米材料悬浊液4,将其倒入储液凹槽3中;(1) configure a
(2)将衬底5设于储液凹槽3内,且衬底5与储液凹槽3无接触,调整衬底5位置,使衬底5位于储液凹槽3内纳米材料悬浊液4的液面以下或恰好与纳米材料悬浊液4液面浸润接触;(2) Set the
(3)开启压电换能单元2,调整共振频率为10~100kHz之间,设定反应时间为1~2小时,使储液凹槽3的内表面与衬底5之间产生超声场,储液凹槽3内的纳米材料会在超声场作用下均匀沉积吸附于衬底5表面;(3) Turn on the
(4)关闭装置,将衬底5移出储液凹槽3,再将衬底5经过溶剂蒸发和溶质热分解处理,最终在衬底5上形成固体纳米材料薄膜。纳米材料薄膜的厚度通过纳米材料的沉积时间和压电换能单元2的共振频率共同调整。(4) Close the device, move the
本发明的原理:通过激励电压开启压电换能单元2时会产生振动,由于储液凹槽3与压电换能单元2固化为一整体,因此压电换能单元2产生的振动也会传递至储液凹槽3,此时将会在储液凹槽3底面与衬底5之间的间隙位置形成超声场,此超声场产生的声辐射力和声学流等非线性效应会驱动储液凹槽3内纳米材料悬浊液4中的纳米材料发生迁移,当纳米材料迁移至衬底5附近时,纳米材料在声辐射力和声空化所产生的强大冲击波或高速射流等多重影响因素作用下,纳米材料会被沉积吸附于衬底5表面,待纳米材料在衬底5表面沉积吸附完成后,将衬底5移出储液凹槽3,衬底5表面沉积吸附的纳米材料经过溶剂的蒸发和溶质热分解反应过程,最终在衬底5上形成固体纳米薄膜;纳米薄膜的厚度可通过调整纳米材料的沉积吸附时间和压电换能单元2的共振频率共同调整。The principle of the present invention: when the
实施例1Example 1
本实施例为利用本发明制备石墨烯薄膜:The present embodiment is to utilize the present invention to prepare graphene film:
(1)配置一定量浓度为0.1mol/L的石墨烯悬浊液,将其倒入储液凹槽3中;(1) configure a certain amount of graphene suspension with a concentration of 0.1mol/L, and pour it into the
(2)采用先后经乙醇与去离子水超声清洗的PDMS薄膜作为衬底5,并将衬底5固定于支架6之上,将衬底5设于储液凹槽3内,且衬底5与储液凹槽3无接触,调整衬底5的位置,使衬底5与储液凹槽3内的石墨烯悬浊液完全浸润接触;(2) Adopt the PDMS film that has been ultrasonically cleaned by ethanol and deionized water successively as the
(3)开启压电换能单元2,调整共振频率为50kHz,设定反应时间为1.5小时,使储液凹槽3的内表面与衬底5之间产生超声场,此时石墨烯悬浊液中的石墨烯材料在超声场产生的声辐射力和声学流等非线性效应作用下,被输送到的衬底5附近,石墨烯在超声场声辐射力和声空化所产生的强大冲击波或高速射流等多重影响因素的作用下,石墨烯会被均匀沉积吸附于衬底5的表面;(3) Turn on the
(4)关闭装置,将衬底5移出储液凹槽3,再将衬底5在70℃真空条件干燥2小时,当溶剂蒸发和溶质热分解反应完成后,即在衬底5上形成了固体纳米石墨烯薄膜。固体纳米石墨烯薄膜的厚度通过纳米材料的沉积时间和压电换能单元2的共振频率共同调整。(4) Close the device, move the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811415695.4A CN109368628B (en) | 2018-11-26 | 2018-11-26 | Ultrasound-assisted nano film preparation device and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811415695.4A CN109368628B (en) | 2018-11-26 | 2018-11-26 | Ultrasound-assisted nano film preparation device and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109368628A CN109368628A (en) | 2019-02-22 |
CN109368628B true CN109368628B (en) | 2023-07-07 |
Family
ID=65383444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811415695.4A Active CN109368628B (en) | 2018-11-26 | 2018-11-26 | Ultrasound-assisted nano film preparation device and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109368628B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1923701A (en) * | 2006-09-26 | 2007-03-07 | 中国科学院上海硅酸盐研究所 | Nano porous zinc oxide thin film with high C-axis orientation and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6767749B2 (en) * | 2002-04-22 | 2004-07-27 | The United States Of America As Represented By The Secretary Of The Navy | Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting |
CN1670252A (en) * | 2005-03-09 | 2005-09-21 | 南开大学 | Equipment and method for preparing nano-oxide transparent conductive film by ultrasonic rapid deposition method |
CN209291971U (en) * | 2018-11-26 | 2019-08-23 | 南京航空航天大学 | An Ultrasound-Assisted Nano Thin Film Preparation Device |
-
2018
- 2018-11-26 CN CN201811415695.4A patent/CN109368628B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1923701A (en) * | 2006-09-26 | 2007-03-07 | 中国科学院上海硅酸盐研究所 | Nano porous zinc oxide thin film with high C-axis orientation and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109368628A (en) | 2019-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Ultrafast Fabrication of Large‐Area Colloidal Crystal Micropatterns via Self‐Assembly and Transfer Printing | |
Wang et al. | Size-dependent orientation growth of large-area ordered Ni nanowire arrays | |
CN107293641B (en) | Electromagnetically controlled magnetic memory based on ferroelectric-ferromagnetic heterojunction and its preparation method | |
CN105271110A (en) | Method of manufacturing dense nano granular film and ordered nanowire film by using coffee-ring effects | |
CN105789432A (en) | Micro-nano magnetoelectric coupler based on ferroelectric film and self-assembly magnetic nanometer particle structure | |
CN110592545A (en) | A kind of bridging type SERS active Ag/SiO2 nano spherical shell array structure composite material and its preparation method | |
CN104259475B (en) | A kind of preparation method of nano-silver/graphene derivative surface enhanced Raman matrix | |
CN101286545A (en) | Composite thin film heterojunction with magnetoelectric effect and preparation method thereof | |
CN103512923B (en) | Based on the hydrogen gas sensor manufacture method of self-assembly cross hatch structure | |
CN209291971U (en) | An Ultrasound-Assisted Nano Thin Film Preparation Device | |
CN109368628B (en) | Ultrasound-assisted nano film preparation device and preparation method | |
CN113155914B (en) | Interdigital electrode material with vertical orientation three-dimensional structure, and preparation method and application thereof | |
CN101559547B (en) | Parallelism adjusting method of welding head and sample applicable to ultrasonic nano welding | |
KR101632829B1 (en) | Nano particles lamination system using nano-micro mist | |
CN105110288B (en) | A kind of preparation method of patterned Ag nanoparticles | |
Lulek et al. | Simple and rapid monolayer self-assembly of nanoparticles at the air/water interface | |
CN1289176C (en) | Shape-controllable ordered porous film material and preparation method thereof | |
CN103585935A (en) | Quickly assembling method for colloidal crystal with controllable layer number | |
CN114460144A (en) | Co-MOF array membrane derived cobalt oxide prototype gas sensor and large-area batch preparation method and application thereof | |
CN108470765B (en) | Graphene vertical heterojunction device and preparation method thereof | |
CN104483226B (en) | Preparation method of gas-sensitive thin film for gas-sensitive micro balance of quartz crystal | |
CN109306477B (en) | Ultrasonic-assisted nano sensitive film preparation device and preparation method | |
CN101209404A (en) | Preparation method of nano film | |
CN101774535B (en) | Preparation method of dead square nanoparticle array structure with two-dimensional square lattice arrangement | |
CN203600721U (en) | Structure of polyimide silver nanoflower composite film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |