CN109361833B - Transmission method of single photon compression video transmission device - Google Patents
Transmission method of single photon compression video transmission device Download PDFInfo
- Publication number
- CN109361833B CN109361833B CN201811168455.9A CN201811168455A CN109361833B CN 109361833 B CN109361833 B CN 109361833B CN 201811168455 A CN201811168455 A CN 201811168455A CN 109361833 B CN109361833 B CN 109361833B
- Authority
- CN
- China
- Prior art keywords
- module
- pulse
- dmd
- matrix
- photon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 34
- 230000006835 compression Effects 0.000 title claims abstract description 11
- 238000007906 compression Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 13
- 238000003384 imaging method Methods 0.000 claims abstract description 47
- 238000004891 communication Methods 0.000 claims abstract description 30
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 239000013307 optical fiber Substances 0.000 claims abstract description 15
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims description 104
- 238000005259 measurement Methods 0.000 claims description 51
- 238000005070 sampling Methods 0.000 claims description 27
- 230000000630 rising effect Effects 0.000 claims description 26
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 16
- 238000000605 extraction Methods 0.000 claims description 13
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 4
- 238000000691 measurement method Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 238000001444 catalytic combustion detection Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 101000694017 Homo sapiens Sodium channel protein type 5 subunit alpha Proteins 0.000 description 1
- 102100027198 Sodium channel protein type 5 subunit alpha Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/22—Adaptations for optical transmission
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
Description
技术领域technical field
本发明涉及微弱光视频通信领域,特别涉及微弱光通信领域中一种单光子压缩视频传输装置的传输方法。The invention relates to the field of weak optical video communication, in particular to a transmission method of a single-photon compressed video transmission device in the field of weak optical communication.
背景技术Background technique
单光子成像是通过对单个光子进行探测和计数,实现极微弱光成像的方法,已被广泛应用于生物医学成像、夜视、激光雷达和天文光谱等领域。为了实现高灵敏度探测成像,已经开发了增强型CCD(ICCD),电子倍增CCD(EM-CCD),APD阵列等几种具有空间分辨的探测器。在光子计数模式下工作的ICCD和EM-CCD需要非常高的帧率和非常低的电路噪声,所以需要深度制冷和非常高的成本。由于制造困难和性能不稳定,目前APD阵列的分辨率仍然较低。另一种高分辨率成像方法是利用点探测器,如工作在盖格模式下的雪崩光电二极管(APD),单光子灵敏光电倍增管(PMT),或小APD阵列进行扫描成像,但由于光子收集效率低,成像时间非常长。Single-photon imaging is a method to achieve extremely weak light imaging by detecting and counting single photons. It has been widely used in biomedical imaging, night vision, lidar, and astronomical spectroscopy. In order to achieve high-sensitivity detection imaging, several kinds of detectors with spatial resolution have been developed, such as intensified CCD (ICCD), electron multiplying CCD (EM-CCD), and APD array. ICCDs and EM-CCDs operating in photon counting mode require very high frame rates and very low circuit noise, so deep cooling and very high cost are required. The resolution of current APD arrays is still low due to fabrication difficulties and unstable performance. Another high-resolution imaging method is to use point detectors, such as avalanche photodiodes (APDs) operating in Geiger mode, single-photon sensitive photomultiplier tubes (PMTs), or small APD arrays for scanning imaging, but due to photons The collection efficiency is low and the imaging time is very long.
基于压缩感知(CS)理论的单像素成像为以上问题提供了一种新的解决方案。在单像素成像方案中,目标成像在数字微镜器件(DMD)上,经DMD调制后聚焦在单点探测器。利用单点探测器探测到的一系列光强值和加载到DMD中的测量矩阵可重建二维图像。由于采用了CS采样理论,可以显着减少测量次数,缩短成像时间。2012年,俞文凯等人在单像素成像的基础上,提出了探测器采用单光子探测器的单光子压缩成像方案。并从理论和实验上证明了该方案与传统的多像素成像方案相比,具有更高的灵敏度。Single-pixel imaging based on compressed sensing (CS) theory provides a new solution to the above problems. In the single-pixel imaging scheme, the target is imaged on a digital micromirror device (DMD), which is modulated by the DMD and focused on a single-point detector. A two-dimensional image can be reconstructed using a series of light intensity values detected by a single-point detector and a measurement matrix loaded into the DMD. Due to the CS sampling theory, the number of measurements and imaging time can be significantly reduced. In 2012, Yu Wenkai et al. proposed a single-photon compression imaging scheme using a single-photon detector on the basis of single-pixel imaging. And it is proved theoretically and experimentally that this scheme has higher sensitivity compared with the traditional multi-pixel imaging scheme.
视频时间连续的静态图像的序列,与单一的图像相比,能对客观事物进行更为形象、生动、实时的描述,因此已被广泛应用。视频传输的一般方法是在发送端采集下多幅图像后,利用软件对多幅图像进行压缩,生成视频文件数据后,然后利用经典的通信手段,如移动通信网,蓝牙,wifi或者视频线、USB线、网线等方式传输到接收端。Compared with a single image, the sequence of video time-continuous still images can describe objective things more vividly, vividly and in real time, so it has been widely used. The general method of video transmission is to use software to compress multiple images after collecting multiple images at the sending end, generate video file data, and then use classic communication means, such as mobile communication network, bluetooth, wifi or video cable, It is transmitted to the receiving end by means of USB cable, network cable, etc.
本项目在单光子压缩成像技术的基础上,提出了一种单光子压缩视频传输的装置和方法,直接将成像在DMD上的图像进行压缩调制,并将调制之后的微弱光通过光纤传输到视频的接收端,在接收端进行单光子探测与计数,然后利用压缩感知理论进行逐帧信号重建,从而实现极微弱光条件下成像视频的传输。为了实现的视频传输,对DMD调制矩阵和单光子脉冲信号的解调做了专门的设计。Based on the single-photon compression imaging technology, this project proposes a device and method for single-photon compressed video transmission, which directly compresses and modulates the image imaged on the DMD, and transmits the modulated weak light to the video through the optical fiber. At the receiving end, single-photon detection and counting are performed at the receiving end, and then the frame-by-frame signal reconstruction is performed using the compressed sensing theory, so as to realize the transmission of imaging video under extremely weak light conditions. In order to realize the video transmission, the DMD modulation matrix and the demodulation of the single-photon pulse signal are specially designed.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于为了实现极微弱光条件下压缩成像视频的传输,设计了一种单光子压缩视频传输装置的传输方法。The purpose of the present invention is to design a transmission method of a single-photon compressed video transmission device in order to realize the transmission of compressed imaging video under extremely weak light conditions.
为了实现本发明的目的,本发明采用的技术手段为:In order to realize the purpose of the present invention, the technical means adopted in the present invention are:
一种单光子压缩视频的传输装置,包括发送端和接收端,所述发送端和接收端通过光纤进行通信,所述发送端包括成像镜头、成像透镜、调制器、DMD控制器、DMD、第一聚焦透镜,所述的发送端物体成像光路上依次设置成像镜头、成像透镜和DMD,所述第一聚焦透镜设置在所述DMD的反射光路上;A transmission device for single-photon compressed video, including a sending end and a receiving end, the sending end and the receiving end communicate through an optical fiber, and the sending end includes an imaging lens, an imaging lens, a modulator, a DMD controller, a DMD, a first a focusing lens, wherein an imaging lens, an imaging lens and a DMD are sequentially arranged on the imaging optical path of the object at the sending end, and the first focusing lens is arranged on the reflected optical path of the DMD;
所述调制器与DMD控制器相连,将产生的随机测量矩阵输出至DMD控制器,所述的DMD控制器与DMD相连;The modulator is connected with the DMD controller, and the generated random measurement matrix is output to the DMD controller, and the DMD controller is connected with the DMD;
所述调制器包括依次连接的DMD翻转控制信号产生器、SDRAM,矩阵加载模块、SDRAM,所述矩阵加载模块与矩阵生成模块连接,所述矩阵加载模块输出随机测量矩阵;The modulator comprises a DMD inversion control signal generator, an SDRAM, a matrix loading module, and an SDRAM connected in sequence, the matrix loading module is connected with the matrix generating module, and the matrix loading module outputs a random measurement matrix;
所述接收端包括依次设置的第二聚焦透镜、单光子探测器、解调器和PC;The receiving end includes a second focusing lens, a single photon detector, a demodulator and a PC arranged in sequence;
所述解调器包括脉冲展宽模块、帧头识别模块、门控信号产生模块、门控光子计数模块、矩阵生成模块、第一USB接口通信模块和第二USB接口通信模块;The demodulator includes a pulse stretching module, a frame header identification module, a gated signal generation module, a gated photon counting module, a matrix generation module, a first USB interface communication module and a second USB interface communication module;
所述脉冲展宽模块的输入信号为单光子探测器输出的单光子脉冲信号;所述脉冲展宽模块分别与帧头识别模块、门控光子计数模块相连,所述帧头识别模块与门控信号产生模块相连,所述门控信号产生模块与门控光子计数模块相连,所述门控光子计数模块与第一USB接口通信模块相连,第一USB接口通信模块与PC相连,所述矩阵生成模块与第二USB接口通信模块相连,所述第二USB接口通信模块与PC相连。The input signal of the pulse stretching module is the single-photon pulse signal output by the single-photon detector; the pulse stretching module is respectively connected with the frame header identification module and the gated photon counting module, and the frame header identification module and the gated signal are generated. The modules are connected, the gated signal generation module is connected with the gated photon counting module, the gated photon counting module is connected with the first USB interface communication module, the first USB interface communication module is connected with the PC, and the matrix generation module is connected with the The second USB interface communication module is connected, and the second USB interface communication module is connected with the PC.
所述帧头识别模块包括脉冲包络提取模块、方波宽度测量模块、第一阈值寄存器、第二阈值寄存器、方波宽度比较器;所述脉冲包络提取模块与方波宽度测量模块相连;方波宽度测量模块、第一阈值寄存器、第二阈值寄存器分别与方波宽度比较器相连。The frame header identification module includes a pulse envelope extraction module, a square wave width measurement module, a first threshold register, a second threshold register, and a square wave width comparator; the pulse envelope extraction module is connected with the square wave width measurement module; The square wave width measurement module, the first threshold value register, and the second threshold value register are respectively connected with the square wave width comparator.
一种单光子压缩视频的传输方法,包括以下步骤:A method for transmitting single-photon compressed video, comprising the following steps:
1)设置矩阵生成参数、采样参数,生成测量矩阵:1) Set the matrix generation parameters and sampling parameters to generate the measurement matrix:
设置发送端与接收端中矩阵生成模块的矩阵生成参数,所述矩阵生成参数包括但不限于矩阵大小P*Q,测量矩阵类型,采样次数m,采样频率f;发送端生成的测量矩阵将存储到SDRAM中;接收端生成的测量矩阵将通过第二USB接口通信模块发送到PC端;Set the matrix generation parameters of the matrix generation module in the sending end and the receiving end. The matrix generation parameters include but are not limited to the matrix size P*Q, the measurement matrix type, the sampling times m, and the sampling frequency f; the measurement matrix generated by the sending end will store into the SDRAM; the measurement matrix generated by the receiving end will be sent to the PC end through the second USB interface communication module;
2)成像物体经成像镜头、成像透镜成像在DMD镜面上;2) The imaging object is imaged on the DMD mirror surface through the imaging lens and the imaging lens;
3)对DMD镜面上的图像进行调制;3) Modulate the image on the DMD mirror surface;
3.1)检测Start信号的上升沿,检测成功则进行下一步,否则等待;3.1) Detect the rising edge of the Start signal, and proceed to the next step if the detection is successful, otherwise wait;
3.2)调制器的DMD翻转控制信号产生器输出一组DMD翻转控制信号,所述的一组DMD翻转控制信号为等间隔脉冲信号,调制信号的频率等于预设的采样频率,脉冲个数为预设采样次数m+3;3.2) The DMD inversion control signal generator of the modulator outputs a group of DMD inversion control signals, and the described group of DMD inversion control signals are equally spaced pulse signals, the frequency of the modulating signal is equal to the preset sampling frequency, and the number of pulses is the preset sampling frequency. Set the sampling times m+3;
3.3)传输一帧图像的帧头3.3) Transmit the frame header of a frame of image
调制器的矩阵加载模块在检测到一组DMD翻转控制信号的第一个脉冲上升沿时,加载全为“1”的矩阵到DMD控制器,在检测一组DMD翻转控制信号的第二个脉冲上升沿时,加载全为“0”的矩阵到DMD控制器;When the matrix loading module of the modulator detects the rising edge of the first pulse of a group of DMD inversion control signals, it loads the matrix with all "1" to the DMD controller, and detects the second pulse of a group of DMD inversion control signals. On the rising edge, load the matrix with all "0" to the DMD controller;
3.4)对DMD镜面上的图像进行m次压缩采样3.4) Perform m compression sampling on the image on the DMD mirror
调制器的矩阵加载模块检测一组DMD翻转控制信号的第二个脉冲后的m个脉冲,每检测到一个脉冲的上升沿,矩阵加载模块就从SDRAM中读取一个测量矩阵到DMD控制器;The matrix loading module of the modulator detects m pulses after the second pulse of a group of DMD inversion control signals, and every time a rising edge of a pulse is detected, the matrix loading module reads a measurement matrix from the SDRAM to the DMD controller;
3.5)传输一帧图像的帧尾3.5) Transmit the end of a frame of image
调制器的矩阵加载模块在检测一组DMD翻转控制信号的最后一个脉冲上升沿时,加载全为“0”的矩阵到DMD控制器;When the matrix loading module of the modulator detects the rising edge of the last pulse of a group of DMD inversion control signals, it loads the matrix with all "0" to the DMD controller;
3.6)DMD控制器在接收到矩阵后,控制DMD上微镜翻转,第一聚焦透镜106收集DMD微镜+12度方向的反射光进入光纤,经过远距离传输后到达接收端;3.6) After receiving the matrix, the DMD controller controls the micromirror on the DMD to flip, and the first focusing
3.7)重复上述3.2)-3.6),连续发送图像,直到检测到stop信号上升沿;3.7) Repeat 3.2)-3.6) above, and send images continuously until the rising edge of the stop signal is detected;
4)接收端的第二汇聚透镜将光纤输出的光经汇聚到单光子探测器,单光子探测器将光信号转化为单光子脉冲信号;4) The second converging lens at the receiving end converges the light output from the optical fiber to the single-photon detector, and the single-photon detector converts the optical signal into a single-photon pulse signal;
5)对单光子脉冲信号进行解调5) Demodulate the single-photon pulse signal
5.1)单光子脉冲信号输入脉冲展宽模块进行展宽;5.1) The single-photon pulse signal is input to the pulse stretching module for stretching;
5.2)将展宽单光子脉冲信号同时输入帧头识别模块和门控光子计数模块;5.2) Input the stretched single-photon pulse signal into the frame header identification module and the gated photon counting module at the same time;
5.3)帧头识别模块成功识别一帧图像的帧头后,向门控信号产生模块输出启动脉冲信号;5.3) After the frame header identification module successfully identifies the frame header of a frame of image, it outputs a start pulse signal to the gate control signal generation module;
5.4)门控信号产生模块在检测到启动脉冲信号上升沿后,向门控光子计数模块输出一组门控信号;所述的门控信号为等间隔脉冲信号,信号的频率等于预设的采样频率f,脉冲个数为预设采样次数m+1;5.4) After detecting the rising edge of the start pulse signal, the gated signal generation module outputs a group of gated signals to the gated photon counting module; the gated signal is an equally spaced pulse signal, and the frequency of the signal is equal to the preset sampling Frequency f, the number of pulses is the preset sampling times m+1;
5.5)门控光子计数模块在检测到门控信号的上升沿时;判断是否为一组门控信号的第一个同步控制脉冲,如果是,则对计数器清零,对输入门控光子计数模块的单光子脉冲展宽信号重新从0开始计数;如果不是,则将这个脉冲与前一脉冲间隔内的展宽单光子脉冲信号计数通过第二USB接口通信模块输出至PC,同时计数器清零,对输入的展宽单光子脉冲重新从0开始计数;5.5) When the gated photon counting module detects the rising edge of the gated signal; it judges whether it is the first synchronous control pulse of a group of gated signals, if so, clear the counter and input the gated photon counting module The single-photon pulse stretched signal counts from 0 again; if not, the pulse and the stretched single-photon pulse signal count in the previous pulse interval are output to the PC through the second USB interface communication module, and the counter is cleared at the same time. The stretched single-photon pulse counts from 0 again;
6)PC对步骤5.5)收到的一系列单光子脉冲计数值和步骤1)收到的测量矩阵进行存储,利用压缩感知理论重建图像;6) The PC stores a series of single-photon pulse count values received in step 5.5) and the measurement matrix received in step 1), and reconstructs the image using compressed sensing theory;
7)重复步骤5)和6),连续重建多帧图像,利用多帧图像重构出视频。7) Repeat steps 5) and 6) to continuously reconstruct multiple frames of images, and use the multiple frames of images to reconstruct a video.
所述帧头识别的步骤包括:The step of identifying the frame header includes:
1)脉冲包络提取模块对展宽单光子脉冲信号进行包络提取,提取方法为脉冲间隔比较小的展宽单光子脉冲信号中的脉冲合并一个方波脉冲,展宽单光子脉冲信号变为包络方波脉冲信号;1) The pulse envelope extraction module extracts the envelope of the stretched single-photon pulse signal. The extraction method is to combine the pulses in the stretched single-photon pulse signal with a relatively small pulse interval into a square wave pulse, and the stretched single-photon pulse signal becomes the envelope square. wave pulse signal;
2)方波宽度测量模块对包络方波脉冲信号中方波脉冲的宽度进行测量,并输出测量值到方波宽度比较器,测量方法为检测到方波脉冲的上升源时对高频时钟从零开始计数,检测到方波脉冲的下降源时停止计数,此时高频时钟的计数值代表方波脉冲的宽度;2) The square wave width measurement module measures the width of the square wave pulse in the envelope square wave pulse signal, and outputs the measured value to the square wave width comparator. The measurement method is to measure the high frequency clock when the rising source of the square wave pulse is detected. Counting starts from zero, and stops counting when the falling source of the square wave pulse is detected. At this time, the count value of the high-frequency clock represents the width of the square wave pulse;
3)方波宽度比较器将方波宽度测量模块输入的测量值与第一阈值寄存器、第二阈值寄存器中的值进行比较,如果测量值大于第一阈值寄存器小于第二阈值寄存器,则表示帧头识别成功,向门控信号产生模块输出启动脉冲信号,所述第一阈值寄存器中的值大于一个单光子脉冲经展宽后的宽度值,所述第二阈值寄存器中的值大于1/2倍的DMD翻转控制信号周期值并小于2倍的DMD翻转控制信号周期。3) The square wave width comparator compares the measured value input by the square wave width measurement module with the values in the first threshold register and the second threshold register. If the measured value is greater than the first threshold register and less than the second threshold register, it means that the frame The head recognition is successful, and the start pulse signal is output to the gate control signal generation module, the value in the first threshold register is greater than the width value of a single-photon pulse after being stretched, and the value in the second threshold register is greater than 1/2 times The DMD toggle control signal period value is less than 2 times the DMD toggle control signal period.
本发明的有益效果:Beneficial effects of the present invention:
1.本发明采用了基于单光子探测技术和单像素照相机技术的单光子压缩成像方法,具有极高的探测灵敏度,可实现极微弱光成像条件下的视频传输。1. The present invention adopts a single-photon compression imaging method based on single-photon detection technology and single-pixel camera technology, which has extremely high detection sensitivity and can realize video transmission under extremely weak light imaging conditions.
2.本发明视频传输装置的发送端不进行图像的采样重建,所以不需要图像压缩,而是直接将调制光传输至接收端,接收端光子探测与计数后利用压缩感知理论重建图像,因此省去了传统视频传输系统的复杂编解码过程。2. The transmitting end of the video transmission device of the present invention does not perform image sampling and reconstruction, so it does not require image compression, but directly transmits the modulated light to the receiving end, and then uses the compressed sensing theory to reconstruct the image after photon detection and counting at the receiving end. The complex encoding and decoding process of the traditional video transmission system is eliminated.
3.本发明接收端利用单光子探测器来检测光纤传输来的光信号,具有非常高的灵敏度,因此能实现超远距离的视频传输。3. The receiving end of the present invention uses a single-photon detector to detect the optical signal transmitted by the optical fiber, and has very high sensitivity, so it can realize ultra-long-distance video transmission.
附图说明Description of drawings
图1为本发明单光子压缩视频传输装置的结构示意图;1 is a schematic structural diagram of a single-photon compressed video transmission device of the present invention;
图2为本发明单光子压缩视频传输装置的调制器结构框图;Fig. 2 is the modulator structure block diagram of the single-photon compressed video transmission device of the present invention;
图3为本发明单光子压缩视频传输装置的解调器结构框图;3 is a block diagram of the demodulator structure of the single-photon compressed video transmission device of the present invention;
图4为本发明帧头识别模块结构框图;Fig. 4 is the frame header identification module structural block diagram of the present invention;
图5为本发明发送端图像调制时序图;Fig. 5 is the image modulation sequence diagram of the transmitting end of the present invention;
图6为本发明接收端解调时序图;Fig. 6 is the demodulation sequence diagram of the receiving end of the present invention;
图7为本发明帧头信号提取时序图。FIG. 7 is a timing diagram of frame header signal extraction according to the present invention.
具体实施方式Detailed ways
实施例:参见图1-7。Example: See Figures 1-7.
本发明公开了一种单光子压缩视频的传输装置,如图1所示,包括发送端和接收端,所述发送端1和接收端2通过光纤3进行通信,所述发送端1包括成像镜头101、成像透镜102、调制器103、DMD控制器104、DMD105、第一聚焦透镜106,所述的发送端1物体成像光路上依次设置成像镜头101、成像透镜102和DMD105,所述第一聚焦透镜106设置在所述DMD105的反射光路上;The present invention discloses a single-photon compressed video transmission device, as shown in FIG. 1 , including a sending end and a receiving end, the sending
所述调制器103与DMD控制器104相连,将产生的随机测量矩阵输出至DMD控制器,所述的DMD控制器与DMD相连;The
所述调制器103包括依次连接的DMD翻转控制信号产生器1031、SDRAM1034,矩阵加载模块1032、SDRAM1034,所述矩阵加载模块1032与矩阵生成模块1033连接,所述矩阵加载模块1032输出随机测量矩阵。The
如图3所示,所述接收端包括依次设置的第二聚焦透镜201、单光子探测器202、解调器203和PC204;所述解调器203包括脉冲展宽模块2031、帧头识别模块2032、门控信号产生模块2033、门控光子计数模块2034、矩阵生成模块2035、第一USB接口通信模块2036和第二USB接口通信模块2037;所述脉冲展宽模块2031的输入信号为单光子探测器202输出的单光子脉冲信号;所述脉冲展宽模块分别与帧头识别模块2032、门控光子计数模块2034相连,所述帧头识别模块2032与门控信号产生模块2033相连,所述门控信号产生模块2033与门控光子计数模块2034相连,所述门控光子计数模块2034与第一USB接口通信模块2036相连,第一USB接口通信模块2036与PC204相连,所述矩阵生成模块2035与第二USB接口通信模块2037相连,所述第二USB接口通信模块2037与PC204相连。所述帧头识别模块2032包括脉冲包络提取模块20321、方波宽度测量模块20322、第一阈值寄存器20323、第二阈值寄存器20324、方波宽度比较器20325;所述脉冲包络提取模块20321与方波宽度测量模块20322相连;方波宽度测量模块20322、第一阈值寄存器20323、第二阈值寄存器20324分别与方波宽度比较器20325相连。As shown in FIG. 3 , the receiving end includes a second focusing
装置工作时,在发送端,待测场景的每一帧图像依次经成像镜头、成像透镜实时成像在数字微镜器(Digital Micromirror Device,DMD)上。参数设置完成后开始压缩视频传输,针对视频的每一帧,单光子压缩视频传输控制装置加载m+3次随机测量矩阵至DMD,其中2帧测量矩阵(全“1”矩阵和全“0”矩阵)作为帧头,1帧全“0”矩阵作为帧尾。DMD的每个微镜可以在加载的随机二值矩阵的控制下独立实现±12°偏转,实验中在DMD微镜的+12°反射方向上设置第一聚焦透镜,通过透镜将微镜反射光收集并耦合进光纤进行远距离传输;在接收端,光纤传输的光信号通过聚焦透镜收集进单光子探测器,经解调器接收端提取帧头信号后,对每次调制探测器输出的离散单光子脉冲进行光子计数,并将每次光子计数值作为测量值发送至PC;帧尾信号提取成功后表示一帧压缩图像传输完成,然后进行下一阵压缩图像提取。PC根据接收到的测量值序列及测量矩阵进行压缩感知图像的逐帧恢复,最终形成视频流。When the device is working, at the sending end, each frame of image of the scene to be tested is imaged on a digital micromirror device (Digital Micromirror Device, DMD) in real time through an imaging lens and an imaging lens in turn. After the parameter setting is completed, the compressed video transmission starts. For each frame of the video, the single-photon compressed video transmission control device loads m+3 random measurement matrices to the DMD, of which 2 frame measurement matrices (all "1" matrix and all "0" Matrix) as the frame header, and a full "0" matrix for 1 frame as the frame tail. Each micromirror of the DMD can independently achieve ±12° deflection under the control of the loaded random binary matrix. In the experiment, a first focusing lens is set in the +12° reflection direction of the DMD micromirror, and the micromirror reflects light through the lens. Collect and couple into the optical fiber for long-distance transmission; at the receiving end, the optical signal transmitted by the optical fiber is collected into the single-photon detector through the focusing lens, and after the frame header signal is extracted by the demodulator receiving end, the discrete output of the detector is modulated for each time. The single-photon pulse counts photons, and sends each photon count value as a measurement value to the PC; after the frame end signal is successfully extracted, it means that the transmission of one frame of compressed image is completed, and then the next frame of compressed image is extracted. The PC performs frame-by-frame restoration of the compressed sensing image according to the received measurement value sequence and measurement matrix, and finally forms a video stream.
本案中,SDRAM:Synchronous Dynamic Random Access Memory,同步动态随机存储器,同步是指内存工作需要同步时钟,内部命令的发送与数据的传输都以它为基准;动态是指存储阵列需要不断的刷新来保证数据不丢失;随机是指数据不是线性依次存储,而是自由指定地址进行数据读写。DMD:Digital Micromirror Device,数字微镜器件,是光开关的一种,利用旋转反射镜实现光开关的开合。所述DMD用于根据测量矩阵加载模块132加载的0-1随机掩模对待传输视频中的每一帧图像进行随机空间调制。In this case, SDRAM: Synchronous Dynamic Random Access Memory, synchronous dynamic random access memory, synchronization means that the memory operation requires a synchronous clock, and the sending of internal commands and data transmission are based on it; dynamic means that the storage array needs to be constantly refreshed to ensure The data is not lost; random means that the data is not stored in a linear order, but freely specifies the address for data read and write. DMD: Digital Micromirror Device, a digital micromirror device, is a kind of optical switch, which uses a rotating mirror to realize the opening and closing of the optical switch. The DMD is used to perform random spatial modulation on each frame of image in the video to be transmitted according to the 0-1 random mask loaded by the measurement matrix loading module 132 .
3.一种单光子压缩视频的传输方法,其特征在于,包括以下步骤:3. a transmission method of single photon compressed video, is characterized in that, comprises the following steps:
1)设置矩阵生成参数、采样参数,生成测量矩阵:1) Set the matrix generation parameters and sampling parameters to generate the measurement matrix:
设置发送端1与接收端2中矩阵生成模块的矩阵生成参数,所述矩阵生成参数包括但不限于矩阵大小P*Q,测量矩阵类型,采样次数m,采样频率f;发送端1生成的测量矩阵将存储到SDRAM中;接收端生成的测量矩阵将通过第二USB接口通信模块2037发送到PC204端;Set the matrix generation parameters of the matrix generation module in the sending
2)成像物体经成像镜头101、成像透镜102成像在DMD105镜面上;2) The imaging object is imaged on the mirror surface of the DMD105 through the
3)对DMD105镜面上的图像进行调制,其工作时序如图5所示,具体包括以下步骤;3) The image on the mirror surface of DMD105 is modulated, and its working sequence is shown in Figure 5, which specifically includes the following steps;
3.1)检测Start信号的上升沿,检测成功则进行下一步,否则等待;3.1) Detect the rising edge of the Start signal, and proceed to the next step if the detection is successful, otherwise wait;
3.2)调制器103的DMD翻转控制信号1031产生器输出一组DMD翻转控制信号,所述的一组DMD翻转控制信号为等间隔脉冲信号,调制信号的频率等于预设的采样频率,脉冲个数为预设采样次数m+3;3.2) The DMD
3.3)传输一帧图像的帧头3.3) Transmit the frame header of a frame of image
调制器103的矩阵加载模块在检测到一组DMD翻转控制信号的第一个脉冲上升沿时,加载全为“1”的矩阵到DMD控制器,在检测一组DMD翻转控制信号的第二个脉冲上升沿时,加载全为“0”的矩阵到DMD控制器;When the matrix loading module of the
3.4)对DMD镜面上的图像进行m次压缩采样3.4) Perform m compression sampling on the image on the DMD mirror
调制器103的矩阵加载模块1032检测一组DMD翻转控制信号的第二个脉冲后的m个脉冲,每检测到一个脉冲的上升沿,矩阵加载模块1032就从SDRAM中读取一个测量矩阵到DMD控制器;The
3.5)传输一帧图像的帧尾3.5) Transmit the end of a frame of image
调制器103的矩阵加载模块1032在检测一组DMD翻转控制信号的最后一个脉冲上升沿时,加载全为“0”的矩阵到DMD控制器;When the
3.6)DMD控制器104在接收到矩阵后,控制DMD105上微镜翻转。第一聚焦透镜106收集DMD微镜+12度方向的反射光进入光纤,经过远距离传输后到达接收端2;3.6) After receiving the matrix, the
3.7)重复上述(3.2-3.6),连续发送图像,直到检测到stop信号上升沿;3.7) Repeat the above (3.2-3.6), and send images continuously until the rising edge of the stop signal is detected;
4)接收端2的第二汇聚透镜201将光纤输出的光经汇聚到单光子探测器202,单光子探测器202将光信号转化为单光子脉冲信号;4) the second converging
5)对单光子脉冲信号进行解调5) Demodulate the single-photon pulse signal
5.1)单光子脉冲信号输入脉冲展宽模块2031进行展宽;5.1) The single-photon pulse signal is input to the
5.2)将展宽单光子脉冲信号同时输入帧头识别模块2032和门控光子计数模块2034;5.2) Input the stretched single-photon pulse signal into the frame
5.3)帧头识别模块2032成功识别一帧图像的帧头后,向门控信号产生模块2033输出启动脉冲信号;所述帧头识别的工作时序如图7所示,具体步骤如下:5.3) After the frame
5.3.1)脉冲包络提取模块对展宽单光子脉冲信号进行包络提取,提取方法为脉冲间隔比较小的展宽单光子脉冲信号中的脉冲合并一个方波脉冲,展宽单光子脉冲信号变为包络方波脉冲信号;5.3.1) The pulse envelope extraction module extracts the envelope of the stretched single-photon pulse signal. The extraction method is to combine the pulses in the stretched single-photon pulse signal with a relatively small pulse interval into a square wave pulse, and the stretched single-photon pulse signal becomes a packet. network square wave pulse signal;
5.3.2)方波宽度测量模块对包络方波脉冲信号中方波脉冲的宽度进行测量,并输出测量值到方波宽度比较器,测量方法为检测到方波脉冲的上升源时对高频时钟从零开始计数,检测到方波脉冲的下降源时停止计数,此时高频时钟的计数值代表方波脉冲的宽度。5.3.2) The square wave width measurement module measures the width of the square wave pulse in the envelope square wave pulse signal, and outputs the measured value to the square wave width comparator. The high-frequency clock starts counting from zero, and stops counting when the falling source of the square wave pulse is detected. At this time, the count value of the high-frequency clock represents the width of the square wave pulse.
5.3.3)方波宽度比较器将方波宽度测量模块输入的测量值与第一阈值寄存器、第二阈值寄存器中的值进行比较,如果测量值大于第一阈值寄存器小于第二阈值寄存器,则表示帧头识别成功,向门控信号产生模块输出启动脉冲信号,所述第一阈值寄存器中的值大于一个单光子脉冲经展宽后的宽度值,所述第二阈值寄存器中的值大于1/2倍的DMD翻转控制信号周期值并小于2倍的DMD翻转控制信号周期。5.3.3) The square wave width comparator compares the measured value input by the square wave width measurement module with the values in the first threshold register and the second threshold register. If the measured value is greater than the first threshold register and less than the second threshold register, then Indicates that the frame header is successfully recognized, and outputs a start pulse signal to the gate control signal generation module. 2 times the DMD toggle control signal period value and less than 2 times the DMD toggle control signal period.
5.4)门控信号产生模块2033在检测到启动脉冲信号上升沿后,向门控光子计数模块2034输出一组门控信号;所述的门控信号为等间隔脉冲信号,信号的频率等于预设的采样频率f,脉冲个数为预设采样次数m+1;5.4) After the gated
5.5)门控光子计数模块在检测到门控信号的上升沿时;判断是否为一组门控信号的第一个同步控制脉冲,如果是,则对计数器清零,对输入门控光子计数模块的单光子脉冲展宽信号重新从0开始计数;如果不是,则将这个脉冲与前一脉冲间隔内的展宽单光子脉冲信号计数通过第二USB接口通信模块6输出至PC,同时计数器清零,对输入的展宽单光子脉冲重新从0开始计数;5.5) When the gated photon counting module detects the rising edge of the gated signal; it judges whether it is the first synchronous control pulse of a group of gated signals, if so, clear the counter and input the gated photon counting module The single-photon pulse stretched signal counts from 0 again; if not, the pulse and the stretched single-photon pulse signal count in the previous pulse interval are output to the PC through the second USB interface communication module 6, and the counter is cleared at the same time. The input stretched single-photon pulse starts counting from 0 again;
6)PC对步骤5.5收到的一系列单光子脉冲计数值和步骤1收到的测量矩阵进行存储,利用压缩感知理论重建图像;6) The PC stores a series of single-photon pulse count values received in step 5.5 and the measurement matrix received in
每帧图像的重建方法为,将测量矩阵作为Φ,光子计数值作为测量值y,求解式(1)所示的凸优化问题即可以较大概率高精度恢复原始图像x:The reconstruction method of each frame of image is to take the measurement matrix as Φ and the photon count value as the measurement value y, and solve the convex optimization problem shown in Equation (1) to restore the original image x with high probability and high precision:
7)重复步骤5和6,连续重建多帧图像,利用多帧图像重构出视频。7) Repeat steps 5 and 6, reconstruct multiple frames of images continuously, and reconstruct a video by using the multiple frames of images.
本案中发送端矩阵生成模块与接收端矩阵生成模块设置为相同的参数,则产生矩阵也是相同的。生成的矩阵包括由帧头矩阵、m次测量矩阵以及帧尾矩阵三部分构成,其中帧头矩阵包括每组矩阵的第一个全“1”矩阵和第二个全“0”矩阵,帧尾矩阵为最后一个全“0”矩阵。帧头矩阵与帧尾矩阵仅用于发送端的图像调制以便接收端提取解调,只有m次测量矩阵用于接收端的图像逐帧重建。In this case, the sending-end matrix generating module and the receiving-end matrix generating module are set to the same parameters, so the generated matrices are also the same. The generated matrix consists of three parts: frame header matrix, m-time measurement matrix and frame tail matrix. The frame header matrix includes the first all-1 matrix and the second all-zero matrix of each group of matrices. The frame tail The matrix is the last all "0" matrix. The frame header matrix and the frame tail matrix are only used for image modulation at the sending end so that the receiving end can extract and demodulate, and only the m-times measurement matrix is used for frame-by-frame reconstruction of the image at the receiving end.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。The above descriptions are only the embodiments of the present invention, and are not intended to limit the scope of the patent of the present invention. All equivalent transformations made by using the contents of the description and drawings of the present invention or directly or indirectly applied in the relevant technical fields are similarly included in the present invention. The invention is within the scope of patent protection.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811168455.9A CN109361833B (en) | 2018-10-08 | 2018-10-08 | Transmission method of single photon compression video transmission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811168455.9A CN109361833B (en) | 2018-10-08 | 2018-10-08 | Transmission method of single photon compression video transmission device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109361833A CN109361833A (en) | 2019-02-19 |
CN109361833B true CN109361833B (en) | 2020-08-11 |
Family
ID=65348575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811168455.9A Active CN109361833B (en) | 2018-10-08 | 2018-10-08 | Transmission method of single photon compression video transmission device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109361833B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112995472B (en) * | 2021-02-07 | 2022-11-04 | 河北大学 | Single-pixel imaging system and imaging method based on zero photon counting |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101744607A (en) * | 2008-12-17 | 2010-06-23 | 中国科学院西安光学精密机械研究所 | Imaging System of Squeezed Light Field |
CN102510282A (en) * | 2011-10-25 | 2012-06-20 | 中国科学院空间科学与应用研究中心 | Time-resolved single-photon counting two-dimensional imaging system and method |
CN102759408A (en) * | 2011-04-25 | 2012-10-31 | 中国科学院空间科学与应用研究中心 | Single-photon counting imaging system and method of same |
CN104054266A (en) * | 2011-10-25 | 2014-09-17 | 中国科学院空间科学与应用研究中心 | Time-resolved single-photon or ultra-weak light multi-dimensional imaging spectrum system and method |
CN104967824A (en) * | 2015-06-30 | 2015-10-07 | 清华大学 | Image transmission system based on quantum ghost image and single-mode optical fiber |
CN107014496A (en) * | 2017-04-07 | 2017-08-04 | 哈尔滨工业大学 | A kind of pure-phase object imaging system based on photon trajectory angular momentum |
CN107147598A (en) * | 2017-04-18 | 2017-09-08 | 东莞信大融合创新研究院 | A method, device and system for underwater visible light communication |
CN108494493A (en) * | 2018-01-29 | 2018-09-04 | 南昌大学 | A kind of single photon signal of communication extraction element and method |
CN108549275A (en) * | 2018-03-01 | 2018-09-18 | 南昌大学 | A kind of control device and control method of single photon compression imaging |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060239336A1 (en) * | 2005-04-21 | 2006-10-26 | Baraniuk Richard G | Method and Apparatus for Compressive Imaging Device |
-
2018
- 2018-10-08 CN CN201811168455.9A patent/CN109361833B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101744607A (en) * | 2008-12-17 | 2010-06-23 | 中国科学院西安光学精密机械研究所 | Imaging System of Squeezed Light Field |
CN102759408A (en) * | 2011-04-25 | 2012-10-31 | 中国科学院空间科学与应用研究中心 | Single-photon counting imaging system and method of same |
CN102510282A (en) * | 2011-10-25 | 2012-06-20 | 中国科学院空间科学与应用研究中心 | Time-resolved single-photon counting two-dimensional imaging system and method |
CN104054266A (en) * | 2011-10-25 | 2014-09-17 | 中国科学院空间科学与应用研究中心 | Time-resolved single-photon or ultra-weak light multi-dimensional imaging spectrum system and method |
CN104967824A (en) * | 2015-06-30 | 2015-10-07 | 清华大学 | Image transmission system based on quantum ghost image and single-mode optical fiber |
CN107014496A (en) * | 2017-04-07 | 2017-08-04 | 哈尔滨工业大学 | A kind of pure-phase object imaging system based on photon trajectory angular momentum |
CN107147598A (en) * | 2017-04-18 | 2017-09-08 | 东莞信大融合创新研究院 | A method, device and system for underwater visible light communication |
CN108494493A (en) * | 2018-01-29 | 2018-09-04 | 南昌大学 | A kind of single photon signal of communication extraction element and method |
CN108549275A (en) * | 2018-03-01 | 2018-09-18 | 南昌大学 | A kind of control device and control method of single photon compression imaging |
Non-Patent Citations (2)
Title |
---|
"A compressed sensing algorithm for sparse-view pinhole Single Photon Emission Computed Tomography";Paul A. Wolf等;《 2011 IEEE Nuclear Science Symposium Conference Record》;20120211;第2668-2671页 * |
"压缩传感用于极弱光计数成像";俞文凯等;《光学精密工程》;20121031;第20卷(第10期);第2284-2290页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109361833A (en) | 2019-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8570405B2 (en) | Determining light level variation in compressive imaging by injecting calibration patterns into pattern sequence | |
Zhao et al. | Ultrahigh-speed color imaging with single-pixel detectors at low light level | |
CN106772310B (en) | A target identification device and method based on computational ghost imaging | |
CN107426513A (en) | CMOS active pixel sensor and its driving method | |
CN105223582A (en) | A kind of laser infrared radar imaging device based on compressed sensing and formation method | |
CN106019307A (en) | Single-pixel imaging system and method based on array light source | |
CN106993121B (en) | A hyperspectral image acquisition imaging system and control method based on compressed sensing | |
CN104301634A (en) | Short-wave infrared single-pixel camera based on random sampling | |
CN110646102A (en) | A full-Stokes single-photon compressed polarization imaging device and method | |
CN110044481B (en) | System and method for compressed hyperspectral microimaging | |
CN108156399A (en) | Single pixel camera video imaging system based on compressive sensing theory | |
CN110793633A (en) | Single-pixel multispectral computational imaging system and imaging method based on bundled fiber | |
CN109361833B (en) | Transmission method of single photon compression video transmission device | |
CN101232580A (en) | A method and device for doubling image acquisition speed by using half-transparent and half-reflecting mirrors | |
CN108549275B (en) | Control device and control method for single photon compression imaging | |
CN105120141A (en) | Compressed sensing photoelectronic imaging method and device | |
WO2023029344A1 (en) | Complementary single-pixel centroid detection system and method | |
CN114040101A (en) | Acquisition method and device for periodic high-speed image signals | |
CN103986936A (en) | A video compression acquisition system and acquisition method thereof | |
CN111640063A (en) | Compression imaging system and method based on space frequency domain multi-scale modulation and reconstruction | |
CN115442505B (en) | A single-photon compressive sensing imaging system and method thereof | |
CN102271225B (en) | Method for improving sensitivity of infrared push-scanning imaging system | |
CN118190184A (en) | Ultrafast photon detection system, method and storage medium | |
CN115278247B (en) | A polarization spectrum video compression acquisition system | |
CN115060734A (en) | Multi-angle image shooting and recording device for industrial vision detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |