[go: up one dir, main page]

CN109283182A - A method, device and system for detecting defects in battery solder joints - Google Patents

A method, device and system for detecting defects in battery solder joints Download PDF

Info

Publication number
CN109283182A
CN109283182A CN201810874350.9A CN201810874350A CN109283182A CN 109283182 A CN109283182 A CN 109283182A CN 201810874350 A CN201810874350 A CN 201810874350A CN 109283182 A CN109283182 A CN 109283182A
Authority
CN
China
Prior art keywords
battery
comparison result
solder joint
threshold
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810874350.9A
Other languages
Chinese (zh)
Inventor
罗印升
李小妹
宋伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN201810874350.9A priority Critical patent/CN109283182A/en
Publication of CN109283182A publication Critical patent/CN109283182A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8874Taking dimensions of defect into account
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开一种电池焊点缺陷的检测方法、装置及系统。方法包括:接收电池焊点的特征信息;所述特征信息包括深度、表面灰度图像;对所述特征信息进行分析处理,得到提示信号。本发明通过提供相应的检测装置,接收线镭射扫描仪采集的电池焊点的深度信息和表面灰度图像,并对灰度图像进行识别处理,得到电池焊点的大小,以及对电池焊点的深度、大小等数据分析处理,得到提示信号,最终实现对电池焊点的自动检测,提高了电池焊点缺陷的检测准确度、检测效率。本装置得到提示信息后,有本系统的提示设备根据所述提示信号,输出图像、声音等提示信息,让电池在点焊完之后,可利用视觉/听觉来判断焊接是否成功,为焊接人员提供了便捷性。

The invention discloses a detection method, device and system for battery solder joint defects. The method includes: receiving feature information of battery solder joints; the feature information includes depth and surface grayscale images; analyzing and processing the feature information to obtain a prompt signal. By providing a corresponding detection device, the present invention receives the depth information and surface grayscale images of the battery solder joints collected by the line laser scanner, and performs identification processing on the grayscale images to obtain the size of the battery solder joints, and the detection of the battery solder joints. Data analysis and processing of depth, size, etc., to obtain prompt signals, and finally realize the automatic detection of battery solder joints, which improves the detection accuracy and detection efficiency of battery solder joint defects. After the device obtains the prompt information, the prompt device of the system outputs the prompt information such as image and sound according to the prompt signal, so that after the spot welding of the battery is completed, the visual/audio can be used to judge whether the welding is successful, and provide the welding personnel with convenience.

Description

A kind of detection method of battery welding point defect, apparatus and system
Technical field
The present invention relates to mechanical vision inspection technology field more particularly to a kind of detection methods of battery welding point defect, dress It sets and system.
Background technique
Along with being showing improvement or progress day by day for design of electronic products and manufacturing technology, battery is also at essential a part.By The influence of the factors such as raw material, stabilization of equipment performance, environment, temperature and manual operation, battery are difficult to avoid in process of production each The welding defect of seed type.Therefore, it is necessary to strictly implement intermediate detection process.Traditional detection means have visual detection and Line functional test.But the reliability of these detection means, efficiency, accuracy are relatively low.Develop it is a kind of efficiently, it is high speed, high-precision Degree domestic solder joint automatic checkout equipment be battery manufacture industry there is an urgent need to.
Summary of the invention
The present invention is intended to provide one kind is the present invention is intended to provide one kind overcomes the above problem or at least is partially solved State detection method, the apparatus and system of a kind of battery welding point defect of problem, with solve traditional visual detection detection means and The low problem of the reliability of line functional test, efficiency, accuracy.
In order to achieve the above objectives, technical solution of the present invention is specifically achieved in that
One aspect of the present invention provides a kind of detection method of battery welding point defect, comprising: receives battery solder joint Characteristic information;The characteristic information includes depth, surface gray level image;The characteristic information is analyzed and processed, is mentioned Show signal;The standby signal is for indicating whether the battery solder joint is qualified.
In addition, described the step of being analyzed and processed to the characteristic information, obtain standby signal, comprising:
Image recognition is carried out to the surface gray level image, obtains the surface image information of the battery solder joint;The table Face image information includes size;
The depth is compared with first threshold, obtains the first comparison result;And by the size and second threshold ratio It is right, obtain the second comparison result;According to first comparison result, second comparison result, the standby signal is obtained.
In addition, it is described according to first comparison result, second comparison result, obtain the step of the standby signal Suddenly, comprising:
If first comparison result is that the depth is not less than the first threshold and second comparison result It is not less than the second threshold for the size, then obtains qualifying signal;The qualifying signal is for indicating the battery solder joint It is qualified.
In addition, it is described according to first comparison result, second comparison result, determine the step of the processing result Suddenly, comprising:
If first comparison result is that the depth is less than the first threshold and second comparison result is The size is less than the second threshold, then obtains alarm signal;The alarm signal is for indicating that the battery solder joint does not conform to Lattice.
Another aspect of the present invention provides a kind of detection device of battery welding point defect, comprising: receiving module, for receiving The characteristic information of battery solder joint;The characteristic information includes depth, surface gray level image;Analysis and processing module, for described Characteristic information is analyzed and processed, and obtains standby signal;The standby signal is for indicating whether the battery solder joint is qualified.
In addition, the analysis and processing module includes:
Picture recognition module obtains the table of the battery solder joint for carrying out image recognition to the surface gray level image Face image information;The surface image information includes size;
Computing module obtains the first comparison result for comparing the depth with first threshold;And by the size It is compared with second threshold, obtains the second comparison result;And it according to first comparison result, second comparison result, obtains To the standby signal.
In addition, if first comparison result is the depth not less than the first threshold and second ratio It is that the size is not less than the second threshold to result, then the computing module obtains qualifying signal;The qualifying signal is used It is qualified in the expression battery solder joint.
In addition, if first comparison result is that the depth is less than the first threshold and second comparison As a result it is less than the second threshold for the size, then the computing module obtains alarm signal;The alarm signal is used for table Show that the battery solder joint is unqualified.
Another aspect of the present invention additionally provides a kind of detection system of battery welding point defect, comprising: acquisition device, processing dress It sets, suggestion device;The processing unit is the described in any item batteries based on depth detection and plane monitoring-network of claim 5-8 Welding point defect detection device;
The acquisition device is used to acquire the characteristic information of battery solder joint;The characteristic information of the battery solder joint includes depth Information, surface gray level image.
The processing unit is used to obtain standby signal to the feature information processing of the battery solder joint;
The suggestion device is used to export prompt information according to the standby signal;
In addition, the acquisition device is the radium-shine scanner of line.
In addition, the suggestion device includes display screen and/or warning light and/or loudspeaker.
In addition, the prompt information includes text and/or color and/or sound.
Detection method, several systems of device of a kind of battery welding point defect provided by the invention, by utilizing the radium-shine scanning of line Instrument combines three-dimensional depth information with two dimensional image processing technique, is combined in this way so that solder joint detects relatively reliable, accuracy rate It is higher, and allow battery after point is soldered, it can judge whether welding succeeds using vision/sense of hearing.Scheme provided by the invention It may replace a large amount of artificial on current production line risk with reduction defective products inflow client.
Detailed description of the invention
Fig. 1 is a kind of flow chart of the detection method for battery welding point defect that the embodiment of the present invention one provides;
Fig. 2 is the step flow chart for including of step 120 in Fig. 1;
Fig. 3 is the embodiment of the present invention two to the improved flow chart of steps of Fig. 2;
Fig. 4 is a kind of schematic diagram of the detection device for battery welding point defect that the embodiment of the present invention three provides;
Fig. 5 is detailed process schematic diagram when Fig. 4 shown device executes method shown in Fig. 1;
Fig. 6 is detailed process schematic diagram when Fig. 4 shown device executes improved method shown in Fig. 3;
Fig. 7 is a kind of schematic diagram of the detection system for battery welding point defect that the embodiment of the present invention three provides.
Specific embodiment
Invention is further described in detail combined with specific embodiments below.
Embodiment one
Fig. 1 is detection method, the process of apparatus and system for a kind of battery welding point defect that the embodiment of the present invention one provides Figure.As shown in Figure 1, method includes the following steps:
Step S110: the characteristic information of battery solder joint is received.
Specifically, the characteristic information may include depth, surface gray level image.The characteristic information can be used for analyzing battery The defect of solder joint judges whether battery solder joint is qualified.
Further, case depth information and surface ash that the radium-shine scanner of line acquires battery solder joint to be detected can be used Degree figure.
Step S120: being analyzed and processed the characteristic information, obtains for indicating whether the battery solder joint is qualified Standby signal.
Specifically, it as shown in Fig. 2, being analyzed and processed to the characteristic information, specifically includes:
Step S122: carrying out image recognition to the surface gray level image, obtains the surface image letter of the battery solder joint Breath.
Specifically, the surface image information may include size.Further, two dimensional image processing technique can be used, it is right The gray level image such as is filtered at a series of image procossing, orients the position of pad, and detect the big of battery solder joint It is small.
Step S122: the depth is compared with first threshold, obtains the first comparison result.By the size and the second threshold Value compares, and obtains the second comparison result.According to first comparison result, second comparison result, the prompt letter is obtained Number.
Specifically, if first comparison result is that the depth is not less than the first threshold and described second Comparison result is that the size is not less than the second threshold, then obtains for indicating the qualified qualified letter of the battery solder joint Number.If first comparison result is that the depth is less than the first threshold and second comparison result is described Size is less than the second threshold, then obtains for indicating the underproof alarm signal of battery solder joint.Optionally, described One threshold value, the second threshold can according to the actual situation, demand, set.Such as:
The present embodiment one knows gray level image by receiving the depth information and surface gray level image of battery solder joint Other places reason, obtains the size of battery solder joint.And then from two depth of battery solder joint, size dimensions, at operational analysis Reason realizes the analysis to battery welding point defect, achievees the purpose that judge whether battery solder joint is qualified, improves the inspection of battery welding point defect The accuracy of survey.
Embodiment two
As shown in figure 3, the present embodiment two improves on the basis of example 1, further to improve battery solder joint The accuracy of defects detection.Specific improvement is as follows:
(1) the step S122 in one step S120 of embodiment is improved, obtains step S122 ', specifically includes:
The surface image information of the battery solder joint obtained in step S122 using image processing techniques further includes battery solder joint Gray uniformization.The gray uniformization of battery solder joint gray level image can be used as the another characteristic information of analysis battery solder joint.
(2) it is based on (1), corresponding improvement is made to the step S122 in one step S120 of embodiment, obtains step S122 ', has Body includes:
The depth is compared with first threshold, obtains the first comparison result.The size is compared with second threshold, is obtained To the second comparison result.The gray uniformization is compared with third threshold value, obtains third comparison result.According to described One comparison result, second comparison result, third comparison result, obtain the standby signal.
Specifically, if first comparison result is that the depth is not less than the first threshold and described second Comparison result is that the size is not less than the second threshold and the third comparison result is that the gray uniformization is not small In the third threshold value, then the qualifying signal for indicating the battery solder joint qualification is obtained.If first comparison result It is less than the first threshold for the depth and second comparison result is that the size is less than the second threshold, with And the third comparison result is that the gray uniformization is less than the third threshold value, then obtains for indicating the battery solder joint Underproof alarm signal.The third threshold value can also according to the actual situation, demand, set.
The present embodiment two on the basis of example 1, by carrying out identifying processing to gray level image, obtains battery solder joint Gray uniformization.It is equal from the depth, size, gray scale of battery solder joint by increasing this dimension of battery solder joint gray uniformization Three dimensions of evenness are set out, and are handled through operational analysis, the analysis to battery welding point defect, and further raising battery solder joint lacks Fall into the accuracy of detection.
Embodiment three
Fig. 4 is that a kind of of the offer of the embodiment of the present invention three is detected based on the battery welding point defect of depth detection and plane monitoring-network The schematic diagram of device.The device is for executing method provided by embodiment one, embodiment two.As shown in figure 4, the device packet It includes: receiving module 221, analysis and processing module 222, output module 223.Wherein, analysis and processing module 222 includes image procossing mould Block, computing module.
Receiving module 221 receives the characteristic information of battery solder joint, and the characteristic information is sent to analysis and processing module 222.The characteristic information may include depth, surface gray level image.
Analysis and processing module 222 is analyzed and processed the characteristic information, obtains standby signal, and shown prompt is believed Number it is sent to output module 223.Specifically, image processing module to the surface gray level image from receiving module 221 into Row image recognition obtains the surface image information of the battery solder joint.Computing module will be believed from the depth of receiving module 221 Surface image information from image processing module is carried out calculation process by breath, obtains the standby signal, and be sent to output Module 223.When the device that the present embodiment three provides is used to execute the method for embodiment one, computing module believes the depth The calculation process of breath, surface image information, specifically refers to the step 120 in embodiment one.When the dress that the present embodiment three provides When setting the method for executing embodiment two, computing module is to the calculation process of the depth information, surface image information, specifically It can refer to embodiment two.Details are not described herein again.
Output module 203 exports the standby signal.
For example, Fig. 5 is the detailed process schematic diagram when device that the present embodiment three provides executes the method for embodiment one.Such as Shown in Fig. 5, receiving module 221 receives depth information, the surface gray level image of battery solder joint.Image processing module is to the surface Gray level image carries out image recognition, obtains the size of battery solder joint.When the comparison for the depth and first threshold for carrying out battery solder joint When, if the depth of battery surface solder joint is not less than first threshold, variable a=1 is returned, a=0 is otherwise returned;It is electric when carrying out When the comparison of the size of pool surface solder joint and second threshold, if the size of battery solder joint is not less than second threshold, change is returned to B=1 is measured, b=0 is otherwise returned.Solder joint depth is compared, spot size compares the variable returned and carries out and door operation c=a*b. Return finally with door operation result, if result is c=1, then it represents that product is qualified, and output module 203 exports qualifying signal, no Then product is unqualified, and output module 223 exports alarm signal.
For example, Fig. 6 is the detailed process schematic diagram when device that the present embodiment three provides executes the method for embodiment two.Such as Shown in Fig. 6, receiving module 221 receives depth information, the surface gray level image of battery solder joint.Image processing module is to the surface Gray level image carries out image recognition, obtains size, the gray uniformization of battery solder joint.When the depth and first for carrying out battery solder joint When the comparison of threshold value, if the depth of battery surface solder joint is not less than first threshold, variable a=1 is returned, a=is otherwise returned 0;When the comparison of the size and second threshold that carry out battery surface solder joint, if the size of battery solder joint is not less than the second threshold Value, then return to variable b=1, otherwise return to b=0;When the comparison for the gray uniformization and third threshold value for carrying out battery surface solder joint When, if the gray uniformization of battery solder joint is not less than third threshold value, variable d=1 is returned, d=0 is otherwise returned.By solder joint Depth compares, spot size compares the variable returned and carries out and door operation c=a*b*d.Return finally with door operation result, if It as a result is c=1, then it represents that product is qualified, and output module 203 exports qualifying signal, and otherwise product is unqualified, output module 223 Export alarm signal.
The present embodiment three passes through the device provided for executing two method of embodiment one or embodiment, executes image recognition skill Art and thresholding algorithm replace a large amount of artificial detections on current production line, Jin Erti to battery welding point defect automated analysis The efficiency and accuracy of high battery solder joint monitoring, reduce the risk that defective products flows into client.
Example IV
Fig. 7 is that a kind of of the offer of the embodiment of the present invention four is detected based on the battery welding point defect of depth detection and plane monitoring-network The schematic diagram of system.As shown in fig. 7, the system includes: acquisition device 210, processing unit 220, suggestion device 230;Processing dress Setting 220 can be used the battery welding point defect detection device based on depth detection and plane monitoring-network of the offer of embodiment three.
Acquisition device 210 is used to acquire the characteristic information of battery solder joint, and the characteristic information is sent to processing module 220.The characteristic information of battery solder joint includes depth information, surface gray level image.
Processing unit 220 is used to obtain standby signal to the feature information processing of the battery solder joint.
Suggestion device 230 is used to export prompt information according to the standby signal.
Processing of the processing unit 220 to the characteristic information in four system of the present embodiment, the erasable content for examining embodiment three, It no longer illustrates herein.
Further, the radium-shine scanner of line can be used in acquisition device 210.
Further, display screen and/or warning light and/or loudspeaker can be used in suggestion device 230.
Further, the prompt information includes text and/or color and/or sound.
The system that the present embodiment four provides utilizes the radium-shine scanner of line by three-dimensional depth information and two dimensional image processing technique It combines, is combined in this way so that solder joint detection is relatively reliable, accuracy rate is higher.
It should be understood by those skilled in the art that, embodiments herein can provide as method, system or computer program Product.Therefore, complete hardware embodiment, complete software embodiment or reality combining software and hardware aspects can be used in the application Apply the form of example.Moreover, it wherein includes the computer of computer usable program code that the application, which can be used in one or more, The computer program implemented in usable storage medium (including but not limited to magnetic disk storage, CD-ROM, optical memory etc.) produces The form of product.
The application is referring to method, the process of equipment (system) and computer program product according to the embodiment of the present application Figure and/or block diagram describe.It should be understood that every one stream in flowchart and/or the block diagram can be realized by computer program instructions The combination of process and/or box in journey and/or box and flowchart and/or the block diagram.It can provide these computer programs Instruct the processor of general purpose computer, special purpose computer, Embedded Processor or other programmable data processing devices to produce A raw machine, so that being generated by the instruction that computer or the processor of other programmable data processing devices execute for real The device for the function of being specified in present one or more flows of the flowchart and/or one or more blocks of the block diagram.
These computer program instructions, which may also be stored in, is able to guide computer or other programmable data processing devices with spy Determine in the computer-readable memory that mode works, so that it includes referring to that instruction stored in the computer readable memory, which generates, Enable the manufacture of device, the command device realize in one box of one or more flows of the flowchart and/or block diagram or The function of being specified in multiple boxes.
These computer program instructions also can be loaded onto a computer or other programmable data processing device, so that counting Series of operation steps are executed on calculation machine or other programmable devices to generate computer implemented processing, thus in computer or The instruction executed on other programmable devices is provided for realizing in one or more flows of the flowchart and/or block diagram one The step of function of being specified in a box or multiple boxes.
In a typical configuration, calculating equipment includes one or more processors (CPU), input/output interface, net Network interface and memory.
Memory may include the non-volatile memory in computer-readable medium, random access memory (RAM) and/ Or the forms such as Nonvolatile memory, such as read-only memory (ROM) or flash memory (flashRAM).Memory is computer-readable medium Example.
Computer-readable medium includes permanent and non-permanent, removable and non-removable media can be by any method Or technology come realize information store.Information can be computer readable instructions, data structure, the module of program or other data. The example of the storage medium of computer includes, but are not limited to phase change memory (PRAM), static random access memory (SRAM), moves State random access memory (DRAM), other kinds of random access memory (RAM), read-only memory (ROM), electric erasable Programmable read only memory (EEPROM), flash memory or other memory techniques, read-only disc read only memory (CD-ROM) (CD-ROM), Digital versatile disc (DVD) or other optical storage, magnetic cassettes, tape magnetic disk storage or other magnetic storage devices Or any other non-transmission medium, can be used for storage can be accessed by a computing device information.As defined in this article, it calculates Machine readable medium does not include temporary computer readable media (transitory media), such as the data-signal and carrier wave of modulation.
The above is only embodiments herein, are not intended to limit this application.To those skilled in the art, Various changes and changes are possible in this application.It is all within the spirit and principles of the present application made by any modification, equivalent replacement, Improve etc., it should be included within the scope of the claims of this application.

Claims (12)

1. a kind of detection method of battery welding point defect, which is characterized in that the described method comprises the following steps:
Receive the characteristic information of battery solder joint;The characteristic information includes depth, surface gray level image;
The characteristic information is analyzed and processed, standby signal is obtained;The standby signal is for indicating the battery solder joint It is whether qualified.
2. being obtained the method according to claim 1, wherein described be analyzed and processed the characteristic information The step of standby signal, comprising:
Image recognition is carried out to the surface gray level image, obtains the surface image information of the battery solder joint;The exterior view As information includes size;
The depth is compared with first threshold, obtains the first comparison result;And compare the size with second threshold, it obtains To the second comparison result;According to first comparison result, second comparison result, the standby signal is obtained.
3. according to the method described in claim 2, it is characterized in that, it is described according to first comparison result, it is described second ratio Pair as a result, the step of obtaining the standby signal, comprising:
If first comparison result is that the depth is not less than the first threshold and second comparison result is institute Size is stated not less than the second threshold, then obtains qualifying signal;The qualifying signal is for indicating that the battery solder joint is qualified.
4. according to the method in claim 2 or 3, which is characterized in that described according to first comparison result, described second Comparison result, the step of determining the processing result, comprising:
If first comparison result is that the depth is less than the first threshold and second comparison result is described Size is less than the second threshold, then obtains alarm signal;The alarm signal is for indicating that the battery solder joint is unqualified.
5. a kind of detection device of battery welding point defect, which is characterized in that described device includes:
Receiving module (221), for receiving the characteristic information of battery solder joint;The characteristic information includes depth, surface grayscale image Picture;
Analysis and processing module (222) obtains standby signal for being analyzed and processed to the characteristic information;The prompt letter Number for indicating whether the battery solder joint is qualified.
6. device according to claim 5, which is characterized in that the analysis and processing module includes:
Picture recognition module obtains the exterior view of the battery solder joint for carrying out image recognition to the surface gray level image As information;The surface image information includes size;
Computing module obtains the first comparison result for comparing the depth with first threshold;And by the size and the Two threshold values compare, and obtain the second comparison result;And according to first comparison result, second comparison result, obtain institute State standby signal.
7. device according to claim 6, which is characterized in that if first comparison result is that the depth is not less than The first threshold and second comparison result are that the size is not less than the second threshold, then the computing module Obtain qualifying signal;The qualifying signal is for indicating that the battery solder joint is qualified.
8. device according to claim 6 or 7, which is characterized in that if first comparison result is that the depth is small It is less than the second threshold in the first threshold and second comparison result for the size, then the computing module Obtain alarm signal;The alarm signal is for indicating that the battery solder joint is unqualified.
9. a kind of detection system of battery welding point defect characterized by comprising acquisition device (210), processing unit (220), Suggestion device (230);The processing unit (220) is a kind of described in any item inspections of battery welding point defect of claim 5-8 Survey device;
The acquisition device (210) is used to acquire the characteristic information of battery solder joint;The characteristic information of the battery solder joint includes deep Spend information, surface gray level image;
The processing unit (220) is used to obtain standby signal to the feature information processing of the battery solder joint;
The suggestion device (230) is used to export prompt information according to the standby signal.
10. system according to claim 9, which is characterized in that the acquisition device (210) is the radium-shine scanner of line.
11. system according to claim 9, which is characterized in that the suggestion device includes display screen and/or warning light And/or loudspeaker.
12. system according to claim 9, which is characterized in that the prompt information include text and/or color and/or Sound.
CN201810874350.9A 2018-08-03 2018-08-03 A method, device and system for detecting defects in battery solder joints Pending CN109283182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810874350.9A CN109283182A (en) 2018-08-03 2018-08-03 A method, device and system for detecting defects in battery solder joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810874350.9A CN109283182A (en) 2018-08-03 2018-08-03 A method, device and system for detecting defects in battery solder joints

Publications (1)

Publication Number Publication Date
CN109283182A true CN109283182A (en) 2019-01-29

Family

ID=65182627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810874350.9A Pending CN109283182A (en) 2018-08-03 2018-08-03 A method, device and system for detecting defects in battery solder joints

Country Status (1)

Country Link
CN (1) CN109283182A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307812A (en) * 2019-03-05 2020-06-19 南昌工程学院 Appearance inspection method of solder joints based on machine vision
CN111462110A (en) * 2020-04-20 2020-07-28 广东利元亨智能装备股份有限公司 Welding seam quality detection method, device and system and electronic equipment
CN113470005A (en) * 2021-07-23 2021-10-01 广东奥普特科技股份有限公司 Welding spot detection device and welding spot detection method for cylindrical battery cap
CN115049592A (en) * 2022-05-19 2022-09-13 广州超音速自动化科技股份有限公司 Battery pad detection method, system, equipment and medium based on three-dimensional oblique shooting
CN115423811A (en) * 2022-11-04 2022-12-02 长春光华微电子设备工程中心有限公司 Method and device for registering welding points on chip
CN116203027A (en) * 2023-01-05 2023-06-02 惠州市德赛智储科技有限公司 Welding spot appearance detection method, detection system and storage medium
CN117649406A (en) * 2024-01-29 2024-03-05 宁德时代新能源科技股份有限公司 Method, device, equipment and storage medium for detecting welding defect of sealing nail

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047077A (en) * 2004-08-04 2006-02-16 Seiko Epson Corp Screen line defect detection method and detection apparatus
CN102567745A (en) * 2011-12-29 2012-07-11 北京航天时代光电科技有限公司 Automatic detection method of optical fiber fusion quality
CN102735611A (en) * 2012-06-21 2012-10-17 宁德新能源科技有限公司 Method for detecting resistance welding strength of lithium ion battery, and apparatus thereof
CN103810459A (en) * 2012-11-07 2014-05-21 上海航天设备制造总厂 Image recognition device and solar array welding system by using same
CN103846538A (en) * 2012-11-29 2014-06-11 上海航天设备制造总厂 Image recognition device and battery array welding system utilizing same
CN103862154A (en) * 2012-12-10 2014-06-18 上海空间电源研究所 Image recognition system and method for resistance welding of solar cell array circuits
CN104867145A (en) * 2015-05-15 2015-08-26 广东工业大学 IC component solder joint defect detection method based on VIBE model
CN105606620A (en) * 2016-01-29 2016-05-25 广州立为信息技术服务有限公司 PCBA welding spot detection method and system based on vision
CN106404533A (en) * 2016-08-29 2017-02-15 华霆(合肥)动力技术有限公司 Welding spot detection method
CN106471333A (en) * 2014-07-08 2017-03-01 日产自动车株式会社 Flaw detection apparatus and production system
CN106825958A (en) * 2017-03-16 2017-06-13 深圳市光大激光科技股份有限公司 Integrated welding is agreed to play and takes the photograph structure and battery core automatic welding detection means and method
CN107515230A (en) * 2017-10-17 2017-12-26 广东正业科技股份有限公司 A welding system and product testing method
CN107516308A (en) * 2017-07-06 2017-12-26 佛山科学技术学院 A battery cap front visual detection method
CN107945184A (en) * 2017-11-21 2018-04-20 安徽工业大学 A kind of mount components detection method positioned based on color images and gradient projection

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047077A (en) * 2004-08-04 2006-02-16 Seiko Epson Corp Screen line defect detection method and detection apparatus
CN102567745A (en) * 2011-12-29 2012-07-11 北京航天时代光电科技有限公司 Automatic detection method of optical fiber fusion quality
CN102735611A (en) * 2012-06-21 2012-10-17 宁德新能源科技有限公司 Method for detecting resistance welding strength of lithium ion battery, and apparatus thereof
CN103810459A (en) * 2012-11-07 2014-05-21 上海航天设备制造总厂 Image recognition device and solar array welding system by using same
CN103846538A (en) * 2012-11-29 2014-06-11 上海航天设备制造总厂 Image recognition device and battery array welding system utilizing same
CN103862154A (en) * 2012-12-10 2014-06-18 上海空间电源研究所 Image recognition system and method for resistance welding of solar cell array circuits
CN106471333A (en) * 2014-07-08 2017-03-01 日产自动车株式会社 Flaw detection apparatus and production system
CN104867145A (en) * 2015-05-15 2015-08-26 广东工业大学 IC component solder joint defect detection method based on VIBE model
CN105606620A (en) * 2016-01-29 2016-05-25 广州立为信息技术服务有限公司 PCBA welding spot detection method and system based on vision
CN106404533A (en) * 2016-08-29 2017-02-15 华霆(合肥)动力技术有限公司 Welding spot detection method
CN106825958A (en) * 2017-03-16 2017-06-13 深圳市光大激光科技股份有限公司 Integrated welding is agreed to play and takes the photograph structure and battery core automatic welding detection means and method
CN107516308A (en) * 2017-07-06 2017-12-26 佛山科学技术学院 A battery cap front visual detection method
CN107515230A (en) * 2017-10-17 2017-12-26 广东正业科技股份有限公司 A welding system and product testing method
CN107945184A (en) * 2017-11-21 2018-04-20 安徽工业大学 A kind of mount components detection method positioned based on color images and gradient projection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中国通信学会主编: "《第六届全国计算机应用联合学术会议论文集 (上册)》", 31 December 2002 *
青岛英谷教育科技股份有限公司著: "《快速成型技术》", 1 February 2018 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307812A (en) * 2019-03-05 2020-06-19 南昌工程学院 Appearance inspection method of solder joints based on machine vision
CN111462110A (en) * 2020-04-20 2020-07-28 广东利元亨智能装备股份有限公司 Welding seam quality detection method, device and system and electronic equipment
CN113470005A (en) * 2021-07-23 2021-10-01 广东奥普特科技股份有限公司 Welding spot detection device and welding spot detection method for cylindrical battery cap
CN113470005B (en) * 2021-07-23 2022-03-18 广东奥普特科技股份有限公司 Solder joint detection device and solder joint detection method of cylindrical battery cap
CN115049592A (en) * 2022-05-19 2022-09-13 广州超音速自动化科技股份有限公司 Battery pad detection method, system, equipment and medium based on three-dimensional oblique shooting
CN115423811A (en) * 2022-11-04 2022-12-02 长春光华微电子设备工程中心有限公司 Method and device for registering welding points on chip
CN116203027A (en) * 2023-01-05 2023-06-02 惠州市德赛智储科技有限公司 Welding spot appearance detection method, detection system and storage medium
CN116203027B (en) * 2023-01-05 2024-01-26 惠州市德赛智储科技有限公司 Welding spot appearance detection method, detection system and storage medium
CN117649406A (en) * 2024-01-29 2024-03-05 宁德时代新能源科技股份有限公司 Method, device, equipment and storage medium for detecting welding defect of sealing nail
CN117649406B (en) * 2024-01-29 2024-06-07 宁德时代新能源科技股份有限公司 Method, device, equipment and storage medium for detecting welding defect of sealing nail

Similar Documents

Publication Publication Date Title
CN109283182A (en) A method, device and system for detecting defects in battery solder joints
CN106949848B (en) A kind of high-precision laser 3D profile phone structural detection method
KR20190098262A (en) System, method for training and applying a defect classifier in wafers with deeply stacked layers
CN111766253A (en) Solder paste printing quality detection method, data processing device and computer storage medium
CN109544533A (en) A kind of metal plate defect detection and measure based on deep learning
CN115841491B (en) A quality detection method for porous metal materials
CN113256570A (en) Visual information processing method, device, equipment and medium based on artificial intelligence
CN113313712B (en) Battery gluing defect detection method and device, electronic equipment and storage medium
JP7453813B2 (en) Inspection equipment, inspection methods, programs, learning devices, learning methods, and learned datasets
KR101929669B1 (en) The method and apparatus for analyzing an image using an entropy
CN112819780A (en) Method and system for detecting surface defects of silk ingots and silk ingot grading system
CN102621154A (en) Method and device for automatically detecting cloth defects on line based on improved differential box multi-fractal algorithm
CN115205273A (en) Size detection method and device, electronic equipment and readable storage medium
CN108665453A (en) Solder joint detection method and device
CN117557658A (en) A stranded wire defect detection method based on wire structured light and deep learning
JP2015197396A (en) Image inspection method and image inspection device
CN110017998A (en) Vehicle checking method, device and equipment
CN119851100B (en) Method and device for detecting surface damage precursor of additive manufacturing device
CN114612468B (en) Equipment external defect detection method based on positive sample
KR102686135B1 (en) Method of inspecting defect using artificial intelligence and apparatus for inspecting defect using artificial intelligence
CN115100110A (en) Defect detection method, device and equipment for polarized lens and readable storage medium
JP2013205320A (en) Inspection condition determination method, inspection method, and inspection device
CN109102486B (en) Surface defect detection method and device based on machine learning
CN114266737A (en) Defect detection method, apparatus, equipment and storage medium
CN119048722A (en) Method, device and equipment for determining illumination parameters for defect detection of aluminum-based disc

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190129

RJ01 Rejection of invention patent application after publication