Optics temperature-measurement material of a kind of fluorescence discoloration and preparation method thereof, application
Technical field
The optics temperature-measurement material to change colour the invention belongs to optics temperature-measurement material field more particularly to a kind of fluorescence and its preparation
Method, application.
Background technique
It is applied to temperature sensing based on fluorescence intensity ratio technology, is a kind of optical temperature sensing technology having good prospects.
Relative to the thermometric scheme of absolute luminescence intensity, fluorescence intensity ratio is measured it is possible to prevente effectively from the fluorescence in measurement process damages
Measurement error caused by the factors such as mistake, excitation light source power.Wherein, most representative is based on single rare earth light emitting ionic heat
The fluorescence intensity ratio thermometric scheme of coupling level.For thermal coupling energy level fluorescence intensity ratio thermometry, to meet thermal coupling
The level spacing of the condition of conjunction, thermal coupling energy level has between 200cm-1~2000cm-1Between.
However, sensitivity of thermometry is proportional to the energy level difference of thermal coupling energy level.Therefore, simple by finding bigger " thermal coupling
Close energy level " effect that obtains the method for realizing the raising of sensitivity of thermometry of energy level difference is undesirable, while sensitivity of thermometry direct ratio
In the energy level difference of thermal coupling energy level, the limitation of temperature sensing is realized also with thermal coupling energy level fluorescence intensity ratio.Therefore, hot
Coupling condition limits the fluorescence intensity ratio thermometric scheme detectivity and signal of single rare earth light emitting ionic thermal coupling energy level
Detect the further promotion of examination degree.
Summary of the invention
The purpose of the present invention is to provide optics temperature-measurement materials of a kind of fluorescence discoloration and preparation method thereof, application, with prominent
The broken rare earth ion thermal coupling energy level fluorescence intensity ratio merely with single rare earth ionoluminescence, the limitation of testing temperature sensitivity.
The present invention is swashed by being shone using matrix itself with rare earth by adulterating a kind of rare earth luminous ion in self-activation fluorescent material
The varying sensitivity of temperature is finally realized in ionoluminescence living to realize double centre of luminescence fluorescence intensity ratio thermometry schemes
Can fluorescence discoloration highly sensitive optics thermometric, breach the rare earth ion thermal coupling just with single rare earth ionoluminescence
The limitation of energy level fluorescence intensity ratio sensitivity of thermometry.To achieve the above object, the technical scheme adopted by the invention is as follows:
The invention proposes a kind of optics temperature-measurement material of fluorescence discoloration, the general formulas of structural formula are as follows: Ca3-m-nSrmZnLi
(VO4)3:Eun 3+, wherein Eu3+For active ions;M>=0, n>=0, m+n<3.
Preferably, m≤0.5.
Preferably, 0.002≤n≤0.02.
The invention proposes a kind of preparation methods of the optics temperature-measurement material of fluorescence discoloration, comprising the following steps:
S1: high temperature solid-state method is used, weighs corresponding raw material according to the general formula;
S2: grinding uniformly mixes the raw material and obtains mixture;
S3: roasting the mixture in air, cooling later, grinding, obtains the optics temperature-measurement material of the fluorescence discoloration.
Preferably, the raw material includes compound, the compound containing strontium, the compound containing zinc, the chemical combination containing europium of calcic
Object, the compound containing lithium and the compound containing vanadium.
Preferably, in step s3, the maturing temperature is 700 DEG C -1000 DEG C;The calcining time is 2h-10h.
It is described under the excitation of ultraviolet light the invention also provides a kind of application of the optics temperature-measurement material of fluorescence discoloration
Active ions Eu3+With [VO4]3-Group issues respective characteristic spectrum as the centre of luminescence;The characteristic spectrum is applied to temperature
Thick calibration.
Preferably, the fluorescence discoloration optics temperature-measurement material the corresponding chromaticity coordinates (x, y) of luminescent color with temperature change
Change meets linear equation track.
Preferably, the fluorescence intensity ratio of the centre of luminescence is applied to temperature calibration.
Preferably, the fluorescence intensity ratio FIR of double centres of luminescence and absolute temperature T are full
Compared with prior art, advantages of the present invention are as follows:
1) the optics temperature-measurement material of fluorescence discoloration in air stablize by property, and light conversion efficiency is high.It is effective in ultraviolet light
Under excitation, [the VO of matrix itself4]3-Group and Eu3+Active ions can be simultaneously emitted by respective feature as double centres of luminescence
Spectrum.
2) present invention is in the excitation of 200nm-380nm ultraviolet source, due to [the VO of matrix itself4]3-Group and activate from
Sub- Eu3+Emission peak as double centres of luminescence is different to the susceptibility of temperature, as temperature increases to 530K from 300K, the material
Luminescent color can be from the variation regular in this way of cyan-white-yellow-reddish orange, the corresponding chromaticity coordinates (x, y) of color
Variation with temperature meets linear equation y=kx+b, and wherein k and b is constant.Based on this, can use under ultraviolet excitation
Fluorescence discoloration carrys out rough qualitative calibration temperature.
3) present invention is in the excitation of 200nm-380nm ultraviolet source, [the VO of matrix itself4]3-Group and active ions Eu3+
It is issued respectively as double centres of luminescence positioned at the characteristic emission peak of 475nm and 610nm, it is apart from each other by monitoring the two wavelength
Characteristic emission peak avoid interfering with each other for monitoring signals to obtain higher signal screening degree.Based on double centres of luminescence
Fluorescence intensity ratio regular variation occurs with the variation of temperature, and then using the variation of fluorescence intensity ratio come accurate
Quantitatively calibrating temperature, relative sensitivity is high, about 2.93%/K, and temperature-measuring range is wide.
4) the optics temperature-measurement material of fluorescence discoloration is synthesized using high temperature solid-state method, and preparation and operating procedure are safe and simple.
Detailed description of the invention
Fig. 1 is the hair that the optics temperature-measurement material for the fluorescence discoloration that the embodiment of the present invention 9 provides measures under ultraviolet excitation
Penetrate spectrogram;
Fig. 2 is that the optics temperature-measurement material for the fluorescence discoloration that the embodiment of the present invention 9 provides surveys the CIE chromaticity coordinates varied with temperature
Map;
Fig. 3 is between the fluorescence intensity ratio and temperature of the optics temperature-measurement material for the fluorescence discoloration that the embodiment of the present invention 9 provides
Relational graph and corresponding matched curve figure;
Fig. 4 is the thermometric relative sensitivity of the optics temperature-measurement material for the fluorescence discoloration of the embodiment of the present invention 9 provided and surveys
Warm absolute sensitivity varies with temperature curve graph;
Fig. 5 is the X-ray powder diffraction spectrogram of the optics temperature-measurement material for the fluorescence discoloration of the embodiment of the present invention 9 provided.
Specific embodiment
Below in conjunction with schematic diagram to optics temperature-measurement material of fluorescence discoloration of the invention and preparation method thereof, using progress
More detailed description, which show the preferred embodiment of the present invention, it should be appreciated that those skilled in the art can modify herein
The present invention of description, and still realize advantageous effects of the invention.Therefore, following description should be understood as this field skill
Art personnel's is widely known, and is not intended as limitation of the present invention.
Embodiment 1
Calcium carbonate (CaCO is weighed respectively3) 3.0006g, lithium carbonate (Li2CO3) 0.3695g, ammonium metavanadate (NH4VO3)
3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0035g, above-mentioned raw materials are fully ground in mortar mixed
It closes, is subsequently placed in corundum crucible, roasts 2 hours, taken out after being cooled to room temperature, grinding distribution in 1000 DEG C of high temperature furnace
Afterwards, obtaining group becomes Ca2.998Sr0.00ZnLi(VO4)3:Eu0.002 3+Optics temperature-measurement material.
Test is excited and is emitted, to the optics temperature-measurement material with Hitachi's F-7000 Fluorescence Spectrometer with the xenon of 150W
Lamp is excitation light source, the results showed that, the material has good absorption in ultraviolet light wave band, can effectively be excited by ultraviolet light.
In the case where ultraviolet light effectively excites, [the VO of matrix itself4]3-Group and active ions Eu3+It can be sent out simultaneously as double centres of luminescence
Respective characteristic spectrum out.When being excited using common 254nm or 365nm ultraviolet source, [VO4]3-Group and Eu3+It sends out respectively
It is located at the characteristic emission peak of 475nm and 610nm out.Since the thermal quenching property of the two centres of luminescence is different, as temperature becomes
Change, the luminescent color of the material can be from white (363K-403K)-yellow (the 423K-463K)-blood orange of cyan (303K-343K)-
Color (483K-523K) variation regular in this way, corresponding chromaticity coordinates (x, the y) variation with temperature of color meet linear equation
Y=kx+b, wherein k and b is constant.Based on this, the fluorescence discoloration that can use under ultraviolet excitation carrys out rough qualitative calibration
Temperature.Meanwhile by monitoring the two wavelength characteristic emission peak apart from each other, using the fluorescence intensity ratio of double centres of luminescence come
Accurate Calibration temperature, to obtain higher signal screening degree and sensitivity of thermometry.
Embodiment 2
Calcium oxide (CaO) 1.6795g, lithia (Li is weighed respectively2O) 0.1494g, vanadic anhydride (V2O5)
2.7282g, zinc hydroxide (Zn (OH)2) 0.9942g and europium oxide (Eu2O3) 0.0088g, in mortar sufficiently by above-mentioned raw materials
Ground and mixed is subsequently placed in corundum crucible, is roasted 3 hours in 900 DEG C of high temperature furnace, is taken out after being cooled to room temperature, grinding
After dispersion, obtaining group becomes Ca2.995Sr0.00ZnLi(VO4)3:Eu0.005 3+Optics temperature-measurement material.It thus can use fluorescence
Change colour rough qualitative calibration temperature, also can use fluorescence intensity ratio accurate quantification calibration temperature.
Embodiment 3
Calcium hydroxide (Ca (OH) is weighed respectively2) 2.2172g, lithium hydroxide (LiOH) 0.2395g, ammonium metavanadate
(NH4VO3) 3.5093g, zinc carbonate (ZnCO3) 1.2542g and europium oxide (Eu2O3) 0.0132g, by above-mentioned raw materials in mortar
It is fully ground mixing, is subsequently placed in corundum crucible, roasts 4 hours in 800 DEG C of high temperature furnace, is taken out after being cooled to room temperature,
After grinding distribution, obtaining group becomes Ca2.9925Sr0.00ZnLi(VO4)3:Eu0.0075 3+Optics temperature-measurement material.It thus can benefit
With the rough qualitative calibration temperature of fluorescence discoloration, fluorescence intensity ratio accurate quantification calibration temperature also can use.
Embodiment 4
Calcium carbonate (CaCO is weighed respectively3) 2.9926g, lithium carbonate (Li2CO3) 0.3695g, metavanadic acid ammonia ammonium (NH4VO3)
3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0176g, above-mentioned raw materials are fully ground in mortar mixed
It closes, is subsequently placed in corundum crucible, roasts 5 hours in 700 DEG C of high temperature furnace, taken out after being cooled to room temperature, after grinding distribution,
Obtaining group becomes Ca2.99Sr0.00ZnLi(VO4)3:Eu0.01 3+Optics temperature-measurement material.It is rough thus to can use fluorescence discoloration
Qualitative calibration temperature also can use fluorescence intensity ratio accurate quantification calibration temperature.
Embodiment 5
Calcium carbonate (CaCO is weighed respectively3) 2.9826g, lithium carbonate (Li2CO3) 0.3695g, ammonium metavanadate (NH4VO3)
3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0352g, above-mentioned raw materials are fully ground in mortar mixed
It closes, is subsequently placed in corundum crucible, roasts 6 hours in 750 DEG C of high temperature furnace, taken out after being cooled to room temperature, after grinding distribution,
Obtaining group becomes Ca2.98Sr0.00ZnLi(VO4)3:Eu0.02 3+Optics temperature-measurement material.It is rough thus to can use fluorescence discoloration
Qualitative calibration temperature also can use fluorescence intensity ratio accurate quantification calibration temperature.
Embodiment 6
Calcium carbonate (CaCO is weighed respectively3) 2.8004g, strontium carbonate (SrCO3) 0.2953g, lithium carbonate (Li2CO3)
0.3695g, ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0035g, it will be upper
It states raw material and is fully ground mixing in mortar, be subsequently placed in corundum crucible, roasted 7 hours in 800 DEG C of high temperature furnace, it is cooling
It is taken out after to room temperature, after grinding distribution, obtaining group becomes Ca2.798Sr0.20ZnLi(VO4)3:Eu0.002 3+Optics temperature-measurement material.
It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use fluorescence intensity ratio accurate quantification calibration temperature.
Embodiment 7
Calcium carbonate (CaCO is weighed respectively3) 2.7974g, strontium oxide strontia (SrO) 0.2072g, lithium carbonate (Li2CO3) 0.3695g,
Ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0088g, above-mentioned raw materials are existed
It is fully ground mixing in mortar, is subsequently placed in corundum crucible, is roasted 8 hours in 850 DEG C of high temperature furnace, after being cooled to room temperature
It takes out, after grinding distribution, obtaining group becomes Ca2.795Sr0.20ZnLi(VO4)3:Eu0.005 3+Optics temperature-measurement material.Thus may be used
Also can use fluorescence intensity ratio accurate quantification calibration temperature using the rough qualitative calibration temperature of fluorescence discoloration.
Embodiment 8
Calcium carbonate (CaCO is weighed respectively3) 2.7949g, strontium hydroxide (Sr (OH)2) 0.2433g, lithium carbonate (Li2CO3)
0.3695g, ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0132g, it will be upper
It states raw material and is fully ground mixing in mortar, be subsequently placed in corundum crucible, roasted 9 hours in 900 DEG C of high temperature furnace, it is cooling
It is taken out after to room temperature, after grinding distribution, obtaining group becomes Ca2.7925Sr0.20ZnLi(VO4)3:Eu0.0075 3+Optics temperature-measurement material.
It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use fluorescence intensity ratio accurate quantification calibration temperature.
Embodiment 9
Calcium carbonate (CaCO is weighed respectively3) 2.7924g, strontium carbonate (SrCO3) 0.2953g, lithium carbonate (Li2CO3)
0.3695g, ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0176g, it will be upper
It states raw material and is fully ground mixing in mortar, be subsequently placed in corundum crucible, roasted 10 hours in 850 DEG C of high temperature furnace, it is cold
But to taking out after room temperature, after grinding distribution, obtaining group becomes Ca2.79Sr0.20ZnLi(VO4)3:Eu0.01 3+Optics temperature-measurement material.
It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use fluorescence intensity ratio accurate quantification calibration temperature.
In the case where ultraviolet light effectively excites, [VO4] of matrix itself3-Group and active ions Eu3+As double centre of luminescence energy
Enough it is simultaneously emitted by respective characteristic spectrum.When being excited using common 254nm or 365nm ultraviolet source, [VO4]3-Group with
Eu3+The characteristic emission peak for being located at 475nm and 610nm is issued respectively.As shown in Figure 1.
As shown in Fig. 2, the thermal quenching property due to the two centres of luminescence is different, with temperature change, the hair of the material
Light color can be from white (363-403K)-yellow (the 423-463K)-reddish orange (483-523K) of cyan (303-343K)-in this way
Regular variation, corresponding chromaticity coordinates (x, the y) variation with temperature of color meet linear equation y=0.23488x+
0.20878.Based on this, the fluorescence discoloration that can use under ultraviolet excitation carrys out rough qualitative calibration temperature.Meanwhile passing through prison
The two wavelength characteristic emission peak apart from each other is surveyed, using the fluorescence intensity ratio of double centres of luminescence come Accurate Calibration temperature, from
And obtain higher signal screening degree and sensitivity of thermometry.As shown in figure 4, the material relative sensitivity is high, can reach about
2.93%/K.
As shown in figure 3, the material is in the case where ultraviolet light effectively excites, the fluorescence intensity ratio FIR of double centres of luminescence and absolutely temperature
Degree T meets this exponential equation.(wherein e is natural constant, and A and B are constant, passes through fitting experimental data available A and B
Specific value).Wherein fluorescence intensity ratio FIR=I610/I475, I475And I610Respectively indicate [the VO of matrix itself4]3-Group with
Active ions Eu3+Issue the integral luminous intensity positioned at the characteristic emission peak of 475nm and 610nm, T respectively as double centres of luminescence
For absolute temperature, unit K.Specifically, we obtain the optics thermometric of the present embodiment by the method for fitting experimental data
The exponential equation of material is FIR=328.94*e(-2686/T).We are carried out using the optics temperature-measurement material of the present embodiment in this way
When temperature measuring application, so that it may obtain the numerical value of fluorescence intensity ratio FIR according to the signal of detection, then exponential equation be selected to be counted
Calculation obtains specific temperature level.Thermometric is simple, convenient and fast.
In the present embodiment, X- is carried out to fluorescent material manufactured in the present embodiment with Brooker D8Focus type diffractometer to penetrate
Line powder diffraction (XRD), test condition are as follows: Cu K α radiation, λ=0.15405nm, acceleration voltage and emission current are respectively
40kV and 40mA, scanning range: 2 θ=10o-90o;Test result is referring to Fig. 5.As shown in Figure 5, change that the present embodiment obtains
Color material is single substance, that is, realizes active ions Eu3+Doping in matrix.
Embodiment 10
Calcium carbonate (CaCO is weighed respectively3) 2.7824g, strontium carbonate (SrCO3) 0.2953g, lithium carbonate (Li2CO3)
0.3695g, ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0352g, it will be upper
It states raw material and is fully ground mixing in mortar, be subsequently placed in corundum crucible, roasted 9 hours in 800 DEG C of high temperature furnace, it is cooling
It is taken out after to room temperature, after grinding distribution, obtaining group becomes Ca2.78Sr0.20ZnLi(VO4)3:Eu0.02 3+Optics temperature-measurement material.This
Sample can also can use fluorescence intensity ratio accurate quantification calibration temperature using the rough qualitative calibration temperature of fluorescence discoloration.
Embodiment 11
Calcium carbonate (CaCO is weighed respectively3) 2.5002g, strontium carbonate (SrCO3) 0.7381g, lithium carbonate (Li2CO3)
0.3695g, ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0035g, it will be upper
It states raw material and is fully ground mixing in mortar, be subsequently placed in corundum crucible, roasted 8 hours in 750 DEG C of high temperature furnace, it is cooling
It is taken out after to room temperature, after grinding distribution, obtaining group becomes Ca2.498Sr0.50ZnLi(VO4)3:Eu0.002 3+Optics temperature-measurement material.
It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use fluorescence intensity ratio accurate quantification calibration temperature.
Embodiment 12
Calcium carbonate (CaCO is weighed respectively3) 2.4972g, strontium carbonate (SrCO3) 0.7381g, lithium carbonate (Li2CO3)
0.3695g, ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0088g, it will be upper
It states raw material and is fully ground mixing in mortar, be subsequently placed in corundum crucible, roasted 7 hours in 800 DEG C of high temperature furnace, it is cooling
It is taken out after to room temperature, after grinding distribution, obtaining group becomes Ca2.495Sr0.50ZnLi(VO4)3:Eu0.005 3+Optics temperature-measurement material.
It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use fluorescence intensity ratio accurate quantification calibration temperature.
Embodiment 13
Calcium carbonate (CaCO is weighed respectively3) 2.4947g, strontium carbonate (SrCO3) 0.7381g, lithium carbonate (Li2CO3)
0.3695g, ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0132g, it will be upper
It states raw material and is fully ground mixing in mortar, be subsequently placed in corundum crucible, roasted 6 hours in 850 DEG C of high temperature furnace, it is cooling
It is taken out after to room temperature, after grinding distribution, obtaining group becomes Ca2.4925Sr0.50ZnLi(VO4)3:Eu0.0075 3+Optics temperature-measurement material.
It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use fluorescence intensity ratio accurate quantification calibration temperature.
Embodiment 14
Calcium carbonate (CaCO is weighed respectively3) 2.4922g, strontium carbonate (SrCO3) 0.7381g, lithium carbonate (Li2CO3)
0.3695g, ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0176g, it will be upper
It states raw material and is fully ground mixing in mortar, be subsequently placed in corundum crucible, roasted 5 hours in 900 DEG C of high temperature furnace, it is cooling
It is taken out after to room temperature, after grinding distribution, obtaining group becomes Ca2.49Sr0.50ZnLi(VO4)3:Eu0.01 3+Optics temperature-measurement material.This
Sample can also can use fluorescence intensity ratio accurate quantification calibration temperature using the rough qualitative calibration temperature of fluorescence discoloration.
Embodiment 15
Calcium carbonate (CaCO is weighed respectively3) 2.4822g, strontium carbonate (SrCO3) 0.7381g, lithium carbonate (Li2CO3)
0.3695g, ammonium metavanadate (NH4VO3) 3.5093g, zinc oxide (ZnO) 0.8141g and europium oxide (Eu2O3) 0.0352g, it will be upper
It states raw material and is fully ground mixing in mortar, be subsequently placed in corundum crucible, roasted 4 hours in 850 DEG C of high temperature furnace, it is cooling
It is taken out after to room temperature, after grinding distribution, obtaining group becomes Ca2.48Sr0.50ZnLi(VO4)3:Eu0.02 3+Optics temperature-measurement material.This
Sample can also can use fluorescence intensity ratio accurate quantification calibration temperature using the rough qualitative calibration temperature of fluorescence discoloration.
Embodiment 16
The present embodiment is substantially the same manner as Example 15, the difference is that, in the present embodiment, the compound of calcic selects oxygen
The mixture for changing calcium, calcium hydroxide and calcium carbonate, the compound containing strontium select the mixing of strontium oxide strontia, strontium hydroxide and strontium carbonate
Object, the compound containing europium select europium nitrate, and dosage is according to logical formula (I) Ca3-m-nSrmZnLi(VO4)3:Eun 3+The atomic ratio of expression.
It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use fluorescence intensity ratio accurate quantification calibration temperature.
Embodiment 17
The present embodiment is substantially the same manner as Example 15, the difference is that, in the present embodiment, the compound containing vanadium selects five
The mixture of V 2 O and ammonium metavanadate, the compound containing europium select europium carbonate, and dosage is according to logical formula (I) Ca3-m-nSrmZnLi
(VO4)3:Eun 3+The atomic ratio of expression.It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use fluorescence
Intensity demarcates temperature than accurate quantification.
Embodiment 18
The present embodiment is substantially the same manner as Example 15, the difference is that, in the present embodiment, the compound containing lithium selects carbon
Mixture in sour lithium, lithia and lithium hydroxide, the compound containing europium select the mixing of europium oxide, europium carbonate and europium nitrate
Object, the atomic ratio that dosage is indicated according to general formula.It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use
Fluorescence intensity ratio accurate quantification demarcates temperature.
Embodiment 19
The present embodiment is substantially the same manner as Example 15, the difference is that, in the present embodiment, the compound containing zinc selects oxygen
Change the mixture of zinc, zinc hydroxide and zinc carbonate, dosage is according to logical formula (I) Ca3-m-nSrmZnLi(VO4)3:Eun 3+The atom of expression
Than.It thus can use the rough qualitative calibration temperature of fluorescence discoloration, also can use fluorescence intensity ratio accurate quantification calibration temperature
Degree.
Mixture involved in above-mentioned raw materials, the proportion of each material can be selected arbitrarily in mixture.
In the present invention, the compound of calcic is one of oxide, hydroxide or carbonate of calcium or a variety of
Mixture;Compound containing strontium is one of oxide, hydroxide or carbonate of strontium or a variety of mixtures;Containing zinc
Compound is one of oxide, hydroxide or carbonate of zinc or a variety of mixtures;Compound containing europium is europium
One of oxide, carbonate or nitrate or a variety of mixtures;Compound containing lithium is lithium carbonate, lithia or hydrogen-oxygen
Change one of lithium or a variety of mixtures;Compound containing vanadium is vanadic anhydride and/or ammonium metavanadate.
The above is only a preferred embodiment of the present invention, does not play the role of any restrictions to the present invention.Belonging to any
Those skilled in the art, in the range of not departing from technical solution of the present invention, to the invention discloses technical solution and
Technology contents make the variation such as any type of equivalent replacement or modification, belong to the content without departing from technical solution of the present invention, still
Within belonging to the scope of protection of the present invention.