CN109273981B - A kind of cooling device and laser module for semiconductor laser - Google Patents
A kind of cooling device and laser module for semiconductor laser Download PDFInfo
- Publication number
- CN109273981B CN109273981B CN201811213012.7A CN201811213012A CN109273981B CN 109273981 B CN109273981 B CN 109273981B CN 201811213012 A CN201811213012 A CN 201811213012A CN 109273981 B CN109273981 B CN 109273981B
- Authority
- CN
- China
- Prior art keywords
- liquid
- layer
- cavity
- heat dissipation
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 26
- 238000001816 cooling Methods 0.000 title claims description 28
- 239000007788 liquid Substances 0.000 claims abstract description 313
- 230000017525 heat dissipation Effects 0.000 claims abstract description 66
- 238000000926 separation method Methods 0.000 claims abstract description 13
- 239000000110 cooling liquid Substances 0.000 claims abstract description 9
- 238000005057 refrigeration Methods 0.000 claims description 26
- 238000005192 partition Methods 0.000 claims description 23
- 239000003507 refrigerant Substances 0.000 claims description 20
- 238000009434 installation Methods 0.000 claims description 12
- 230000004888 barrier function Effects 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 3
- 238000010992 reflux Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 239000000758 substrate Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02407—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
- H01S5/02423—Liquid cooling, e.g. a liquid cools a mount of the laser
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
本发明提出了一种用于半导体激光器的散热装置以及应用了该散热装置的激光器模块,所述散热装置包括散热基体,所述散热基体为具有分层结构的热沉整体,具体包括自下而上的机械装配层、缓冲层、入液层、分离层、出液层、散热层,使得制冷液先冷却热串扰严重、结温高的中间部分,温度升高后再冷却结温较低的芯片两侧部分,改善了水平阵列的半导体激光器各激光芯片的结温均匀性。
The present invention provides a heat dissipation device for a semiconductor laser and a laser module using the heat dissipation device. The heat dissipation device includes a heat dissipation base, and the heat dissipation base is an integral heat sink with a layered structure, and specifically includes a bottom-to-bottom heat sink. The mechanical assembly layer, buffer layer, liquid inlet layer, separation layer, liquid outlet layer, and heat dissipation layer on the upper part make the cooling liquid first cool the middle part with serious thermal crosstalk and high junction temperature, and then cool the lower junction temperature after the temperature rises. On both sides of the chip, the junction temperature uniformity of each laser chip of the horizontal array of semiconductor lasers is improved.
Description
技术领域technical field
本发明属于半导体器件封装领域,具体为一种用于半导体激光器的散热装置以及应用了该散热装置的激光器模块。The invention belongs to the field of semiconductor device packaging, in particular to a heat dissipation device for a semiconductor laser and a laser module using the heat dissipation device.
背景技术Background technique
水平阵列型半导体激光器在泵浦以及工业加工领域有着广泛的应用,该结构如专利CN201520603725.X公开的一种水平阵列高功率半导体激光器,一般为若干个激光bar条芯片依次水平排列,使得出射激光为线型光斑。半导体激光器bar条芯片由多个发光点组成,进行QCW长脉宽或CW高功率输出时,发光点之间的热串扰非常明显,导致不同发光点的结温不一致,一般为芯片中间区域结温高于芯片两侧结温;对于水平阵列半导体激光器而言,不同芯片之间的热串扰更加明显,尤其是位于水平阵列中间位置的芯片,结温明显高于两侧,结温不同会对导致以下问题:1)各发光点或芯片寿命不同;2)在芯片内部产生热应力,导致偏振等参数降低;3)各个发光点或芯片的输出功率和中心波长不同,导致芯片或阵列产品的整体光谱很宽,对于应用范围有很大限制。The horizontal array semiconductor laser has a wide range of applications in the field of pumping and industrial processing. The structure is such as a horizontal array high-power semiconductor laser disclosed in the patent CN201520603725.X. Generally, several laser bar chips are arranged horizontally in sequence, so that the output laser is a linear spot. The semiconductor laser bar chip is composed of multiple light-emitting points. When performing QCW long pulse width or CW high-power output, the thermal crosstalk between light-emitting points is very obvious, resulting in inconsistent junction temperature of different light-emitting points, generally the junction temperature in the middle area of the chip. Higher than the junction temperature on both sides of the chip; for horizontal array semiconductor lasers, the thermal crosstalk between different chips is more obvious, especially for chips located in the middle of the horizontal array, the junction temperature is significantly higher than both sides, and the difference in junction temperature will cause The following problems: 1) The life of each light-emitting point or chip is different; 2) Thermal stress is generated inside the chip, resulting in a decrease in parameters such as polarization; 3) The output power and center wavelength of each light-emitting point or chip are different, resulting in the overall chip or array product. The spectrum is very broad, and the range of applications is very limited.
目前解决芯片结温不一致的方式主要为:(1)给单个芯片采用通道更小的微通道结构,提高芯片或阵列整体散热能力来降低结温差值,这种方法会导致微通道和热沉加工的难度大幅增加;(2)调整芯片或阵列产品不同位置制冷通道的尺寸或结构,这样可以控制各通道的压降来实现散热均匀性,这种方法对入水口通道的形状要求非常严格,现有加工能力很难实现设计需要的结果。At present, the main ways to solve the inconsistent junction temperature of chips are: (1) Use a micro-channel structure with smaller channels for a single chip to improve the overall heat dissipation capability of the chip or array to reduce the junction temperature difference. This method will lead to micro-channel and heat sink processing. (2) Adjust the size or structure of the cooling channels in different positions of the chip or array product, so that the pressure drop of each channel can be controlled to achieve uniformity of heat dissipation. This method has very strict requirements on the shape of the water inlet channel. It is difficult to achieve the results required by the design with the machining capability.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明提出了一种用于半导体激光器的散热装置以及应用了该散热装置的激光器模块,改善了水平阵列的半导体激光器各芯片的结温均匀性。具体的技术方案为:In order to solve the above problems, the present invention proposes a heat dissipation device for a semiconductor laser and a laser module using the heat dissipation device, which improves the junction temperature uniformity of each chip of a horizontal array of semiconductor lasers. The specific technical solutions are:
一种用于半导体激光器的散热装置,其特征在于:包括散热基体;所述散热基体的一端为芯片安装区,为激光芯片的键合区域;所述散热基体内部对应于芯片安装区的位置设有液体流入通道和液体流出通道;液体流入通道对应于激光芯片安装位置的中部,液体流出通道位于液体流入通道的两侧,使得制冷液先用于冷却激光芯片中部的发光点,再用于冷却激光芯片两侧的发光点。A heat dissipation device for a semiconductor laser is characterized in that: it includes a heat dissipation base; one end of the heat dissipation base is a chip mounting area, which is a bonding area of the laser chip; There are liquid inflow channels and liquid outflow channels; the liquid inflow channel corresponds to the middle of the installation position of the laser chip, and the liquid outflow channel is located on both sides of the liquid inflow channel, so that the cooling liquid is first used to cool the light-emitting point in the middle of the laser chip, and then used for cooling Light-emitting points on both sides of the laser chip.
具体的,所述散热基体为具有分层结构的热沉整体,具体包括自下而上的机械装配层、缓冲层、入液层、分离层、出液层、散热层;芯片安装区位于热沉整体的一端;所述机械装配层设有用于安装的螺纹孔、以及入液孔和出液孔。Specifically, the heat dissipation base is an integral heat sink with a layered structure, and specifically includes a bottom-up mechanical assembly layer, a buffer layer, a liquid inlet layer, a separation layer, a liquid outlet layer, and a heat dissipation layer; the chip mounting area is located in the thermal one end of the whole body; the mechanical assembly layer is provided with screw holes for installation, as well as liquid inlet holes and liquid outlet holes.
所述缓冲层设有与入液孔连通的入液腔体以及与出液孔连通的出液腔体,用于保证散热装置内制冷液的压力稳定。The buffer layer is provided with a liquid inlet cavity communicating with the liquid inlet hole and a liquid outlet cavity communicating with the liquid outlet hole, so as to ensure the pressure stability of the refrigerant liquid in the heat dissipation device.
所述入液层设置有液体流入通道和液体流出通道,所述液体流入通道入口位于激光芯片安装位置的中部,且与入液腔体连通;所述液体流出通道分为独立的两部分位于液体流入通道的两侧,且与出液腔体连通。The liquid inlet layer is provided with a liquid inflow channel and a liquid outflow channel, the inlet of the liquid inflow channel is located in the middle of the installation position of the laser chip, and communicates with the liquid inlet cavity; the liquid outflow channel is divided into two independent parts located in the liquid Both sides of the inflow channel are communicated with the liquid outlet cavity.
所述出液层设置有回流腔,作为液体流入通道和液体流出通道的过渡通道,使得制冷液自入液层的液体流入通道经回流腔回流至入液层的液体流出通道。The liquid outlet layer is provided with a return cavity as a transition channel between the liquid inflow channel and the liquid outflow channel, so that the refrigeration liquid flows from the liquid inflow channel of the liquid entry layer back to the liquid outflow channel of the liquid entry layer through the return cavity.
所述分离层设置有通液小孔,用于液体流入通道、液体流出通道与回流腔制冷液的连通。The separation layer is provided with small holes for communicating with the liquid, which are used for the communication between the liquid inflow channel, the liquid outflow channel and the refrigerant liquid in the reflux chamber.
所述散热层用于放置激光芯片并实现散热。The heat dissipation layer is used to place the laser chip and realize heat dissipation.
所述机械装配层与缓冲层之间还设有阻隔层,用于隔离机械装配层的螺纹孔和缓冲层的入液腔体、出液腔体。A barrier layer is further arranged between the mechanical assembly layer and the buffer layer, which is used to isolate the screw holes of the mechanical assembly layer and the liquid inlet cavity and the liquid outlet cavity of the buffer layer.
所述芯片安装区设有依次水平排列的独立的制冷分区,每个制冷分区均设有液体流入通道以及液体流出通道;各制冷分区的液体流入通道相互独立且共同与入液腔体连通,各制冷分区的液体流出通道相互独立且共同与出液腔体连通。The chip mounting area is provided with independent refrigeration partitions arranged horizontally in sequence, and each refrigeration partition is provided with a liquid inflow channel and a liquid outflow channel; the liquid inflow channels of each refrigeration partition are independent of each other and communicate with the liquid inlet cavity together. The liquid outflow channels of the refrigeration partition are independent of each other and communicate with the liquid outlet cavity together.
所述入液层还包括与入液腔体连通的入液延伸腔体和与出液腔体连通的出液延伸腔体,所述入液延伸腔体与缓冲层的入液腔体在尺寸和位置上匹配,使得制冷液从入液腔体经入液延伸腔体至液体流入通道入口;所述出液延伸腔体与缓冲层出液腔体的位置匹配,使得制冷液从液体流出通道经出液延伸腔体至出液腔体流出。The liquid inlet layer also includes a liquid inlet extension cavity communicated with the liquid inlet cavity and a liquid outlet extension cavity communicated with the liquid outlet cavity. match the position, so that the refrigerant liquid flows from the liquid inlet cavity through the liquid inlet extension cavity to the inlet of the liquid inflow channel; the position of the liquid outlet extension cavity matches the position of the buffer layer liquid outlet cavity, so that the refrigerant liquid flows from the liquid outflow channel It flows out from the liquid outlet extending cavity to the liquid outlet cavity.
所述液体流入通道和/或液体流出通道和/或回流腔内设置有依次排列条状的散热片,将前述液体流入通道和/或液体流出通道和/或回流腔切分为多个并列的通道。The liquid inflow channel and/or the liquid outflow channel and/or the return cavity are provided with strip-shaped cooling fins arranged in sequence, and the aforementioned liquid inflow channel and/or the liquid outflow channel and/or the return cavity are divided into a plurality of juxtaposed ones. aisle.
所述液体流入通道和/或回流腔内的散热片长度自中部向两侧递减。The length of the cooling fins in the liquid inflow channel and/or the return cavity decreases from the middle to both sides.
所述入液腔体和出液腔体为平行于芯片安装区的长方体,且入液腔体的位置相比于出液腔体的位置远离芯片安装区。The liquid inlet chamber and the liquid outlet chamber are rectangular parallelepipeds parallel to the chip mounting area, and the position of the liquid inlet chamber is farther from the chip mounting area than the position of the liquid outlet chamber.
所述分离层的通液小孔分为线状排列的三部分,位于中部的通液小孔宽度与液体流入通道宽度匹配,用于制冷液体从入液层流入出液层;位于两侧的通液小孔分别与前述两侧的液体流出通道宽度匹配,用于制冷液从出液层回流至入液层的液体流出通道中。The liquid passage holes of the separation layer are divided into three parts arranged in a line. The width of the liquid passage holes in the middle matches the width of the liquid inflow channel, which is used for the cooling liquid to flow into the liquid outlet layer from the liquid inlet layer; The liquid passage holes are respectively matched with the widths of the liquid outflow passages on both sides, and are used for the refrigerant liquid to return from the liquid outlet layer to the liquid outflow passages of the liquid inlet layer.
一种应用了本发明的散热装置的激光器模块,包括多个激光芯片以及散热基体,所述散热基体的一端为芯片安装区,多个激光芯片依次沿其慢轴方向排列键合于芯片安装区上。A laser module using the heat dissipation device of the present invention includes a plurality of laser chips and a heat dissipation base, one end of the heat dissipation base is a chip mounting area, and a plurality of laser chips are arranged and bonded to the chip mounting area in sequence along the slow axis direction thereof. superior.
本发明的有益效果:Beneficial effects of the present invention:
(1)相比于传统的微通道热沉,制冷液流经的通道数量减少,相同流量下每个通道的流速增加,散热能力提高;(1) Compared with the traditional micro-channel heat sink, the number of channels through which the refrigerant flows is reduced, the flow rate of each channel increases under the same flow rate, and the heat dissipation capacity is improved;
(2)对于单个芯片而言,制冷液先冷却热串扰严重、结温高的中间部分,温度升高后再冷却结温较低的芯片两侧部分,保证单个芯片上各部分结温更加均匀;(2) For a single chip, the cooling liquid first cools the middle part with severe thermal crosstalk and high junction temperature, and then cools the two sides of the chip with lower junction temperature after the temperature rises to ensure that the junction temperature of each part on a single chip is more uniform ;
(3)对于多个芯片组成的水平阵列而言,制冷液入口位于阵列的中间,即热串扰非常严重的中间位置,此区域流速稍高于阵列两侧,散热能力优于两侧,各芯片之间的结温差值很小。(3) For a horizontal array composed of multiple chips, the cooling liquid inlet is located in the middle of the array, that is, the middle position where thermal crosstalk is very serious. The flow rate in this area is slightly higher than that on both sides of the array, and the heat dissipation capacity is better than both sides. The junction temperature difference between them is small.
附图说明Description of drawings
图1为本发明散热装置的整体示意图。FIG. 1 is an overall schematic diagram of the heat dissipation device of the present invention.
图2-图8为本发明散热装置的机械装配层、阻隔层、缓冲层、入液层、分离层、出液层、散热层各层示意。2-8 are schematic diagrams of each layer of the mechanical assembly layer, barrier layer, buffer layer, liquid inlet layer, separation layer, liquid outlet layer, and heat dissipation layer of the heat dissipation device of the present invention.
附图标号说明:1- 散热基体,2- 机械装配层,3-阻隔层,4-缓冲层,5-入液层,6-分离层,7-出液层,8-散热层,9-入液孔,10-出液孔,401-入液腔体,402-出液腔体,501-液体流入通道,502-入液延伸腔体,503-液体流出通道,601-通液小孔,11-芯片安装区,12-制冷分区,13-螺纹孔,701-回流腔,504-出液延伸腔体。Description of reference numerals: 1- heat dissipation base, 2- mechanical assembly layer, 3- barrier layer, 4- buffer layer, 5- liquid inlet layer, 6- separation layer, 7- liquid outlet layer, 8- heat dissipation layer, 9- Inlet hole, 10-outlet hole, 401-inlet cavity, 402-outlet cavity, 501-liquid inflow channel, 502-inlet extension cavity, 503-liquid outflow channel, 601-liquid through hole , 11-chip mounting area, 12-cooling partition, 13-threaded hole, 701-return cavity, 504-extension cavity.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
以下结合附图对本发明的技术方案予以说明:The technical scheme of the present invention will be described below in conjunction with the accompanying drawings:
本发明所提出的用于半导体激光器的散热装置,包括散热基体1;如图1所示,所述散热基体1的一端为芯片安装区11,为激光芯片的键合区域;具体的,上述散热基体1具体为热沉,材料为铜,或者钢,或者铝,或者石墨金属复合材料,或者金刚石金属复合材料。The heat dissipation device for a semiconductor laser proposed by the present invention includes a heat dissipation base 1; as shown in FIG. 1 , one end of the heat dissipation base 1 is a
所述散热基体1内部对应于芯片安装区的位置设有液体流入通道和液体流出通道;液体流入通道对应于激光芯片安装位置的中部,液体流出通道位于液体流入通道的两侧,使得制冷液先用于冷却激光芯片中部的发光点,再用于冷却激光芯片两侧的发光点。A liquid inflow channel and a liquid outflow channel are provided inside the heat dissipation base 1 at the position corresponding to the chip mounting area; the liquid inflow channel corresponds to the middle of the laser chip installation position, and the liquid outflow channel is located on both sides of the liquid inflow channel, so that the cooling liquid first Used to cool the light-emitting point in the middle of the laser chip, and then used to cool the light-emitting point on both sides of the laser chip.
所述散热基体1上还设置有与外部连通的入液孔和出液孔,前述液体流入通道与入液孔连通,液体流出通道与出液孔连通。The heat dissipation base 1 is also provided with a liquid inlet hole and a liquid outlet hole which communicate with the outside, the liquid inflow channel is communicated with the liquid inlet hole, and the liquid outflow channel is communicated with the liquid outlet hole.
具体的,在水平阵列型半导体激光器中,如图1或者图8所示,所述芯片安装区11设有依次水平排列的独立制冷分区12,每个制冷分区对应一个激光芯片,每个制冷分区内均设有液体流入通道以及液体流出通道,制冷液自入液孔流入后分流至各制冷分区的液体流入通道,完成制冷后从液体流出通道至出液孔流出。Specifically, in a horizontal array type semiconductor laser, as shown in FIG. 1 or FIG. 8 , the
需要说明的是,上述液体流入通道和液体流出通道的相对位置是以激光芯片的安装位置为参考,比如:当芯片安装区仅安装一片激光芯片时,液体流入通道的位置理解为对应芯片安装区的中部;当芯片安装区包含多个独立的制冷分区时,液体流入通道的位置理解为对应制冷分区的中部。It should be noted that the relative positions of the above-mentioned liquid inflow channel and liquid outflow channel are based on the installation position of the laser chip. For example, when only one laser chip is installed in the chip installation area, the position of the liquid inflow channel is understood as the corresponding chip installation area. When the chip mounting area includes multiple independent cooling zones, the position of the liquid inflow channel is understood as the middle of the corresponding cooling zone.
具体的,所述散热基体1为具有分层结构的热沉整体,前述分层结构通过钎焊,或压焊,或扩散焊,或硬焊料焊接为热沉整体。Specifically, the heat dissipation base 1 is an integral heat sink with a layered structure, and the foregoing layered structure is welded into the whole heat sink by brazing, pressure welding, diffusion welding, or hard solder.
以下以水平阵列半导体激光器为实施例,具体说明散热基体的分层结构,图1为散热基体1的各层的爆炸示意图,图2-图8所示为散热基体1的各层结构图:The layered structure of the heat dissipation substrate is specifically described below by taking the horizontal array semiconductor laser as an example. FIG. 1 is an exploded schematic diagram of each layer of the heat dissipation substrate 1, and FIG. 2 to FIG. 8 show the structure diagrams of each layer of the heat dissipation substrate 1:
所述散热基体1具体包括自下而上的机械装配层2、阻隔层3、缓冲层4、入液层5、分离层6、出液层7、散热层8七层结构。所述芯片安装区11位于前述七层分层结构所构成的热沉整体的一端。The heat dissipation base 1 specifically includes a bottom-up
如图2,所述机械装配层2设有用于安装的螺纹孔13,以及入液孔9和出液孔10;入液孔9的位置相比于出液孔10的位置远离芯片安装区11。As shown in FIG. 2 , the
如图4,所述缓冲层4设有与入液孔9连通的入液腔体401、以及与出液孔10连通的出液腔体402,用于保证散热装置内制冷液的压力稳定;具体的,所述入液腔体401和出液腔体402为平行于芯片安装区的长方体,入液腔体401的位置对应于入液孔9,出液腔体402的位置对应于出液孔10(入液腔体的位置相比于出液腔体的位置远离芯片安装区)。需要说明的是,在水平阵列半导体激光器的应用中,芯片安装区11包含多个依次水平排列的制冷分区,可以理解为芯片安装区11为长方体。As shown in FIG. 4 , the
如图3,所述阻隔层3,用于隔离机械装配层的螺纹孔13和缓冲层的入液腔体401、出液腔体402。所述阻隔层3具体结构为设有与机械装配层2匹配的入液孔9和出液孔10,使得入液孔9自机械装配层连通至缓冲层的入液腔体,出液孔10自机械装配层连通至缓冲层的出液腔体,阻隔层3上在缓冲层的入液腔体401、出液腔体402与机械装配层2的螺纹孔之间进行阻隔,确保入液腔体401、出液腔体402的密闭。需要说明的是,在机械装配层2的螺纹孔未与入液腔体或者出液腔体重合时,这层结构也可以省去。As shown in FIG. 3 , the
如图5,所述入液层5设置有液体流入通道501和液体流出通道503。所述液体流入通道501与每个制冷分区一一对应,液体流入通道501的入口位于上述制冷分区12(即激光芯片安装位置)的中部,且与入液腔体502连通。所述液体流出通道503分为独立的两部分位于液体流入通道的两侧(即对应于制冷分区内的两边)且与出液腔体连通。As shown in FIG. 5 , the
具体的,所述入液层5还包括与入液腔体401连通的入液延伸腔体502和与出液腔体连通的出液延伸腔体504,所述入液延伸腔体502与入液腔体401在尺寸和位置上匹配,使得制冷液从入液腔体经入液延伸腔体502至液体流入通道入口。所述出液延伸腔体504与缓冲层的出液腔体402的位置匹配,使得制冷液从液体流出通道503经出液延伸腔体504至出液腔体流出。Specifically, the
需要说明的是,所述入液层5的液体流入通道501和液体流出通道503在入液层上是相互隔离的。上述入液延伸腔体502与入液腔体401在尺寸和位置上匹配,可以理解为入液延伸腔体502和入液腔体401在散热基体1的各分层叠加方向上相互重合且尺寸相同,使得入液延伸腔体和入液腔体叠加形成一个腔体。上述出液延伸腔体504与缓冲层出液腔体402的位置匹配,可以理解为出液延伸腔体504与出液腔体402在散热基体1的各分层叠加方向上相互重合,且出液延伸腔体504分为与液体流出通道个数匹配的多个独立腔体,相邻的液体流出通道503共用一个出液延伸腔体504。It should be noted that the
进一步的,液体流入通道501设置有依次排列条状的散热片,将液体流入通道切分为多个并列的通道;进一步的,液体流入通道501的散热片长度自中部向两侧递减,使得制冷液在液体流入通道的各并列通道内的流速均匀。Further, the
所述液体流出通道503设置有依次排列条状的散热片,将液体流出通道切分为多个并列的通道,前述散热片与液体流入通道中的散热片相互平行。The
如图7,所述出液层设置有回流腔701,作为液体流入通道和液体流出通道的过渡通道,使得制冷液自入液层的液体流入通道经回流腔回流至入液层的液体流出通道;具体的,每个制冷分区的回流腔相互独立,回流腔内均设置有排列成条状的散热片,所述散热片将回流腔切分成多个并列的通道。具体的,位于制冷分区中部的散热片长度长于两侧的散热片,前述散热片长度由制冷分区中部向两侧递减。As shown in FIG. 7 , the liquid outlet layer is provided with a
如图6,所述分离层设置有通液小孔601,用于液体流入通道和液体流出通道中的制冷液体的连通;具体的,所述通液小孔位于芯片安装区的端部;进一步的,通液小孔在每个制冷分区分为线状排列的三部分,位于中部的通液小孔宽度与液体流入通道匹配,用于制冷液体从入液层流入出液层;位于两侧的通液小孔分别与前述制冷分区两侧的液体流出通道匹配,用于制冷液体从出液层回流至入液层的液体流出通道中。As shown in FIG. 6 , the separation layer is provided with small liquid holes 601, which are used for the communication of the refrigerating liquid in the liquid inflow channel and the liquid outflow channel; specifically, the liquid flow holes are located at the end of the chip mounting area; further The liquid passage holes are divided into three parts in a linear arrangement in each refrigeration zone. The liquid passage holes in the middle match the width of the liquid inflow channel, and are used for the cooling liquid to flow from the liquid inlet layer to the liquid outlet layer; located on both sides The small liquid-passing holes are respectively matched with the liquid outflow channels on both sides of the aforementioned refrigeration partition, and are used for the refrigeration liquid to flow back from the liquid outlet layer to the liquid outflow channels of the liquid inlet layer.
需要说明是,上述分成三部分的通液小孔,指的是按照功能划分为三个部分,实际上每个部分可以为一个通液小孔,也可以为多个排列的通液小孔的组合。It should be noted that the above-mentioned three-part liquid-passing orifice refers to being divided into three parts according to functions. In fact, each part can be a liquid-passing orifice or a plurality of arranged liquid-passing holes. combination.
如图8,所述散热层8用于放置激光芯片并实现散热,或者用于放置安装有激光芯片的载体,比如安装有激光BAR条的导电导热衬底。As shown in FIG. 8 , the
制冷液体在上述七层分层结构中的流动方向作如下解释:制冷液自机械装配层2和阻隔层3的入液孔9流入,在缓冲层4的入液腔体401中积蓄充满,进入入液层的入液延伸腔体502中,并且依次从各液体流入通道501从后至前分流至各制冷分区12,由于液体流出通道位于制冷分区12的中部,制冷液优先完成对激光芯片中部的制冷功能,并在各制冷分区端部通过分离层6的位于每个制冷分区中部的通液小孔601进入出液层7,在出液层7的回流腔701后端向制冷分区两侧分流通过分离层的位于制冷分区两侧的通液小孔回流至入液层的液体流出通道503,制冷液在液体流出通道中从前至后经出液延伸腔体504至缓冲层的出液腔体402,最终经出液口流出。The flow direction of the refrigerant liquid in the above-mentioned seven-layer layered structure is explained as follows: the refrigerant liquid flows into the
需要说明是,上述实施例以具有多个制冷分区的散热基体为例,本发明不限于具有多芯片的水平阵列半导体激光器,也适用于单BAR条的半导体激光器(结构等同于芯片安装区为一个制冷分区)。It should be noted that the above embodiment takes a heat dissipation substrate with multiple cooling partitions as an example, the present invention is not limited to a horizontal array semiconductor laser with multiple chips, but is also applicable to a semiconductor laser with a single BAR bar (the structure is equivalent to the chip mounting area being one cooling zone).
具体的,所述制冷液为水,或乙醇,或乙二醇,或丙二醇。Specifically, the refrigeration liquid is water, or ethanol, or ethylene glycol, or propylene glycol.
一种应用了上述散热装置的激光器模块,包括多个激光芯片以及散热基体,所述散热基体的一端为芯片安装区,多个激光芯片依次沿其慢轴方向排列键合于芯片安装区上。A laser module using the above heat dissipation device includes a plurality of laser chips and a heat dissipation base, one end of the heat dissipation base is a chip mounting area, and a plurality of laser chips are arranged and bonded to the chip mounting area in sequence along the slow axis direction thereof.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811213012.7A CN109273981B (en) | 2018-10-18 | 2018-10-18 | A kind of cooling device and laser module for semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811213012.7A CN109273981B (en) | 2018-10-18 | 2018-10-18 | A kind of cooling device and laser module for semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109273981A CN109273981A (en) | 2019-01-25 |
CN109273981B true CN109273981B (en) | 2020-08-18 |
Family
ID=65192935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811213012.7A Active CN109273981B (en) | 2018-10-18 | 2018-10-18 | A kind of cooling device and laser module for semiconductor laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109273981B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110957632B (en) * | 2019-12-11 | 2021-09-03 | 北京凯普林光电科技股份有限公司 | Micro-channel heat sink for improving semiconductor laser array spectrum half-width |
CN113054527A (en) * | 2021-03-16 | 2021-06-29 | 北京工业大学 | Heat radiator for high power semiconductor laser |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4031903B2 (en) * | 1999-10-21 | 2008-01-09 | イェーノプティク アクチエンゲゼルシャフト | Equipment for cooling diode lasers |
JP4326525B2 (en) * | 2003-02-27 | 2009-09-09 | オムロンレーザーフロント株式会社 | Heat sink, laser module, laser apparatus and laser processing apparatus |
JP4929612B2 (en) * | 2005-04-12 | 2012-05-09 | ソニー株式会社 | Semiconductor laser device and heat sink |
US7656915B2 (en) * | 2006-07-26 | 2010-02-02 | Northrop Grumman Space & Missions Systems Corp. | Microchannel cooler for high efficiency laser diode heat extraction |
CN104051952B (en) * | 2014-07-04 | 2017-06-16 | 成都三鼎日新激光科技有限公司 | A kind of interior microchannel cooling heat sink |
US9825428B2 (en) * | 2015-09-25 | 2017-11-21 | TeraDiode, Inc. | Coating process for laser heat sinks |
CN105470809B (en) * | 2015-12-15 | 2019-04-09 | 西安炬光科技股份有限公司 | A macro-channel liquid refrigerator and combination thereof |
-
2018
- 2018-10-18 CN CN201811213012.7A patent/CN109273981B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109273981A (en) | 2019-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10770372B2 (en) | Fluid routing devices and methods for cooling integrated circuit packages | |
TWI482244B (en) | Heat exchanger and semiconductor module | |
JP5611334B2 (en) | Laser cooling module, manufacturing method, and semiconductor laser manufactured by the module | |
US10665525B2 (en) | Heat transfer for power modules | |
CN105308742B (en) | Manufacture method, semiconductor subassembly cooler, semiconductor subassembly and the electro-motive vehicle of semiconductor subassembly cooler | |
JP5801996B2 (en) | Double-sided cooling power module with power coating | |
CN110957632B (en) | Micro-channel heat sink for improving semiconductor laser array spectrum half-width | |
WO2006098897A1 (en) | Laser diode with double sided cooling | |
JP2017135181A (en) | Semiconductor device | |
CN109273981B (en) | A kind of cooling device and laser module for semiconductor laser | |
CN105470810A (en) | Macro-channel liquid-cooling high-power semiconductor laser module and apparatus | |
CN101640379A (en) | Novel low-cost stack-up array liquid refrigeration semiconductor laser and manufacturing method thereof | |
JP2016219572A (en) | Liquid cooling cooler | |
CN116995048A (en) | Copper strip bonding power module for vehicle | |
CN110783811A (en) | High-power module for surface-emitting laser chip | |
CN115241734B (en) | Uniform temperature and lightweight heat sink for single-tube laser chip and fiber-coupled semiconductor laser | |
CN101640378B (en) | Novel low-cost horizontal array liquid refrigeration semiconductor laser and manufacturing method thereof | |
CN105576482A (en) | Longitudinal cooler system for laser crystal | |
CN209029676U (en) | A liquid refrigerator and packaging structure for realizing uniform temperature distribution | |
CN105470809B (en) | A macro-channel liquid refrigerator and combination thereof | |
CN109038210A (en) | A kind of novel liquid chiller and capsulation structure for semiconductor laser | |
CN210325774U (en) | Liquid cooling radiator | |
CN101883483B (en) | Three-plate mini-type heat radiator | |
CN102684066A (en) | Dual-channel liquid cooling multiquantum-well semiconductor laser and preparation method thereof | |
CN115000802A (en) | Semiconductor laser based on micro-channel secondary substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |