CN109214014B - Method, system and equipment for acquiring residual track life of near-earth track space object - Google Patents
Method, system and equipment for acquiring residual track life of near-earth track space object Download PDFInfo
- Publication number
- CN109214014B CN109214014B CN201710517115.1A CN201710517115A CN109214014B CN 109214014 B CN109214014 B CN 109214014B CN 201710517115 A CN201710517115 A CN 201710517115A CN 109214014 B CN109214014 B CN 109214014B
- Authority
- CN
- China
- Prior art keywords
- semi
- track
- space object
- change rate
- long axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000008859 change Effects 0.000 claims abstract description 115
- 230000010354 integration Effects 0.000 claims abstract description 104
- 230000000694 effects Effects 0.000 claims abstract description 18
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 14
- 238000004590 computer program Methods 0.000 claims description 6
- 238000012163 sequencing technique Methods 0.000 claims 3
- 230000003287 optical effect Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 description 11
- LPLLVINFLBSFRP-UHFFFAOYSA-N 2-methylamino-1-phenylpropan-1-one Chemical compound CNC(C)C(=O)C1=CC=CC=C1 LPLLVINFLBSFRP-UHFFFAOYSA-N 0.000 description 4
- 241000132539 Cosmos Species 0.000 description 4
- 235000005956 Cosmos caudatus Nutrition 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/04—Ageing analysis or optimisation against ageing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供一种获取近地轨道空间物体剩余轨道寿命的方法,包括:根据大气阻力作用,获得空间物体的半长轴变化率、偏心率变化率、当前时刻的轨道根数和大气面积质量比;以预定积分步长采用数值积分算法对半长轴变化率和偏心率变化率进行数值积分,并获取大气密度,进而从当前时刻积分到第n个预定积分步长,获得第n个预定积分步长时空间物体所在轨道的半长轴和偏心率,其中预定积分步长为半长轴步长与半长轴变化率的比;计算半长轴和偏心率之间的乘积并确定半长轴与乘积之间的差值,获得空间物体的近地点高度为差值与地球半径之差;当近地点高度小于预设近地点高度时,获得空间物体剩余轨道寿命为第n个预定积分步长对应时刻与初始时刻的差值。
The present invention provides a method for obtaining the remaining orbit life of a space object in low-Earth orbit, which includes: obtaining the semi-major axis change rate, eccentricity change rate, orbital elements at the current moment and the atmosphere area-to-mass ratio of the space object according to the effect of atmospheric resistance ; Use the numerical integration algorithm to numerically integrate the rate of change of the semi-major axis and the rate of change of the eccentricity with a predetermined integration step, and obtain the atmospheric density, and then integrate from the current moment to the nth predetermined integration step to obtain the nth predetermined integral The semi-major axis and eccentricity of the orbit where the space object is located in the step length, wherein the predetermined integral step is the ratio of the semi-major axis step length to the semi-major axis change rate; calculate the product between the semi-major axis and the eccentricity and determine the semi-major axis The difference between the axis and the product, the perigee height of the space object is obtained as the difference between the difference and the radius of the earth; when the perigee height is less than the preset perigee height, the remaining orbital life of the space object is obtained as the time corresponding to the nth predetermined integration step difference from the initial time.
Description
技术领域Technical Field
本发明涉及航天器轨道动力学领域,尤其涉及一种获取近地轨道空间物体剩余轨道寿命的方法、系统及设备。The present invention relates to the field of spacecraft orbital dynamics, and in particular to a method, system and device for obtaining the remaining orbital life of a space object in a near-Earth orbit.
背景技术Background Art
轨道寿命是指空间物体在轨道上存留的时间。它是从空间物体进入轨道到陨落为止的时间。部分在轨空间物体主要受大气阻力的作用,实际轨道呈现为不断下降的螺旋线,从而导致近地点高度会逐渐降低,最终使得空间物体落入稠密大气层(离地面100公里)烧毁,其中尺寸较大的空间物体可能在稠密大气层中无法完全烧毁,从而降落到地面上,对地面的人员和财产安全造成危害。Orbital lifetime refers to the time a space object remains in orbit. It is the time from when a space object enters orbit to when it falls. Some space objects in orbit are mainly affected by atmospheric drag, and their actual orbits present a spiral line that continues to descend, causing the perigee height to gradually decrease, eventually causing the space object to fall into the dense atmosphere (100 kilometers from the ground) and burn up. Larger space objects may not be completely burned up in the dense atmosphere, and thus fall to the ground, causing harm to the safety of people and property on the ground.
传统计算近地轨道空间物体剩余轨道寿命与实际观测数据相比具有较大差距,获取的轨道寿命不够准确并且计算速度慢。The traditional calculation of the remaining orbital lifetime of space objects in low-Earth orbit has a large gap compared with the actual observation data. The orbital lifetime obtained is not accurate enough and the calculation speed is slow.
发明内容Summary of the invention
基于此,有必要针对上述技术问题,提供一种计算速度快且准确的获取近地轨道空间物体剩余轨道寿命的方法、系统及设备,其中所述方法包括:Based on this, it is necessary to provide a method, system and device for obtaining the remaining orbital life of a space object in low-Earth orbit with fast calculation speed and accuracy in response to the above technical problems, wherein the method comprises:
根据大气阻力作用,获得空间物体的半长轴变化率和偏心率变化率,计算获取所述空间物体的当前时刻的轨道根数和大气面积质量比;According to the atmospheric drag effect, the semi-major axis change rate and the eccentricity change rate of the space object are obtained, and the orbital elements and the atmospheric area mass ratio of the space object at the current moment are calculated and obtained;
以预定积分步长采用数值积分算法对所述半长轴变化率和偏心率变化率进行数值积分,并获取大气密度,进而从所述当前时刻积分到第n个所述预定积分步长,获得第n个所述预定积分步长时所述空间物体所在轨道的半长轴和偏心率,其中所述预定积分步长为半长轴步长与半长轴变化率的比;numerically integrating the semi-major axis change rate and the eccentricity change rate with a predetermined integration step using a numerical integration algorithm, and obtaining the atmospheric density, and then integrating from the current moment to the nth predetermined integration step to obtain the semi-major axis and eccentricity of the orbit of the space object at the nth predetermined integration step, wherein the predetermined integration step is the ratio of the semi-major axis step to the semi-major axis change rate;
计算所述半长轴和偏心率之间的乘积并确定所述半长轴与所述乘积之间的差值,获得所述空间物体的近地点高度为所述差值与地球半径之差;以及Calculating the product of the semi-major axis and the eccentricity and determining the difference between the semi-major axis and the product, obtaining the perigee height of the space object as the difference between the difference and the radius of the earth; and
当所述近地点高度小于预设近地点高度时,获得所述空间物体剩余轨道寿命为所述第n个所述预定积分步长对应时刻与所述初始时刻的差值。When the perigee height is less than a preset perigee height, the remaining orbital life of the space object is obtained as the difference between the time corresponding to the nth predetermined integration step and the initial time.
在其中一个实施例中,所述获取大气密度,包括:In one embodiment, obtaining the atmospheric density includes:
获取预设的大气密度模型和空间环境参数,以所述空间物体所在轨道的真近角为变量进行数值积分,获得与所述第n个所述预定积分步长相对应的大气密度,其中获取与以所述变量变化后的真近角相对应的太阳活动参数F10.7和地磁指数AP。Obtain a preset atmospheric density model and space environment parameters, perform numerical integration with the true near angle of the orbit of the space object as a variable, and obtain the atmospheric density corresponding to the nth predetermined integration step, wherein the solar activity parameter F10.7 and the geomagnetic index AP corresponding to the true near angle after the variable changes are obtained.
在其中一个实施例中,所述根据大气阻力作用,获得空间物体的半长轴变化率和偏心率变化率,并获取所述空间物体的当前时刻的轨道根数和大气面积质量比的步骤中,所述获取大气面积质量比包括:In one embodiment, in the step of obtaining the semi-major axis change rate and the eccentricity change rate of the space object according to the atmospheric drag effect, and obtaining the orbital elements and the atmospheric area mass ratio of the space object at the current moment, obtaining the atmospheric area mass ratio includes:
获取预设历元时刻范围内所述空间物体的轨道根数,对所述轨道根数根据历元时刻进行排序,计算获得相邻两个所述轨道根数的半长轴差和历元时刻差;Obtaining the orbital elements of the space object within a preset epoch time range, sorting the orbital elements according to the epoch time, and calculating the semi-major axis difference and epoch time difference between two adjacent orbital elements;
根据大气密度模型,获取对应所述历元时刻的大气密度参数和空间环境参数,以获得单位大气面积质量比引起的轨道半长轴的第一变化率;According to the atmospheric density model, obtaining atmospheric density parameters and space environment parameters corresponding to the epoch time, so as to obtain a first rate of change of the orbital semi-major axis caused by the mass ratio per unit atmospheric area;
根据太阳光压摄动模型和圆柱形地球阴影模型,获取太阳、地球和空间物体的位置关系,以获得单位光压面积质量比引起的轨道半长轴的第二变化率;According to the solar light pressure perturbation model and the cylindrical earth shadow model, the positional relationship between the sun, the earth and the space object is obtained to obtain the second rate of change of the orbital semi-major axis caused by the unit light pressure area mass ratio;
根据所述半长轴差、时间差、第一变化率和第二变化率,通过最小二乘法,获得大气面积质量比和光压面积质量比。According to the semi-major axis difference, time difference, first change rate and second change rate, the atmosphere area-to-mass ratio and the light pressure area-to-mass ratio are obtained by the least square method.
在其中一个实施例中,所述获取预设历元时刻范围内所述空间物体所在轨道的轨道根数,对所述轨道根数根据历元时刻进行排序,计算获得相邻两个所述轨道根数的半长轴差和历元时刻差的步骤包括:In one embodiment, the steps of obtaining the orbital elements of the orbit of the space object within a preset epoch time range, sorting the orbital elements according to the epoch time, and calculating the semi-major axis difference and epoch time difference between two adjacent orbital elements include:
获取预设历元时刻范围内所述空间物体所在轨道的轨道根数;Obtaining the number of orbital elements of the orbit of the space object within a preset epoch time range;
对所述轨道根数根据历元时刻进行排序;Sorting the orbital elements according to epoch time;
计算获得相邻两个所述轨道根数的历元时刻差;以及Calculating the epoch time difference between two adjacent orbital elements; and
当所述历元时刻差大于等于1天时,计算相邻两个所述轨道根数的半长轴差。When the epoch time difference is greater than or equal to 1 day, the semi-major axis difference between two adjacent orbital elements is calculated.
在其中一个实施例中,所述获取近地轨道空间物体剩余轨道寿命的方法还包括:In one embodiment, the method for obtaining the remaining orbital lifetime of a low-Earth orbit space object further comprises:
当所述近地点高度大于等于预设近地点高度时,将n+1赋值给n,返回所述以预定积分步长采用数值积分算法对所述半长轴变化率和偏心率变化率进行数值积分,并获取大气密度,进而从当前时刻积分到第n个所述预定积分步长,获得第n个所述预定积分步长时所述空间物体所在轨道的半长轴和偏心率,其中所述预定积分步长为半长轴步长与半长轴变化率的比的步骤。When the perigee height is greater than or equal to the preset perigee height, n+1 is assigned to n, and the step of numerically integrating the semi-major axis change rate and the eccentricity change rate using the numerical integration algorithm with the predetermined integration step is returned to obtain the atmospheric density, and then integrating from the current moment to the nth predetermined integration step to obtain the semi-major axis and eccentricity of the orbit of the space object at the nth predetermined integration step, wherein the predetermined integration step is the ratio of the semi-major axis step to the semi-major axis change rate.
本发明还提供一种获取空间物体剩余轨道寿命的系统,包括:The present invention also provides a system for obtaining the remaining orbital life of a space object, comprising:
参数获取模块,用于根据大气阻力作用获得空间物体的半长轴变化率和偏心率变化率,并获取所述空间物体的当前时刻的轨道根数和大气面积质量比;A parameter acquisition module, used to obtain the semi-major axis change rate and eccentricity change rate of the space object according to the atmospheric drag effect, and to obtain the orbital elements and the atmospheric area mass ratio of the space object at the current moment;
积分模块,用于以预定积分步长采用数值积分算法对所述半长轴变化率和偏心率变化率进行数值积分,并获取大气密度,进而从所述当前时刻积分到第n个所述预定积分步长,获得第n个所述预定积分步长时所述空间物体所在轨道的半长轴和偏心率,其中所述预定积分步长为半长轴步长与半长轴变化率的比;an integration module, configured to numerically integrate the semi-major axis change rate and the eccentricity change rate with a predetermined integration step length by using a numerical integration algorithm, and obtain the atmospheric density, and then integrate from the current moment to the nth predetermined integration step length to obtain the semi-major axis and eccentricity of the orbit of the space object at the nth predetermined integration step length, wherein the predetermined integration step length is the ratio of the semi-major axis step length to the semi-major axis change rate;
近地点高度获得模块,用于计算所述半长轴和偏心率之间的乘积并确定所述半长轴与所述乘积之间的差值,获得所述空间物体的近地点高度为所述差值与地球半径之差;以及a perigee height obtaining module, configured to calculate the product of the semi-major axis and the eccentricity and determine the difference between the semi-major axis and the product, and obtain the perigee height of the space object as the difference between the difference and the radius of the earth; and
剩余寿命获得模块,用于当所述近地点高度小于预设近地点高度时,获得所述空间物体剩余轨道寿命为所述第n个所述预定积分步长对应时刻与所述初始时刻的差值。The remaining life acquisition module is used to obtain the remaining orbital life of the space object as the difference between the time corresponding to the nth predetermined integration step and the initial time when the perigee height is less than the preset perigee height.
在其中一个实施例中,所述积分模块还包括:In one embodiment, the integration module further includes:
大气密度获取模块,用于获取预设的大气密度模型和空间环境参数,以所述空间物体所在轨道的真近角为变量进行数值积分,获得与所述第n个所述预定积分步长相对应的大气密度,其中获取与以所述变量变化后的真近角相对应的太阳活动参数F10.7和地磁指数AP。The atmospheric density acquisition module is used to obtain a preset atmospheric density model and space environment parameters, perform numerical integration with the true near angle of the orbit of the space object as a variable, and obtain the atmospheric density corresponding to the nth predetermined integration step, wherein the solar activity parameter F10.7 and the geomagnetic index AP corresponding to the true near angle after the variable changes are obtained.
在其中一个实施例中,所述参数获取模块中,所述获取大气面积质量比包括:In one embodiment, in the parameter acquisition module, acquiring the atmosphere area mass ratio comprises:
半长轴差获得模块,用于获取预设历元时刻范围内所述空间物体所在轨道的轨道根数,对所述轨道根数根据历元时刻进行排序,当所述历元时刻差大于等于1天时,计算获得相邻两个所述轨道根数的半长轴差和历元时刻差;A semi-major axis difference obtaining module is used to obtain the orbital elements of the orbit of the space object within a preset epoch time range, sort the orbital elements according to the epoch time, and when the epoch time difference is greater than or equal to 1 day, calculate the semi-major axis difference and epoch time difference between two adjacent orbital elements;
轨道半长轴的第一变化率获得模块,用于根据大气密度模型,获取对应所述历元时刻的大气密度参数和空间环境参数,进而获得单位大气面积质量比引起的轨道半长轴的第一变化率;The first change rate acquisition module of the orbital semi-major axis is used to obtain the atmospheric density parameters and the space environment parameters corresponding to the epoch time according to the atmospheric density model, and then obtain the first change rate of the orbital semi-major axis caused by the mass ratio per unit atmospheric area;
轨道半长轴的第二变化率获得模块,用于根据太阳光压摄动模型和圆柱形地球阴影模型,获取太阳、地球和空间物体的位置关系,进而获得单位光压面积质量比引起的轨道半长轴的第二变化率;以及a module for obtaining a second change rate of the orbital semi-major axis, for obtaining the positional relationship between the sun, the earth and the space object according to a solar light pressure perturbation model and a cylindrical earth shadow model, and further obtaining a second change rate of the orbital semi-major axis caused by a unit light pressure area mass ratio; and
大气面积质量比和光压面积质量比获得模块,用于根据所述半长轴差、时间差、第一变化率和第二变化率,通过最小二乘法,获得大气面积质量比和光压面积质量比。The atmospheric area mass ratio and light pressure area mass ratio obtaining module is used to obtain the atmospheric area mass ratio and light pressure area mass ratio by the least square method according to the semi-major axis difference, time difference, first change rate and second change rate.
在其中一个实施例中,所述剩余寿命获得模块还用于当所述近地点高度大于等于预设近地点高度时,将n+1赋值给n,返回所述以预定积分步长采用数值积分算法对所述半长轴变化率和偏心率变化率进行数值积分,并获取大气密度,进而从当前时刻积分到第n个所述预定积分步长,获得第n个所述预定积分步长时所述空间物体所在轨道的半长轴和偏心率,其中所述预定积分步长为半长轴步长与半长轴变化率的比的步骤。In one of the embodiments, the remaining life acquisition module is also used to assign n+1 to n when the perigee altitude is greater than or equal to a preset perigee altitude, return to the step of numerically integrating the semi-major axis change rate and the eccentricity change rate using a numerical integration algorithm with a predetermined integration step size, and obtain the atmospheric density, and then integrate from the current moment to the nth predetermined integration step size to obtain the semi-major axis and eccentricity of the orbit of the space object at the nth predetermined integration step size, wherein the predetermined integration step size is the ratio of the semi-major axis step size to the semi-major axis change rate.
本发明还提供一种获取近地轨道空间物体剩余轨道寿命的设备,包括处理器、存储器以及存储在存储器上的计算机程序,其特征在于,所述计算机程序在被所述处理器处理时实现前述任意一项所述方法的步骤。The present invention also provides a device for obtaining the remaining orbital life of a near-Earth orbit space object, comprising a processor, a memory, and a computer program stored in the memory, characterized in that the computer program implements the steps of any one of the aforementioned methods when processed by the processor.
由于半长轴变化率随近地点高度而变化,本发明提供的一种获取近地轨道空间物体剩余轨道寿命的方法、系统及装置中,进行数值积分时采用半长轴步长与半长轴变化率的比为所述预定积分步长,可以使得获取近地轨道空间物体剩余轨道寿命更快且更准确。Since the semi-major axis change rate varies with the perigee height, in a method, system and device for obtaining the remaining orbital lifetime of a low-Earth orbit space object provided by the present invention, the ratio of the semi-major axis step size to the semi-major axis change rate is used as the predetermined integration step size when performing numerical integration, which can make it faster and more accurate to obtain the remaining orbital lifetime of a low-Earth orbit space object.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例的获取近地轨道空间物体剩余轨道寿命的方法的流程图;FIG1 is a flow chart of a method for obtaining the remaining orbital lifetime of a space object in a low-Earth orbit according to an embodiment of the present invention;
图2为本发明实施例的获取近地轨道空间物体剩余轨道寿命的方法中获取大气面积质量比的流程图;FIG2 is a flow chart of obtaining the atmosphere area mass ratio in the method for obtaining the remaining orbital lifetime of a space object in a low-Earth orbit according to an embodiment of the present invention;
图3为本发明实施例的获取近地轨道空间物体剩余轨道寿命的方法中获得相邻两个所述轨道根数的半长轴差和历元时刻差的流程图;3 is a flow chart of obtaining the semi-major axis difference and epoch time difference of two adjacent orbital elements in the method for obtaining the remaining orbital lifetime of a space object in a low-Earth orbit according to an embodiment of the present invention;
图4为本发明另一个实施例中的获取近地轨道空间物体剩余轨道寿命的方法的流程图;FIG4 is a flow chart of a method for obtaining the remaining orbital lifetime of a space object in a low-Earth orbit in another embodiment of the present invention;
图5为本发明实施例的获取近地轨道空间物体剩余轨道寿命的系统的结构框图;FIG5 is a structural block diagram of a system for obtaining the remaining orbital lifetime of a space object in a low-Earth orbit according to an embodiment of the present invention;
图6为本发明实施例的获取近地轨道空间物体剩余轨道寿命的系统中获取大气面积质量比的结构框图;FIG6 is a structural block diagram of obtaining the atmosphere area mass ratio in a system for obtaining the remaining orbital lifetime of a space object in a low-Earth orbit according to an embodiment of the present invention;
图7为本发明一种实施方式的计算结果与国外space-track.org公布结果的比对。FIG. 7 is a comparison of the calculation results of an embodiment of the present invention and the results published by space-track.org.
具体实施方式DETAILED DESCRIPTION
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solution and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not used to limit the present invention.
图1为一个实施例的获取近地轨道空间物体剩余轨道寿命的方法的流程图,所述方法包括:FIG1 is a flow chart of a method for obtaining the remaining orbital lifetime of a space object in a low-Earth orbit according to an embodiment of the present invention. The method comprises:
步骤S100,根据大气阻力作用,获得空间物体的半长轴变化率和偏心率变化率,并获取所述空间物体的初始时刻的轨道根数和大气面积质量比。Step S100, obtaining the semi-major axis change rate and eccentricity change rate of the space object according to the atmospheric drag effect, and obtaining the orbital elements and the atmospheric area-mass ratio of the space object at the initial moment.
具体地,根据大气阻力作用,获得空间物体的半长轴变化率和偏心率变化率,所述半长轴变化率和偏心率变化率表示为:Specifically, according to the atmospheric drag effect, the semi-major axis change rate and the eccentricity change rate of the space object are obtained, and the semi-major axis change rate and the eccentricity change rate are expressed as:
其中,σ=CDA/2为弹道系数,CD为空间物体的阻力系数,本实施例中取CD=2.2,A为空间物体的面积质量比,ρ为该高度的大气密度,v为空间物体的速率,r为空间物体的径向距离,a为空间物体所在轨道的半长轴,e为空间物体所在轨道的偏心率,μ为地球引力常数,θ为空间物体的轨道的真近点角。对此半长轴变化率和偏心率变化率方程对时间求积分时,需要获取所述空间物体的初始时刻的轨道根数即初始时刻的半长轴和偏心率和大气面积质量比等相关参数。并且获取当前时刻轨道根数中轨道半长轴和偏心率应满足近地轨道(LEO)条件:a<8378km和e<0.1km。Among them, σ=C D A/2 is the ballistic coefficient, C D is the drag coefficient of the space object, in this embodiment, C D =2.2, A is the area-mass ratio of the space object, ρ is the atmospheric density at the height, v is the speed of the space object, r is the radial distance of the space object, a is the semi-major axis of the orbit of the space object, e is the eccentricity of the orbit of the space object, μ is the earth's gravitational constant, and θ is the true anomaly of the orbit of the space object. When integrating the semi-major axis change rate and eccentricity change rate equations over time, it is necessary to obtain the orbital elements of the space object at the initial moment, that is, the semi-major axis and eccentricity at the initial moment and related parameters such as the atmospheric area-mass ratio. And the orbital semi-major axis and eccentricity in the orbital elements at the current moment should meet the low-Earth orbit (LEO) conditions: a<8378km and e<0.1km.
步骤S200,以预定积分步长采用数值积分算法对所述半长轴变化率和偏心率变化率进行数值积分,并获取大气密度,进而从当前时刻积分到第n个所述预定积分步长,获得第n个所述预定积分步长时所述空间物体所在轨道的半长轴和偏心率,其中所述预定积分步长为半长轴步长与半长轴变化率的比。Step S200, numerically integrate the semi-major axis change rate and the eccentricity change rate using a numerical integration algorithm with a predetermined integration step, and obtain the atmospheric density, and then integrate from the current moment to the nth predetermined integration step to obtain the semi-major axis and eccentricity of the orbit of the space object at the nth predetermined integration step, wherein the predetermined integration step is the ratio of the semi-major axis step to the semi-major axis change rate.
具体地,预定积分步长可以为一个定长值。在一个实施例中,预定积分步长优选为半长轴步长与半长轴变化率的比。本实施例中,数值积分算法为龙格库塔四阶积分法。将所述半长轴变化率和偏心率变化率从当前时刻积分到第n个所述预定积分步长,获得第n个所述预定积分步长时所述空间物体的半长轴和偏心率。Specifically, the predetermined integration step length may be a fixed length value. In one embodiment, the predetermined integration step length is preferably the ratio of the semi-major axis step length to the semi-major axis change rate. In this embodiment, the numerical integration algorithm is the Runge-Kutta fourth-order integration method. The semi-major axis change rate and the eccentricity change rate are integrated from the current moment to the nth predetermined integration step length to obtain the semi-major axis and eccentricity of the space object at the nth predetermined integration step length.
由于半长轴变化率随近地点高度而变化,本发明所提供的获取近地轨道空间物体剩余轨道寿命的方法中进行数值积分时采用半长轴步长与半长轴变化率的比为所述预定积分步长,使得获取近地轨道空间物体剩余轨道寿命更快且更准确。Since the semi-major axis change rate varies with the perigee height, in the method for obtaining the remaining orbital lifetime of a space object in a low-Earth orbit provided by the present invention, the ratio of the semi-major axis step size to the semi-major axis change rate is used as the predetermined integration step size during numerical integration, so that the remaining orbital lifetime of the space object in a low-Earth orbit can be obtained faster and more accurately.
步骤S300,计算所述半长轴和偏心率之间的乘积并确定所述半长轴与所述乘积之间的差值,获得空间物体的近地点高度为所述差值与地球半径之差。Step S300, calculating the product of the semi-major axis and the eccentricity and determining the difference between the semi-major axis and the product, and obtaining the perigee height of the space object as the difference between the difference and the radius of the earth.
具体地,求解空间物体的近地点高度是根据步骤S200获得的半长轴和偏心率,通过近地点高度公式rp=a*(1-e)-Re获得所述空间物体的近地点高度,其中Re为地球半径。Specifically, the perigee height of the space object is obtained according to the semi-major axis and eccentricity obtained in step S200, and the perigee height of the space object is obtained by the perigee height formula r p =a*(1-e) -Re , where Re is the radius of the earth.
步骤S400,当所述近地点高度小于预设近地点高度时,获得所述空间物体剩余轨道寿命为所述第n个所述预定积分步长对应时刻与所述初始时刻的差值。Step S400, when the perigee height is less than a preset perigee height, the remaining orbital life of the space object is obtained as the difference between the time corresponding to the nth predetermined integration step and the initial time.
具体地,通过近地点高度来判断,当所述近地点高度小于预设近地点高度即可获得所述空间物体剩余轨道寿命。优选地,当rp<100km时,获得所述空间物体剩余轨道寿命为所述第n个所述预定积分步长对应时刻与所述初始时刻的差值。Specifically, the remaining orbital life of the space object is determined by the perigee height, and when the perigee height is less than a preset perigee height, the remaining orbital life of the space object can be obtained. Preferably, when r p <100 km, the remaining orbital life of the space object is obtained as the difference between the time corresponding to the nth predetermined integration step and the initial time.
在其中一个实施例中,步骤S200中,还包括获取预设的大气密度模型和空间环境参数,以所述空间物体所在轨道的真近角为变量进行数值积分,获得与所述第n个所述预定积分步长相对应的大气密度,其中获取与以所述变量变化后的真近角相对应的太阳活动参数F10.7和地磁指数AP。In one embodiment, step S200 also includes obtaining a preset atmospheric density model and space environment parameters, performing numerical integration with the true near angle of the orbit of the space object as a variable, and obtaining the atmospheric density corresponding to the nth predetermined integration step, wherein the solar activity parameter F10.7 and the geomagnetic index AP corresponding to the true near angle after the change of the variable are obtained.
具体地,在本实施例中,大气密度为真近角的函数,并且与太阳活动参数和地磁指数相关。大气密度还与所述第n个所述预定积分步长对应时刻空间物体所处位置相关。而预设的大气密度模型和空间环境参数给出这些相关参数相应值。对真近角进行数值积分最终可获得所述第n个所述预定积分步长对应时刻的大气密度。预设的大气模型为NRLMSISE2000标准地球大气模型,预设的空间环境参数为space weather参数。获取不同的真近角下与所述空间物体所在轨道真近角相对应的太阳极紫外效应参数即太阳活动参数F10.7、地磁指数AP、轨道高度进而根据NRLMSISE2000标准地球大气模型给出大气密度。而传统计算轨道剩余寿命时大气密度采用常量或是没有根据空间环境参数预报结果计算大气密度,使得最终计算结果不准确。本发明根据不同时刻不同真近角获取大气密度更科学,也使最终获取的轨道剩余寿命更准确。Specifically, in this embodiment, the atmospheric density is a function of the true near angle and is related to the solar activity parameters and the geomagnetic index. The atmospheric density is also related to the position of the space object at the time corresponding to the nth predetermined integral step. The preset atmospheric density model and space environment parameters give the corresponding values of these related parameters. The atmospheric density at the time corresponding to the nth predetermined integral step can be finally obtained by numerically integrating the true near angle. The preset atmospheric model is the NRLMSISE2000 standard earth atmosphere model, and the preset space environment parameters are space weather parameters. The solar extreme ultraviolet effect parameters corresponding to the true near angle of the orbit where the space object is located under different true near angles, namely the solar activity parameter F10.7, the geomagnetic index AP, and the orbital height are obtained, and then the atmospheric density is given according to the NRLMSISE2000 standard earth atmosphere model. When the conventional calculation of the remaining life of the orbit uses a constant for the atmospheric density or does not calculate the atmospheric density according to the prediction results of the space environment parameters, the final calculation result is inaccurate. The present invention is more scientific to obtain the atmospheric density according to different true near angles at different times, and also makes the remaining life of the orbit finally obtained more accurate.
如图2所示,在一个实施例中,所述根据大气阻力作用,获得空间物体的半长轴变化率和偏心率变化率,并获取所述空间物体的当前时刻的轨道根数和大气面积质量比的步骤S100中,所述获取大气面积质量比包括:As shown in FIG. 2 , in one embodiment, in the step S100 of obtaining the semi-major axis change rate and the eccentricity change rate of the space object according to the atmospheric drag effect, and obtaining the orbital elements and the atmospheric area mass ratio of the space object at the current moment, the obtaining of the atmospheric area mass ratio includes:
步骤S110,获取预设历元时刻范围内所述空间物体所在轨道的轨道根数,对所述轨道根数根据历元时刻进行排序,获得相邻两个所述轨道根数的半长轴差和历元时刻差。Step S110, obtaining the orbital elements of the orbit of the space object within a preset epoch time range, sorting the orbital elements according to the epoch time, and obtaining the semi-major axis difference and epoch time difference between two adjacent orbital elements.
具体地,选取一段历元时刻范围内所述空间物体所在轨道的轨道根数。此轨道根数为平均轨道根数。将这一段历元时刻范围内的轨道根数按历元时刻进行排序,然后再计算相邻两个所述轨道根数的半长轴差和历元时刻差。Specifically, the orbital element number of the orbit of the space object within a period of epoch time is selected. This orbital element number is the average orbital element number. The orbital elements within this period of epoch time are sorted according to the epoch time, and then the semi-major axis difference and epoch time difference between two adjacent orbital elements are calculated.
如图3所示,在一个实施例中,所述步骤S110包括:As shown in FIG. 3 , in one embodiment, step S110 includes:
步骤S111,获取预设历元时刻范围内所述空间物体所在轨道的轨道根数;Step S111, obtaining the orbital elements of the orbit of the space object within a preset epoch time range;
步骤S112,对所述轨道根数根据历元时刻进行排序;Step S112, sorting the orbital elements according to epoch time;
步骤S113,计算获得相邻两个所述轨道根数的历元时刻差;以及Step S113, calculating and obtaining the epoch time difference between two adjacent orbital elements; and
步骤S114,当所述历元时刻差大于等于1天时,计算相邻两个所述轨道根数的半长轴差。Step S114, when the epoch time difference is greater than or equal to 1 day, calculating the semi-major axis difference between two adjacent orbital elements.
步骤S120,根据大气密度模型,获取对应所述历元时刻的大气密度参数和空间环境参数,进而获得单位大气面积质量比引起的轨道半长轴的第一变化率。Step S120, obtaining the atmospheric density parameters and the space environment parameters corresponding to the epoch time according to the atmospheric density model, and then obtaining the first change rate of the orbit semi-major axis caused by the mass ratio per unit atmospheric area.
具体地,根据对应历元时刻的轨道根数、大气密度模型NRLMSISE 2000以及空间环境参数space weaher,根据大气阻力模型,单位大气面积质量比引起的半长轴随时间平均变化率的方程如下:Specifically, according to the orbital elements at the corresponding epoch, the atmospheric density model NRLMSISE 2000 and the space environment parameter space weaher, according to the atmospheric drag model, the equation for the average rate of change of the semi-major axis over time caused by the mass ratio per unit atmospheric area is as follows:
其中,CD为空间物体的阻力系数,本实施例中取CD=2.2,v为空间物体的速率,r为空间物体的径向距离,a为空间物体所在轨道的半长轴,μ为地球引力常数,θ为空间物体的轨道的真近点角。Wherein, CD is the drag coefficient of the space object, in this embodiment CD = 2.2, v is the velocity of the space object, r is the radial distance of the space object, a is the semi-major axis of the orbit of the space object, μ is the earth's gravitational constant, and θ is the true anomaly angle of the orbit of the space object.
步骤S130,根据太阳光压摄动模型和圆柱形地球阴影模型,获取太阳、地球和空间物体的位置关系,进而获得单位光压面积质量比引起的轨道半长轴的第二变化率。Step S130, according to the solar radiation pressure perturbation model and the cylindrical earth shadow model, the positional relationship between the sun, the earth and the space object is obtained, and then the second change rate of the orbital semi-major axis caused by the unit radiation pressure area mass ratio is obtained.
根据圆柱形地球阴影模型,太阳、地球和空间物体的位置关系以及光压摄动模型,计算获得在太阳光压摄动影响下,对应历元时刻的单位光压面积质量比引起的半长轴随时间平均变化率的方程如下:According to the cylindrical earth shadow model, the positional relationship between the sun, the earth and space objects, and the light pressure perturbation model, the equation for the average rate of change of the semi-major axis over time caused by the unit light pressure area mass ratio at the corresponding epoch time under the influence of the solar light pressure perturbation is calculated as follows:
其中,λ表示为:PSR=4.57×10-6N/m2为太阳辐射压常数,CR为太阳光压常数(本实施例中取1.40),Rsat2sun为卫星指向太阳的位置矢量。参考圆柱形地球阴影模型,当卫星运行在地球的背面,没有太阳光照射时(即阴影区),卫星受到的太阳光压摄动影响为0。Among them, λ is expressed as: P SR =4.57×10 -6 N/m 2 is the solar radiation pressure constant, CR is the solar light pressure constant (taken as 1.40 in this embodiment), and R sat2sun is the position vector of the satellite pointing to the sun. Referring to the cylindrical earth shadow model, when the satellite is operating on the back of the earth without sunlight (i.e., in the shadow area), the solar light pressure perturbation effect on the satellite is 0.
步骤S140,根据所述半长轴差、时间差、第一变化率和第二变化率,通过最小二乘法,获得大气面积质量比和光压面积质量比。Step S140, obtaining the atmosphere area-to-mass ratio and the light pressure area-to-mass ratio by the least square method according to the semi-major axis difference, the time difference, the first change rate and the second change rate.
具体地,根据所述半长轴差Δai、时间差Δti、第一变化率和第二变化率,在此范围内空间物体的大气面积质量比A1和光压面积质量比A2,可以建立方程:Specifically, according to the semi-major axis difference Δa i , the time difference Δt i , the first change rate and the second change rate, the atmosphere area mass ratio A 1 and the light pressure area mass ratio A 2 of the space object within this range, the equation can be established:
其中i=1,2...N-1分别对应每个历元时刻差。对上述方程采用最小二乘方法计算,获得大气面积质量比A1和光压面积质量比A2的最优值。Where i = 1, 2...N-1 corresponds to each epoch time difference. The least square method is used to calculate the above equation to obtain the optimal values of the atmosphere area mass ratio A1 and the light pressure area mass ratio A2 .
因此本发明所提供的获取近地轨道空间物体剩余轨道寿命的方法中进行数值积分时采用此获得大气面积质量比A1和光压面积质量比A2的最优值的方法,使得获取近地轨道空间物体剩余轨道寿命更精确。Therefore, in the method for obtaining the remaining orbital lifetime of a space object in a low-Earth orbit provided by the present invention, the method for obtaining the optimal values of the atmosphere area mass ratio A1 and the light pressure area mass ratio A2 is adopted when performing numerical integration, so that the remaining orbital lifetime of the space object in a low-Earth orbit is obtained more accurately.
如图4所示,在一个实施例中,所述获取近地轨道空间物体剩余轨道寿命的方法还包括:As shown in FIG4 , in one embodiment, the method for obtaining the remaining orbital lifetime of a low-Earth orbit space object further includes:
步骤S500,当所述近地点高度大于等于预设近地点高度时,将n+1赋值给n,返回所述以预定积分步长采用数值积分算法对所述半长轴变化率和偏心率变化率进行数值积分,并获取大气密度,进而从当前时刻积分到第n个所述预定积分步长,获得第n个所述预定积分步长时所述空间物体所在轨道的半长轴和偏心率,其中所述预定积分步长为半长轴步长与半长轴变化率的比的步骤。Step S500, when the perigee height is greater than or equal to the preset perigee height, assign n+1 to n, return to the step of numerically integrating the semi-major axis change rate and the eccentricity change rate using the numerical integration algorithm with the predetermined integration step, and obtain the atmospheric density, and then integrate from the current moment to the nth predetermined integration step to obtain the semi-major axis and eccentricity of the orbit of the space object at the nth predetermined integration step, wherein the predetermined integration step is the ratio of the semi-major axis step to the semi-major axis change rate.
具体地,一般来说经历一个积分步长是不能满足所述近地点高度小于预设近地点高度的,此时需要积分到下一个积分步长,因此需要将n+1赋值给n返回所述S200的步骤继续积分计算。Specifically, generally speaking, one integration step cannot satisfy the condition that the perigee height is less than the preset perigee height. At this time, it is necessary to integrate to the next integration step. Therefore, it is necessary to assign n+1 to n and return to the step S200 to continue the integration calculation.
本发明还提供一种获取近地轨道空间物体剩余轨道寿命的系统。The present invention also provides a system for obtaining the remaining orbital life of a space object in a near-Earth orbit.
图5为一个实施例的获取近地轨道空间物体剩余轨道寿命的系统的结构框图,所述系统包括:FIG5 is a structural block diagram of a system for obtaining the remaining orbital lifetime of a space object in a near-Earth orbit according to an embodiment of the present invention. The system includes:
参数获取模块100,用于根据大气阻力作用获得空间物体的半长轴变化率和偏心率变化率,并获取所述空间物体的当前时刻的轨道根数和大气面积质量比;The
积分模块200,用于以预定积分步长采用数值积分算法对所述半长轴变化率和偏心率变化率进行数值积分,并获取大气密度,进而从所述当前时刻积分到第n个所述预定积分步长,获得第n个所述预定积分步长时所述空间物体所在轨道的半长轴和偏心率,其中所述预定积分步长为半长轴步长与半长轴变化率的比;An
近地点高度获得模块300,用于计算所述半长轴和偏心率之间的乘积并确定所述半长轴与所述乘积之间的差值,获得所述空间物体的近地点高度为所述差值与地球半径之差;以及a perigee
剩余寿命获得模块600,用于当所述近地点高度小于预设近地点高度时,获得所述空间物体剩余轨道寿命为所述第n个所述预定积分步长对应时刻与所述初始时刻的差值。The remaining life acquisition module 600 is used to obtain the remaining orbital life of the space object as the difference between the time corresponding to the nth predetermined integration step and the initial time when the perigee height is less than the preset perigee height.
在一个实施例中,所述积分模块200还包括:In one embodiment, the
大气密度获取模块,用于获取预设的大气密度模型和空间环境参数,以所述空间物体所在轨道的真近角为变量进行数值积分,获得与所述第n个所述预定积分步长相对应的大气密度,其中获取与以所述变量变化后的真近角相对应的太阳活动参数F10.7和地磁指数AP。The atmospheric density acquisition module is used to obtain a preset atmospheric density model and space environment parameters, perform numerical integration with the true near angle of the orbit of the space object as a variable, and obtain the atmospheric density corresponding to the nth predetermined integration step, wherein the solar activity parameter F10.7 and the geomagnetic index AP corresponding to the true near angle after the variable changes are obtained.
如图6所示,在一个实施例中,所述参数获取模块100中,所述大气面积质量比包括:As shown in FIG6 , in one embodiment, in the
半长轴差获得模块110,用于获取预设历元时刻范围内所述空间物体所在轨道的轨道根数,对所述轨道根数根据历元时刻进行排序,当所述历元时刻差大于等于1天时,计算获得相邻两个所述轨道根数的半长轴差和历元时刻差;The semi-major axis
轨道半长轴的第一变化率获得模块120,用于根据大气密度模型,获取对应所述历元时刻的大气密度参数和空间环境参数,进而获得单位大气面积质量比引起的轨道半长轴的第一变化率;The first change
轨道半长轴的第二变化率获得模块130,用于根据太阳光压摄动模型和圆柱形地球阴影模型,获取太阳、地球和空间物体的位置关系,进而获得单位光压面积质量比引起的轨道半长轴的第二变化率;The second change
大气面积质量比和光压面积质量比获得模块140,用于根据所述半长轴差、时间差、第一变化率和第二变化率,通过最小二乘法,获得大气面积质量比和光压面积质量比。The atmosphere area mass ratio and light pressure area mass
在一个实施例中,所述剩余寿命获得模块400还用于当所述近地点高度大于等于预设近地点高度时,将n+1赋值给n,返回所述以预定积分步长采用数值积分算法对所述半长轴变化率和偏心率变化率进行数值积分,并获取大气密度,进而从当前时刻积分到第n个所述预定积分步长,获得第n个所述预定积分步长时所述空间物体所在轨道的半长轴和偏心率,其中所述预定积分步长为半长轴步长与半长轴变化率的比的步骤。In one embodiment, the remaining
本发明还提供一种获取近地轨道空间物体剩余轨道寿命的设备,包括处理器、存储器以及存储在存储器上的计算机程序,其特征在于,所述计算机程序在被所述处理器处理时实现前述任意一项所述方法的步骤。The present invention also provides a device for obtaining the remaining orbital life of a near-Earth orbit space object, comprising a processor, a memory, and a computer program stored in the memory, characterized in that the computer program implements the steps of any one of the aforementioned methods when processed by the processor.
根据上述一具体实施例,给出一具体应用案例如下:According to the above specific embodiment, a specific application case is given as follows:
采用2015年4月至7月的cosmos 1151(国际编号11671)的轨道根数,利用该方法估计其大气面积质量比和光压面积质量比,然后计算其剩余轨道寿命,对该方法进行验证说明其具体实施方式,同时给出11671物体的实际陨落期。所采用的目标轨道根数均来自网络下载的TLE文件,空间环境参数来自于网络下载的space-weather.txt文件。The orbital elements of Cosmos 1151 (international number 11671) from April to July 2015 are used to estimate its atmospheric area mass ratio and photometric area mass ratio using this method, and then its remaining orbital lifetime is calculated. The method is verified and explained in detail, and the actual fall period of the object 11671 is given. The target orbital elements used are all from the TLE file downloaded from the Internet, and the space environment parameters are from the space-weather.txt file downloaded from the Internet.
a)轨道根数排序与筛选。利用2015年4月至7月cosmos 1151的轨道根数,排序和筛选后,计算得到半长轴差值和时间差结果如下表所示:a) Orbital element sorting and screening. Using the orbital elements of
b)单位大气面积质量比和单位光压面积质量比引起的半长轴平均变化率计算。利用空间环境参数、轨道根数和大气模型NRLMSISE 2000计算单位大气面积质量比引起的半长轴平均变化;利用圆柱形地球阴影模型和轨道根数计算单位光压面积质量比引起的半长轴平均变化。结果如下表所示:b) Calculation of the average change rate of the semi-major axis caused by the mass ratio per unit atmospheric area and the mass ratio per unit light pressure. The average change of the semi-major axis caused by the mass ratio per unit atmospheric area is calculated using the space environment parameters, orbital elements and the atmospheric model NRLMSISE 2000; the average change of the semi-major axis caused by the mass ratio per unit light pressure is calculated using the cylindrical earth shadow model and orbital elements. The results are shown in the following table:
c)大气和光压面积质量比计算。根据上述表格中的计算内容,采用最小二乘法进行计算,获得11671的大气面积质量比和光压面积质量比分别为0.00616(平方米/kg)和36.45092(平方米/kg)。c) Calculation of the atmospheric and light pressure area mass ratios: According to the calculation contents in the above table, the least square method was used to calculate the atmospheric area mass ratio and light pressure area mass ratio of 11671, which were 0.00616 (m2/kg) and 36.45092 (m2/kg), respectively.
(2)cosmos 1151剩余轨道寿命估计(2) Estimation of the remaining orbital lifetime of
分别选取15个不同时刻的cosmos 1151轨道根数,利用步骤(1)中获取的大气面积质量比0.00616(平方米/kg),进行剩余轨道寿命估计,结果如下表所示:The orbital elements of
如图7所示,本发明一种实施方式的计算结果与国外space-track.org公布结果的比对。此图表明本发明更接近实际观测结果,更准确。As shown in Figure 7, the calculation results of an embodiment of the present invention are compared with the results published by space-track.org. This figure shows that the present invention is closer to the actual observation results and more accurate.
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above embodiments only express several implementation methods of the present invention, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the invention patent. It should be pointed out that, for those of ordinary skill in the art, several variations and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the attached claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710517115.1A CN109214014B (en) | 2017-06-29 | 2017-06-29 | Method, system and equipment for acquiring residual track life of near-earth track space object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710517115.1A CN109214014B (en) | 2017-06-29 | 2017-06-29 | Method, system and equipment for acquiring residual track life of near-earth track space object |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109214014A CN109214014A (en) | 2019-01-15 |
CN109214014B true CN109214014B (en) | 2023-05-02 |
Family
ID=64960775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710517115.1A Active CN109214014B (en) | 2017-06-29 | 2017-06-29 | Method, system and equipment for acquiring residual track life of near-earth track space object |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109214014B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110489879B (en) * | 2019-08-22 | 2022-07-29 | 中国人民解放军32035部队 | Space target meteor forecasting method suitable for space environment disturbance condition |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997031822A2 (en) * | 1993-11-12 | 1997-09-04 | Scott David R | Apparatus and methods for in-space satellite operations |
CN1266800A (en) * | 1999-03-16 | 2000-09-20 | 株式会社日立制作所 | Communication system, communication receiving device and communication terminal in said system |
JP2003255037A (en) * | 2002-03-01 | 2003-09-10 | Sony Corp | Positioning method and device using gps |
CN103853887A (en) * | 2014-03-05 | 2014-06-11 | 北京航空航天大学 | Satellite orbit determination method for eccentricity of frozen orbit |
CN104298647A (en) * | 2014-09-30 | 2015-01-21 | 北京航空航天大学 | Low earth orbit satellite based on-satellite determination method for earth shadow moment forecast |
RU2013136347A (en) * | 2013-08-02 | 2015-02-10 | Закрытое акционерное общество "Конструкторское бюро навигационных систем" (ЗАО "КБ НАВИС") | METHOD AND DEVICE FOR PROCESSING NAVIGATION SIGNALS AND DETERMINATION OF LOCATION USING LONG-TERM COMPACT ECHEMERID INFORMATION |
CN105346737A (en) * | 2015-11-30 | 2016-02-24 | 中国空间技术研究院 | Heat control method of laser device of GEO satellite |
CN105607478A (en) * | 2016-01-21 | 2016-05-25 | 北京理工大学 | Geostationary orbit spacecraft electrical propulsion transfer track control method |
CN106202640A (en) * | 2016-06-28 | 2016-12-07 | 西北工业大学 | Day ground three body gravitational fields in halo orbit spacecraft bias track method for designing |
WO2017147531A1 (en) * | 2016-02-26 | 2017-08-31 | Space Systems/Loral, Llc | Inclined geosynchronous orbit spacecraft constellations |
CA2957065A1 (en) * | 2017-02-06 | 2018-08-06 | David R. Lewis | Synthetically recreating the geostationary satellite orbital arc array with preferred elliptical orbit parameters |
CN109211225A (en) * | 2017-06-29 | 2019-01-15 | 中国科学院国家天文台 | Obtain method, system and the equipment of highly elliptic orbit space object remaining orbital lifetime |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010060489A (en) * | 2008-09-05 | 2010-03-18 | Seiko Epson Corp | Satellite orbital modeling propriety determination method, long term prediction orbital data supply method, and satellite orbital modeling propriety determination device |
CN112124626B (en) * | 2020-08-27 | 2022-02-15 | 中国人民解放军战略支援部队航天工程大学 | A kind of Walker constellation configuration maintenance method and terminal device |
-
2017
- 2017-06-29 CN CN201710517115.1A patent/CN109214014B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997031822A2 (en) * | 1993-11-12 | 1997-09-04 | Scott David R | Apparatus and methods for in-space satellite operations |
CN1266800A (en) * | 1999-03-16 | 2000-09-20 | 株式会社日立制作所 | Communication system, communication receiving device and communication terminal in said system |
JP2003255037A (en) * | 2002-03-01 | 2003-09-10 | Sony Corp | Positioning method and device using gps |
RU2013136347A (en) * | 2013-08-02 | 2015-02-10 | Закрытое акционерное общество "Конструкторское бюро навигационных систем" (ЗАО "КБ НАВИС") | METHOD AND DEVICE FOR PROCESSING NAVIGATION SIGNALS AND DETERMINATION OF LOCATION USING LONG-TERM COMPACT ECHEMERID INFORMATION |
CN103853887A (en) * | 2014-03-05 | 2014-06-11 | 北京航空航天大学 | Satellite orbit determination method for eccentricity of frozen orbit |
CN104298647A (en) * | 2014-09-30 | 2015-01-21 | 北京航空航天大学 | Low earth orbit satellite based on-satellite determination method for earth shadow moment forecast |
CN105346737A (en) * | 2015-11-30 | 2016-02-24 | 中国空间技术研究院 | Heat control method of laser device of GEO satellite |
CN105607478A (en) * | 2016-01-21 | 2016-05-25 | 北京理工大学 | Geostationary orbit spacecraft electrical propulsion transfer track control method |
WO2017147531A1 (en) * | 2016-02-26 | 2017-08-31 | Space Systems/Loral, Llc | Inclined geosynchronous orbit spacecraft constellations |
CN106202640A (en) * | 2016-06-28 | 2016-12-07 | 西北工业大学 | Day ground three body gravitational fields in halo orbit spacecraft bias track method for designing |
CA2957065A1 (en) * | 2017-02-06 | 2018-08-06 | David R. Lewis | Synthetically recreating the geostationary satellite orbital arc array with preferred elliptical orbit parameters |
CN109211225A (en) * | 2017-06-29 | 2019-01-15 | 中国科学院国家天文台 | Obtain method, system and the equipment of highly elliptic orbit space object remaining orbital lifetime |
Non-Patent Citations (6)
Title |
---|
Reducing variability in short term orbital lifetime prediction;Christopher Kebschull et al.;《Advances in Space Research》;20130430;第51卷(第7期);1110-1115 * |
Solar Radiation Pressure-Augmented Deorbiting: Passive End-of-Life Disposal from High-Altitude Orbits;Lucking, C et al.;《JOURNAL OF SPACERAFT AND ROCKETS》;20131231;第50卷(第6期);1256-1267 * |
卫星编队队形重构变轨方案;田继超 等;《吉林大学学报(工学版)》;20100430;1161-1165 * |
小偏心率空间碎片天基短弧定轨方法和实验;李大卫 等;《系统工程与电子技术》;20220315;2601-2611 * |
空间碎片数据形式及轨道演化算法;庞宝君 等;《上海航天》;20110228;50-55 * |
近地轨道空间碎片环境工程模型建模技术研究;彭科科;《中国博士学位论文全文数据库工程科技Ⅱ辑》;20170215(第2期);C031-128 * |
Also Published As
Publication number | Publication date |
---|---|
CN109214014A (en) | 2019-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DellaGiustina et al. | Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis | |
Renard et al. | In situ measurements of desert dust particles above the western Mediterranean Sea with the balloon-borne Light Optical Aerosol Counter/sizer (LOAC) during the ChArMEx campaign of summer 2013 | |
Levy et al. | Evaluation of the Moderate‐Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE | |
Rozanov et al. | NO2 and BrO vertical profile retrieval from SCIAMACHY limb measurements: Sensitivity studies | |
Lopes et al. | Evaluating CALIPSO's 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil | |
Thome et al. | ASTER preflight and inflight calibration and the validation of level 2 products | |
CN110598270B (en) | High-precision space target meteor forecasting method based on cataloging root sequence | |
CN104573251A (en) | Method for determining full-field-of-view apparent spectral radiance of satellite-borne optical remote sensor | |
WO2020085412A1 (en) | Prediction device, prediction method, and prediction program | |
McLaughlin et al. | Estimating density using precision satellite orbits from multiple satellites | |
CN111428339A (en) | Long-term collision risk analysis method of space objects based on spatial density model | |
Butz et al. | Geostationary Emission Explorer for Europe (G3E): mission concept and initial performance assessment | |
de Boer et al. | Measurements from the university of colorado raaven uncrewed aircraft system during atomic | |
KR20170087836A (en) | Aerosol detection, height ranging, optical thickness, effective sizing, and validation system and method over ocean | |
CN109214014B (en) | Method, system and equipment for acquiring residual track life of near-earth track space object | |
Kahn et al. | MISR calibration and implications for low-light-level aerosol retrieval over dark water | |
Zhou et al. | An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data | |
Qi et al. | Calibration and validation of the InfraRed Atmospheric Sounder onboard the FY3B satellite | |
Chao et al. | An evaluation of Jacchia 71 and MSIS90 atmosphere models with NASA ODERACS decay data | |
Saitoh et al. | Bias assessment of lower and middle tropospheric CO 2 concentrations of GOSAT/TANSO-FTS TIR version 1 product | |
CN109211225B (en) | Method, system and device for obtaining remaining orbital life of space objects in large elliptical orbits | |
Roussel et al. | Adaptation of short-term cloud forecasting to global scale and evaluation of its contribution to Earth observing satellite planning | |
Smith | TES limb-geometry observations of aerosols | |
Lisse et al. | Infrared observations of Comet Austin (1990 V) by the COBE/Diffuse Infrared Background Experiment | |
Barkstrom et al. | Validation of CERES/TERRA data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |