CN109211847B - A method for analyzing the chemical composition of a single suspended particle using an analytical device - Google Patents
A method for analyzing the chemical composition of a single suspended particle using an analytical device Download PDFInfo
- Publication number
- CN109211847B CN109211847B CN201811156273.XA CN201811156273A CN109211847B CN 109211847 B CN109211847 B CN 109211847B CN 201811156273 A CN201811156273 A CN 201811156273A CN 109211847 B CN109211847 B CN 109211847B
- Authority
- CN
- China
- Prior art keywords
- laser
- hollow
- particles
- lens
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 title claims abstract description 103
- 239000000203 mixture Substances 0.000 title claims abstract description 35
- 239000000126 substance Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000008878 coupling Effects 0.000 claims abstract description 41
- 238000010168 coupling process Methods 0.000 claims abstract description 41
- 238000005859 coupling reaction Methods 0.000 claims abstract description 41
- 238000003384 imaging method Methods 0.000 claims abstract description 35
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 22
- 230000015556 catabolic process Effects 0.000 claims abstract description 22
- 238000000295 emission spectrum Methods 0.000 claims abstract description 17
- 238000001237 Raman spectrum Methods 0.000 claims abstract description 16
- 238000004458 analytical method Methods 0.000 claims description 27
- 230000003287 optical effect Effects 0.000 claims description 17
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 239000013307 optical fiber Substances 0.000 claims description 7
- 101000694017 Homo sapiens Sodium channel protein type 5 subunit alpha Proteins 0.000 claims description 5
- 229910052594 sapphire Inorganic materials 0.000 claims description 3
- 239000010980 sapphire Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 6
- 238000010249 in-situ analysis Methods 0.000 abstract description 4
- 238000001228 spectrum Methods 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 238000002536 laser-induced breakdown spectroscopy Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000012625 in-situ measurement Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010224 classification analysis Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012576 optical tweezer Methods 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000005362 photophoresis Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明属于非线性光学应用领域,具体涉及一种采用分析装置进行单个悬浮颗粒化学成分分析的方法。The invention belongs to the application field of nonlinear optics, and in particular relates to a method for analyzing the chemical composition of a single suspended particle by using an analysis device.
背景技术Background technique
目前针对空气中颗粒物的检测方法有:红外吸收光谱法、紫外吸收光谱法、紫外荧光法、化学发光法、浊度法和散射法等,然而这些方法无法对空气中细微颗粒物(气溶胶、炭黑、痕量重金属等)的成分和结构进行检测。激光诱导击穿光谱技术作为一种新兴的原位测量技术,既可以分析固态样品,也可以对液态和气态样品进行分析,具有快速、实时、可遥测、无需预处理且可实现多元素的同时分析,目前已经成功用于材料、冶金、燃烧、环境、考古、太空探测、医学和军事等诸多领域。At present, the detection methods for particulate matter in the air include: infrared absorption spectroscopy, ultraviolet absorption spectroscopy, ultraviolet fluorescence method, chemiluminescence method, turbidity method and scattering method, etc. However, these methods cannot detect fine particles in the air (aerosol, carbon The composition and structure of black, trace heavy metals, etc.) were detected. As an emerging in-situ measurement technology, laser-induced breakdown spectroscopy can analyze solid samples as well as liquid and gas samples. Analysis has been successfully used in many fields such as materials, metallurgy, combustion, environment, archaeology, space exploration, medicine and military.
激光诱导击穿光谱仪(Laser-Induced Breakdown Spectroscopy,简称LIBS)利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以对材料进行识别、分类、定性以及定量分析。激光诱导击穿拉曼光谱(Laser-induced breakdown Ramanspectroscopy,LIBRAS)技术是通过LIBS与拉曼光谱在相同位点同时获取物质的原子光谱和分子光谱的原位测量光谱技术,通过将二者的数据解析处理,可同时完成原子光谱和分子光谱的微区原位测定,从而对样品的元素和分子组成进行快速定量分析和鉴别。但是,就目前已知的报道,LIBS仅限于对附着在一些固体上的样品微粒进行在线原位检测,对于流体如空气或者液体中悬浮的微粒的检测仍然无法进行,而且由于LIBS系统可以击穿物体,样品微粒所附着的固体不可避免的会使光谱仪产生噪声,从而影响微粒成分的准确分析。Laser-Induced Breakdown Spectroscopy (LIBS) uses the plasma generated by a pulsed laser to ablate and excite the substances in the sample, and obtain the spectrum emitted by the atoms excited by the plasma through the spectrometer to identify The elemental composition of a sample, which in turn enables the identification, classification, qualitative and quantitative analysis of materials. Laser-induced breakdown Raman spectroscopy (LIBRAS) technology is an in-situ measurement spectroscopy technology that simultaneously acquires atomic and molecular spectra of substances at the same site through LIBS and Raman spectroscopy. Analytical processing can simultaneously complete the micro-area in-situ determination of atomic and molecular spectra, so as to quickly quantitatively analyze and identify the elemental and molecular composition of the sample. However, as far as the known reports are concerned, LIBS is only limited to online in-situ detection of sample particles attached to some solids, and the detection of particles suspended in fluids such as air or liquids is still unable to be carried out, and because the LIBS system can break down Objects and solids to which sample particles are attached will inevitably cause noise in the spectrometer, thereby affecting the accurate analysis of particle components.
在光学领域中,空心光束是指横向振幅分布满足高阶贝塞尔函数的光束,其横向光强分布表现为一个中心为暗的一系列同心圆环。依据光泳力原理,空心光束可将吸光性微粒捕获在其暗的区域,利用空心光束捕获空气中的吸光性微粒是目前已知最稳定的装置,同时可以通过调节空心光束的尺寸或者功率实现微粒的三维操作。空心光束独特的光强分布使其在粒子操控和非线性光学等领域具有重要的应用价值。In the field of optics, a hollow beam refers to a beam whose lateral amplitude distribution satisfies a higher-order Bessel function, and its lateral light intensity distribution appears as a series of concentric rings with a dark center. According to the principle of photophoresis, the hollow beam can capture the light-absorbing particles in its dark area. Using the hollow beam to capture the light-absorbing particles in the air is the most stable device known so far. At the same time, the particles can be realized by adjusting the size or power of the hollow beam. 3D operations. The unique light intensity distribution of the hollow beam makes it have important application value in the fields of particle manipulation and nonlinear optics.
目前,能够实现空气中微粒组成成分的实时原位分析方法尚未见报道,其主要原因有二:目前已知的检测方法无法对流体(如空气等)中颗粒物的化学成分进行分析;基于光泳力的激光捕获技术尚未和光谱分析系统有机结合。At present, there is no report on the real-time in-situ analysis method for the composition of particles in the air. There are two main reasons: the currently known detection methods cannot analyze the chemical composition of particles in fluids (such as air, etc.); The laser capture technology has not been organically combined with the spectral analysis system.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种采用分析装置进行单个悬浮颗粒化学成分分析的方法,该方法通过设置空心光束产生装置将连续激光器产生的高斯光束转变为空心光束,对样品池内的样品微粒进行捕获,同时通过设置脉冲激光器,对所捕获的样品微粒进行电离,实现对空气中悬浮的单个细微颗粒物的元素组成和物质成分的原位分析。The technical problem to be solved by the present invention is to provide a method for analyzing the chemical composition of a single suspended particle by using an analysis device. The method converts the Gaussian beam generated by a continuous laser into a The hollow beam captures the sample particles in the sample cell, and at the same time, by setting a pulsed laser, the captured sample particles are ionized to achieve in-situ analysis of the elemental composition and material composition of single fine particles suspended in the air.
为解决上述技术问题,本发明采用的技术方案是:一种用于单个悬浮颗粒的化学成分分析的装置,包括脉冲激光器,其特征在于:还包括空心光束捕获粒子系统、原子发射光谱采集系统、拉曼光谱采集系统和成像系统;In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is: a device for chemical composition analysis of a single suspended particle, including a pulsed laser, and characterized in that it also includes a hollow beam capturing particle system, an atomic emission spectrum acquisition system, Raman spectrum acquisition system and imaging system;
所述空心光束捕获粒子系统包括连续激光器、空心光束产生装置、扩束准直装置、可改变空心光束方向的高反射镜、第一会聚透镜和样品池;所述连续激光器、空心光束产生装置、扩束准直装置、高反射镜和第一会聚透镜依次设置于同一光路上,所述样品池内设置有样品微粒;The hollow beam capturing particle system includes a continuous laser, a hollow beam generating device, a beam expanding and collimating device, a high reflection mirror capable of changing the direction of the hollow beam, a first condensing lens and a sample cell; the continuous laser, the hollow beam generating device, The beam expanding and collimating device, the high reflection mirror and the first condensing lens are sequentially arranged on the same optical path, and sample particles are arranged in the sample pool;
所述原子发射光谱采集系统包括第一耦合透镜以及与第一耦合透镜连接的激光诱导击穿光谱仪,所述第一耦合透镜与激光诱导击穿光谱仪之间设置有用于连接第一耦合透镜和激光诱导击穿光谱仪的第一光纤;The atomic emission spectrum acquisition system includes a first coupling lens and a laser induced breakdown spectrometer connected to the first coupling lens, and a connection between the first coupling lens and the laser induced breakdown spectrometer is provided for connecting the first coupling lens and the laser The first fiber of the induced breakdown spectrometer;
所述拉曼光谱采集系统包括第二耦合透镜以及与第二耦合透镜连接的拉曼光谱仪,所述第二耦合透镜与拉曼光谱仪之间设置有用于连接第二耦合透镜和拉曼光谱仪的第二光纤;The Raman spectrum acquisition system includes a second coupling lens and a Raman spectrometer connected to the second coupling lens, and a third coupling lens for connecting the second coupling lens and the Raman spectrometer is arranged between the second coupling lens and the Raman spectrometer. two optical fibers;
所述脉冲激光器产生的脉冲光垂直于高反射镜反射的空心光束;The pulsed light generated by the pulsed laser is perpendicular to the hollow beam reflected by the high reflection mirror;
所述成像系统包括成像装置和显微物镜,所述显微物镜设置在所述成像装置和所述样品池之间。The imaging system includes an imaging device and a microscope objective lens disposed between the imaging device and the sample cell.
上述的一种用于单个悬浮颗粒的化学成分分析的装置,其特征在于:所述连续激光器为532nm半导体连续激光器或全固态可调谐钛宝石染料连续激光器。The above-mentioned device for chemical composition analysis of a single suspended particle is characterized in that: the continuous laser is a 532 nm semiconductor continuous laser or an all-solid-state tunable Ti:sapphire dye continuous laser.
上述的一种用于单个悬浮颗粒的化学成分分析的装置,其特征在于:所述空心光束产生装置包括可以产生空心光束的自相位空间光束调制系统、交叉相位空间光束调制系统、双锥透镜、空间光调制器或相位板。The above-mentioned device for chemical composition analysis of a single suspended particle is characterized in that: the hollow beam generating device comprises a self-phase spatial beam modulation system, a cross-phase spatial beam modulation system, a biconical lens, Spatial light modulator or phase plate.
上述的一种用于单个悬浮颗粒的化学成分分析的装置,其特征在于:所述自相位空间光束调制系统包括依次设置在同一光路上的第一凸透镜和非线性吸收介质。The above-mentioned device for chemical composition analysis of a single suspended particle is characterized in that: the self-phase spatial beam modulation system includes a first convex lens and a nonlinear absorption medium sequentially arranged on the same optical path.
上述的一种用于单个悬浮颗粒的化学成分分析的装置,其特征在于:所述扩束准直装置包括位于同一光路上的第二会聚透镜和第三会聚透镜,所述第二会聚透镜位于所述空心光束产生装置和第三会聚透镜之间。The above-mentioned device for chemical composition analysis of a single suspended particle is characterized in that: the beam expanding and collimating device comprises a second condensing lens and a third condensing lens located on the same optical path, and the second condensing lens is located on the same optical path. between the hollow beam generating device and the third condensing lens.
上述的一种用于单个悬浮颗粒的化学成分分析的装置,其特征在于:所述成像装置包括CCD相机、ICCD相机或CMOS相机。The above-mentioned device for chemical composition analysis of a single suspended particle is characterized in that: the imaging device includes a CCD camera, an ICCD camera or a CMOS camera.
上述的一种用于单个悬浮颗粒的化学成分分析的装置,其特征在于:所述第一会聚透镜位于所述高反射镜和所述样品池之间。The above-mentioned device for chemical composition analysis of a single suspended particle is characterized in that: the first condensing lens is located between the high reflection mirror and the sample cell.
上述的一种用于单个悬浮颗粒的化学成分分析的装置,其特征在于:所述成像装置、激光诱导击穿光谱仪与所述拉曼光谱仪分别位于样品池不同的侧部。The above-mentioned device for chemical composition analysis of a single suspended particle is characterized in that: the imaging device, the laser-induced breakdown spectrometer and the Raman spectrometer are respectively located on different sides of the sample cell.
此外,本发明还提供一种采用上述装置进行单个悬浮颗粒的化学成分分析的方法,其特征在于,包括以下步骤:In addition, the present invention also provides a method for analyzing the chemical composition of a single suspended particle using the above-mentioned device, which is characterized in that it includes the following steps:
步骤一、从连续激光器获取一束高斯分布的连续激光束,将所获得的连续激光束通过空心光束产生装置整形成一束空心光束;Step 1: Obtain a continuous laser beam with a Gaussian distribution from the continuous laser, and shape the obtained continuous laser beam into a hollow beam through a hollow beam generating device;
步骤二、将步骤一所得到的空心光束通过扩束准直装置后入射到高反射镜,调整高反射镜,使反射的空心光束入射到第一会聚透镜形成会聚的空心光束,会聚的空心光束入射到样品池中;Step 2: The hollow beam obtained in
步骤三、从脉冲激光器获得一束会聚的脉冲光并使所述脉冲光的会聚中心与成像装置的成像中心重合,关闭脉冲激光器;
步骤四、向样品池中喷入样品微粒,入射到样品池的会聚的空心光束捕获样品微粒在光阱位置,调节空心光束的光强和尺寸使光阱位置与成像装置的成像中心重合;Step 4: injecting sample particles into the sample cell, the converging hollow beam incident on the sample cell captures the sample particles at the position of the optical trap, and adjusting the light intensity and size of the hollow beam to make the position of the optical trap coincide with the imaging center of the imaging device;
步骤五、第二耦合透镜采集样品微粒产生的散射光,拉曼光谱仪显示拉曼光谱信息;Step 5. The second coupling lens collects the scattered light generated by the sample particles, and the Raman spectrometer displays the Raman spectrum information;
步骤六、打开脉冲激光器使会聚的脉冲光将捕获的样品微粒电离,关闭脉冲激光器;Step 6: Turn on the pulsed laser so that the converging pulsed light will ionize the captured sample particles, and turn off the pulsed laser;
步骤七、第一耦合透镜采集样品微粒电离产生的原子发射光谱,激光诱导击穿光谱仪显示原子发射光谱的信息。Step 7: The first coupling lens collects the atomic emission spectrum generated by the ionization of the sample particles, and the laser-induced breakdown spectrometer displays the information of the atomic emission spectrum.
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明通过设置空心光束产生装置将连续激光器产生的高斯光束转变为空心光束,对样品池内的样品微粒进行捕获,同时通过设置脉冲激光器,对所捕获的样品微粒进行电离,实现对空气中悬浮的单个细微颗粒物的元素组成和物质成分的在线原位分析。1. The present invention converts the Gaussian beam generated by the continuous laser into a hollow beam by setting a hollow beam generating device to capture the sample particles in the sample cell, and at the same time, by setting a pulsed laser, the captured sample particles are ionized to realize the ionization of the particles in the air. On-line in situ analysis of elemental composition and material composition of suspended single fine particles.
2、本发明通过设置光谱采集系统和成像装置,可获得电离样品的原子发射光谱信息、拉曼光谱信息以及样品运动情况,实现定量测定的目的,为实时在线研究大气污染颗粒物提供一种新的思路。2. The present invention can obtain atomic emission spectrum information, Raman spectrum information and sample motion of ionized samples by setting up a spectrum acquisition system and an imaging device, so as to achieve the purpose of quantitative determination, and provide a new method for real-time online research of air pollution particles. ideas.
3、本发明的分析装置结构简单,设计合理,成本低易于推广。3. The analysis device of the present invention is simple in structure, reasonable in design, low in cost and easy to popularize.
4、本发明的分析方法易于操作,可捕获位置不断变化的悬浮颗粒,并对悬浮颗粒进行光谱解析,实现单个悬浮物的在线检测。4. The analysis method of the present invention is easy to operate, can capture suspended particles whose positions are constantly changing, and perform spectral analysis on the suspended particles, so as to realize the online detection of a single suspended solid.
下面结合附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
图1为本发明的用于单个悬浮颗粒的化学成分分析的装置的结构示意图。FIG. 1 is a schematic structural diagram of an apparatus for chemical composition analysis of a single suspended particle of the present invention.
图2为本发明的用于单个悬浮颗粒的化学成分分析的装置的脉冲激光器、空心光束捕获粒子系统、原子发射光谱采集系统和成像系统的结构示意图。2 is a schematic structural diagram of a pulsed laser, a hollow beam trapping particle system, an atomic emission spectrum acquisition system and an imaging system of the device for chemical composition analysis of a single suspended particle of the present invention.
图3为本发明的空心光束产生装置的结构示意图。FIG. 3 is a schematic structural diagram of the hollow beam generating device of the present invention.
图4为本发明所测得的单颗粒氧化铝的拉曼光谱图。FIG. 4 is a Raman spectrum diagram of single particle alumina measured by the present invention.
图5为氧化铝标准拉曼光谱图。Figure 5 is a standard Raman spectrum of alumina.
图6为本发明所测得的单颗粒氧化铝的激光诱导击穿光谱图。Fig. 6 is the laser-induced breakdown spectrogram of the single particle alumina measured by the present invention.
图7为铝元素标准激光诱导击穿光谱图。FIG. 7 is a standard laser-induced breakdown spectrum of aluminum element.
附图标记说明:Explanation of reference numbers:
1—连续激光器; 2—空心光束产生装置; 2-1—第一凸透镜;1—continuous laser; 2—hollow beam generating device; 2-1—first convex lens;
2-2—非线性吸收介质; 3—第二会聚透镜; 4—第三会聚透镜;2-2—non-linear absorption medium; 3—second condensing lens; 4—third condensing lens;
5—高反射镜; 6—第一会聚透镜; 7—样品池;5—High reflection mirror; 6—First converging lens; 7—Sample cell;
8—样品微粒; 9—脉冲激光器; 10—显微物镜;8—sample particle; 9—pulse laser; 10—microscope objective lens;
11—成像装置; 12—第一耦合透镜; 13—第一光纤;11—imaging device; 12—first coupling lens; 13—first optical fiber;
14—激光诱导击穿光谱仪; 15—第二耦合透镜; 16—第二光纤;14—laser induced breakdown spectrometer; 15—second coupling lens; 16—second optical fiber;
17—拉曼光谱仪。17—Raman spectrometer.
具体实施方式Detailed ways
实施例1Example 1
如图1和图2所示,本实施例的用于单个悬浮颗粒的化学成分分析的装置,包括脉冲激光器9,还包括空心光束捕获粒子系统、原子发射光谱采集系统、拉曼光谱采集系统和成像系统;As shown in FIG. 1 and FIG. 2 , the device for chemical composition analysis of a single suspended particle in this embodiment includes a
所述空心光束捕获粒子系统包括连续激光器1、空心光束产生装置2、扩束准直装置、可改变空心光束方向的高反射镜5、第一会聚透镜6和样品池7;所述连续激光器1、空心光束产生装置2、扩束准直装置、高反射镜5和第一会聚透镜6依次设置于同一光路上,所述样品池7内设置有样品微粒8;The hollow beam capturing particle system includes a
所述原子发射光谱采集系统包括第一耦合透镜12以及与第一耦合透镜12连接的激光诱导击穿光谱仪14,所述第一耦合透镜12与激光诱导击穿光谱仪14之间设置有用于连接第一耦合透镜12和激光诱导击穿光谱仪14的第一光纤13;The atomic emission spectrum acquisition system includes a
所述拉曼光谱采集系统包括第二耦合透镜15以及与第二耦合透镜15连接的拉曼光谱仪17,所述第二耦合透镜15与拉曼光谱仪17之间设置有用于连接第二耦合透镜15和拉曼光谱仪17的第二光纤16;The Raman spectrum acquisition system includes a
所述脉冲激光器9产生的脉冲光垂直于高反射镜5反射的空心光束;该脉冲激光器9设置在垂直于高反射镜5反射的空心光束的传播方向且与样品池7位于同一平面上;The pulsed light generated by the
所述成像系统包括成像装置11和显微物镜10,所述显微物镜10设置在所述成像装置11和所述样品池7之间;本实施例中,显微物镜10为放大倍数为10×,N.A.为0.25的显微物镜。The imaging system includes an
所述连续激光器1为532nm半导体连续激光器,也可用全固态可调谐钛宝石染料连续激光器替代。The
所述空心光束产生装置2包括可以产生空心光束的自相位空间光束调制系统、交叉相位空间光束调制系统、双锥透镜、空间光调制器或相位板。The hollow
如图3,所述自相位空间光束调制系统包括依次设置在同一光路上的第一凸透镜2-1和非线性吸收介质2-2,以及可用来探测该空心光束的CCD相机,该CCD相机接收通过非线性吸收介质2-2的光束,且活动设置在该光路上。As shown in FIG. 3 , the self-phase spatial beam modulation system includes a first convex lens 2-1 and a nonlinear absorption medium 2-2 sequentially arranged on the same optical path, and a CCD camera that can be used to detect the hollow beam, the CCD camera receives The light beam passes through the nonlinear absorption medium 2-2, and the activity is placed on the optical path.
此外,还可以采用交叉相位空间光束调制系统,所述交叉相位空间光束调制系统为申请号为“2016109453059”,专利名称为“一种基于交叉相位调制的贝塞尔光束的获得方法及装置”的发明专利中公开的获得贝塞尔光束的装置,设置激光的出射波长为780.2100nm,获得空心光束;In addition, a cross-phase spatial beam modulation system can also be used, and the cross-phase spatial beam modulation system is the application number "2016109453059" and the patent name is "A method and device for obtaining a Bessel beam based on cross-phase modulation". The device for obtaining Bessel beam disclosed in the invention patent, set the output wavelength of the laser to 780.2100nm to obtain a hollow beam;
此外还可以通过双锥透镜、空间光调制器或相位板来获得空心光束。In addition, hollow beams can be obtained by biconical lenses, spatial light modulators or phase plates.
所述扩束准直装置包括位于同一光路上的第二会聚透镜3和第三会聚透镜4,所述第二会聚透镜3位于所述空心光束产生装置2和第三会聚透镜4之间;本实施例中,第二会聚透镜3的焦距为100mm,第三会聚透镜4的焦距为200mm;此外,还可以通过其他的扩束准直装置进行替换,比如扩束器、准直器以及其他可以实现激光扩束准直的光学系统。The beam expanding and collimating device includes a
所述成像装置11包括CCD相机、ICCD相机或CMOS相机;本实施例中的成像装置为CCD相机,也可用ICCD相机或CMOS相机替换。The
所述第一会聚透镜6位于所述高反射镜5和所述样品池7之间,本实施例中,第一会聚透镜6的焦距为30mm,此外还可以用放大倍数为10×,N.A.为0.25的显微物镜等替换。The first condensing lens 6 is located between the high-reflection mirror 5 and the
所述成像装置11、激光诱导击穿光谱仪14与所述拉曼光谱仪17分别位于样品池7不同的侧部;本实施例中,成像装置11、激光诱导击穿光谱仪14、脉冲激光器9、样品池7以及拉曼光谱仪17处于同一平面,该平面垂直于高反射镜5反射的空心光束。The
采用实施例1的装置进行单个悬浮颗粒的化学成分分析的方法,具体步骤包括:Adopt the device of
步骤一、从连续激光器1获取一束高斯分布的连续激光束,将所获得的连续激光束通过空心光束产生装置2整形成一束空心光束;空心光束用自相位空间光束调制系统产生,从连续激光器1获取的高斯分布的连续激光束先经过第一凸透镜2-1聚焦于非线性吸收介质2-2中即可产生空心光束,该空心光束由CCD相机探测;非线性吸收介质2-2为铷原子池,也可用铅玻璃或钠原子池替代;Step 1: Obtain a continuous laser beam with a Gaussian distribution from the
步骤二、将步骤一所得到的空心光束通过扩束准直装置后入射到高反射镜5,调整高反射镜5,使反射的空心光束入射到第一会聚透镜6形成会聚的空心光束,会聚的空心光束入射到样品池7中;扩束准直的过程为,将步骤一所得到的空心光束先通过第二会聚透镜3再通过第三会聚透镜4进行扩束准直;In
步骤三、从脉冲激光器9获得一束会聚的脉冲光,调节脉冲激光器9使脉冲光的会聚中心与成像装置11的成像中心重合,关闭脉冲激光器9;Step 3: Obtain a convergent pulsed light from the
步骤四、向样品池7中喷入样品微粒8,入射到样品池7的会聚的空心光束捕获样品微粒8在光阱位置,调节空心光束的光强和尺寸使光阱位置与成像装置11的成像中心重合;本实施例中所用样品微粒8为氧化铝,颗粒尺寸为2~10μm,也可用其他吸光性化合物替换;本实施例中采用自相位空间光束调制系统产生空心光束,通过调节连续激光器1的功率来调节获得的空心光束的光强,通过改变第一凸透镜2-1的焦距来改变空心光束的尺寸,使获得的空心光束捕获样品微粒8的光阱位置与成像装置11所显示的成像中心重合;Step 4: Spray the
通过交叉相位空间光束调制系统产生空心光束,可以通过旋转二分之一波片的角度来改变空心光束的光强和尺寸;The hollow beam is generated by the cross-phase spatial beam modulation system, and the light intensity and size of the hollow beam can be changed by rotating the angle of the half-wave plate;
通过双锥透镜获得空心光束,可通过设置二分之一波片和偏振分光棱镜来改变空心光束的光强;通过改变双锥透镜的顶角角度来改变空心光束的尺寸;The hollow beam is obtained through a biconical lens, and the light intensity of the hollow beam can be changed by setting a half-wave plate and a polarizing beam splitter; the size of the hollow beam can be changed by changing the vertex angle of the biconical lens;
通过空间光调制器或者相位板来获得空心光束,可通过调节空间光调制器的输出电流或者调节相位板的相位信息来改变空心光束的光强和尺寸;The hollow beam is obtained through a spatial light modulator or a phase plate, and the light intensity and size of the hollow beam can be changed by adjusting the output current of the spatial light modulator or adjusting the phase information of the phase plate;
调节成像系统,使样品微粒8的运动情况经显微物镜10放大并记录到成像装置11上;成像用CCD相机拍摄,也可用ICCD相机或CMOS相机替换;Adjust the imaging system so that the movement of the
步骤五、调节第二耦合透镜15的位置,使第二耦合透镜15采集样品微粒8产生的散射光,与第二耦合透镜15连接的拉曼光谱仪17显示拉曼光谱信息;Step 5: Adjust the position of the
步骤六、打开脉冲激光器9使会聚的脉冲光将捕获的样品微粒8电离,关闭脉冲激光器9;Step 6: Turn on the
步骤七、调节第一耦合透镜12的位置,使第一耦合透镜12采集样品微粒8电离产生的原子发射光谱,与第一耦合透镜12连接的激光诱导击穿光谱仪14显示原子发射光谱的信息。Step 7: Adjust the position of the
向样品池7中重新喷入样品微粒进行重复检测,对多次得到的谱图进行比对,将确定的光谱图与标准谱图进行比对。The sample particles are re-sprayed into the
上述步骤可以根据需要进行调整。The above steps can be adjusted as needed.
根据图4和图5,本发明所测得的单颗粒氧化铝的拉曼光谱图(图4)中,峰位置分别为378cm-1、578-1以及645-1,对应氧化铝标准拉曼光谱(图5)中所显示的376.9cm-1、575.9cm-1以及643.9cm-1,据此可判断得出所捕获的样品微粒包含氧化铝物质。According to Fig. 4 and Fig. 5, in the Raman spectrum of single particle alumina measured by the present invention (Fig. 4), the peak positions are 378cm -1 , 578 -1 and 645 -1 respectively, corresponding to the standard Raman of alumina 376.9 cm -1 , 575.9 cm -1 , and 643.9 cm -1 shown in the spectrum ( FIG. 5 ), from which it can be judged that the captured sample particles contain alumina species.
根据图6和图7,本发明所测得的单颗粒氧化铝的激光诱导击穿光谱图(图6)中,在波长为308.24nm和309.31nm处有峰,通过与图(7)中元素的激光诱导击穿光谱标准数据库比对,可确定所捕获的样品中包含铝元素。According to FIG. 6 and FIG. 7 , in the laser-induced breakdown spectrum (FIG. 6) of single-particle alumina measured by the present invention, there are peaks at wavelengths of 308.24 nm and 309.31 nm. Alignment of standard databases of laser-induced breakdown spectroscopy to determine the presence of aluminum in the captured samples.
本发明的分析方法的原理为:The principle of the analytical method of the present invention is:
本发明基于光泳力光镊的基本原理。具体为:当一束光照射在吸光性微粒表面时会引起微粒表面被照射区域温度升高,被照射区域温度升高后表面附着的气体分子热运动加剧,气体分子以更大速度弹离微粒表面,被照射面气体分子热运动比未被照射面的分子剧烈,综合作用下微粒产生一个由照射面指向未被照射面的净作用力。根据空气动力学原理,分子作用于微粒表面的压力F可以表示为:The present invention is based on the basic principle of optophoretic force optical tweezers. Specifically: when a beam of light is irradiated on the surface of light-absorbing particles, the temperature of the irradiated area on the surface of the particle will increase, and the thermal motion of the gas molecules attached to the surface will increase after the temperature of the irradiated area increases, and the gas molecules will bounce off the particles at a higher speed. On the surface, the thermal motion of the gas molecules on the irradiated surface is more intense than that of the molecules on the unirradiated surface. Under the combined action, the particles generate a net force from the irradiated surface to the unirradiated surface. According to the principle of aerodynamics, the pressure F of molecules acting on the surface of particles can be expressed as:
其中,ρa为空气的密度,kg/m3;B为普适空气常数,J/(mol·K);T为微粒表面温度,K;M为空气分子的摩尔质量,kg/mol。Among them, ρ a is the density of air, kg/m 3 ; B is the universal air constant, J/(mol·K); T is the particle surface temperature, K; M is the molar mass of air molecules, kg/mol.
对于空心光束来说,其作用在微粒表面上的力可以表示为:For a hollow beam, the force acting on the particle surface can be expressed as:
其中,ρa为空气的密度,kg/m3;B为普适空气常数,J/(mol·K);T为微粒表面温度,K;M为空气分子的摩尔质量,kg/mol;S为微粒上光照射区域的面积,m2。Among them, ρ a is the density of air, kg/m 3 ; B is the universal air constant, J/(mol·K); T is the particle surface temperature, K; M is the molar mass of air molecules, kg/mol; S is the area of the light-irradiated area on the particle, m 2 .
对于不规则的微粒:For irregular particles:
其中,为空气分子的平均速度,m/s;γ=cp/cv为比热比;Pl为入射空心光束的功率,W;P为环境气体压力,N/m2;P*为特征压力,N/m2;α为微粒表面的热适应系数,Δα=α1-α2, in, is the average velocity of air molecules, m/s; γ=c p /c v is the specific heat ratio; P l is the power of the incident hollow beam, W; P is the ambient gas pressure, N/m 2 ; P* is the characteristic pressure , N/m 2 ; α is the thermal adaptation coefficient of the particle surface, Δα=α 1 -α 2 ,
在重力、FΔT和FΔα的作用下,微粒可在焦点区域被捕获,并且可以通过调节空心光束的尺寸来改变FΔT力的大小,进而对微粒进行操控。Under the action of gravity, F ΔT and F Δα , the particles can be trapped in the focal region, and the size of the F ΔT force can be changed by adjusting the size of the hollow beam, and then the particles can be manipulated.
被捕获的微粒被脉冲激光器产生的脉冲光所电离,通过LIBS技术和拉曼光谱对电力微粒的光谱进行分析,同时获得微粒的物质成分信息和元素信息。The captured particles are ionized by the pulsed light generated by the pulsed laser, and the spectrum of the electric particles is analyzed by LIBS technology and Raman spectroscopy, and the material composition information and element information of the particles are obtained at the same time.
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。The above are only preferred embodiments of the present invention and do not limit the present invention. Any simple modifications, changes and equivalent structural changes made to the above embodiments according to the technical essence of the present invention still belong to the technology of the present invention. within the scope of the program.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811156273.XA CN109211847B (en) | 2018-09-29 | 2018-09-29 | A method for analyzing the chemical composition of a single suspended particle using an analytical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811156273.XA CN109211847B (en) | 2018-09-29 | 2018-09-29 | A method for analyzing the chemical composition of a single suspended particle using an analytical device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109211847A CN109211847A (en) | 2019-01-15 |
CN109211847B true CN109211847B (en) | 2020-06-30 |
Family
ID=64982469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811156273.XA Expired - Fee Related CN109211847B (en) | 2018-09-29 | 2018-09-29 | A method for analyzing the chemical composition of a single suspended particle using an analytical device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109211847B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102739071B1 (en) * | 2019-08-05 | 2024-12-06 | 삼성전자주식회사 | Particulate matter measurement apparatus and method |
CN111077060A (en) * | 2019-12-31 | 2020-04-28 | 天津大学 | Single particle detection system based on Raman and laser-induced breakdown spectroscopy integration |
CN111044420B (en) * | 2020-01-03 | 2022-02-11 | 南京信息工程大学 | LIBS and Raman spectrum aerosol on-line detection device based on single particle |
CN111366510B (en) * | 2020-03-02 | 2022-06-03 | 清华大学深圳国际研究生院 | Suspended particulate matter flux measuring device utilizing synchronous polarization and fluorescence |
CN111855505B (en) * | 2020-07-07 | 2021-12-28 | 浙江大学 | Microsphere cluster state detection device and detection method applied to vacuum optical trap system |
GB2595746B (en) * | 2020-10-29 | 2022-06-01 | Univ Southampton | Atomic cooling and trapping methods and apparatus |
CN112649595B (en) * | 2020-11-11 | 2022-02-22 | 西安交通大学 | System and method based on single-pulse laser-induced photoinduced breakdown controllable jet flow |
CN113125414A (en) * | 2021-04-20 | 2021-07-16 | 南京信息工程大学 | Spectrum detection system and detection method for single-particle aerosol detection |
CN113608343A (en) * | 2021-07-30 | 2021-11-05 | 西北大学 | Light capture and three-dimensional manipulation device for light absorption particles in air based on hollow light |
CN113804606B (en) * | 2021-08-26 | 2024-07-12 | 之江实验室 | Suspended optical trap nanoparticle quality measurement method based on electric field calibration |
CN114205929B (en) * | 2022-02-15 | 2022-08-05 | 之江实验室 | Infrared optical system for heating suspended nanoparticles |
CN115452804B (en) * | 2022-11-10 | 2023-01-31 | 泉州师范学院 | Raman spectrum detection device and method for body fluid |
CN117907310B (en) * | 2024-01-23 | 2025-02-11 | 振电(苏州)医疗科技有限公司 | Laser induced breakdown spectrum acquisition device and method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102023379B (en) * | 2009-09-17 | 2012-07-25 | 中国科学院物理研究所 | Three-dimensional optical tweezers system |
US9222874B2 (en) * | 2012-06-27 | 2015-12-29 | The United States Of America As Represented By The Secretary Of The Army | Systems and methods for individually trapping particles from air and measuring the optical spectra or other properties of individual trapped particles |
CN203606288U (en) * | 2013-12-11 | 2014-05-21 | 中国科学院西安光学精密机械研究所 | Laser spectrum analyzer combining confocal micro-Raman and laser-induced breakdown spectroscopy |
GB2527268A (en) * | 2014-03-07 | 2015-12-23 | Tania Scheel Monteiro | A spectrometer for cooling and characterising nanoparticles |
US9443631B1 (en) * | 2015-03-04 | 2016-09-13 | The United States Of America As Represented By The Secretary Of The Army | Optical trap using a focused hollow-beam for trapping and holding both absorbing and non-absorbing airborne particles |
CN105241849A (en) * | 2015-07-17 | 2016-01-13 | 北京理工大学 | Spectral pupil laser differential confocal LIBS, Raman spectrum-mass spectrum microscopic imaging method and Raman spectrum-mass spectrum microscopic imaging device |
CN105629454B (en) * | 2016-03-30 | 2018-03-06 | 中国计量学院 | A kind of dual-beam optical optical tweezers system based on spatial light modulator |
CN106990075B (en) * | 2017-03-03 | 2019-07-09 | 西北大学 | A kind of Second Harmonic Imaging method and apparatus for single suspended particulate |
CN106932914A (en) * | 2017-04-17 | 2017-07-07 | 鲁东大学 | A kind of production method and device of cubical array hollow light spot |
CN108319028B (en) * | 2018-01-12 | 2020-03-27 | 西北大学 | A kind of optical tweezers manipulation method and device based on hollow light size adjustment |
-
2018
- 2018-09-29 CN CN201811156273.XA patent/CN109211847B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN109211847A (en) | 2019-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109211847B (en) | A method for analyzing the chemical composition of a single suspended particle using an analytical device | |
CN103076310B (en) | Spectrum detection system for material component analysis and detection method thereof | |
US20150233820A1 (en) | Device and method for measuring and imaging second harmonic and multi-photon generation scattered radiation | |
US8653462B2 (en) | Methods and systems for detecting terahertz radiation by radiation enhanced emission of fluorescence | |
CN108918351A (en) | Device based on particle in optical acquisition aerosol and realization Raman spectrum detection | |
CN104596997A (en) | Laser-induced breakdown-pulsed Raman spectroscopy combined system and using method | |
JP6357245B2 (en) | Optical analyzer and biomolecule analyzer | |
CN110440918B (en) | Space high-resolution optical fiber fluorescence spectrum imaging and positioning method and system | |
US11016280B1 (en) | Optical trapping of airborne particles using dual counter-propagating hollow conical beams | |
CN211553759U (en) | Raman-fluorescence-laser induced breakdown spectroscopy combined system | |
CN105651759A (en) | Surface-enhanced type Raman spectrum testing system | |
CN111458312A (en) | Detection optical system for fluorescent defects of micro-regions on processing surface layer of soft and brittle optical crystal | |
CN105675498A (en) | Fluorescence-Raman synchronous block detector | |
CN112485235B (en) | Transmission electron microscope sample rod system with ultrafast time resolution spectral capability and application | |
CN106568754A (en) | Optical system used for measuring liquid sample multiphoton fluorescence spectrum | |
CN203224448U (en) | Spectral detection system for analyzing material composition | |
CN110646872A (en) | Raman spectrum scanning imaging system based on SPP thermoelectric optical tweezers | |
Ito et al. | Picosecond time‐resolved absorption spectrometer using a streak camera | |
CN111239090A (en) | Method and system for measuring single-pulse laser-induced transient molecular fluorescence spectrum | |
CN107014892B (en) | A Micron-Scale Spatially Resolved Mass Spectrometry Imaging System Based on Vacuum Ultraviolet Laser | |
US8064059B2 (en) | Optical pulse duration measurement | |
CN208780590U (en) | A device for chemical composition analysis of single suspended particles | |
RU2671150C1 (en) | Method for forming defects in volume of dielectric sample with laser radiation | |
CN112033538A (en) | An ultrafast imaging device based on spectral-temporal mapping | |
US10474002B2 (en) | Generation of high energy mid-infrared continuum laser pulses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200630 |
|
CF01 | Termination of patent right due to non-payment of annual fee |