CN109190558B - Method for monitoring real-time three-dimensional dynamic behavior of particles - Google Patents
Method for monitoring real-time three-dimensional dynamic behavior of particles Download PDFInfo
- Publication number
- CN109190558B CN109190558B CN201811010348.3A CN201811010348A CN109190558B CN 109190558 B CN109190558 B CN 109190558B CN 201811010348 A CN201811010348 A CN 201811010348A CN 109190558 B CN109190558 B CN 109190558B
- Authority
- CN
- China
- Prior art keywords
- particles
- time
- dimensional
- track
- real
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000012544 monitoring process Methods 0.000 title claims abstract description 16
- 238000003384 imaging method Methods 0.000 claims abstract description 10
- 238000009792 diffusion process Methods 0.000 claims description 11
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 230000003993 interaction Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 238000012935 Averaging Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 abstract description 2
- 230000001066 destructive effect Effects 0.000 abstract description 2
- 241000588724 Escherichia coli Species 0.000 description 23
- 238000010586 diagram Methods 0.000 description 11
- 230000009471 action Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 241000233866 Fungi Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003495 flagella Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000000204 total internal reflection microscopy Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/693—Acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Multimedia (AREA)
- Holo Graphy (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种微粒实时三维动态行为的监测方法,采用同轴数字全息显微镜记录实时全息图,通过数值重建微粒的散射光场,利用局部光强最大,得到微粒三维位置;将微粒的各三维位置连接成轨迹;计算不同时间间隔下轨迹的均方根末端距,得到MSD‑Δt曲线;拟合曲线,将轨迹进行分类;计算分类后各微粒瞬时速度、瞬时速度矢量与z朝上方向夹角及各轨迹平均速度;确定界面所在位置,计算各轨迹点到界面的轴向距离,微粒密度和速度的空间分布及θ的分布;本发明同时对多个微粒进行测量,轴向定位精度达亚微米级别;能够获取微粒实时三维坐标;无需荧光标记,无损成像;成像深度达上百微米,非常适合对各类微粒的活动进行动态三维追踪和分析。
The invention discloses a monitoring method for the real-time three-dimensional dynamic behavior of particles. A coaxial digital holographic microscope is used to record the real-time hologram, the scattered light field of the particles is numerically reconstructed, and the local maximum light intensity is used to obtain the three-dimensional position of the particles; The three-dimensional positions are connected to form a trajectory; the root mean square end-to-end distance of the trajectory under different time intervals is calculated to obtain the MSD-Δt curve; the curve is fitted to classify the trajectory; the instantaneous velocity of each particle after classification, the instantaneous velocity vector and the z-up direction are calculated. The included angle and the average velocity of each trajectory; determine the position of the interface, calculate the axial distance from each trajectory point to the interface, the spatial distribution of particle density and velocity, and the distribution of θ; the invention simultaneously measures multiple particles, and the axial positioning accuracy It can obtain real-time three-dimensional coordinates of particles; it does not require fluorescent labels, and it is non-destructive imaging; the imaging depth reaches hundreds of microns, which is very suitable for dynamic three-dimensional tracking and analysis of the activities of various particles.
Description
技术领域technical field
本发明涉及微粒三维位置监测的研究领域,特别涉及一种微粒实时三维动态行为的监测方法。The invention relates to the research field of three-dimensional position monitoring of particles, in particular to a method for monitoring real-time three-dimensional dynamic behavior of particles.
背景技术Background technique
微粒指尺寸在亚微米到数百微米的粒子,包括细菌、真菌、病毒、纳米颗粒、胶体及细胞等。实时监测微粒在介质中及界面附近的三维动态行为,可用于研究微粒对环境(温度、电场、pH等)的响应及微粒与界面的相互作用,揭示这类过程的机理。Microparticles refer to particles ranging in size from submicron to hundreds of microns, including bacteria, fungi, viruses, nanoparticles, colloids and cells. Real-time monitoring of the three-dimensional dynamic behavior of particles in the medium and near the interface can be used to study the response of the particles to the environment (temperature, electric field, pH, etc.) and the interaction between the particles and the interface, and reveal the mechanism of such processes.
传统的光学显微镜只能记录微粒在焦面的二维坐标,不适用于追踪它们的三维运动。共聚焦显微镜通过层扫的方式,可记录微粒在不同高度的信息,实现三维追踪。但是,共聚焦显微镜的时间分辨力极大地受限于仪器的扫描速度,不适用于实时追踪如细菌这样游动灵活的微粒。全内反射显微镜利用消逝波强度在轴向指数衰减的特性,可以实时无损的监测微粒的三维运动,轴向定位精度在亚纳米至几个纳米。但它在轴向上的成像范围只有几百纳米,而微粒活动的空间变化范围可达数十到数百微米,限制了该技术在微粒三维追踪中的应用。Traditional optical microscopes can only record the two-dimensional coordinates of the particles at the focal plane, and are not suitable for tracking their three-dimensional motion. The confocal microscope can record the information of particles at different heights by means of layer scanning, and realize three-dimensional tracking. However, the time resolution of confocal microscopy is greatly limited by the scanning speed of the instrument, and it is not suitable for real-time tracking of mobile and flexible particles such as bacteria. Total internal reflection microscopy utilizes the exponential decay of evanescent wave intensity in the axial direction, which can monitor the three-dimensional movement of particles in real time and non-destructively, and the axial positioning accuracy is sub-nanometer to several nanometers. However, its imaging range in the axial direction is only a few hundred nanometers, and the spatial variation range of particle activity can reach tens to hundreds of micrometers, which limits the application of this technology in three-dimensional tracking of particles.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的缺点与不足,提供一种微粒实时三维动态行为的监测方法。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a method for monitoring the real-time three-dimensional dynamic behavior of particles.
本发明的目的通过以下的技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种微粒实时三维动态行为的监测方法,其特征在于,包含以下步骤:A method for monitoring real-time three-dimensional dynamic behavior of particles, comprising the following steps:
S1、对样品记录不同时刻的全息图,得到原始全息图像,在样品空白区记录背景图,或对原始全息图像进行光强平均得到背景图,所述样品为微粒;S1. Record the holograms at different times on the sample to obtain the original holographic image, record the background image in the blank area of the sample, or average the light intensity of the original holographic image to obtain the background image, and the sample is a particle;
S2、通过背景图,对原始全息图像进行背景扣除,消除背景噪声;S2. Perform background subtraction on the original holographic image through the background image to eliminate background noise;
S3、对扣除背景的全息图像进行数值重建,得到各微粒在不同时刻的三维重构强度分布信息;S3, performing numerical reconstruction on the background-deducted holographic image to obtain the three-dimensional reconstructed intensity distribution information of each particle at different times;
S4、对微粒三维重构强度分布信息,通过阈值过滤和寻找光强局部最大值,获取各微粒在不同时刻的备选三维位置;S4. Reconstructing the three-dimensional intensity distribution information of the particles, filtering through a threshold value and finding the local maximum value of the light intensity, to obtain the candidate three-dimensional positions of each particle at different times;
S5、设定位移阈值,确定同一个微粒在不同时刻的三维位置,并连接成三维轨迹;计算不同时间间隔Δt下,轨迹的均方根末端距MSD,得到MSD-Δt曲线;S5. Set the displacement threshold, determine the three-dimensional positions of the same particle at different times, and connect them to form a three-dimensional trajectory; calculate the root mean square end distance MSD of the trajectory under different time intervals Δt, and obtain the MSD-Δt curve;
S6、对MSD-Δt曲线进行拟合,由拟合得到的指数将微粒的轨迹按运动模式进行分类;计算不同模式中,各轨迹点的瞬时速度V及瞬时速度矢量与z朝上方向的夹角θ,各轨迹的平均速度VT为该轨迹中所有轨迹点瞬时速度的平均值;S6. Fit the MSD-Δt curve, and classify the trajectory of the particles according to the motion mode by the index obtained by fitting; calculate the instantaneous velocity V of each trajectory point and the clip between the instantaneous velocity vector and the upward direction of z in different modes. Angle θ, the average speed V T of each track is the average value of the instantaneous speed of all track points in the track;
其中,瞬时速度为:where the instantaneous speed is:
其中,i为轨迹点在轨迹中的帧数,i=2,3…N,N为该轨迹的总帧数;(xi,yi,zi)和(xi-1,yi-1,zi-1)为同一微粒在连续两帧中的位置,dt为连续两帧的时间间隔;Among them, i is the frame number of the track point in the track, i=2,3...N, N is the total number of frames of the track; (x i , y i , z i ) and (x i-1 , y i- 1 , z i-1 ) is the position of the same particle in two consecutive frames, dt is the time interval of two consecutive frames;
瞬时速度矢量与z朝上方向的夹角θ:The angle θ between the instantaneous velocity vector and the z-up direction:
其中,为z朝上方向的方向向量,为速度矢量,|a|为的模,|b|为的模;in, is the direction vector in the upward direction of z, is the velocity vector, |a| is the modulus of , |b| is the model;
S7、以所有轨迹点中轴向位置最低为界面所在的位置z0,各轨迹点轴向位置为zi;计算各轨迹点到界面的轴向距离zs,zs=zi-z0;S7. Take the lowest axial position among all the trajectory points as the position z 0 where the interface is located, and the axial position of each trajectory point is zi ; calculate the axial distance z s from each trajectory point to the interface, z s = zi -z 0 ;
S8、计算不同运动模式下,微粒的密度和速度的空间分布及θ的分布;通过运动特征量,分析微粒的三维动态行为及微粒与界面的相互作用。S8. Calculate the spatial distribution of the density and velocity of the particle and the distribution of θ under different motion modes; analyze the three-dimensional dynamic behavior of the particle and the interaction between the particle and the interface through the motion characteristic quantity.
进一步地,所述对原始全息图像进行光强平均,具体通过公式计算为:Further, the average light intensity of the original holographic image is specifically calculated by the formula as:
其中,Ib(x,y)为背景图中(x,y)位置处像素的灰度值,N为全息图像的总帧数,t为时间,It(x,y)为t时刻原始全息图像中(x,y)位置处像素的灰度值;Among them, I b (x, y) is the gray value of the pixel at the position (x, y) in the background image, N is the total number of frames of the holographic image, t is the time, and I t (x, y) is the original image at time t. The gray value of the pixel at the (x, y) position in the holographic image;
进一步地,步骤S2中,所述对原始全息图像进行背景扣除,具体为:读取原始全息图像和背景图中各像素点的灰度值,背景扣除后的全息图像中各像素点的灰度值Is(x,y)为:Further, in step S2, the background subtraction of the original holographic image is specifically: reading the gray value of each pixel in the original holographic image and the background image, and the gray value of each pixel in the holographic image after background subtraction. The value Is ( x ,y) is:
Is(x,y)=It(x,y)-Ib(x,y),I s (x,y)=I t (x,y)-I b (x,y),
其中,Ib(x,y)为背景图中(x,y)位置处像素的灰度值,It(x,y)为t时刻原始全息图中(x,y)位置处像素的灰度值;Among them, I b (x, y) is the gray value of the pixel at the position (x, y) in the background image, and I t (x, y) is the gray value of the pixel at the position (x, y) in the original hologram at time t. degree value;
进一步地,所述步骤S3,具体过程为:Further, in the step S3, the specific process is:
U(r,z)=FT-1(FT(Is(r,0)·H(q,-z))),U(r,z)=FT -1 ( FT (Is(r,0)·H(q,-z))),
其中,h(r,-z)为传播算子,r为微粒的初始横向坐标,z为微粒的初始轴向坐标;i为虚数单位;k为波数;R为光传播距离;Is为样品的光强;FT-1为傅里叶逆变换;FT为傅里叶变换;H(q,-z)为h(r,-z)的傅里叶变换;Among them, h(r,-z) is the propagation operator, r is the initial lateral coordinate of the particle, z is the initial axial coordinate of the particle; i is the imaginary unit; k is the wave number; R is the light propagation distance; Is is the sample The light intensity of ; FT -1 is the inverse Fourier transform; FT is the Fourier transform; H(q,-z) is the Fourier transform of h(r,-z);
重建轴向区间的取值大于仪器在轴向的成像范围,步进为像素的大小除以物镜放大倍数;The value of the reconstructed axial interval is greater than the imaging range of the instrument in the axial direction, and the step is the size of the pixel divided by the magnification of the objective lens;
进一步地,所述阈值过滤,光强阈值为小于10%;Further, the threshold filtering, the light intensity threshold is less than 10%;
进一步地,所述步骤S5,具体过程为:根据微粒的运动特点,设置位移阈值T,若在连续两帧中两位置间的位移值小于该阈值,则这两个位置属于同一微粒;同时,设置轨迹长度应不小于W个点,W=30,以确保轨迹连接以及后续步骤算得的均方根末端距的正确性;Further, in the step S5, the specific process is: according to the movement characteristics of the particles, a displacement threshold value T is set, and if the displacement value between two positions in two consecutive frames is less than the threshold value, the two positions belong to the same particle; at the same time, The length of the set trajectory should not be less than W points, W=30, to ensure the correctness of the trajectory connection and the root mean square end distance calculated in the subsequent steps;
进一步地,所述位移阈值T为微粒速度Vs乘以曝光时间te所得,即:T=Vste;Further, the displacement threshold T is obtained by multiplying the particle velocity V s by the exposure time t e , namely: T=V s t e ;
进一步地,所述对MSD-Δt曲线进行拟合,具体为:Further, the fitting of the MSD-Δt curve is specifically:
通过下述公式拟合MSD-Δt曲线前10%的点:The points in the first 10% of the MSD-Δt curve are fitted by the following formula:
MSD(Δt)=6D(Δt)ν,MSD(Δt)=6D(Δt) ν ,
由拟合得到的指数ν将微粒的轨迹按运动模式划分,得到结果为:指数ν<0.95为第一模式;指数0.95≤ν≤1.05为第二模式;指数1.05<ν为第三模式;The index ν obtained by the fitting divides the trajectory of the particle according to the motion mode, and the result is: the index ν<0.95 is the first mode; the index 0.95≤ν≤1.05 is the second mode; the index 1.05<ν is the third mode;
进一步地,所述第一模式为受限扩散模式;所述第二模式为自由扩散模式;所述第三模式为主动运动模式;Further, the first mode is a restricted diffusion mode; the second mode is a free diffusion mode; the third mode is an active motion mode;
本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
本发明采用Rayleigh-Sommerfeld算法定位微粒三维位置,可同时对多个微粒进行测量,轴向定位精度达亚微米级别;能够获取微粒实时的三维坐标;它无需荧光标记,是一种无损的成像方法。它的成像深度可达几十上百微米,非常适合对各类微粒的活动进行动态追踪。The invention uses the Rayleigh-Sommerfeld algorithm to locate the three-dimensional position of the particles, can measure multiple particles at the same time, and the axial positioning accuracy reaches the sub-micron level; the real-time three-dimensional coordinates of the particles can be obtained; it does not need fluorescent markers, and is a non-destructive imaging method . Its imaging depth can reach tens of hundreds of microns, which is very suitable for dynamic tracking of the activities of various types of particles.
附图说明Description of drawings
图1是本发明所述一种微粒实时三维动态行为的监测方法的方法流程框图;Fig. 1 is a method flow diagram of a method for monitoring the real-time three-dimensional dynamic behavior of particles according to the present invention;
图2是本发明所述实施例中同轴数字全息显微成像系统结构框图;2 is a structural block diagram of a coaxial digital holographic microscope imaging system in the embodiment of the present invention;
图3是本发明所述实施例中大肠杆菌的原始全息图;Figure 3 is the original hologram of Escherichia coli in the embodiment of the present invention;
图4是本发明所述实施例中对全息图像序列进行光强平均后得到的背景图;FIG. 4 is a background image obtained by averaging the light intensity of a holographic image sequence in the embodiment of the present invention;
图5是本发明所述实施例中扣除背景的全息图;Fig. 5 is the hologram deducted background in the described embodiment of the present invention;
图6是本发明所述实施例中大肠杆菌在界面附近的运动轨迹图;Fig. 6 is the movement track diagram of Escherichia coli near the interface in the embodiment of the present invention;
图7是本发明所述实施例中受限扩散轨迹的MSD-Δt曲线图;Fig. 7 is the MSD-Δt curve diagram of the restricted diffusion trajectory in the described embodiment of the present invention;
图8是本发明所述实施例中主动运动轨迹的MSD-Δt曲线图;Fig. 8 is the MSD-Δt curve diagram of the active motion trajectory in the embodiment of the present invention;
图9是本发明所述实施例中主动运动模式大肠杆菌的密度分布图;Fig. 9 is the density distribution diagram of Escherichia coli in active movement mode in the embodiment of the present invention;
图10是本发明所述实施例中主动运动模式大肠杆菌的空间分布图;10 is a spatial distribution diagram of Escherichia coli in active movement mode in the embodiment of the present invention;
图11是本发明所述实施例中主动运动模式大肠杆菌的速度矢量与z朝上方向的夹角θ的分布图。11 is a distribution diagram of the included angle θ between the velocity vector of Escherichia coli in the active movement mode and the upward z direction in the embodiment of the present invention.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例Example
一种微粒实时三维动态行为的监测方法,如图1所示,包括以下步骤:A method for monitoring real-time three-dimensional dynamic behavior of particles, as shown in Figure 1, includes the following steps:
第一步:使用同轴数字全息显微成像系统对样品记录不同时刻的全息图,得到原始全息图像,在样品空白区记录背景图,或对原始全息图像进行光强平均得到背景图;所述样品为微粒;平均光强计算过程如下:The first step: use the coaxial digital holographic microscope imaging system to record holograms at different times on the sample to obtain the original holographic image, record the background image in the blank area of the sample, or average the light intensity of the original holographic image to obtain the background image; the The sample is a particle; the calculation process of the average light intensity is as follows:
其中,Ib(x,y)为背景图中(x,y)位置处像素的灰度值,N为原始全息图像的总帧数,t为时间,It(x,y)为t时刻原始全息图像中(x,y)位置处像素的灰度值;Among them, I b (x, y) is the gray value of the pixel at the position (x, y) in the background image, N is the total number of frames of the original holographic image, t is the time, and I t (x, y) is the time t The gray value of the pixel at the (x, y) position in the original holographic image;
本实施例中,微粒选择为野生型大肠杆菌;In this embodiment, the microparticles are selected as wild-type Escherichia coli;
所述同轴数字全息显微成像系统如图2所示,包括两条互相垂直的LED光源第一光源1和第二光源1′、第一平面反射镜7、样品台8、显微物镜9、第二平面反射10和sCMOS相机11;其中,两条LED光源均采用同轴笼式光路的设计,光路简单且可灵活地更换入射波长;LED光源均包括第一LED灯2和第二LED灯2′、第一显微物镜空间滤波器3和第二显微物镜空间滤波器3′、第一光阑4和第二光阑4′和焦距f=50mm的第一凸透镜5和第二凸透镜5′,LED光源1还包括第三平面反射镜6;显微物镜(放大倍数为10、20、40、60和100倍)安装在物镜转换器上,可灵活地切换物镜。The coaxial digital holographic microscope imaging system is shown in FIG. 2 , including two mutually perpendicular LED light sources, a first
第二步:通过背景图,对原始全息图像进行背景扣除,消除背景噪声;具体为:读取原始全息图像和背景图中各像素点的灰度值,背景扣除后的全息图像中各像素点的灰度值Is(x,y)为:Step 2: Perform background subtraction on the original holographic image through the background image to eliminate background noise; specifically: read the gray value of each pixel point in the original holographic image and the background image, and each pixel point in the holographic image after background subtraction The gray value of Is ( x , y) is:
Is(x,y)=It(x,y)-Ib(x,y),I s (x,y)=I t (x,y)-I b (x,y),
其中,Ib(x,y)为背景图中(x,y)位置处像素的灰度值,It(x,y)为t时刻原始全息图中(x,y)位置处像素的灰度值;图3是本发明所述实施例中大肠杆菌的原始全息图;图4是本发明所述实施例中对全息图像序列进行光强平均后得到的背景图;图5是本发明所述实施例中扣除背景的全息图。Among them, I b (x, y) is the gray value of the pixel at the position (x, y) in the background image, and I t (x, y) is the gray value of the pixel at the position (x, y) in the original hologram at time t. degree value; FIG. 3 is the original hologram of Escherichia coli in the embodiment of the present invention; FIG. 4 is the background image obtained by averaging the light intensity of the holographic image sequence in the embodiment of the present invention; The background-subtracted hologram in the above embodiment.
第三步:按照Rayleigh-Sommerfeld算法对扣除背景的全息图像进行数值重建,得到视野范围内所有大肠杆菌的重构光场在设定的三维空间中的强度分布信息,计算如下:Step 3: According to the Rayleigh-Sommerfeld algorithm, numerically reconstruct the holographic image deducted from the background, and obtain the intensity distribution information of the reconstructed light field of all E. coli within the field of view in the set three-dimensional space. The calculation is as follows:
U(r,z)=FT-1(FT(Is(r,0)·H(q,-z))),U(r,z)=FT -1 (FT(Is(r,0)·H(q,-z))),
其中,h(r,-z)为传播算子,r为大肠杆菌的初始横向坐标,z为大肠杆菌的初始轴向坐标;i为虚数单位;k为波数;R为光传播距离;Is为样品的光强;FT-1为傅里叶逆变换;FT为傅里叶变换;H(q,-z)为h(r,-z)的傅里叶变换;Among them, h(r,-z) is the propagation operator, r is the initial lateral coordinate of E. coli, z is the initial axial coordinate of E. coli; i is the imaginary unit; k is the wave number; R is the light propagation distance; I s is the light intensity of the sample; FT -1 is the inverse Fourier transform; FT is the Fourier transform; H(q,-z) is the Fourier transform of h(r,-z);
第四步:对上述得到的大肠杆菌的三维重构强度分布信息,通过阈值过滤和寻找光强局部最大值,获取各微粒在不同时刻的备选三维位置;具体步骤是,先设置一个光强阈值,通常小于10%,这里设置为7%,过滤掉重构光场内的噪声,然后在边长为w(以细菌为例,w取接近细菌鞭毛和身体长度加和的整数值)的立方体内逐点找寻局部光强最大值,这里为在边长为13μm的立方体内,逐点找到光强最大点的三维位置并记录下来。Step 4: For the three-dimensional reconstruction intensity distribution information of Escherichia coli obtained above, obtain the candidate three-dimensional positions of each particle at different times through threshold filtering and finding the local maximum value of the light intensity; the specific steps are to set a light intensity first. The threshold, usually less than 10%, is set to 7% here to filter out the noise in the reconstructed light field, and then the edge length is w (taking bacteria as an example, w takes an integer value close to the sum of the bacterial flagella and body length) Find the local maximum light intensity point by point in the cube. Here, in the cube with a side length of 13 μm, find the three-dimensional position of the point of maximum light intensity point by point and record it.
第五步:设定位移阈值为3.7μm,确定同一个大肠杆菌在不同时刻的三维位置,并连接成三维轨迹;若连续两帧中两位置间的位移值小于该阈值,则这两个位置属于同一大肠杆菌;轨迹长度设置为不小于30个点,以确保轨迹连接以及后续步骤算得的均方根末端距的正确性;图6是本发明所述实施例中大肠杆菌在界面附近的运动轨迹图;计算不同时间间隔Δt下,轨迹的均方根末端距MSD,得到MSD-Δt曲线:Step 5: Set the displacement threshold to 3.7 μm, determine the three-dimensional position of the same E. coli at different times, and connect them into a three-dimensional trajectory; if the displacement value between the two positions in two consecutive frames is less than the threshold, then the two positions Belong to the same Escherichia coli; the track length is set to not less than 30 points to ensure the correctness of the root mean square end distance calculated by the track connection and subsequent steps; Fig. 6 is the movement of Escherichia coli near the interface in the embodiment of the present invention Trajectory diagram; calculate the RMSD distance from the end of the trajectory to MSD at different time intervals Δt, and obtain the MSD-Δt curve:
MSD(Δt)=<|r(t0+Δt)-r(t0)|2>,MSD(Δt)=<|r(t 0 +Δt)-r(t 0 )| 2 >,
其中,Δt的取值为0.05n s,n=1,2,3…N-1,N为轨迹的长度;图7是本发明所述实施例中受限扩散轨迹的MSD-Δt曲线图;图8是本发明所述实施例中主动运动轨迹的MSD-Δt曲线图;Among them, the value of Δt is 0.05ns, n=1,2,3...N-1, and N is the length of the trajectory; Fig. 7 is the MSD-Δt curve diagram of the restricted diffusion trajectory in the embodiment of the present invention; Fig. 8 is the MSD-Δt curve diagram of the active motion trajectory in the embodiment of the present invention;
第六步:对MSD-Δt曲线进行拟合,拟合曲线前10%的点:Step 6: Fit the MSD-Δt curve and fit the first 10% points of the curve:
MSD(Δt)=6D(Δt)ν,MSD(Δt)=6D(Δt) ν ,
由拟合得到的指数将大肠杆菌的轨迹按运动模式进行分类,分为受限扩散模式、自由扩散模式、主动运动模式;其中,指数ν<0.95为受限扩散模式;指数0.95≤ν≤1.05为自由扩散模式;指数1.05<ν为主动运动模式;本实例旨在分析界面附近大肠杆菌的完整三维动态行为,ν≥1的轨迹均视为做主动运动,后续的数据处理只限于主动运动的大肠杆菌;The index obtained by fitting classifies the trajectory of Escherichia coli according to the movement mode, which is divided into restricted diffusion mode, free diffusion mode, and active movement mode; among them, the index ν<0.95 is the restricted diffusion mode; the index 0.95≤ν≤1.05 Free diffusion mode; index 1.05<ν is active motion mode; this example aims to analyze the complete three-dimensional dynamic behavior of Escherichia coli near the interface, trajectories with ν≥1 are regarded as active motion, and subsequent data processing is limited to active motion. Escherichia coli;
计算不同模式中,各轨迹点的瞬时速度V及瞬时速度矢量与z朝上方向的夹角θ,各轨迹的平均速度为该轨迹中所有轨迹点瞬时速度的平均值;Calculate the instantaneous velocity V of each trajectory point and the angle θ between the instantaneous velocity vector and the upward direction of z in different modes, and the average velocity of each trajectory is the average value of the instantaneous speed of all trajectory points in the trajectory;
其中,瞬时速度为:where the instantaneous speed is:
其中,i为轨迹点在轨迹中的帧数,i=2,3…N,N为该轨迹的总帧数;(xi,yi,zi)和(xi-1,yi-1,zi-1)为同一微粒在连续两帧中的位置,dt为连续两帧的时间间隔;Among them, i is the frame number of the track point in the track, i=2,3...N, N is the total number of frames of the track; (x i , y i , z i ) and (x i-1 , y i- 1 , z i-1 ) is the position of the same particle in two consecutive frames, dt is the time interval of two consecutive frames;
瞬时速度矢量与z朝上方向的夹角θ:The angle θ between the instantaneous velocity vector and the z-up direction:
其中,为z朝上方向的方向向量,为速度矢量,|a|为的模,|b|为的模in, is the direction vector in the upward direction of z, is the velocity vector, |a| is the modulus of , |b| is the mold
第七步:以所有轨迹点中轴向位置最低为界面所在的位置z0,各轨迹点轴向位置为zi;计算各轨迹点到界面的轴向距离zs,即:zs=zi-z0;Step 7: Take the lowest axial position of all the trajectory points as the interface position z 0 , and the axial position of each trajectory point as zi ; calculate the axial distance z s from each trajectory point to the interface, namely: z s = z i -z 0 ;
第八步:计算不同运动模式下,微粒的密度和速度的空间分布及θ的分布;通过运动特征量,分析微粒的三维动态行为及微粒与界面的相互作用;Step 8: Calculate the spatial distribution of the density and velocity of the particles and the distribution of θ under different motion modes; analyze the three-dimensional dynamic behavior of the particles and the interaction between the particles and the interface through the motion characteristics;
这里取dz=5μm(远大于轴向定位的分辨率400nm)、dθ=5°,计算主动运动的大肠杆菌的密度和速度的空间分布及θ的分布;Here, take dz=5μm (much greater than the axial positioning resolution of 400nm), dθ=5°, and calculate the spatial distribution of the density and velocity of the actively moving Escherichia coli and the distribution of θ;
通过上述运动特征量,分析大肠杆菌的三维动态行为及大肠杆菌与界面的相互作用。由图可知,大肠杆菌在界面附近的运动主要受到流体力学作用的影响。具体分析如下:图9所示的界面附近大肠杆菌的密度的空间分布符合流体力学作用下微粒在界面附近分布的理论模型:The three-dimensional dynamic behavior of Escherichia coli and the interaction between Escherichia coli and the interface were analyzed by the above motion characteristic quantities. It can be seen from the figure that the movement of Escherichia coli near the interface is mainly affected by hydrodynamics. The specific analysis is as follows: The spatial distribution of the density of E. coli near the interface shown in Figure 9 conforms to the theoretical model of particle distribution near the interface under the action of hydrodynamics:
式中,L⊥为流体力学作用的作用距离,H为样品池厚度,p为力偶极子,η为介质的黏度,D为扩散系数;图10中所示在z<5μm时,大肠杆菌运动速度随z减小而增大的现象及图11中θ主要分布于90°的现象,符合理论模型中微粒在界面附近受到流体力学作用,倾向于在平行于界面的方向运动,速度增大。In the formula, L ⊥ is the action distance of the hydrodynamic action, H is the thickness of the sample cell, p is the force dipole, η is the viscosity of the medium, and D is the diffusion coefficient; as shown in Figure 10, when z<5μm, E. coli moves The phenomenon that the velocity increases with the decrease of z and the phenomenon that θ is mainly distributed at 90° in Fig. 11 is consistent with the theoretical model that the particles are subjected to hydrodynamic action near the interface and tend to move in the direction parallel to the interface, and the velocity increases.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811010348.3A CN109190558B (en) | 2018-08-31 | 2018-08-31 | Method for monitoring real-time three-dimensional dynamic behavior of particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811010348.3A CN109190558B (en) | 2018-08-31 | 2018-08-31 | Method for monitoring real-time three-dimensional dynamic behavior of particles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109190558A CN109190558A (en) | 2019-01-11 |
CN109190558B true CN109190558B (en) | 2022-03-29 |
Family
ID=64917666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811010348.3A Active CN109190558B (en) | 2018-08-31 | 2018-08-31 | Method for monitoring real-time three-dimensional dynamic behavior of particles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109190558B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109186452B (en) * | 2018-08-31 | 2020-04-28 | 华南理工大学 | A high-precision positioning method for the axial position of non-spherical particles |
CN112067532B (en) * | 2020-04-29 | 2021-12-28 | 天津农学院 | A Composite Digital Holographic Microscopy Method for Measuring the Optical Axial Position of the Three-dimensional Displacement of Particles |
CN114219858A (en) * | 2021-11-26 | 2022-03-22 | 华南理工大学 | A three-dimensional rapid localization method of particles |
CN114998384B (en) * | 2022-05-23 | 2024-08-13 | 大连理工大学 | Method for rapidly extracting micro-rheological characteristics of cells |
CN116026729B (en) * | 2023-03-03 | 2024-03-15 | 浙江大学 | Portable microplastic detection device based on digital coaxial holographic microscopy |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1659935A (en) * | 2002-04-10 | 2005-08-24 | 阿尔利克斯公司 | Apparatus and method to generate and control optical traps to manipulate small particles |
CN101013302A (en) * | 2007-02-09 | 2007-08-08 | 上海大学 | Imaging apparatus of photoelectric reproduction space based on suspended particles screen |
CN101201582A (en) * | 2007-11-16 | 2008-06-18 | 西北工业大学 | A numerical correction method for curvature of field |
CN101842751A (en) * | 2007-10-30 | 2010-09-22 | 纽约大学 | Tracking and characterizing particles with holographic video microscopy |
US9594345B2 (en) * | 2005-07-26 | 2017-03-14 | Diarts Ag S.A. | Hybrid reflection hologram |
-
2018
- 2018-08-31 CN CN201811010348.3A patent/CN109190558B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1659935A (en) * | 2002-04-10 | 2005-08-24 | 阿尔利克斯公司 | Apparatus and method to generate and control optical traps to manipulate small particles |
US9594345B2 (en) * | 2005-07-26 | 2017-03-14 | Diarts Ag S.A. | Hybrid reflection hologram |
CN101013302A (en) * | 2007-02-09 | 2007-08-08 | 上海大学 | Imaging apparatus of photoelectric reproduction space based on suspended particles screen |
CN101842751A (en) * | 2007-10-30 | 2010-09-22 | 纽约大学 | Tracking and characterizing particles with holographic video microscopy |
CN101201582A (en) * | 2007-11-16 | 2008-06-18 | 西北工业大学 | A numerical correction method for curvature of field |
Non-Patent Citations (1)
Title |
---|
直流电压下SF6中自由线形导电微粒运动特性;张乔根;《高电压技术》;20180331 * |
Also Published As
Publication number | Publication date |
---|---|
CN109190558A (en) | 2019-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109190558B (en) | Method for monitoring real-time three-dimensional dynamic behavior of particles | |
Yu et al. | Review of digital holographic microscopy for three-dimensional profiling and tracking | |
US11892390B2 (en) | Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy | |
JP7361149B2 (en) | High-precision 5-part Differential using digital holography microscopy and untouched peripheral blood leukocytes | |
Molaei et al. | Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm | |
Mudanyali et al. | Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses | |
Cheong et al. | Strategies for three-dimensional particle tracking with holographic video microscopy | |
Li et al. | Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy | |
US8791985B2 (en) | Tracking and characterizing particles with holographic video microscopy | |
CN102037343B (en) | Flow cytometer apparatus for three dimensional diffraction imaging and related methods | |
CN104567682B (en) | Particulate three-dimensional position nanoscale resolution measurement method under liquid environment | |
Go et al. | Deep learning-based hologram generation using a white light source | |
Lee et al. | Deep learning-based accurate and rapid tracking of 3D positional information of microparticles using digital holographic microscopy | |
Xie et al. | 2D light scattering static cytometry for label‐free single cell analysis with submicron resolution | |
CN109186452B (en) | A high-precision positioning method for the axial position of non-spherical particles | |
Cavadini et al. | Investigation of the flow structure in thin polymer films using 3D µPTV enhanced by GPU | |
KR102410025B1 (en) | Machine learning based digital holography apparatus | |
Monakhova et al. | A comparative study of different software packages for nanoparticle tracking analysis | |
Yoon et al. | Label-free identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning | |
CN116888592A (en) | Method for classifying input images representing particles in a sample | |
CN114926529B (en) | A three-dimensional rapid positioning method for particles | |
Tai et al. | A forward reconstruction, holographic method to overcome the lens effect during 3D detection of semi-transparent, non-spherical particles | |
Hong | A review of 3D particle tracking and flow diagnostics using Digital Holography | |
CN112930473B (en) | Isovolumetric spheroidization of erythrocytes | |
Li et al. | Direct measurement of vorticity using tracer particles with internal markers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |