[go: up one dir, main page]

CN109188387B - Estimation Method of Distributed Coherent Radar Target Parameters Based on Interpolation Compensation - Google Patents

Estimation Method of Distributed Coherent Radar Target Parameters Based on Interpolation Compensation Download PDF

Info

Publication number
CN109188387B
CN109188387B CN201811014741.XA CN201811014741A CN109188387B CN 109188387 B CN109188387 B CN 109188387B CN 201811014741 A CN201811014741 A CN 201811014741A CN 109188387 B CN109188387 B CN 109188387B
Authority
CN
China
Prior art keywords
radar
value
matrix
moving target
echo matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811014741.XA
Other languages
Chinese (zh)
Other versions
CN109188387A (en
Inventor
吴建新
刘晓瑜
王彤
陈金铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201811014741.XA priority Critical patent/CN109188387B/en
Publication of CN109188387A publication Critical patent/CN109188387A/en
Application granted granted Critical
Publication of CN109188387B publication Critical patent/CN109188387B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention discloses a distributed coherent radar target parameter estimation method based on interpolation compensation, which mainly solves the problems of poor estimation precision and low real-time processing efficiency of ground slow-speed moving target parameters in the prior art. The method comprises the following implementation steps: generating a baseband echo matrix; (2) filtering the baseband echo matrix; (3) Estimating rough position parameters of the ground slow moving target; (4) Estimating fine position parameters of the ground slow moving target by using an interpolation compensation method; (5) And finding out the abscissa value and the ordinate value of the ground slow motion target. Compared with the prior art, the method improves the estimation precision of the distributed coherent system on the parameters of the ground slow-speed moving target, and simultaneously improves the real-time processing efficiency of the distributed coherent system.

Description

基于插值补偿的分布式相参雷达目标参数估计方法Estimation Method of Distributed Coherent Radar Target Parameters Based on Interpolation Compensation

技术领域technical field

本发明属于雷达技术领域,更进一步涉及运动平台雷达技术领域中的一种基于插值补偿的分布式相参雷达目标参数估计方法。本发明可利用分布式相参系统估计地面慢速运动目标的位置坐标。The invention belongs to the technical field of radar, and further relates to a distributed coherent radar target parameter estimation method based on interpolation compensation in the technical field of moving platform radar. The invention can utilize the distributed coherent system to estimate the position coordinates of the ground slow moving target.

背景技术Background technique

分布式相参系统在对海工作或者对高空目标探测时杂波比较弱,这时可将弱杂波背景下分布式相参系统对目标参数的估计看成噪声背景下对目标参数的估计。分布式相参系统具有探测距离远和相参性能高的优点,因而被广泛地应用于对参数精度要求高的探测场景中去。The clutter is relatively weak when the distributed coherent system is working on the sea or detecting high-altitude targets. At this time, the estimation of the target parameters by the distributed coherent system in the weak clutter background can be regarded as the estimation of the target parameters in the noise background. The distributed coherent system has the advantages of long detection distance and high coherence performance, so it is widely used in detection scenarios that require high parameter accuracy.

宋靖,张剑云,郑志东等人在其发表的论文“分布式全相参雷达相干参数估计性能”(Journal of Electronics&Information Technology 2014,8电子与信息学报)中提出一种基于相位同步的分布式雷达目标参数估计方法。该方法在多输入多输出(MIMO)模式下,首先推导了时延差估计的混合克拉美—罗界(HCRB)闭式解,然后在全相参模式下,对分布式系统所接收的目标回波做能量积累后,给出积累后的目标输出信噪比增益的解析式,并研究收发天线数的配置准则,最后得出在系统相位同步精度足够高的前提下,基于相位同步的处理方式能够获得较高的时延差估计精度和输出信噪比增益的结论。该方法存在的不足之处是,由于能量积累是通过配准相位来实现的,这会给目标回波带来额外的相位,导致估计出的目标位置坐标偏离真实的目标位置坐标。Song Jing, Zhang Jianyun, Zheng Zhidong and others proposed a phase synchronization based distributed radar target Parameter Estimation Method. In the multiple-input multiple-output (MIMO) mode, the method first derives the hybrid Cramer-Rao bound (HCRB) closed-form solution for the delay difference estimation, and then in the fully coherent mode, the distributed system receives the target After energy accumulation of the echoes, the analytical formula of the accumulated target output signal-to-noise ratio gain is given, and the configuration criteria of the number of transmitting and receiving antennas are studied. Finally, it is concluded that the phase synchronization-based processing The method can obtain the conclusion of higher delay difference estimation accuracy and output signal-to-noise ratio gain. The disadvantage of this method is that since the energy accumulation is realized by registering the phase, this will bring an additional phase to the target echo, which will cause the estimated target position coordinates to deviate from the real target position coordinates.

电子科技大学在其申请的专利文献“一种改进的ML天波雷达机动目标参数估计方法”(申请号:CN201610190528.9,申请公开号:CN105676217A)中提出了一种改进的基于最大似然函数ML(Maximum Likelihood)的天波雷达机动目标参数估计方法。该方法将天波雷达的机动目标信号建模为广义相位多项式,然后将似然函数最大化问题转变为‘超定’非线性最小二乘估计的最优化问题,最后提出通过最大似然函数在空域进行多维搜索来实现机动目标的参数估计。该方法存在的不足之处是,该方法引进了‘超定’非线性最小二乘估计的最优化问题,这会对后续的机动目标参数估计带来最小二乘拟合误差,导致机动目标参数估计精度变差。The University of Electronic Science and Technology of China proposed an improved ML method based on the maximum likelihood function in its patent document "An Improved ML Sky Wave Radar Maneuvering Target Parameter Estimation Method" (application number: CN201610190528.9, application publication number: CN105676217A). (Maximum Likelihood) sky-wave radar maneuvering target parameter estimation method. In this method, the maneuvering target signal of sky-wave radar is modeled as a generalized phase polynomial, and then the likelihood function maximization problem is transformed into an optimization problem of 'overdetermined' nonlinear least squares estimation. A multidimensional search is performed to achieve parameter estimation of the maneuvering target. The disadvantage of this method is that this method introduces the optimization problem of 'overdetermined' nonlinear least squares estimation, which will bring the least squares fitting error to the subsequent maneuvering target parameter estimation, resulting in the maneuvering target parameter Estimation accuracy deteriorates.

北京航空航天大学在其申请的专利文献“一种基于相关函数的动目标参数估计方法”(申请号:CN201510256088.8申请公开号:CN104898119A)中提出了一种基于相关函数的动目标参数估计方法。该方法包括以下几个步骤:步骤一:读入原始动目标回波数据及相关成像参数;步骤二:方位向傅里叶变换处理;步骤三:方位向同压缩感知CS(CompressiveSensing)因子相乘进行补偿;步骤四:距离向傅里叶变换处理;步骤五:距离向同距离补偿因子相乘,进行距离压缩处理;步骤六:距离向傅里叶逆变换处理;步骤七:距离-多普勒域进行相关函数处理;步骤八:方位向傅里叶逆变换处理;步骤九:频域补零,时域增采样对相关处理结果进行插值处理,求取最大值;步骤十:由相关处理最大值估计目标速度。该方法存在的不足之处是,由于频域补零步骤中,时域增采样对相关结果进行插值处理会加大系统计算量,导致系统的实时性不高。Beijing University of Aeronautics and Astronautics proposed a method for estimating moving target parameters based on correlation functions in its patent document "A Method for Estimating Moving Target Parameters Based on Correlation Functions" (Application No.: CN201510256088.8 Application Publication No.: CN104898119A) . The method includes the following steps: step 1: read in the original moving target echo data and related imaging parameters; step 2: azimuth Fourier transform processing; step 3: multiply the azimuth with the CS (CompressiveSensing) factor Compensation; Step 4: Range to Fourier Transform processing; Step 5: Range to the same distance compensation factor multiplied to perform distance compression processing; Step 6: Range to Inverse Fourier Transform processing; Step 7: Distance to Doppler Carry out correlation function processing in Le domain; Step 8: Azimuth to Fourier inverse transform processing; Step 9: Fill zero in frequency domain, up-sample in time domain to perform interpolation processing on correlation processing results to obtain the maximum value; Step 10: Process by correlation The maximum value estimates the target speed. The disadvantage of this method is that in the frequency domain zero padding step, the time domain upsampling to interpolate the correlation results will increase the amount of system calculation, resulting in low real-time performance of the system.

发明内容Contents of the invention

本发明的目的在于针对上述现有技术的不足,提供一种基于插值补偿的分布式相参雷达目标参数估计方法。The purpose of the present invention is to provide a method for estimating parameters of distributed coherent radar targets based on interpolation compensation in view of the deficiencies of the above-mentioned prior art.

实现本发明目的的思路是:分布式相参系统内部,多个发射单元雷达同时发射信号,由所有接收单元雷达接收经地面慢速运动目标散射后的回波。考虑到实际生活中的可操作性,令分布式相参系统内部的每部单元雷达,均具有发射单元雷达和接收单元雷达的作用。且为了实现接收相参,应保证所有接收单元雷达编队飞行。在接收相参处理中,首先对各接收单元雷达的三维回波矩阵(距离门数*发射脉冲处理周期数*接收阵元数),进行系统误差校正,以消除由于接收单元雷达之间的本振相位和时间同步相位的不一致性带来的影响。之后对系统误差校正后的回波矩阵进行下变频处理,即将矩阵所有元素的频率中心,搬移到基带位置,得到各接收单元雷达的基带回波矩阵。为了在各接收单元雷达的接收机中,能够通过多个基带匹配滤波器分离出不同发射单元雷达的经目标散射的回波,应该为各发射单元雷达选用互相正交的发射波形,从而在各接收单元雷达中匹配出每个发射单元雷达所贡献的回波成分。在各接收单元雷达中,对不同发射单元雷达对应的滤波处理后的三维回波矩阵,利用峰值提取法,找出地面慢速运动目标的粗略位置参数,包括地面慢速运动目标的距离门、多普勒通道号和波束号,之后再利用插值补偿法得到地面慢速运动目标的精细位置参数,最后将每个发射单元雷达发射、每个接收单元雷达接收下,以地面慢速运动目标的精细位置参数作为插值补偿后的三维矩阵的矩阵索引的元素值,按照接收单元雷达序号从小到大的顺序,组成目标回波列矢量。利用该列矢量,对分布式相参系统对地观测区域中的每一点进行增益值匹配,找出最大增益值对应的位置点,将该位置点对应的横坐标值和纵坐标值,分别作为地面慢速运动目标的横坐标值和纵坐标值,实现利用分布式相参系统估计地面慢速运动目标的位置坐标。为了提高系统实时处理效率和降低运算量,利用峰值提取法已获取的目标的粗略位置参数,仅选取粗略位置参数附近的部分,局域插值补偿三维回波矩阵,这样可以在不降低参数估计精度的前提下,显著提高系统实时处理效率和降低运算量。The idea of realizing the object of the present invention is: inside the distributed coherent system, multiple transmitting unit radars transmit signals simultaneously, and all receiving unit radars receive echoes scattered by ground slow-moving targets. Considering the operability in real life, each unit radar in the distributed coherent system has the functions of transmitting unit radar and receiving unit radar. And in order to achieve receiving coherence, all receiving unit radars should be guaranteed to fly in formation. In receiving coherent processing, firstly, system error correction is performed on the three-dimensional echo matrix (number of range gates*transmission pulse processing cycles*number of receiving array elements) of the radars of each receiving unit to eliminate the local error caused by the radars of the receiving units. The impact of the inconsistency between vibration phase and time synchronization phase. After that, the system error corrected echo matrix is down-converted, that is, the frequency center of all elements of the matrix is moved to the baseband position, and the baseband echo matrix of each receiving unit radar is obtained. In order to separate the target-scattered echoes of different transmitting unit radars through multiple baseband matched filters in the receiver of each receiving unit radar, it is necessary to select mutually orthogonal transmitting waveforms for each transmitting unit radar, so that each The echo components contributed by each transmitting unit radar are matched in the receiving unit radar. In each receiving unit radar, use the peak extraction method to find out the rough position parameters of the ground slow-moving target, including the range gate of the ground slow-moving target, Doppler channel number and beam number, and then use the interpolation compensation method to obtain the fine position parameters of the slow moving target on the ground. Finally, each transmitting unit radar transmits and each receiving unit radar receives, and the ground slow moving target The fine position parameters are used as the element values of the matrix index of the three-dimensional matrix after interpolation and compensation, and form the target echo column vector in the order of the radar serial number of the receiving unit from small to large. Use this column vector to match the gain value of each point in the earth observation area of the distributed coherent system, find out the position point corresponding to the maximum gain value, and use the abscissa value and ordinate value corresponding to the position point as The abscissa and ordinate values of the ground slow-moving target realize the estimation of the position coordinates of the ground slow-moving target by using the distributed coherent system. In order to improve the real-time processing efficiency of the system and reduce the amount of calculation, the rough position parameters of the target obtained by the peak extraction method are used, and only the part near the rough position parameters is selected, and the three-dimensional echo matrix is compensated by local interpolation, so that the parameter estimation accuracy can not be reduced. Under the premise of the system, the real-time processing efficiency of the system is significantly improved and the calculation amount is reduced.

本发明的具体步骤包括如下:Concrete steps of the present invention include as follows:

(1)生成基带回波矩阵:(1) Generate baseband echo matrix:

(1a)对分布式相参系统内部,由各接收单元雷达接收地面慢速运动目标散射后的回波数据构成的回波矩阵,进行系统误差校正,得到系统误差校正后的回波矩阵;(1a) In the distributed coherent system, the echo matrix composed of the echo data scattered by the ground slow-moving target received by each receiving unit radar is subjected to systematic error correction, and the echo matrix after the systematic error correction is obtained;

(1b)将系统误差校正后的回波矩阵的每一个位置处的元素的频率中心,搬移到基带频率位置,得到各接收单元雷达的基带回波矩阵;(1b) Move the frequency center of the element at each position of the echo matrix after systematic error correction to the baseband frequency position to obtain the baseband echo matrix of each receiving unit radar;

(2)对基带回波矩阵进行滤波处理:(2) Filtering the baseband echo matrix:

(2a)利用距离域匹配滤波公式,计算基带回波矩阵中各元素经过距离域匹配滤波处理后,对应于每个发射单元雷达的回波数值,将所有数值按照其所在距离门从小到大进行排序,组成距离域匹配滤波后的三维回波矩阵;(2a) Using the range-domain matched filter formula, calculate the echo value corresponding to each transmitting unit radar after each element in the baseband echo matrix has been processed by the range-domain matched filter. Sorting to form a three-dimensional echo matrix after matched filtering in the range domain;

(2b)利用多普勒滤波公式,计算距离域匹配滤波后的三维回波矩阵中各元素经过多普勒滤波处理后的数值,将所有数值按照其所在多普勒通道号从小到大进行排序,组成多普勒滤波后的三维回波矩阵;(2b) Use the Doppler filter formula to calculate the value of each element in the three-dimensional echo matrix after the range domain matched filter after Doppler filter processing, and sort all the values according to the Doppler channel number where they are located from small to large , forming a three-dimensional echo matrix after Doppler filtering;

(2c)利用数字波束形成公式,计算多普勒滤波后的三维回波矩阵中各元素经过数字波束形成处理后的数值,将所有数值按照其所在波束序号从小到大进行排序,组成数字波束形成后的三维回波矩阵;(2c) Use the digital beamforming formula to calculate the value of each element in the three-dimensional echo matrix after Doppler filtering after digital beamforming processing, and sort all the values according to the number of their beams from small to large to form a digital beamforming The final three-dimensional echo matrix;

(3)估计地面慢速运动目标的粗略位置参数;(3) Estimate the rough position parameters of the slow moving target on the ground;

(4)利用插值补偿法估计地面慢速运动目标的精细位置参数:(4) Use the interpolation compensation method to estimate the fine position parameters of the slow moving target on the ground:

(4a)利用插值补偿法,得到插值补偿后的三维回波矩阵;(4a) using interpolation compensation method to obtain a three-dimensional echo matrix after interpolation compensation;

(4b)利用峰值提取法,从插值补偿后的三维回波矩阵中找出地面慢速运动目标的精细位置参数;(4b) Using the peak extraction method, find out the fine position parameters of the ground slow-moving target from the three-dimensional echo matrix after interpolation compensation;

(5)找出地面慢速运动目标的横坐标值和纵坐标值:(5) Find out the abscissa and ordinate values of the ground slow-moving target:

(5a)利用赋值法,得到地面慢速运动目标的横坐标值和纵坐标值的搜索区间;(5a) Utilize the assignment method to obtain the search interval of the abscissa value and the ordinate value of the ground slow-moving target;

(5b)从由横坐标值和纵坐标值的搜索区间所组成的矩形区域中,分别找出地面慢速运动目标的横坐标值和纵坐标值。(5b) Find the abscissa value and ordinate value of the ground slow-moving target respectively from the rectangular area formed by the search interval of the abscissa value and the ordinate value.

本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:

第一,由于本发明利用了插值补偿法,对由能量积累给目标回波带来的额外的相位进行了补偿,克服了现有技术对由于能量积累给目标回波带来额外的相位,造成估计出的目标位置坐标偏离真实的目标位置坐标的不足,使得本发明在工程实践中不容易受额外的相位的影响,提高了分布式相参系统对地面慢速运动目标位置参数的估计精度。First, since the present invention utilizes the interpolation compensation method, the extra phase brought to the target echo by energy accumulation is compensated, which overcomes the problem of the prior art that the energy accumulation brings extra phase to the target echo, causing The fact that the estimated target position coordinates deviates from the real target position coordinates makes the present invention less susceptible to the influence of additional phases in engineering practice, and improves the estimation accuracy of the distributed coherent system for the position parameters of slow moving targets on the ground.

第二,由于本发明利用了峰值提取法,通过提取最大值对应的索引得到了地面慢速运动目标的位置参数,提高了系统的实时性,克服了现有技术由于利用时域增采样对相关结果进行插值处理,加大系统计算量,导致系统的实时性不高的不足,使得本发明能够提高分布式相参系统的实时处理效率。Second, because the present invention utilizes the peak value extraction method, the position parameters of the ground slow-moving target are obtained by extracting the index corresponding to the maximum value, which improves the real-time performance of the system and overcomes the problem of using time-domain up-sampling to correlate As a result, interpolation processing increases the calculation amount of the system, resulting in the problem that the real-time performance of the system is not high, so that the present invention can improve the real-time processing efficiency of the distributed coherent system.

附图说明Description of drawings

图1是本发明的流程图;Fig. 1 is a flow chart of the present invention;

图2是本发明的仿真图。Fig. 2 is a simulation diagram of the present invention.

具体实施方式Detailed ways

下面结合附图对本发明做进一步的描述。The present invention will be further described below in conjunction with the accompanying drawings.

参照图1,对本发明的步骤做进一步的描述。With reference to Fig. 1, the steps of the present invention are further described.

步骤1,生成基带回波矩阵。Step 1, generate a baseband echo matrix.

对分布式相参系统内部,由各接收单元雷达接收地面慢速运动目标散射后的回波数据构成的回波矩阵,进行系统误差校正,得到系统误差校正后的回波矩阵。In the distributed coherent system, the system error correction is performed on the echo matrix composed of the echo data scattered by the ground slow-moving target received by each receiving unit radar, and the echo matrix after the system error correction is obtained.

所述系统误差校正的具体步骤如下:The specific steps of the system error correction are as follows:

第1步,利用分布式相参系统内部的系统误差估计模块,估计各接收单元雷达之间,由于本振相位和时间同步相位的差异性带来的系统误差矩阵。The first step is to use the system error estimation module inside the distributed coherent system to estimate the system error matrix caused by the difference between the local oscillator phase and the time synchronization phase between the radars of each receiving unit.

第2步,用由各接收单元雷达接收地面慢速运动目标散射后的回波数据构成的回波矩阵中每一个位置处的元素,除以系统误差矩阵中同一个位置处的元素,得到系统误差校正后的回波矩阵。Step 2: Divide the elements at each position in the echo matrix formed by the echo data scattered by the ground slow-moving target received by the radars of each receiving unit by the elements at the same position in the system error matrix to obtain the system Echo matrix after error correction.

将系统误差校正后的回波矩阵的每一个位置处的元素的频率中心,搬移到基带频率位置,得到各接收单元雷达的基带回波矩阵。The frequency center of the element at each position of the echo matrix after systematic error correction is moved to the baseband frequency position to obtain the baseband echo matrix of each receiving unit radar.

步骤2,对基带回波矩阵进行滤波处理。Step 2, performing filtering processing on the baseband echo matrix.

利用距离域匹配滤波公式,计算基带回波矩阵中各元素经过距离域匹配滤波处理后,对应于每个发射单元雷达的回波数值,将所有数值按照其所在距离门从小到大进行排序,组成距离域匹配滤波后的三维回波矩阵。Using the distance domain matched filter formula, calculate the echo value corresponding to each transmitting unit radar after each element in the baseband echo matrix is processed by the distance domain matched filter, sort all the values according to the range gate where they are located from small to large, and form The 3D echo matrix after matched filtering in the range domain.

所述距离域匹配滤波公式如下:The distance domain matched filtering formula is as follows:

Figure BDA0001785858830000051
Figure BDA0001785858830000051

其中,yp,q(l,k,n)表示基带回波矩阵经过距离域匹配滤波处理后的第p个发射单元雷达发射、第q个接收单元雷达接收的第l个距离门、第k个发射脉冲处理周期、第n个接收阵元的数值,p=1,2,...,mT,mT表示分布式相参系统中的发射单元雷达的总数,q=1,2,...,mR,mR表示分布式相参系统中的接收单元雷达的总数,l=1,2,...,L,L表示距离门的总数,k=1,2,....,K,K表示所有发射脉冲处理周期的总数,n=1,2,...,N,N表示分布式相参系统各接收单元雷达中的接收阵元的总数,∑表示求和操作,xq(r,k,n)表示第q个接收单元雷达接收的第r个距离频域采样点、第k个发射脉冲处理周期、第n个接收阵元的距离频域回波数据,sp(r)表示第p个发射单元雷达的第r个距离频域采样点处的距离频域匹配滤波数据,*表示共轭操作,exp表示以自然对数为底的指数操作,j表示虚数单位符号,π表示圆周率。Among them, y p,q (l,k,n) represents the baseband echo matrix after the range-domain matched filter processing, the p-th transmitting unit radar transmits, the q-th receiving unit radar receives the l-th range gate, the k-th transmission pulse processing cycle, the value of the nth receiving array element, p=1,2,...,m T , m T represents the total number of transmitting unit radars in the distributed coherent system, q=1,2, ...,m R , m R represents the total number of receiving unit radars in the distributed coherent system, l=1,2,...,L, L represents the total number of range gates, k=1,2,... .., K, K represents the total number of all transmit pulse processing cycles, n=1, 2,..., N, N represents the total number of receiving array elements in each receiving unit radar of the distributed coherent system, ∑ represents the sum Operation, x q (r,k,n) represents the r-th range-frequency domain sampling point received by the q-th receiving unit radar, the k-th transmit pulse processing cycle, and the range-frequency domain echo data of the n-th receiving element , sp (r) represents the range-frequency domain matched filter data at the r-th range-frequency domain sampling point of the p -th transmitting unit radar, * represents the conjugate operation, exp represents the exponential operation with the natural logarithm as the base, j Represents the imaginary unit symbol, and π represents pi.

利用多普勒滤波公式,计算距离域匹配滤波后的三维回波矩阵中各元素经过多普勒滤波处理后的数值,将所有数值按照其所在多普勒通道号从小到大进行排序,组成多普勒滤波后的三维回波矩阵。Use the Doppler filter formula to calculate the value of each element in the three-dimensional echo matrix after the matched filter in the range domain after Doppler filter processing, and sort all the values according to the Doppler channel number where they are located, from small to large, forming a multi-dimensional The three-dimensional echo matrix after Puler filtering.

所述多普勒滤波公式如下:The Doppler filter formula is as follows:

Figure BDA0001785858830000061
Figure BDA0001785858830000061

其中,zp,q(l,a,n)表示距离域匹配滤波后的三维回波矩阵经过多普勒滤波处理后的第p个发射单元雷达发射、第q个接收单元雷达接收的第l个距离门、第a个多普勒通道、第n个接收阵元的数值,a=1,2,...,K,b表示发射脉冲处理周期的序号。Among them, z p, q (l, a, n) represents the three-dimensional echo matrix after the range domain matching filter and the lth echo matrix received by the pth transmitting unit radar and the qth receiving unit radar after Doppler filtering processing. The value of the range gate, the a-th Doppler channel, and the n-th receiving array element, a=1,2,...,K, b represents the sequence number of the transmit pulse processing cycle.

利用数字波束形成公式,计算多普勒滤波后的三维回波矩阵中各元素经过数字波束形成处理后的数值,将所有数值按照其所在波束序号从小到大进行排序,组成数字波束形成后的三维回波矩阵。Use the digital beamforming formula to calculate the value of each element in the Doppler filtered three-dimensional echo matrix after digital beamforming processing, and sort all the values according to the number of their beams from small to large to form a three-dimensional image after digital beamforming echo matrix.

所述数字波束形成公式如下:The digital beamforming formula is as follows:

Figure BDA0001785858830000062
Figure BDA0001785858830000062

其中,fp,q(l,a,c)表示多普勒滤波后的三维回波矩阵中,经过数字波束形成处理后的第p个发射单元雷达发射、第q个接收单元雷达接收的第l个距离门、第a个多普勒通道、第c个波束的数值,c=1,2,...,N,g表示接收阵元的序号。Among them, f p,q (l,a,c) represent the three-dimensional echo matrix after Doppler filtering, the pth transmitting unit radar transmits and the qth receiving unit radar receives the first Values of the l range gate, the a-th Doppler channel, and the c-th beam, c=1, 2,..., N, and g represents the serial number of the receiving array element.

步骤3,估计地面慢速运动目标的粗略位置参数。Step 3, estimate the rough location parameters of the slow moving target on the ground.

所述估计地面慢速运动目标的粗略位置参数的具体步骤如下:The specific steps of estimating the rough position parameters of the ground slow-moving target are as follows:

第1步,从数字波束形成后的三维回波矩阵中,找出所有元素的最大值。Step 1, from the 3D echo matrix after digital beamforming, find the maximum value of all elements.

第2步,用该最大值的矩阵索引,替换地面慢速运动目标的粗略位置参数。Step 2, use the matrix index of the maximum value to replace the rough location parameters of the ground slow-moving target.

步骤4,利用插值补偿法估计地面慢速运动目标的精细位置参数。Step 4, using the interpolation compensation method to estimate the fine position parameters of the ground slow moving target.

利用插值补偿法,得到插值补偿后的三维回波矩阵。Using the interpolation compensation method, the three-dimensional echo matrix after interpolation compensation is obtained.

所述插值补偿法的具体步骤如下:The specific steps of the interpolation compensation method are as follows:

第1步,在数字波束形成后的三维回波矩阵中,对各维分别做快速傅里叶逆变换,得到快速傅里叶逆变换后的三维回波矩阵。In the first step, in the three-dimensional echo matrix after digital beamforming, inverse fast Fourier transform is performed on each dimension to obtain the three-dimensional echo matrix after inverse fast Fourier transform.

第2步,对快速傅里叶逆变换后的三维回波矩阵的各维尾部分别补零,直到其三个维数分别达到αL、

Figure BDA0001785858830000071
和αN为止,α表示补零倍数,α∈[1,10]内的正整数,∈表示属于符号,得到补零后的三维回波矩阵。In the second step, the tails of each dimension of the three-dimensional echo matrix after the inverse fast Fourier transform are filled with zeros until the three dimensions respectively reach αL,
Figure BDA0001785858830000071
Up to αN, α represents the multiple of zero padding, a positive integer in α∈[1,10], ∈ represents a symbol, and the three-dimensional echo matrix after zero padding is obtained.

第3步,对补零后的三维回波矩阵的各维,分别做αL点、

Figure BDA0001785858830000072
点和αN点的快速傅里叶变换,得到插值补偿后的三维回波矩阵。Step 3, for each dimension of the three-dimensional echo matrix after zero padding, respectively make αL points,
Figure BDA0001785858830000072
The fast Fourier transform of the points and αN points is used to obtain the three-dimensional echo matrix after interpolation and compensation.

利用峰值提取法,从插值补偿后的三维回波矩阵中找出地面慢速运动目标的精细位置参数。Using the peak extraction method, the fine position parameters of the ground slow-moving target are found from the three-dimensional echo matrix after interpolation and compensation.

所述峰值提取法的具体步骤如下:The concrete steps of described peak extraction method are as follows:

第1步,从插值补偿后的三维回波矩阵中,找出所有元素的最大值。The first step is to find the maximum value of all elements from the three-dimensional echo matrix after interpolation compensation.

第2步,用该最大值的矩阵索引,替换地面慢速运动目标的精细位置参数。Step 2, use the matrix index of the maximum value to replace the fine position parameters of the ground slow moving target.

步骤5,找出地面慢速运动目标的横坐标值和纵坐标值。Step 5, find out the abscissa value and ordinate value of the slow moving target on the ground.

利用赋值法,得到地面慢速运动目标的横坐标值和纵坐标值的搜索区间。Using the assignment method, the search interval of the abscissa and ordinate values of the ground slow-moving target is obtained.

所述赋值法的具体步骤如下:The specific steps of the assignment method are as follows:

第1步,用分布式相参系统对地观测区域横坐标值的取值区间,替换地面慢速运动目标横坐标值的搜索区间。The first step is to replace the search interval of the abscissa value of the ground slow-moving target with the value interval of the abscissa value of the earth observation area of the distributed coherent system.

第2步,用分布式相参系统对地观测区域纵坐标值的取值区间,替换地面慢速运动目标纵坐标值的搜索区间。The second step is to replace the search interval of the ordinate value of the ground slow-moving target with the value interval of the ordinate value of the earth observation area of the distributed coherent system.

从由横坐标值和纵坐标值的搜索区间所组成的矩形区域中,分别找出地面慢速运动目标的横坐标值和纵坐标值。Find the abscissa value and ordinate value of the ground slow-moving target from the rectangular area formed by the search interval of the abscissa value and the ordinate value respectively.

所述分别找出地面慢速运动目标的横坐标值和纵坐标值的具体步骤如下:The specific steps of finding out the abscissa value and the ordinate value of the ground slow-moving target respectively are as follows:

第1步,从插值补偿后的三维回波矩阵中,找出以地面慢速运动目标的精细位置参数为矩阵索引的元素值,将这些元素值按照接收单元雷达序号从小到大的顺序,组成目标回波列矢量。Step 1: From the three-dimensional echo matrix after interpolation compensation, find out the element values whose matrix index is the fine position parameter of the slow moving target on the ground, and combine these element values according to the order of the radar serial number of the receiving unit from small to large to form Target echo column vector.

第2步,按照下式,计算矩形区域内每一个位置点对应的搜索导向矢量:Step 2, according to the following formula, calculate the search guide vector corresponding to each location point in the rectangular area:

Figure BDA0001785858830000073
Figure BDA0001785858830000073

其中,sw表示矩形区域内第w个位置点对应的搜索导向矢量,λ表示发射波长,Tw1表示矩形区域内第w个位置点到第1个发射单元雷达的距离,Rw1表示矩形区域内第w个位置点到第1个接收单元雷达的距离,Tw2表示矩形区域内第w个位置点到第2个发射单元雷达的距离,Twp表示矩形区域内第w个位置点到第p个发射单元雷达的距离,Rwq表示矩形区域内第w个位置点到第q个接收单元雷达的距离,T表示转置操作。Among them, s w represents the search steering vector corresponding to the wth position point in the rectangular area, λ represents the emission wavelength, T w1 represents the distance from the wth position point in the rectangular area to the radar of the first transmitting unit, and R w1 represents the rectangular area The distance from the wth position point in the rectangular area to the first receiving unit radar, T w2 represents the distance from the wth position point in the rectangular area to the second transmitting unit radar, and T wp represents the wth position point in the rectangular area to the first The distance from the radar of the p transmitting unit, R wq represents the distance from the wth position point in the rectangular area to the qth receiving unit radar, and T represents the transpose operation.

第3步,按照下式,计算矩形区域内每个位置点处的增益值:Step 3, according to the following formula, calculate the gain value at each position point in the rectangular area:

Yw=sw HzY w =s w H z

其中,Yw表示矩形区域内第w个位置点处的增益值,H表示共轭转置操作,z表示目标回波列矢量。Among them, Y w represents the gain value at the wth position point in the rectangular area, H represents the conjugate transpose operation, and z represents the target echo column vector.

第4步,从矩形区域内的所有位置点中找出最大增益值对应的位置点,将该位置点对应的横坐标值和纵坐标值,分别作为地面慢速运动目标的横坐标值和纵坐标值。Step 4: Find the position point corresponding to the maximum gain value from all the position points in the rectangular area, and use the abscissa value and ordinate value corresponding to the position point as the abscissa value and ordinate value of the slow moving target on the ground respectively coordinate value.

下面结合仿真实验对本发明的效果做进一步的说明。The effects of the present invention will be further described below in combination with simulation experiments.

1.仿真条件:1. Simulation conditions:

本发明仿真实验的环境为:MATLAB 2017b,Intel(R)Xeon(R)CPU 2.20GHz,Window7专业版。The environment of the simulation experiment of the present invention is: MATLAB 2017b, Intel (R) Xeon (R) CPU 2.20GHz, Window7 professional edition.

2.仿真内容与结果分析:2. Simulation content and result analysis:

本发明的仿真实验是利用本发明的方法,根据分布式相参系统接收的地面慢速运动目标的回波,对地面慢速运动目标的横坐标值和纵坐标值进行估计。分布式相参系统中的每部单元雷达具有收发一体性,即每个单元雷达既是发射单元雷达,也是接收单元雷达。单元雷达的总数是4个,距离门的总数是200个,所有发射脉冲处理周期的总数是128个,各接收单元雷达的接收阵元数均是8个,补零倍数是10倍,各发射单元雷达的发射功率是200kw,发射载频是300MHz,发射信号带宽是1MHz,脉冲重复频率是5KHz,地面慢速运动目标的回波信噪比是30dB。The simulation experiment of the present invention uses the method of the present invention to estimate the abscissa and ordinate values of the slow moving target on the ground according to the echoes of the slow moving target on the ground received by the distributed coherent system. Each unit radar in the distributed coherent system has the integration of sending and receiving, that is, each unit radar is both a transmitting unit radar and a receiving unit radar. The total number of unit radars is 4, the total number of range gates is 200, the total number of all transmitting pulse processing cycles is 128, the number of receiving array elements of each receiving unit radar is 8, and the multiple of zero padding is 10 times. The transmission power of the unit radar is 200kw, the transmission carrier frequency is 300MHz, the transmission signal bandwidth is 1MHz, the pulse repetition frequency is 5KHz, and the signal-to-noise ratio of the echo of the slow moving target on the ground is 30dB.

图2是本发明的仿真图。图2(a)是对于地面慢速运动目标,在接收单元雷达之间间距均为100米时,理想情况下、插值补偿情况下和没有插值补偿情况下的回波矢量相位比较图。图2(a)中的横坐标表示发射-接收对,纵坐标表示回波矢量的相位。图2(a)中无标示的曲线表示理想情况下的回波矢量相位的仿真结果曲线,以正方形标示的曲线表示插值补偿情况下的回波矢量相位的仿真结果曲线,以三角形标示的曲线表示没有插值补偿情况下的回波矢量相位的仿真结果曲线。Fig. 2 is a simulation diagram of the present invention. Figure 2(a) is a phase comparison diagram of the echo vector under ideal conditions, interpolation compensation and no interpolation compensation for slow moving targets on the ground when the distance between the receiving unit radars is 100 meters. The abscissa in Fig. 2(a) represents the transmit-receive pair, and the ordinate represents the phase of the echo vector. The unmarked curve in Figure 2(a) represents the simulation result curve of the echo vector phase under ideal conditions, the curve marked with a square represents the simulation result curve of the echo vector phase under interpolation compensation, and the curve marked with a triangle represents The simulation result curve of echo vector phase without interpolation compensation.

由图2(a)可以看出,当信噪比为30dB,接收单元雷达之间间距均为100米时,相比于没有插值补偿情况下的回波矢量相位曲线,插值补偿情况下的回波矢量相位曲线与理想情况下的回波矢量相位曲线大部分点的吻合度更好,仅仅在横坐标为11的位置处,由于空间角度模糊导致该点相位与理想情况下对应点相位不同。由此可见,在接收单元雷达之间间距均匀时,利用插值补偿情况下的回波矢量,可较精确估计出目标横坐标值和纵坐标值。理想情况下的回波矢量相位,仅仅跟发射距离和接收距离有关。发射距离是指,各发射单元雷达到地面慢速运动目标的距离。接收距离是指,各接收单元雷达到地面慢速运动目标的距离。It can be seen from Figure 2(a) that when the signal-to-noise ratio is 30dB and the distance between the receiving unit radars is 100 meters, compared with the echo vector phase curve without interpolation compensation, the echo vector phase curve under the interpolation compensation condition is The phase curve of the wave vector agrees better with most points of the phase curve of the echo vector under ideal conditions. Only at the position where the abscissa is 11, the phase of this point is different from that of the corresponding point under ideal conditions due to the ambiguity of the space angle. It can be seen that when the spacing between the receiving unit radars is uniform, the abscissa and ordinate values of the target can be estimated more accurately by using the echo vector in the case of interpolation compensation. Ideally, the echo vector phase is only related to the transmitting distance and receiving distance. The launch distance refers to the distance from each launch unit radar to the slow moving target on the ground. The receiving distance refers to the distance from each receiving unit radar to the slow moving target on the ground.

图2(b)是对于地面慢速运动目标,在四个接收单元雷达之间间距分别为100米、200米和300米时,理想情况下、插值补偿情况下和没有插值补偿情况下的回波矢量的相位比较图。图2(b)中横坐标表示发射-接收对,纵坐标表示回波矢量相位。图2(b)中无标示的曲线表示理想情况下的回波矢量相位的仿真结果曲线,以菱形标示的曲线表示插值补偿情况下的回波矢量相位的仿真结果曲线,以圆形标示的曲线表示没有插值补偿情况下的回波矢量相位的仿真结果曲线。Figure 2(b) is for the slow moving target on the ground, when the distance between the four receiving unit radars is 100 meters, 200 meters and 300 meters, the ideal situation, interpolation compensation and no interpolation compensation Phase comparison plot of wave vectors. The abscissa in Figure 2(b) represents the transmit-receive pair, and the ordinate represents the phase of the echo vector. The unmarked curve in Figure 2(b) represents the simulation result curve of the echo vector phase under ideal conditions, the curve marked with a diamond represents the simulation result curve of the echo vector phase under interpolation compensation, and the curve marked with a circle A simulation result curve representing the echo vector phase without interpolation compensation.

由图2(b)可以看出,对接收单元雷达间距参数进行调整,使得四个接收单元雷达之间的间距分别为100米、200米和300米时,相比于没有插值补偿情况下的回波矢量相位曲线,插值补偿情况下的回波矢量相位曲线与理想情况下的回波矢量相位曲线的每一点,吻合度都更好。由此可见,在接收单元雷达之间间距非均匀时,利用插值补偿情况下的回波矢量,可精确估计出目标横坐标值和纵坐标值。It can be seen from Figure 2(b) that when the radar spacing parameters of the receiving unit are adjusted so that the spacing between the radars of the four receiving units is 100 meters, 200 meters and 300 meters respectively, compared with the situation without interpolation compensation The phase curve of the echo vector, the phase curve of the echo vector under the interpolation compensation condition and the phase curve of the echo vector under the ideal condition have a better coincidence degree. It can be seen that when the spacing between the receiving unit radars is non-uniform, the abscissa and ordinate values of the target can be accurately estimated by using the echo vector in the case of interpolation compensation.

Claims (10)

1.一种基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,对由各接收单元雷达接收地面慢速运动目标散射后的回波数据构成的回波矩阵,利用插值补偿法估计地面慢速运动目标的精细位置参数,找出地面慢速运动目标的横坐标值和纵坐标值;该方法的具体步骤包括如下:1. A distributed coherent radar target parameter estimation method based on interpolation compensation, it is characterized in that, to the echo matrix formed by the echo data after receiving the ground slow moving target scattering by each receiving unit radar, utilize the interpolation compensation method Estimate the fine position parameters of the ground slow-moving target, find out the abscissa value and the ordinate value of the ground slow-moving target; the specific steps of the method include as follows: (1)生成基带回波矩阵:(1) Generate baseband echo matrix: (1a)对分布式相参系统内部,由各接收单元雷达接收地面慢速运动目标散射后的回波数据构成的回波矩阵,进行系统误差校正,得到系统误差校正后的回波矩阵;(1a) In the distributed coherent system, the echo matrix composed of the echo data scattered by the ground slow-moving target received by each receiving unit radar is subjected to systematic error correction, and the echo matrix after the systematic error correction is obtained; (1b)将系统误差校正后的回波矩阵的每一个位置处的元素的频率中心,搬移到基带频率位置,得到各接收单元雷达的基带回波矩阵;(1b) Move the frequency center of the element at each position of the echo matrix after systematic error correction to the baseband frequency position to obtain the baseband echo matrix of each receiving unit radar; (2)对基带回波矩阵进行滤波处理:(2) Filtering the baseband echo matrix: (2a)利用距离域匹配滤波公式,计算基带回波矩阵中各元素经过距离域匹配滤波处理后,对应于每个发射单元雷达的回波数值,将所有数值按照其所在距离门从小到大进行排序,组成距离域匹配滤波后的三维回波矩阵;(2a) Using the range-domain matched filter formula, calculate the echo value corresponding to each transmitting unit radar after each element in the baseband echo matrix has been processed by the range-domain matched filter. Sorting to form a three-dimensional echo matrix after matched filtering in the range domain; (2b)利用多普勒滤波公式,计算距离域匹配滤波后的三维回波矩阵中各元素经过多普勒滤波处理后的数值,将所有数值按照其所在多普勒通道号从小到大进行排序,组成多普勒滤波后的三维回波矩阵;(2b) Use the Doppler filter formula to calculate the value of each element in the three-dimensional echo matrix after the range domain matched filter after Doppler filter processing, and sort all the values according to the Doppler channel number where they are located from small to large , forming a three-dimensional echo matrix after Doppler filtering; (2c)利用数字波束形成公式,计算多普勒滤波后的三维回波矩阵中各元素经过数字波束形成处理后的数值,将所有数值按照其所在波束序号从小到大进行排序,组成数字波束形成后的三维回波矩阵;(2c) Use the digital beamforming formula to calculate the value of each element in the three-dimensional echo matrix after Doppler filtering after digital beamforming processing, and sort all the values according to the number of their beams from small to large to form a digital beamforming The final three-dimensional echo matrix; (3)估计地面慢速运动目标的粗略位置参数;(3) Estimate the rough position parameters of the slow moving target on the ground; (4)利用插值补偿法估计地面慢速运动目标的精细位置参数:(4) Use the interpolation compensation method to estimate the fine position parameters of the slow moving target on the ground: (4a)利用插值补偿法,得到插值补偿后的三维回波矩阵;(4a) using interpolation compensation method to obtain a three-dimensional echo matrix after interpolation compensation; (4b)利用峰值提取法,从插值补偿后的三维回波矩阵中找出地面慢速运动目标的精细位置参数;(4b) Using the peak extraction method, find out the fine position parameters of the ground slow-moving target from the three-dimensional echo matrix after interpolation compensation; (5)找出地面慢速运动目标的横坐标值和纵坐标值:(5) Find out the abscissa and ordinate values of the ground slow-moving target: (5a)利用赋值法,得到地面慢速运动目标的横坐标值和纵坐标值的搜索区间;(5a) Utilize the assignment method to obtain the search interval of the abscissa value and the ordinate value of the ground slow-moving target; (5b)从由横坐标值和纵坐标值的搜索区间所组成的矩形区域中,分别找出地面慢速运动目标的横坐标值和纵坐标值。(5b) Find the abscissa value and ordinate value of the ground slow-moving target respectively from the rectangular area formed by the search interval of the abscissa value and the ordinate value. 2.根据权利要求1所述的基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,步骤(1a)中所述系统误差校正的具体步骤如下:2. the distributed coherent radar target parameter estimation method based on interpolation compensation according to claim 1, is characterized in that, the specific steps of systematic error correction described in step (1a) are as follows: 第一步,利用分布式相参系统内部的系统误差估计模块,估计各接收单元雷达之间,由于本振相位和时间同步相位的差异性带来的系统误差矩阵;The first step is to use the system error estimation module inside the distributed coherent system to estimate the system error matrix caused by the difference between the local oscillator phase and the time synchronization phase between the radars of each receiving unit; 第二步,用由各接收单元雷达接收地面慢速运动目标散射后的回波数据构成的回波矩阵中每一个位置处的元素,除以系统误差矩阵中同一个位置处的元素,得到系统误差校正后的回波矩阵。The second step is to divide the elements at each position in the echo matrix formed by the echo data scattered by the ground slow moving target received by the radar of each receiving unit by the elements at the same position in the system error matrix to obtain the system Echo matrix after error correction. 3.根据权利要求1所述的基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,步骤(2a)中所述距离域匹配滤波公式如下:3. the distributed coherent radar target parameter estimation method based on interpolation compensation according to claim 1, is characterized in that, the distance domain matched filtering formula described in step (2a) is as follows:
Figure FDA0001785858820000021
Figure FDA0001785858820000021
其中,yp,q(l,k,n)表示基带回波矩阵经过距离域匹配滤波处理后的第p个发射单元雷达发射、第q个接收单元雷达接收的第l个距离门、第k个发射脉冲处理周期、第n个接收阵元的数值,p=1,2,...,mT,mT表示分布式相参系统中的发射单元雷达的总数,q=1,2,...,mR,mR表示分布式相参系统中的接收单元雷达的总数,l=1,2,...,L,L表示距离门的总数,k=1,2,...,K,K表示所有发射脉冲处理周期的总数,n=1,2,...,N,N表示分布式相参系统各接收单元雷达中的接收阵元的总数,∑表示求和操作,xq(r,k,n)表示第q个接收单元雷达接收的第r个距离频域采样点、第k个发射脉冲处理周期、第n个接收阵元的距离频域回波数据,sp(r)表示第p个发射单元雷达的第r个距离频域采样点处的距离频域匹配滤波数据,*表示共轭操作,exp表示以自然对数为底的指数操作,j表示虚数单位符号,π表示圆周率。Among them, y p,q (l,k,n) represents the baseband echo matrix after the range-domain matched filter processing, the p-th transmitting unit radar transmits, the q-th receiving unit radar receives the l-th range gate, the k-th transmission pulse processing cycle, the value of the nth receiving array element, p=1,2,...,m T , m T represents the total number of transmitting unit radars in the distributed coherent system, q=1,2, ...,m R , m R represents the total number of receiving unit radars in the distributed coherent system, l=1,2,...,L, L represents the total number of range gates, k=1,2,... ., K, K represents the total number of all transmit pulse processing cycles, n=1,2,...,N, N represents the total number of receiving array elements in each receiving unit radar of the distributed coherent system, ∑ represents the summation operation , x q (r,k,n) represents the r-th range-frequency domain sampling point received by the q-th receiving unit radar, the k-th transmit pulse processing cycle, and the range-frequency domain echo data of the n-th receiving element, sp (r) represents the range-frequency domain matched filter data at the r-th range-frequency domain sampling point of the p -th transmitter radar, * represents the conjugate operation, exp represents the exponential operation with the natural logarithm as the base, and j represents The imaginary unit symbol, π means pi.
4.根据权利要求1所述的基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,步骤(2b)中所述多普勒滤波公式如下:4. the distributed coherent radar target parameter estimation method based on interpolation compensation according to claim 1, is characterized in that, the Doppler filtering formula described in step (2b) is as follows:
Figure FDA0001785858820000031
Figure FDA0001785858820000031
其中,zp,q(l,a,n)表示距离域匹配滤波后的三维回波矩阵经过多普勒滤波处理后的第p个发射单元雷达发射、第q个接收单元雷达接收的第l个距离门、第a个多普勒通道、第n个接收阵元的数值,a=1,2,...,K,b表示发射脉冲处理周期的序号。Among them, z p, q (l, a, n) represents the three-dimensional echo matrix after the range domain matching filter and the lth echo matrix received by the pth transmitting unit radar and the qth receiving unit radar after Doppler filtering processing. The value of the range gate, the a-th Doppler channel, and the n-th receiving array element, a=1,2,...,K, b represents the sequence number of the transmit pulse processing cycle.
5.根据权利要求1所述的基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,步骤(2c)中所述数字波束形成公式如下:5. the distributed coherent radar target parameter estimation method based on interpolation compensation according to claim 1, is characterized in that, the digital beam forming formula described in step (2c) is as follows:
Figure FDA0001785858820000032
Figure FDA0001785858820000032
其中,fp,q(l,a,c)表示多普勒滤波后的三维回波矩阵中,经过数字波束形成处理后的第p个发射单元雷达发射、第q个接收单元雷达接收的第l个距离门、第a个多普勒通道、第c个波束的数值,c=1,2,...,N,g表示接收阵元的序号。Among them, f p,q (l,a,c) represent the three-dimensional echo matrix after Doppler filtering, the pth transmitting unit radar transmits and the qth receiving unit radar receives the first Values of the l range gate, the a-th Doppler channel, and the c-th beam, c=1, 2,..., N, and g represents the serial number of the receiving array element.
6.根据权利要求1所述的基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,步骤(3)中所述估计地面慢速运动目标的粗略位置参数的具体步骤如下:6. the distributed coherent radar target parameter estimation method based on interpolation compensation according to claim 1, is characterized in that, the concrete steps of the rough position parameter of the estimation ground slow moving target described in step (3) are as follows: 第一步,从数字波束形成后的三维回波矩阵中,找出所有元素的最大值;The first step is to find the maximum value of all elements from the three-dimensional echo matrix after digital beamforming; 第二步,用该最大值的矩阵索引,替换地面慢速运动目标的粗略位置参数。In the second step, the matrix index of the maximum value is used to replace the rough location parameters of the ground slow-moving target. 7.根据权利要求1所述的基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,步骤(4a)中所述插值补偿法的具体步骤如下:7. the distributed coherent radar target parameter estimation method based on interpolation compensation according to claim 1, is characterized in that, the concrete steps of interpolation compensation method described in step (4a) are as follows: 第一步,在数字波束形成后的三维回波矩阵中,对各维分别做快速傅里叶逆变换,得到快速傅里叶逆变换后的三维回波矩阵;In the first step, in the three-dimensional echo matrix after digital beamforming, inverse fast Fourier transform is performed on each dimension to obtain the three-dimensional echo matrix after inverse fast Fourier transform; 第二步,对快速傅里叶逆变换后的三维回波矩阵的各维尾部分别补零,直到其三个维数分别达到αL、
Figure FDA0001785858820000041
和αN为止,α表示补零倍数,α∈[1,10]内的正整数,∈表示属于符号,得到补零后的三维回波矩阵;
In the second step, the tails of each dimension of the three-dimensional echo matrix after the inverse fast Fourier transform are filled with zeros until the three dimensions respectively reach αL,
Figure FDA0001785858820000041
Up to αN, α represents the multiple of zero padding, a positive integer in α∈[1,10], ∈ represents a symbol, and the three-dimensional echo matrix after zero padding is obtained;
第三步,对补零后的三维回波矩阵的各维,分别做αL点、
Figure FDA0001785858820000042
点和αN点的快速傅里叶变换,得到插值补偿后的三维回波矩阵。
In the third step, for each dimension of the three-dimensional echo matrix after zero padding, respectively make αL points,
Figure FDA0001785858820000042
The fast Fourier transform of the points and αN points is used to obtain the three-dimensional echo matrix after interpolation and compensation.
8.根据权利要求1所述的基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,步骤(4b)中所述峰值提取法的具体步骤如下:8. the distributed coherent radar target parameter estimation method based on interpolation compensation according to claim 1, is characterized in that, the concrete steps of peak extraction method described in step (4b) are as follows: 第一步,从插值补偿后的三维回波矩阵中,找出所有元素的最大值;The first step is to find the maximum value of all elements from the three-dimensional echo matrix after interpolation compensation; 第二步,用该最大值的矩阵索引,替换地面慢速运动目标的精细位置参数。In the second step, the matrix index of the maximum value is used to replace the fine position parameters of the ground slow-moving target. 9.根据权利要求1所述的基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,步骤(5a)中所述赋值法的具体步骤如下:9. the distributed coherent radar target parameter estimation method based on interpolation compensation according to claim 1, is characterized in that, the specific steps of assignment method described in step (5a) are as follows: 第一步,用分布式相参系统对地观测区域横坐标值的取值区间,替换地面慢速运动目标横坐标值的搜索区间;The first step is to replace the search interval of the abscissa value of the ground slow-moving target with the value interval of the abscissa value of the earth observation area of the distributed coherent system; 第二步,用分布式相参系统对地观测区域纵坐标值的取值区间,替换地面慢速运动目标纵坐标值的搜索区间。The second step is to replace the search interval of the ordinate value of the ground slow-moving target with the value interval of the ordinate value of the earth observation area of the distributed coherent system. 10.根据权利要求1所述的基于插值补偿的分布式相参雷达目标参数估计方法,其特征在于,步骤(5b)中所述分别找出地面慢速运动目标的横坐标值和纵坐标值的具体步骤如下:10. the distributed coherent radar target parameter estimation method based on interpolation compensation according to claim 1, is characterized in that, described in the step (5b) respectively finds out the abscissa value and the ordinate value of ground slow moving target The specific steps are as follows: 第一步,从插值补偿后的三维回波矩阵中,找出以地面慢速运动目标的精细位置参数为矩阵索引的元素值,将这些元素值按照接收单元雷达序号从小到大的顺序,组成回波矢量;In the first step, from the three-dimensional echo matrix after interpolation and compensation, find out the element values whose matrix index is based on the fine position parameters of the ground slow-moving targets, and combine these element values in the order of the receiving unit radar serial number from small to large to form echo vector; 第二步,按照下式,计算矩形区域内每一个位置点对应的搜索导向矢量:In the second step, calculate the search guide vector corresponding to each location point in the rectangular area according to the following formula:
Figure FDA0001785858820000051
Figure FDA0001785858820000051
其中,sw表示矩形区域内第w个位置点对应的搜索导向矢量,λ表示发射波长,Tw1表示矩形区域内第w个位置点到第1个发射单元雷达的距离,Rw1表示矩形区域内第w个位置点到第1个接收单元雷达的距离,Tw2表示矩形区域内第w个位置点到第2个发射单元雷达的距离,Twp表示矩形区域内第w个位置点到第p个发射单元雷达的距离,Rwq表示矩形区域内第w个位置点到第q个接收单元雷达的距离,T表示转置操作;Among them, s w represents the search steering vector corresponding to the wth position point in the rectangular area, λ represents the emission wavelength, T w1 represents the distance from the wth position point in the rectangular area to the radar of the first transmitting unit, and R w1 represents the rectangular area The distance from the wth position point in the rectangular area to the first receiving unit radar, T w2 represents the distance from the wth position point in the rectangular area to the second transmitting unit radar, and T wp represents the wth position point in the rectangular area to the first The distance from the radar of the p transmitting unit, R wq represents the distance from the wth location point in the rectangular area to the qth receiving unit radar, and T represents the transpose operation; 第三步,按照下式,计算矩形区域内每个位置点处的增益值:The third step is to calculate the gain value at each position point in the rectangular area according to the following formula: Yw=sw HzY w =s w H z 其中,Yw表示矩形区域内第w个位置点处的增益值,H表示共轭转置操作,z表示回波矢量;Among them, Y w represents the gain value at the wth position point in the rectangular area, H represents the conjugate transpose operation, and z represents the echo vector; 第四步,从矩形区域内的所有位置点中找出最大增益值对应的位置点,将该位置点对应的横坐标值和纵坐标值,分别作为地面慢速运动目标的横坐标值和纵坐标值。The fourth step is to find the position point corresponding to the maximum gain value from all the position points in the rectangular area, and use the abscissa value and ordinate value corresponding to the position point as the abscissa value and ordinate value of the slow moving target on the ground, respectively. coordinate value.
CN201811014741.XA 2018-08-31 2018-08-31 Estimation Method of Distributed Coherent Radar Target Parameters Based on Interpolation Compensation Active CN109188387B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811014741.XA CN109188387B (en) 2018-08-31 2018-08-31 Estimation Method of Distributed Coherent Radar Target Parameters Based on Interpolation Compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811014741.XA CN109188387B (en) 2018-08-31 2018-08-31 Estimation Method of Distributed Coherent Radar Target Parameters Based on Interpolation Compensation

Publications (2)

Publication Number Publication Date
CN109188387A CN109188387A (en) 2019-01-11
CN109188387B true CN109188387B (en) 2022-12-02

Family

ID=64917461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811014741.XA Active CN109188387B (en) 2018-08-31 2018-08-31 Estimation Method of Distributed Coherent Radar Target Parameters Based on Interpolation Compensation

Country Status (1)

Country Link
CN (1) CN109188387B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020237663A1 (en) * 2019-05-31 2020-12-03 深圳市大疆创新科技有限公司 Multi-channel lidar point cloud interpolation method and ranging apparatus
CN110703211B (en) * 2019-08-29 2021-11-19 西安电子科技大学 Distributed coherent radar phase error estimation method and system based on polynomial iteration
CN110907910B (en) * 2019-11-27 2022-06-03 中国船舶重工集团公司第七二四研究所 Distributed coherent radar moving target echo coherent synthesis method
CN111884981B (en) * 2020-08-04 2021-05-18 北京航空航天大学 A Signal Processing Method Applicable to High Sensitivity Spaceborne ADS-B Receiver
CN112305526B (en) * 2020-10-22 2023-05-26 电子科技大学 Distributed array system synchronization method based on external calibration source
CN112505667B (en) * 2020-11-19 2022-07-15 哈尔滨工程大学 Two-dimensional sonar array motion attitude self-calibration method
CN112816945B (en) * 2021-01-04 2024-05-14 北京无线电测量研究所 Method and system for calculating composite gain of different-surface distributed phased array Lei Daxiang
CN113050053B (en) * 2021-03-17 2023-07-28 中国人民解放军国防科技大学 Method and system for acquiring coherent parameters of distributed coherent radar on moving platform
CN116203519B (en) * 2023-05-05 2023-06-27 中国电子科技集团公司信息科学研究院 Error calibration method for distributed radar system transceiver channel distance system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969345B2 (en) * 2009-04-13 2011-06-28 Raytheon Company Fast implementation of a maximum likelihood algorithm for the estimation of target motion parameters
CN103424741B (en) * 2013-08-29 2015-06-03 西安电子科技大学 Smooth procession cone parameter estimation method based on high-resolution ISAR imaging
CN103472449B (en) * 2013-09-16 2015-04-15 电子科技大学 BP wideband synthesis method based on MIMO image domain

Also Published As

Publication number Publication date
CN109188387A (en) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109188387B (en) Estimation Method of Distributed Coherent Radar Target Parameters Based on Interpolation Compensation
Ma et al. Three-dimensional imaging of targets using colocated MIMO radar
US20210364616A1 (en) Radar system and computer-implemented method for radar target detection
Li et al. A velocity estimation algorithm of moving targets using single antenna SAR
CN109324322B (en) A Direction Finding and Target Recognition Method Based on Passive Phased Array Antenna
CN103018727A (en) Sample-training-based non-stationary clutter suppression method of vehicle-mounted radar
CN108008386B (en) A kind of distance based on single snap MUSIC algorithm is to processing method
JP2011158471A (en) Method for detecting target in time-space adaptive processing system
CN104898119B (en) A kind of moving target parameter estimation method based on correlation function
CN106872974A (en) High-precision motion target imaging method based on hypersonic platform Two-channels radar
CN104062640A (en) Quick implementation method for passive radar range migration compensation
CN104793194B (en) Range Doppler method of estimation based on the compression of improved self adaptation multiple-pulse
CN105301589B (en) High-resolution Wide swath SAR Ground moving target imaging method
CN109212489B (en) An FDA-MIMO Radar Fuzzy Clutter Suppression Method Based on Auxiliary Pulse
CN104678386B (en) Method for detecting target by utilizing relevant power of GNSS(global navigation satellite system) sea surface reflection signal
CN102608587B (en) Air Maneuvering Target Detection Method Based on Nonlinear Least Squares
CN102121990B (en) Estimation Method of Inverse Synthetic Aperture Radar's Target Rotational Speed Based on Space-Time Analysis
CN109001687A (en) Airborne radar space-time self-adaptive filtering method based on generalized sidelobe cancellation structure
CN103698765A (en) ISAR (inverse synthetic aperture radar) imaging orientation calibration method
CN104237886A (en) High-precision synthetic aperture radar imaging method
CN111175745B (en) Moving target three-dimensional imaging method based on state space balance method
CN108490425B (en) Angle measuring method of bistatic MIMO radar
CN111505600B (en) STPC-based FDA-MIMO radar signal processing method, device and medium
Yang et al. ISAR cross-range scaling algorithm based on LVD
CN101738615B (en) Method for estimating rotating speed of target of inverse synthetic aperture radar

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant