CN109143270B - Positioning device and positioning system - Google Patents
Positioning device and positioning system Download PDFInfo
- Publication number
- CN109143270B CN109143270B CN201810978436.6A CN201810978436A CN109143270B CN 109143270 B CN109143270 B CN 109143270B CN 201810978436 A CN201810978436 A CN 201810978436A CN 109143270 B CN109143270 B CN 109143270B
- Authority
- CN
- China
- Prior art keywords
- module
- positioning
- signal
- ads
- gnss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/14—Receivers specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及定位通信技术领域,特别是涉及一种定位装置和定位系统。The present application relates to the field of positioning communication technology, and in particular to a positioning device and a positioning system.
背景技术Background Art
随着现代航空技术的发展,航空器种类日趋多样化,且数量也在急剧增加。不断增长的航空需求与空域资源日渐不足的矛盾日益明显,其中的航空调度与航空安全问题更需特别关注。定位技术是解决前述问题的重要手段,通过定位技术可以实现高效调度,提高航空安全性。With the development of modern aviation technology, the types of aircraft are becoming more diverse and the number is also increasing rapidly. The contradiction between the growing aviation demand and the increasingly insufficient airspace resources is becoming increasingly obvious, and aviation scheduling and aviation safety issues need special attention. Positioning technology is an important means to solve the above problems. Through positioning technology, efficient scheduling can be achieved and aviation safety can be improved.
随着定位技术的发展,多基站测量技术是一种新兴的定位技术,可以有效实现对目标飞行器的定位。多基站测量技术采用时差定位技术,利用多个基站的信号到达时间差进行位置的解算。然而,在实现本发明的过程中,发明人发现传统的多基站测量技术中至少存在着定位效率不高的问题。With the development of positioning technology, multi-base station measurement technology is an emerging positioning technology that can effectively realize the positioning of target aircraft. Multi-base station measurement technology adopts time difference positioning technology, which uses the time difference of signal arrival of multiple base stations to solve the position. However, in the process of realizing the present invention, the inventor found that the traditional multi-base station measurement technology has at least the problem of low positioning efficiency.
发明内容Summary of the invention
基于此,有必要针对上述技术问题,提供一种定位装置,以及一种定位系统。Based on this, it is necessary to provide a positioning device and a positioning system to address the above technical problems.
为实现上述目的,本发明实施例采用以下技术方案:To achieve the above objectives, the embodiments of the present invention adopt the following technical solutions:
一方面,本发明实施例提供一种定位装置,包括数据融合模组,以及分别通信连接所述数据融合模组的GNSS模组、应答模组、ADS-B模组、数据通信模组和导航传感模组;On the one hand, an embodiment of the present invention provides a positioning device, including a data fusion module, and a GNSS module, a response module, an ADS-B module, a data communication module, and a navigation sensor module respectively communicatively connected to the data fusion module;
所述数据融合模组用于对所述GNSS模组、所述应答模组、所述ADS-B模组和所述数据通信模组分别输出的目标信号,以及所述导航传感模组输出的传感信号进行数据融合,得到定位信号,并分别向所述GNSS模组、所述应答模组、所述ADS-B模组和所述数据通信模组中的至少一个输出所述定位信号;The data fusion module is used to perform data fusion on the target signals respectively output by the GNSS module, the response module, the ADS-B module and the data communication module, and the sensor signal output by the navigation sensor module to obtain a positioning signal, and output the positioning signal to at least one of the GNSS module, the response module, the ADS-B module and the data communication module respectively;
所述GNSS模组、所述应答模组、所述ADS-B模组和所述数据通信模组分别用于向监控中心发送所述定位信号。The GNSS module, the response module, the ADS-B module and the data communication module are respectively used to send the positioning signal to the monitoring center.
在其中一个实施例中,所述数据通信模组包括通信模块、通信信号处理单元和数据天线,所述通信模块分别通信连接所述数据天线和所述通信信号处理单元,所述通信信号处理单元通信连接所述数据融合模组;In one embodiment, the data communication module includes a communication module, a communication signal processing unit and a data antenna, the communication module is communicatively connected to the data antenna and the communication signal processing unit respectively, and the communication signal processing unit is communicatively connected to the data fusion module;
所述数据天线用于接收外部通信信号后并输出到所述通信模块,所述通信模块用于对所述目标信号进行解调,得到所述目标信号并输出到所述通信信号处理单元,所述通信信号处理单元用于向所述数据融合模组输出处理后的所述目标信号,并将所述数据融合模组返回的所述定位信号通过所述通信模块和所述数据天线发送到所述监控中心。The data antenna is used to receive external communication signals and output them to the communication module; the communication module is used to demodulate the target signal, obtain the target signal and output it to the communication signal processing unit; the communication signal processing unit is used to output the processed target signal to the data fusion module, and send the positioning signal returned by the data fusion module to the monitoring center through the communication module and the data antenna.
在其中一个实施例中,所述GNSS模组包括通信连接的GNSS天线和GNSS模块,所述GNSS天线用于分别通信连接GNSS卫星和所述监控中心,所述GNSS模块通信连接所述数据融合模组;In one embodiment, the GNSS module includes a GNSS antenna and a GNSS module that are communicatively connected, the GNSS antenna is used to communicate with the GNSS satellite and the monitoring center respectively, and the GNSS module is communicatively connected with the data fusion module;
所述GNSS天线用于接收到所述GNSS卫星的GNSS信号,并输出到所述GNSS模块,所述GNSS模块用于对所述GNSS信号进行解调,得到所述目标信号并输出到所述数据融合模组,以及将所述数据融合模组返回的定位信号通过所述GNSS天线发送到所述监控中心。The GNSS antenna is used to receive the GNSS signal of the GNSS satellite and output it to the GNSS module. The GNSS module is used to demodulate the GNSS signal, obtain the target signal and output it to the data fusion module, and send the positioning signal returned by the data fusion module to the monitoring center through the GNSS antenna.
在其中一个实施例中,所述ADS-B模组包括ADS-B模块、ADS-B信号处理单元和ADS-B天线,所述ADS-B模块分别通信连接所述ADS-B信号处理单元和所述ADS-B天线,所述ADS-B信号处理单元通信连接所述数据融合模组;In one embodiment, the ADS-B module includes an ADS-B module, an ADS-B signal processing unit and an ADS-B antenna, the ADS-B module is communicatively connected to the ADS-B signal processing unit and the ADS-B antenna respectively, and the ADS-B signal processing unit is communicatively connected to the data fusion module;
所述ADS-B天线用于接收ADS-B信号并输出到所述ADS-B模块,所述ADS-B模块用于对所述ADS-B信号进行解调,得到所述目标信号并输出到所述ADS-B信号处理单元,所述ADS-B信号处理单元用于输出处理后的所述目标信号到所述数据融合模组,并通过所述ADS-B模块和所述ADS-B天线,将所述数据融合模组返回的定位信号发送到所述监控中心。The ADS-B antenna is used to receive ADS-B signals and output them to the ADS-B module. The ADS-B module is used to demodulate the ADS-B signals to obtain the target signals and output them to the ADS-B signal processing unit. The ADS-B signal processing unit is used to output the processed target signals to the data fusion module, and send the positioning signals returned by the data fusion module to the monitoring center via the ADS-B module and the ADS-B antenna.
在其中一个实施例中,所述应答模组包括应答机、应答信号处理单元和应答天线,所述应答机分别通信连接所述应答信号处理单元和所述应答天线,所述应答信号处理单元通信连接所述数据融合模组;In one embodiment, the answering module includes an answering machine, an answering signal processing unit and an answering antenna, the answering machine is communicatively connected to the answering signal processing unit and the answering antenna respectively, and the answering signal processing unit is communicatively connected to the data fusion module;
所述应答天线用于接收应答信号并输出到所述应答机,所述应答机用于对所述应答信号进行解调,得到所述目标信号并输出到所述应答信号处理单元,所述应答信号处理单元用于输出处理后的所述目标信号到所述数据融合模组,并通过所述应答机和所述应答天线,将所述数据融合模组返回的定位信号发送到所述监控中心。The reply antenna is used to receive the reply signal and output it to the reply machine. The reply machine is used to demodulate the reply signal to obtain the target signal and output it to the reply signal processing unit. The reply signal processing unit is used to output the processed target signal to the data fusion module, and send the positioning signal returned by the data fusion module to the monitoring center through the transponder and the reply antenna.
在其中一个实施例中,所述导航传感模组包括通信连接的导航传感器模块和传感信号处理单元,所述传感信号处理单元通信连接所述数据融合模组;In one embodiment, the navigation sensor module includes a navigation sensor module and a sensor signal processing unit that are communicatively connected, and the sensor signal processing unit is communicatively connected to the data fusion module;
所述导航传感器模块用于向所述传感信号处理单元输出导航监测信号,所述传感信号处理单元用于对所述导航监测信号进行信号处理,输出相应的所述目标信号到所述数据融合模组。The navigation sensor module is used to output a navigation monitoring signal to the sensor signal processing unit, and the sensor signal processing unit is used to perform signal processing on the navigation monitoring signal and output the corresponding target signal to the data fusion module.
在其中一个实施例中,还包括电源系统,所述电源系统分别电连接所述数据融合模组、所述GNSS模组、所述数据通信模组和所述导航传感模组。In one of the embodiments, it also includes a power supply system, which is electrically connected to the data fusion module, the GNSS module, the data communication module and the navigation sensor module respectively.
在其中一个实施例中,还包括显示终端,所述显示终端连接所述数据融合模组,所述显示终端用于展示所述定位信号对应的定位信息。In one of the embodiments, a display terminal is further included. The display terminal is connected to the data fusion module, and the display terminal is used to display the positioning information corresponding to the positioning signal.
在其中一个实施例中,还包括链路选择开关,所述链路选择开关通信连接所述数据融合模组,所述链路选择开关用于接通或关闭所述GNSS模组、所述应答模组、所述ADS-B模组和所述数据通信模组中的至少一个模组。In one of the embodiments, a link selection switch is further included, wherein the link selection switch is communicatively connected to the data fusion module, and the link selection switch is used to turn on or off at least one of the GNSS module, the response module, the ADS-B module and the data communication module.
另一方面,还提供一种定位系统,包括GNSS卫星、地面接收设备、监控中心和所述的定位装置,所述定位装置分别通信连接所述GNSS卫星和所述地面接收设备,所述地面接收设备通信连接所述监控中心;On the other hand, a positioning system is also provided, comprising a GNSS satellite, a ground receiving device, a monitoring center and the positioning device, wherein the positioning device is respectively communicatively connected to the GNSS satellite and the ground receiving device, and the ground receiving device is communicatively connected to the monitoring center;
所述定位装置得到定位信号后,向所述地面接收设备发送所述定位信号,所述地面接收设备对所述定位信号进行信号处理,得到定位信息并发送到所述监控中心。After obtaining the positioning signal, the positioning device sends the positioning signal to the ground receiving device. The ground receiving device processes the positioning signal, obtains positioning information, and sends it to the monitoring center.
在其中一个实施例中,所述地面接收设备包括GNSS接收设备、雷达、通信基站和MPS地面站;所述GNSS接收设备、所述雷达、所述通信基站和所述MPS地面站分别通信连接所述定位装置,且分别通信连接所述监控中心。In one of the embodiments, the ground receiving equipment includes a GNSS receiving equipment, a radar, a communication base station and an MPS ground station; the GNSS receiving equipment, the radar, the communication base station and the MPS ground station are respectively communicatively connected to the positioning device, and are respectively communicatively connected to the monitoring center.
在其中一个实施例中,还包括数据处理中心,所述MPS地面站的数量为至少四个,各所述MPS地面站分别通信连接所述定位装置,且分别通信连接所述数据处理中心,所述数据处理中心通信连接所述监控中心。In one of the embodiments, a data processing center is further included, the number of the MPS ground stations is at least four, each of the MPS ground stations is respectively communicatively connected to the positioning device and is respectively communicatively connected to the data processing center, and the data processing center is communicatively connected to the monitoring center.
在其中一个实施例中,所述MPS地面站包括应答接收设备和ADS-B接收设备,所述应答接收设备和所述ADS-B接收设备分别通信连接所述定位装置,且分别通信连接所述数据处理中心。In one of the embodiments, the MPS ground station includes a response receiving device and an ADS-B receiving device, and the response receiving device and the ADS-B receiving device are respectively communicatively connected to the positioning device and are respectively communicatively connected to the data processing center.
上述技术方案中的一个技术方案具有如下优点和有益效果:One of the above technical solutions has the following advantages and beneficial effects:
上述定位装置和定位系统,通过多类型的定位模组协同,形成多链路定位,定位方式切换灵活且可以多链路并发定位信号,从而可以高效对接地面的监控中心。地面监控中心可以根据各链路下发的定位信号对定位装置所在的目标飞行器进行定位或定位验证,定位准确性和可靠性较高,大大提高了定位效率;此外,应用上述的定位装置,无需专门开设多个地面监测站点,有效降低定位测量成本。The above positioning device and positioning system form multi-link positioning through the collaboration of multiple types of positioning modules. The positioning mode can be switched flexibly and multiple links can be used for concurrent positioning signals, so that the ground monitoring center can be efficiently connected. The ground monitoring center can locate or verify the target aircraft where the positioning device is located according to the positioning signals sent by each link. The positioning accuracy and reliability are high, which greatly improves the positioning efficiency. In addition, the application of the above positioning device does not require the establishment of multiple ground monitoring sites, which effectively reduces the cost of positioning measurement.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为一个实施例中定位装置的结构框图;FIG1 is a structural block diagram of a positioning device in one embodiment;
图2为一个实施例中定位装置的具体结构示意图;FIG2 is a schematic diagram of the specific structure of a positioning device in one embodiment;
图3为另一个实施例中定位装置的结构框图;FIG3 is a structural block diagram of a positioning device in another embodiment;
图4为再一个实施例中定位装置的具体结构示意图;FIG4 is a schematic diagram of the specific structure of a positioning device in another embodiment;
图5为又一个实施例中定位装置的具体结构示意图;FIG5 is a schematic diagram of the specific structure of a positioning device in another embodiment;
图6为一个实施例中定位系统的结构框图;FIG6 is a block diagram of a positioning system in one embodiment;
图7为一个实施例中定位系统的具体结构示意图;FIG7 is a schematic diagram of a specific structure of a positioning system in one embodiment;
图8为另一个实施例中定位系统的具体结构示意图。FIG. 8 is a schematic diagram of the specific structure of a positioning system in another embodiment.
具体实施方式DETAILED DESCRIPTION
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application more clearly understood, the present application is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application and are not used to limit the present application.
请参阅图1,在一个实施例中,提供了一种定位装置100,包括数据融合模组12,以及分别通信连接数据融合模组12的GNSS模组14、应答模组16、ADS-B模组18、数据通信模组20和导航传感模组22。数据融合模组12用于对GNSS模组14、应答模组16、ADS-B模组18和数据通信模组20分别输出的目标信号,以及导航传感模组22输出的传感信号进行数据融合,得到定位信号,并分别向GNSS模组14、应答模组16、ADS-B模组18和数据通信模组20中的至少一个输出定位信号。GNSS模组14、应答模组16、ADS-B模组18和数据通信模组20分别用于向监控中心发送定位信号。Please refer to FIG. 1 . In one embodiment, a positioning device 100 is provided, including a data fusion module 12, and a GNSS module 14, a response module 16, an ADS-B module 18, a data communication module 20, and a navigation sensor module 22, which are respectively connected to the data fusion module 12 in communication. The data fusion module 12 is used to perform data fusion on the target signals respectively output by the GNSS module 14, the response module 16, the ADS-B module 18, and the data communication module 20, and the sensor signals output by the navigation sensor module 22, to obtain positioning signals, and output the positioning signals to at least one of the GNSS module 14, the response module 16, the ADS-B module 18, and the data communication module 20. The GNSS module 14, the response module 16, the ADS-B module 18, and the data communication module 20 are respectively used to send positioning signals to the monitoring center.
可以理解,目标信号为各模组分别从外部设备(如卫星、周边飞行器或地面站点等)接收到的有用信号,例如是GNSS(Global Navigation Satellite System,全球导航卫星系统)卫星定位信号、应答机接收和识别到的雷达询问信号、地面或航空器发出的ADS-B(Automatic Dependent Surveillance–Broadcast,广播式自动相关监视)信号、地面服务器发送的数据通信信号及飞行服务信号等,可以用于对定位装置100所在航空器进行飞行状态监视,直接定位或辅助定位等。传感信号为导航传感模组22对航空器进行飞行状态检测时,输出的检测信号,可以用于提供飞行器的高度、压力、温度和倾角等导航参数信息。定位信号为基于目标信号(如部分目标信号或结合全部的目标信号)得到的定位装置100所在航空器的位置信号,用于提供飞行器的定位信息。监控中心为对定位装置100所在的飞行器进行监视、调度控制和指挥等的管理中心。It can be understood that the target signal is a useful signal received by each module from an external device (such as a satellite, a surrounding aircraft or a ground station, etc.), such as a GNSS (Global Navigation Satellite System) satellite positioning signal, a radar interrogation signal received and identified by a transponder, an ADS-B (Automatic Dependent Surveillance-Broadcast) signal sent by the ground or aircraft, a data communication signal sent by a ground server, and a flight service signal, etc., which can be used to monitor the flight status of the aircraft where the positioning device 100 is located, directly locate or assist in positioning, etc. The sensing signal is the detection signal output by the navigation sensing module 22 when the aircraft is detected in flight status, which can be used to provide navigation parameter information such as the altitude, pressure, temperature and inclination of the aircraft. The positioning signal is a position signal of the aircraft where the positioning device 100 is located obtained based on the target signal (such as a partial target signal or a combination of all target signals), which is used to provide the positioning information of the aircraft. The monitoring center is a management center for monitoring, dispatching, controlling and commanding the aircraft where the positioning device 100 is located.
具体的,GNSS模组14、应答模组16、ADS-B模组18、数据通信模组20和导航传感模组22早工作过程中,分别可以将自身获得的目标信号输出到数据融合模组12。数据融合模组12可以根据输入的各目标信号进行数据融合,例如通过本领域应用广泛的数据融合算法进行数据融合,提取其中可以用于导航定位的信息,从而可以对得到的信息进行过滤、解包和/或组包等常规处理,并以定位信号的形式进行信息输出。数据融合模组12可以将得到的定位信号输出到GNSS模组14、应答模组16、ADS-B模组18和数据通信模组20中的一个或者两个及以上的模组。例如,当定位装置100所在的地区GNSS信号、雷达信号、ADS-B信号和数据信号(例如2G、3G、4G或5G通信信号)中,其中一种或者两种及以上的信号覆盖良好,能够满足定位信号的有效传输,则信号覆盖良好的相应模组可以将数据融合模组12返回的定位信号发送到监控中心。监控中心从而可以根据至少一个通信链路(如数据融合模组12-GNSS模组14-监控中心)上发送的定位信号实时对定位装置100所在的飞行器进行定位监视。Specifically, the GNSS module 14, the transponder module 16, the ADS-B module 18, the data communication module 20 and the navigation sensor module 22 can output the target signals obtained by themselves to the data fusion module 12 during the early working process. The data fusion module 12 can perform data fusion according to the input target signals, for example, by performing data fusion through a data fusion algorithm widely used in the field, extracting information that can be used for navigation and positioning, so that the obtained information can be filtered, unpacked and/or packaged, and other conventional processing can be performed, and the information can be output in the form of a positioning signal. The data fusion module 12 can output the obtained positioning signal to one or two or more modules among the GNSS module 14, the transponder module 16, the ADS-B module 18 and the data communication module 20. For example, when one or two or more of the GNSS signals, radar signals, ADS-B signals, and data signals (such as 2G, 3G, 4G, or 5G communication signals) in the area where the positioning device 100 is located have good signal coverage and can meet the effective transmission of the positioning signal, the corresponding module with good signal coverage can send the positioning signal returned by the data fusion module 12 to the monitoring center. The monitoring center can thus perform real-time positioning monitoring on the aircraft where the positioning device 100 is located based on the positioning signal sent on at least one communication link (such as data fusion module 12-GNSS module 14-monitoring center).
上述的定位装置100,通过各模组的协同设计,可以根据信号覆盖强度的高低来自适应选择定位通信链路,突破地理位置的限制,将定位信号从信号覆盖良好的一条或者多条通信链路上发送到监控中心,保障定位信息的连续性,定位信息传输的稳定性和可靠性较高,有效提升定位效率,无需另行建设地面定位站点,大幅降低定位测量成本。The above-mentioned positioning device 100, through the collaborative design of various modules, can adaptively select the positioning communication link according to the signal coverage strength, break through the geographical location restrictions, and send the positioning signal from one or more communication links with good signal coverage to the monitoring center, thereby ensuring the continuity of positioning information. The stability and reliability of positioning information transmission are high, effectively improving positioning efficiency, eliminating the need to build ground positioning sites separately, and greatly reducing positioning measurement costs.
请参阅图2,在其中一个实施例中,数据通信模组20包括通信模块202、通信信号处理单元204和数据天线206。通信模块202分别通信连接数据天线206和通信信号处理单元204。通信信号处理单元204通信连接数据融合模组12。数据天线206用于接收外部通信信号后并输出到通信模块202。通信模块202用于对目标信号进行解调,得到目标信号并输出到通信信号处理单元204。通信信号处理单元204用于向数据融合模组12输出处理后的目标信号,并将数据融合模组12返回的定位信号通过通信模块202和数据天线206发送到监控中心。Please refer to FIG. 2 . In one embodiment, the data communication module 20 includes a communication module 202, a communication signal processing unit 204 and a data antenna 206. The communication module 202 is respectively connected to the data antenna 206 and the communication signal processing unit 204. The communication signal processing unit 204 is connected to the data fusion module 12. The data antenna 206 is used to receive an external communication signal and output it to the communication module 202. The communication module 202 is used to demodulate the target signal, obtain the target signal and output it to the communication signal processing unit 204. The communication signal processing unit 204 is used to output the processed target signal to the data fusion module 12, and send the positioning signal returned by the data fusion module 12 to the monitoring center through the communication module 202 and the data antenna 206.
通信模块202可以是但不限于2G、3G、4G或5G通信模块202,只要能够通过移动数据通信网络完成所需的信号调制解调和收发处理即可。数据天线206为与通信模块202适配的移动通信天线,具体类型可以根据通信模块202处理信号收发的需要进行确定。通信信号处理单元204可以是通信信号过滤和转换等处理的常规信号处理单元电路,具体类型可以根据通信模块202的输出信号和数据融合模组12的信号输入需要来确定。外部通信信号例如是通信卫星或地面通信服务器等发送的通信信号,可以包含与定位装置100所在的飞行器相关的联络信息和飞行服务信息等。The communication module 202 may be, but is not limited to, a 2G, 3G, 4G or 5G communication module 202, as long as the required signal modulation, demodulation and transceiver processing can be completed through a mobile data communication network. The data antenna 206 is a mobile communication antenna adapted to the communication module 202, and the specific type can be determined according to the needs of the communication module 202 for processing signal transceiver. The communication signal processing unit 204 may be a conventional signal processing unit circuit for processing such as communication signal filtering and conversion, and the specific type may be determined according to the output signal of the communication module 202 and the signal input needs of the data fusion module 12. The external communication signal is, for example, a communication signal sent by a communication satellite or a ground communication server, and may include contact information and flight service information related to the aircraft where the positioning device 100 is located.
具体的,在定位装置100所在的位置区域中,数据通信网络(例如4G通信网络)的数据信号(如4G信号)覆盖良好时,外部通信信号将可以被数据天线206接收到。通信模块202进而可以从数据天线206接收到的外部通信信号中解调出目标信号,例如定位装置100所在飞行器的飞行服务信号。通信模块202得到的目标信号经过通信信号处理单元204处理后,得到适于数据融合模组12进行数据融合的目标信号,并输入到数据融合模组12中,供数据融合模组12使用。在数据融合模组12返回定位信号时,定位信号可以通过通信信号处理单元204转换处理后输出到通信模块202。通信模块202进而对定位信号进行信号调制后输出到数据天线206进行信号发射,以将定位信号发送给监控中心。Specifically, in the location area where the positioning device 100 is located, when the data signal (such as 4G signal) of the data communication network (such as 4G communication network) has good coverage, the external communication signal can be received by the data antenna 206. The communication module 202 can then demodulate the target signal from the external communication signal received by the data antenna 206, such as the flight service signal of the aircraft where the positioning device 100 is located. After the target signal obtained by the communication module 202 is processed by the communication signal processing unit 204, a target signal suitable for data fusion by the data fusion module 12 is obtained, and the target signal is input into the data fusion module 12 for use by the data fusion module 12. When the data fusion module 12 returns the positioning signal, the positioning signal can be converted and processed by the communication signal processing unit 204 and then output to the communication module 202. The communication module 202 then modulates the positioning signal and outputs it to the data antenna 206 for signal transmission, so as to send the positioning signal to the monitoring center.
通过应用上述的通信模组,可以充分应用数据通信网络的通信链路,实现定位信息的下发。在其他定位链路的通信质量较低或者通信中断,而数据通信信号覆盖良好时,提供可靠的定位信号传输链路,确保定位监视的有效性和可靠性。在其他定位链路的通信质量良好时,可以提供另一路的定位信号,从而可以与其他链路下发的定位信号进行相互验证,提高定位的精确度。By applying the above communication module, the communication link of the data communication network can be fully utilized to realize the sending of positioning information. When the communication quality of other positioning links is low or the communication is interrupted, and the data communication signal coverage is good, a reliable positioning signal transmission link is provided to ensure the effectiveness and reliability of positioning monitoring. When the communication quality of other positioning links is good, another positioning signal can be provided, so that the positioning signal sent by other links can be mutually verified to improve the accuracy of positioning.
在其中一个实施例中,GNSS模组14包括通信连接的GNSS天线142和GNSS模块144。GNSS天线142用于分别通信连接GNSS卫星和监控中心。GNSS模块144通信连接数据融合模组12。GNSS天线142接收到GNSS卫星的GNSS信号后,输出到GNSS模块144。GNSS模块144对GNSS信号进行解调,得到目标信号并输出到数据融合模组12,并将数据融合模组12返回的定位信号通过GNSS天线142发送到监控中心。In one embodiment, the GNSS module 14 includes a GNSS antenna 142 and a GNSS module 144 that are communicatively connected. The GNSS antenna 142 is used to communicate with the GNSS satellite and the monitoring center respectively. The GNSS module 144 is communicatively connected to the data fusion module 12. After receiving the GNSS signal from the GNSS satellite, the GNSS antenna 142 outputs it to the GNSS module 144. The GNSS module 144 demodulates the GNSS signal, obtains the target signal and outputs it to the data fusion module 12, and sends the positioning signal returned by the data fusion module 12 to the monitoring center through the GNSS antenna 142.
可以理解,GNSS卫星例如是GPS导航卫星、北斗导航卫星、GLONASS导航卫星或者GALILEO导航卫星。相应的,GNSS天线142和GNSS模块144的具体类型,可以根据GNSS卫星的具体种类确定。GNSS天线142和GNSS模块144可以是兼容一种导航卫星信号或者两种及以上的导航卫星信号的接收天线和导航信号模块。It is understood that the GNSS satellite is, for example, a GPS navigation satellite, a Beidou navigation satellite, a GLONASS navigation satellite, or a GALILEO navigation satellite. Accordingly, the specific types of the GNSS antenna 142 and the GNSS module 144 can be determined according to the specific type of the GNSS satellite. The GNSS antenna 142 and the GNSS module 144 can be a receiving antenna and a navigation signal module that are compatible with one navigation satellite signal or two or more navigation satellite signals.
具体的,GNSS卫星发出的导航卫星信号,也即上述的GNSS信号,可以被GNSS天线142接收到。GNSS模块144可以对GNSS天线142获得的GNSS信号进行处理,例如信号解调,得到目标信号,例如可用于定位飞行器当前位置的GNSS卫星定位信号。该目标信号送入数据融合模组12中使用,以便得到所需的定位信号。数据融合模组12也可以将得到的定位信号发送到GNSS模块144。GNSS模块144对定位信号通过GNSS天线142发送到监控中心。监控中心从而可以通过GNSS模组14提供的通信链路对定位装置100所在飞行器进行定位监视。Specifically, the navigation satellite signal emitted by the GNSS satellite, that is, the above-mentioned GNSS signal, can be received by the GNSS antenna 142. The GNSS module 144 can process the GNSS signal obtained by the GNSS antenna 142, such as signal demodulation, to obtain a target signal, such as a GNSS satellite positioning signal that can be used to locate the current position of the aircraft. The target signal is sent to the data fusion module 12 for use in order to obtain the required positioning signal. The data fusion module 12 can also send the obtained positioning signal to the GNSS module 144. The GNSS module 144 sends the positioning signal to the monitoring center via the GNSS antenna 142. The monitoring center can thus perform positioning monitoring on the aircraft where the positioning device 100 is located through the communication link provided by the GNSS module 14.
通过上述的GNSS模组14,在其他定位链路的通信质量较低或者通信中断,而飞行器所在区域中GNSS信号覆盖良好时,提供可靠的定位信号传输链路,确保定位监视的有效性和可靠性。在其他定位链路的通信质量良好时,可以提供另一路的定位信号,从而可以与其他链路下发的定位信号进行相互验证,提高定位的精确度。Through the above-mentioned GNSS module 14, when the communication quality of other positioning links is low or the communication is interrupted, and the GNSS signal coverage in the area where the aircraft is located is good, a reliable positioning signal transmission link is provided to ensure the effectiveness and reliability of positioning monitoring. When the communication quality of other positioning links is good, another positioning signal can be provided, so that the positioning signal sent by other links can be mutually verified to improve the accuracy of positioning.
在其中一个实施例中,ADS-B模组18包括ADS-B模块182、ADS-B信号处理单元184和ADS-B天线186。ADS-B模块182分别通信连接ADS-B信号处理单元184和ADS-B天线186。ADS-B信号处理单元184通信连接数据融合模组12。ADS-B天线186用于接收ADS-B信号并输出到ADS-B模块182。ADS-B模块182用于对ADS-B信号进行解调,得到目标信号并输出到ADS-B信号处理单元184。ADS-B信号处理单元184用于输出处理后的目标信号到数据融合模组12,并通过ADS-B模块182和ADS-B天线186,将数据融合模组12返回的定位信号发送到监控中心。In one embodiment, the ADS-B module 18 includes an ADS-B module 182, an ADS-B signal processing unit 184 and an ADS-B antenna 186. The ADS-B module 182 is communicatively connected to the ADS-B signal processing unit 184 and the ADS-B antenna 186 respectively. The ADS-B signal processing unit 184 is communicatively connected to the data fusion module 12. The ADS-B antenna 186 is used to receive the ADS-B signal and output it to the ADS-B module 182. The ADS-B module 182 is used to demodulate the ADS-B signal, obtain the target signal and output it to the ADS-B signal processing unit 184. The ADS-B signal processing unit 184 is used to output the processed target signal to the data fusion module 12, and send the positioning signal returned by the data fusion module 12 to the monitoring center through the ADS-B module 182 and the ADS-B antenna 186.
可以理解,ADS-B模块182、ADS-B信号处理单元184和ADS-B天线186均可以是本领域应用广泛的ADS-B技术中,用于通过ADS-B数据链路进行信号收发和处理的相应结构单元。It can be understood that the ADS-B module 182, the ADS-B signal processing unit 184 and the ADS-B antenna 186 can all be corresponding structural units in the ADS-B technology widely used in the art, and are used to transmit, receive and process signals through the ADS-B data link.
具体的,ADS-B天线186在接收到ADS-B地面站或者周边其他飞行器发送的ADS-B信号时,可以将获得的ADS-B信号输出给ADS-B模块182进行信号解调等处理,得到目标信号,例如用于对定位装置100所在飞行器进行定位的目标ADS-B信号。ADS-B模块182进而将目标信号输出到ADS-B信号处理单元184进行信号转换等处理,处理后的目标信号将输入数据融合模组12进行处理,以便得到所需的定位信号。数据融合模组12可以将得到的定位信号通过ADS-B信号处理单元184发送给ADS-B模块182。ADS-B模块182对定位信号处理后送ADS-B天线186进行信号发射,以将定位信号发送给监控中心。监控中心从而可以通过ADS-B模组18提供的数据链路对定位装置100所在飞行器进行定位监视。Specifically, when the ADS-B antenna 186 receives the ADS-B signal sent by the ADS-B ground station or other surrounding aircraft, it can output the obtained ADS-B signal to the ADS-B module 182 for signal demodulation and other processing to obtain a target signal, such as a target ADS-B signal for locating the aircraft where the positioning device 100 is located. The ADS-B module 182 then outputs the target signal to the ADS-B signal processing unit 184 for signal conversion and other processing, and the processed target signal is input into the data fusion module 12 for processing to obtain the required positioning signal. The data fusion module 12 can send the obtained positioning signal to the ADS-B module 182 through the ADS-B signal processing unit 184. After the ADS-B module 182 processes the positioning signal, it sends it to the ADS-B antenna 186 for signal transmission to send the positioning signal to the monitoring center. The monitoring center can thus locate and monitor the aircraft where the positioning device 100 is located through the data link provided by the ADS-B module 18.
通过上述的ADS-B模组18,在其他定位链路的通信质量较低或者通信中断,而飞行器所在区域中ADS-B信号覆盖良好时,提供可靠的定位信号传输链路,确保定位监视的有效性和可靠性。在其他定位链路的通信质量良好时,可以提供另一路的定位信号,从而可以与其他链路下发的定位信号进行相互验证,提高定位的精确度。Through the above-mentioned ADS-B module 18, when the communication quality of other positioning links is low or the communication is interrupted, and the ADS-B signal coverage in the area where the aircraft is located is good, a reliable positioning signal transmission link is provided to ensure the effectiveness and reliability of positioning monitoring. When the communication quality of other positioning links is good, another positioning signal can be provided, so that the positioning signal sent by other links can be mutually verified to improve the accuracy of positioning.
在其中一个实施例中,应答模组16包括应答机162,以及分别通信连接应答机162的应答信号处理单元164和应答天线166。应答信号处理单元164通信连接数据融合模组12。应答天线166用于接收应答信号并输出到应答机162。应答机162用于对应答信号进行解调,得到目标信号并输出到应答信号处理单元164进行信号处理。应答信号处理单元164用于将处理后的目标信号输出到数据融合模组12,并通过应答机162和应答天线166,将数据融合模组12返回的定位信号发送到监控中心。In one embodiment, the answering module 16 includes an answering machine 162, and an answering signal processing unit 164 and an answering antenna 166 respectively connected to the answering machine 162 in communication. The answering signal processing unit 164 is connected to the data fusion module 12 in communication. The answering antenna 166 is used to receive the answering signal and output it to the answering machine 162. The answering machine 162 is used to demodulate the answering signal, obtain the target signal and output it to the answering signal processing unit 164 for signal processing. The answering signal processing unit 164 is used to output the processed target signal to the data fusion module 12, and send the positioning signal returned by the data fusion module 12 to the monitoring center through the answering machine 162 and the answering antenna 166.
可以理解,上述的应答机162、应答信号处理单元164和应答天线166均可以是广泛应用于各类飞行器上的应答设备的相应组成结构,用于实现与雷达地面站的交互通信。It can be understood that the above-mentioned transponder 162, the transponder signal processing unit 164 and the transponder antenna 166 can all be corresponding component structures of transponder devices widely used in various types of aircraft to achieve interactive communication with radar ground stations.
具体的,当定位装置100所在飞行器的飞行区域处在雷达覆盖范围内时,可以通过应答天线166接收雷达信号,例如雷达地面站发送的询问编码信号。应答机162将可以接收到应答信号,并处理后得到目标信号,例如关于定位装置100所在飞行器的雷达询问信号。应答信号处理单元164进而对应答机162输出的目标信号进行信号转换等处理后,将处理后的目标信号输入数据融合模组12进行融合处理,以便得到所需的定位信号。数据融合模组12可以将得到的定位信号通过应答信号处理单元164发送给应答机162。应答机162对定位信号处理后送应答天线166进行信号发射,以将定位信号发送给监控中心。监控中心从而可以通过应答模组16应用的雷达链路对定位装置100所在飞行器进行定位监视,例如定位装置100所在飞行器通过应答模组16收到来自雷达地面站发射的询问编码信号后,通过应答模组16转发一组询问编码信号,地面导航设备收到来自定位装置100所在飞行器的应答信号(如前述的定位信号)后,进行解码处理后得到定位装置100所在飞行器的方位等定位信息。Specifically, when the flight area of the aircraft where the positioning device 100 is located is within the radar coverage, the radar signal, such as the interrogation coded signal sent by the radar ground station, can be received through the transponder antenna 166. The transponder 162 will be able to receive the reply signal and obtain the target signal after processing, such as the radar interrogation signal of the aircraft where the positioning device 100 is located. The reply signal processing unit 164 then performs signal conversion and other processing on the target signal output by the transponder 162, and inputs the processed target signal into the data fusion module 12 for fusion processing to obtain the required positioning signal. The data fusion module 12 can send the obtained positioning signal to the transponder 162 through the reply signal processing unit 164. After the transponder 162 processes the positioning signal, it sends it to the reply antenna 166 for signal transmission to send the positioning signal to the monitoring center. The monitoring center can thus perform positioning monitoring on the aircraft where the positioning device 100 is located through the radar link applied by the response module 16. For example, after the aircraft where the positioning device 100 is located receives the interrogation coded signal transmitted from the radar ground station through the response module 16, a group of interrogation coded signals is forwarded through the response module 16. After the ground navigation equipment receives the response signal (such as the aforementioned positioning signal) from the aircraft where the positioning device 100 is located, it decodes and processes it to obtain the positioning information such as the orientation of the aircraft where the positioning device 100 is located.
通过上述的应答模组16,在其他定位链路的通信质量较低或者通信中断,而飞行器所在区域中雷达信号覆盖良好时,提供可靠的定位信号传输链路,确保定位监视的有效性和可靠性。在其他定位链路的通信质量良好时,可以提供另一路的定位信号,从而可以与其他链路下发的定位信号进行相互验证,提高定位的精确度。Through the above-mentioned response module 16, when the communication quality of other positioning links is low or the communication is interrupted, and the radar signal coverage in the area where the aircraft is located is good, a reliable positioning signal transmission link is provided to ensure the effectiveness and reliability of positioning monitoring. When the communication quality of other positioning links is good, another positioning signal can be provided, so that the positioning signal sent by other links can be mutually verified to improve the accuracy of positioning.
在其中一个实施例中,导航传感模组22包括通信连接的导航传感器模块222和传感信号处理单元224。传感信号处理单元224通信连接数据融合模组12。导航传感器模块222用于向传感信号处理单元224输出导航监测信号。传感信号处理单元224用于对导航监测信号进行信号处理,输出相应的目标信号到数据融合模组12。In one embodiment, the navigation sensor module 22 includes a navigation sensor module 222 and a sensor signal processing unit 224 that are communicatively connected. The sensor signal processing unit 224 is communicatively connected to the data fusion module 12. The navigation sensor module 222 is used to output a navigation monitoring signal to the sensor signal processing unit 224. The sensor signal processing unit 224 is used to perform signal processing on the navigation monitoring signal and output a corresponding target signal to the data fusion module 12.
可以理解,上述的导航传感器模块222可以是各类飞行器常用的航空传感器模块,设置有多种传感器件,例如高度传感器、压力传感器、温度传感器和倾角传感器等。具体的,导航传感器模块222用于对设定的导航参数进行检测,将检测得到的导航参数以导航监测信号(如电信号)的形式,输出给传感信号处理单元224进行信号转换等处理,以得到相应的目标信号。传感信号处理单元224进而将目标信号输出到数据融合模组12进行数据融合,以便得到所需的定位信号。It can be understood that the above-mentioned navigation sensor module 222 can be an aviation sensor module commonly used in various aircraft, and is provided with a variety of sensor devices, such as an altitude sensor, a pressure sensor, a temperature sensor, and an inclination sensor. Specifically, the navigation sensor module 222 is used to detect the set navigation parameters, and output the detected navigation parameters in the form of navigation monitoring signals (such as electrical signals) to the sensor signal processing unit 224 for signal conversion and other processing to obtain the corresponding target signal. The sensor signal processing unit 224 then outputs the target signal to the data fusion module 12 for data fusion, so as to obtain the required positioning signal.
通过结合导航传感模组22输出的目标信号,可以有效确保定位信号的实时性和可靠性,提高定位信息的精确度。By combining the target signal output by the navigation sensor module 22, the real-time and reliability of the positioning signal can be effectively ensured, and the accuracy of the positioning information can be improved.
请参阅图3,在其中一个实施例中,定位装置100还包括电源系统24。电源系统24分别电连接数据融合模组12、GNSS模组14、应答模组16、数据通信模组20和导航传感模组22。3 , in one embodiment, the positioning device 100 further includes a power system 24. The power system 24 is electrically connected to the data fusion module 12, the GNSS module 14, the response module 16, the data communication module 20 and the navigation sensor module 22 respectively.
可以理解,在上述的实施例中,定位装置100中的工作过程中需进行供电的各模组,均可以通过外部电源进行供电,例如从定位装置100所在飞行器的供电系统上进行供电。在本实施例中,定位装置100还可以设置有电源系统24,用于对工作过程中需进行供电的各模组进行独立供电,而无需外部电源直接进行供电。电源系统24可以是太阳能供电的电源系统24、从定位装置100所在飞行器的供电系统上适配出来的供电子系统或者其他适于航空使用的独立电源。如图3所示,例如电源系统24可以用于向数据融合模组12,GNSS模组14的GNSS模块144,数据通信模组20的通信信号处理单元204和通信模块202,导航传感模组22的传感信号处理单元224和导航传感器模块222,应答模组16的应当信号处理单元等进行供电,以便各模块和单元能够正常工作。通过上述电源系统24的设置,可以提高定位装置100的部署灵活度,提升工作效率。It can be understood that in the above-mentioned embodiment, each module that needs to be powered during the working process of the positioning device 100 can be powered by an external power supply, for example, from the power supply system of the aircraft where the positioning device 100 is located. In this embodiment, the positioning device 100 can also be provided with a power supply system 24, which is used to independently power each module that needs to be powered during the working process without the need for an external power supply to directly power it. The power supply system 24 can be a solar-powered power supply system 24, a power supply subsystem adapted from the power supply system of the aircraft where the positioning device 100 is located, or other independent power supplies suitable for aviation use. As shown in FIG. 3, for example, the power supply system 24 can be used to power the data fusion module 12, the GNSS module 144 of the GNSS module 14, the communication signal processing unit 204 and the communication module 202 of the data communication module 20, the sensor signal processing unit 224 and the navigation sensor module 222 of the navigation sensor module 22, and the corresponding signal processing unit of the response module 16, so that each module and unit can work normally. By configuring the power supply system 24 , the deployment flexibility of the positioning device 100 can be improved, thereby enhancing work efficiency.
请参阅图4,在其中一个实施例中,定位装置100还包括显示终端26。显示终端26连接数据融合模组12。显示终端26用于展示定位信号对应的定位信息。可以理解,显示终端26可以是但不限于液晶显示器或LED显示器。具体的,数据融合模组12也可以将定位信号发送给显示终端26。显示终端26从而可以根据实时展示定位信号对应的定位信息。显示终端26还可以从数据融合模组12上获取其他信息进行展示,例如导航监测信号和飞行服务信息等,从而也可以实时显示定位装置100所在飞行器的飞行姿态和飞行服务信息等信息。通过显示终端26的设置,飞行员可以直观掌握当前的定位位置、飞行姿态和飞行服务等重要信息,提高飞行控制的决策效率,提高飞行安全性。Please refer to FIG. 4 . In one embodiment, the positioning device 100 further includes a display terminal 26. The display terminal 26 is connected to the data fusion module 12. The display terminal 26 is used to display the positioning information corresponding to the positioning signal. It can be understood that the display terminal 26 can be, but not limited to, a liquid crystal display or an LED display. Specifically, the data fusion module 12 can also send the positioning signal to the display terminal 26. The display terminal 26 can thus display the positioning information corresponding to the positioning signal in real time. The display terminal 26 can also obtain other information from the data fusion module 12 for display, such as navigation monitoring signals and flight service information, so that the flight attitude and flight service information of the aircraft where the positioning device 100 is located can also be displayed in real time. Through the setting of the display terminal 26, the pilot can intuitively grasp the current positioning position, flight attitude, flight service and other important information, improve the decision-making efficiency of flight control, and improve flight safety.
请参阅图5,在其中一个实施例中,定位装置100还包括链路选择开关28,链路选择开关28通信连接数据融合模组12。链路选择开关28用于接通或关闭GNSS模组14、应答模组16、ADS-B模组18和数据通信模组20中的至少一个模组。可以理解,链路选择开关28可以是但不限于多路控制的波动开关、按钮开关或者触控开关模块。Please refer to FIG5 , in one embodiment, the positioning device 100 further includes a link selection switch 28, and the link selection switch 28 is communicatively connected to the data fusion module 12. The link selection switch 28 is used to turn on or off at least one of the GNSS module 14, the answering module 16, the ADS-B module 18, and the data communication module 20. It can be understood that the link selection switch 28 can be, but is not limited to, a multi-way controlled wave switch, a button switch, or a touch switch module.
具体的,飞行员可以通过链路选择开关28,控制数据融合模组12选通GNSS模组14、应答模组16、ADS-B模组18和数据通信模组20中的一个模组,或者两个以及以上的模组进入工作状态。可以通过链路选择开关28直接接通或者关闭GNSS模组14、应答模组16、ADS-B模组18和数据通信模组20中的任一个。例如,飞行员可以根据当前区域的信号(如4G信号或雷达信号等)覆盖强度大小,来选择接通或者关闭各模组中的相应的模组(例如数据通信模组20或应答模组16等)。Specifically, the pilot can control the data fusion module 12 to select one of the GNSS module 14, the transponder module 16, the ADS-B module 18 and the data communication module 20, or two or more modules to enter the working state through the link selection switch 28. Any one of the GNSS module 14, the transponder module 16, the ADS-B module 18 and the data communication module 20 can be directly turned on or off through the link selection switch 28. For example, the pilot can choose to turn on or off the corresponding module (such as the data communication module 20 or the transponder module 16, etc.) in each module according to the signal (such as 4G signal or radar signal, etc.) coverage strength in the current area.
通过设置链路选址开关,飞行员可以实时根据所在区域的信号状况,手动控制各模组的工作状态,提高定位信息传输的效率。By setting the link site selection switch, pilots can manually control the working status of each module in real time according to the signal conditions in the area, thereby improving the efficiency of positioning information transmission.
请参阅图6,一种定位系统200,包括GNSS卫星11、地面接收设备13、监控中心15和上述的定位装置100。定位装置100分别通信连接GNSS卫星11和地面接收设备13。地面接收设备13通信连接监控中心15。定位装置100得到定位信号后,向地面接收设备13发送定位信号。地面接收设备13对定位信号进行信号处理,得到定位信息并发送到监控中心15。Please refer to FIG6 , a positioning system 200 includes a GNSS satellite 11, a ground receiving device 13, a monitoring center 15 and the above-mentioned positioning device 100. The positioning device 100 is respectively connected to the GNSS satellite 11 and the ground receiving device 13. The ground receiving device 13 is connected to the monitoring center 15. After the positioning device 100 obtains the positioning signal, it sends the positioning signal to the ground receiving device 13. The ground receiving device 13 processes the positioning signal, obtains the positioning information and sends it to the monitoring center 15.
可以理解,地面接收设备13用于接收上述各实施例中的定位装置100下发的定位信号,并转发到监控中心15。具体的,定位装置100发出定位信号后,相应地区内的地面接收设备13将会接收该定位信号并发送到监控中心15。监控中心15从而可以根据获得的定位信号得到定位装置100所在飞行器的定位信息,实现对前述的飞行器的定位监视。通过上述的定位装置100的向地面接收设备13下发定位信号,通信链路可以灵活自适应,保障定位信息的连续性同时,大幅提升定位信息传输的稳定性和可靠性,大大提高定位的精确度和航空安全性,定位效率较高。It can be understood that the ground receiving device 13 is used to receive the positioning signal sent by the positioning device 100 in the above embodiments and forward it to the monitoring center 15. Specifically, after the positioning device 100 sends a positioning signal, the ground receiving device 13 in the corresponding area will receive the positioning signal and send it to the monitoring center 15. The monitoring center 15 can thus obtain the positioning information of the aircraft where the positioning device 100 is located based on the obtained positioning signal, and realize the positioning monitoring of the aforementioned aircraft. By sending the positioning signal to the ground receiving device 13 through the above-mentioned positioning device 100, the communication link can be flexibly adaptive, ensuring the continuity of the positioning information, while greatly improving the stability and reliability of the positioning information transmission, greatly improving the positioning accuracy and aviation safety, and the positioning efficiency is high.
请参阅图7,在其中一个实施例中,地面接收设备13包括GNSS接收设备131、雷达132、通信基站133和MPS地面站134。GNSS接收设备131、雷达132、通信基站133和MPS地面站134分别通信连接定位装置100,且分别通信连接监控中心15。Please refer to Fig. 7, in one embodiment, the ground receiving device 13 includes a GNSS receiving device 131, a radar 132, a communication base station 133 and an MPS ground station 134. The GNSS receiving device 131, the radar 132, the communication base station 133 and the MPS ground station 134 are respectively connected to the positioning device 100 for communication, and are also respectively connected to the monitoring center 15 for communication.
可以理解,GNSS接收设备131可以用于接收定位装置100通过GNSS天线142发射的定位信号。雷达132可以用于接收定位装置100通过应答天线166发射的定位信号。通信基站133可以用于接收定位装置100通过数据天线206发射的定位信号,可以是但不限于4G基站。MPS(Multilink Position System,多链路定位装置)地面站可以用于接收定位装置100通过ADS-B天线186发射的定位信号,可以利用ADS-B技术高效实现对飞行器的定位;也可以用于接收应答天线166发射的定位信号。It can be understood that the GNSS receiving device 131 can be used to receive the positioning signal transmitted by the positioning device 100 through the GNSS antenna 142. The radar 132 can be used to receive the positioning signal transmitted by the positioning device 100 through the transponder antenna 166. The communication base station 133 can be used to receive the positioning signal transmitted by the positioning device 100 through the data antenna 206, which can be but not limited to a 4G base station. The MPS (Multilink Position System) ground station can be used to receive the positioning signal transmitted by the positioning device 100 through the ADS-B antenna 186, and can use the ADS-B technology to efficiently realize the positioning of the aircraft; it can also be used to receive the positioning signal transmitted by the transponder antenna 166.
具体的,定位装置100可以通过在地面上各位置设置的接收设备,如上述的GNSS接收设备131、雷达132、通信基站133和MPS地面站134,将定位信号下发至地面。前述的接收设备均可以将接收到的定位信号发送到监控中心15,例如通过地面通信网与监控中心15进行通信时,转发接收到的定位信号到监控中心15。监控中心15从而可以根据获得的定位信号对应的定位信息,对定位装置100所在飞行器进行定位监视。可选的,上述的各接收设备均可以接收监测区域内的一个、两个或者以上数量的定位装置100的定位信号。Specifically, the positioning device 100 can send the positioning signal to the ground through receiving devices set at various locations on the ground, such as the above-mentioned GNSS receiving device 131, radar 132, communication base station 133 and MPS ground station 134. The aforementioned receiving devices can all send the received positioning signal to the monitoring center 15, for example, when communicating with the monitoring center 15 through the ground communication network, forwarding the received positioning signal to the monitoring center 15. The monitoring center 15 can thus perform positioning monitoring on the aircraft where the positioning device 100 is located based on the positioning information corresponding to the obtained positioning signal. Optionally, each of the above-mentioned receiving devices can receive the positioning signals of one, two or more positioning devices 100 in the monitoring area.
通过应用上述的各接收设备,可以实现定位信号的多链路接收,提高定位的可靠性和精确度。此外,上述的各接收设备均可以是现有航空通信系统的接收设备,无需重新单独建设,从而在提高定位效率的同时,还可以有效降低定位成本。By applying the above-mentioned receiving devices, multi-link reception of positioning signals can be achieved, thereby improving the reliability and accuracy of positioning. In addition, the above-mentioned receiving devices can all be receiving devices of existing aviation communication systems, without the need to re-build them separately, thereby improving positioning efficiency while effectively reducing positioning costs.
请参阅图8,在其中一个实施例中,定位系统200还包括数据处理中心17。MPS地面站134的数量为至少四个。各MPS地面站134分别通信连接定位装置100,且分别通信连接数据处理中心17。数据处理中心17通信连接监控中心15。Please refer to FIG8 , in one embodiment, the positioning system 200 further includes a data processing center 17 . The number of MPS ground stations 134 is at least four. Each MPS ground station 134 is respectively connected to the positioning device 100 in communication, and is respectively connected to the data processing center 17 in communication. The data processing center 17 is connected to the monitoring center 15 in communication.
可以理解,数据处理中心17可以是服务器或者服务器集群,用于对各MPS地面站134发送过来的各定位信号进行数据处理,从而根据多个定位信号共同完成对定位装置100所在飞行器的定位。It can be understood that the data processing center 17 can be a server or a server cluster, which is used to process the positioning signals sent from the MPS ground stations 134, so as to complete the positioning of the aircraft where the positioning device 100 is located based on multiple positioning signals.
具体的,定位系统200可以通过在范围地区内,设置多个MPS地面站134,来接收定位装置100发送的定位信号,从而可以应用MDS(Multilateration Detection System,多点定位相关监视)技术来实现对定位装置100所在飞行器的有效定位。例如,当定位装置100所在飞行器的飞行区域内GNSS信号、ADS-B信号、数据信号受到遮挡或强干扰时,可以通过至少由四个MPS地面站134组成的通信链路实现定位。例如工作时,各个MPS地面站134接收各定位信号并确定信号的到达时间,然后将各信号的时间参数传送到数据处理中心17,由数据处理中心17进行TDOA(Time Difference of Arrival,到达时间差)汇算,最后通过TDOA汇算值计算得到定位装置100所在飞行器的位置坐标,即完成定位并将位置坐标等定位信息发送到监控中心15。可选的,当定位装置100所在飞行器的飞行空域内GNSS信号、ADS-B信号、4G网络均覆盖良好时,其他接收设备输出的定位信息可以与数据处理中心17输出的定位信息一同发送到监控中心15,从而监控中心15可以根据收到的多路定位信息,对航空器的定位位置进行相互验证,以保障监控中心15对飞行器定位的准确性与可靠性。Specifically, the positioning system 200 can receive the positioning signal sent by the positioning device 100 by setting up multiple MPS ground stations 134 in the range area, so that the MDS (Multilateration Detection System) technology can be applied to achieve effective positioning of the aircraft where the positioning device 100 is located. For example, when the GNSS signal, ADS-B signal, and data signal in the flight area of the aircraft where the positioning device 100 is located are blocked or strongly interfered, positioning can be achieved through a communication link composed of at least four MPS ground stations 134. For example, when working, each MPS ground station 134 receives each positioning signal and determines the arrival time of the signal, and then transmits the time parameters of each signal to the data processing center 17, which performs TDOA (Time Difference of Arrival) calculation, and finally calculates the position coordinates of the aircraft where the positioning device 100 is located through the TDOA calculation value, that is, the positioning is completed and the positioning information such as the position coordinates is sent to the monitoring center 15. Optionally, when the GNSS signal, ADS-B signal, and 4G network are well covered in the flight airspace of the aircraft where the positioning device 100 is located, the positioning information output by other receiving devices can be sent to the monitoring center 15 together with the positioning information output by the data processing center 17, so that the monitoring center 15 can mutually verify the positioning position of the aircraft based on the received multi-channel positioning information to ensure the accuracy and reliability of the monitoring center 15's positioning of the aircraft.
通过上述的数据处理中心17和MPS地面站134,可以有效应用MDS技术,高效实现对定位装置100所在飞行器的定位,进一步提高定位的可靠性和效率。Through the above-mentioned data processing center 17 and MPS ground station 134, the MDS technology can be effectively applied to efficiently realize the positioning of the aircraft where the positioning device 100 is located, and further improve the reliability and efficiency of positioning.
在其中一个实施例中,MPS地面站134包括应答接收设备和ADS-B接收设备。应答接收设备和ADS-B接收设备分别通信连接定位装置100,且分别通信连接数据处理中心17。In one embodiment, the MPS ground station 134 includes a transponder receiving device and an ADS-B receiving device. The transponder receiving device and the ADS-B receiving device are respectively connected to the positioning device 100 for communication and are respectively connected to the data processing center 17 for communication.
可以理解,上述的MPS地面站134中,应答接收设备为应答信号的接收设备,可以是应答机162的地面接收终端。ADS-B接收设备为ADS-B模组18输出信号的地面接收终端,可以是现有ADS-B通信系统中的信号接收设备,用于接收ADS-B天线186发射的定位信号。也即是说,MPS地面站134中主要包含上述两种类型的接收设备,用于接收应答天线166或者ADS-B天线186发射的定位信号,确保数据处理中心17所需的信号输入的有效性和可靠性。It can be understood that in the above-mentioned MPS ground station 134, the reply receiving device is a receiving device for the reply signal, which can be a ground receiving terminal of the transponder 162. The ADS-B receiving device is a ground receiving terminal for the output signal of the ADS-B module 18, which can be a signal receiving device in the existing ADS-B communication system, and is used to receive the positioning signal transmitted by the ADS-B antenna 186. In other words, the MPS ground station 134 mainly includes the above-mentioned two types of receiving devices, which are used to receive the positioning signal transmitted by the reply antenna 166 or the ADS-B antenna 186, to ensure the validity and reliability of the signal input required by the data processing center 17.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation methods of the present application, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the invention patent. It should be pointed out that, for a person of ordinary skill in the art, several variations and improvements can be made without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the patent of the present application shall be subject to the attached claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810978436.6A CN109143270B (en) | 2018-08-27 | 2018-08-27 | Positioning device and positioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810978436.6A CN109143270B (en) | 2018-08-27 | 2018-08-27 | Positioning device and positioning system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109143270A CN109143270A (en) | 2019-01-04 |
CN109143270B true CN109143270B (en) | 2024-09-24 |
Family
ID=64828002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810978436.6A Active CN109143270B (en) | 2018-08-27 | 2018-08-27 | Positioning device and positioning system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109143270B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111462453B (en) * | 2020-05-21 | 2022-08-05 | 成都紫瑞青云航空宇航技术有限公司 | Portable helicopter flight obstacle alarm system and method |
CN111932952A (en) * | 2020-07-29 | 2020-11-13 | 吉林省全星航空技术有限公司 | ADS-B monitoring system and monitoring data processing method |
CN114136334B (en) * | 2021-11-30 | 2024-03-19 | 北京经纬恒润科技股份有限公司 | Positioning method and device based on vehicle positioning module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203786910U (en) * | 2014-04-29 | 2014-08-20 | 北京威胜通达科技有限公司 | Beidou-type low-altitude operation monitoring system |
CN104318809A (en) * | 2014-10-11 | 2015-01-28 | 中国电子科技集团公司第二十八研究所 | Portable ADS-B mobile system with 3g function |
CN104865939A (en) * | 2015-04-22 | 2015-08-26 | 中国民用航空总局第二研究所 | Ground monitoring device, method and system |
CN107403563A (en) * | 2016-05-19 | 2017-11-28 | 中国民用航空总局第二研究所 | Open the navigation or air flight absolutely empty supervision equipment, method, system and all purpose aircraft |
CN208818836U (en) * | 2018-08-27 | 2019-05-03 | 京信通信系统(中国)有限公司 | Positioning device and positioning system |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3281015B2 (en) * | 1992-02-18 | 2002-05-13 | 株式会社東芝 | Aircraft position monitoring system |
US7782256B2 (en) * | 1999-03-05 | 2010-08-24 | Era Systems Corporation | Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects |
CN102244535A (en) * | 2010-05-14 | 2011-11-16 | 中国科学院国家天文台 | System with wide geographical coverage for monitoring positions in real time |
CN101950027A (en) * | 2010-08-18 | 2011-01-19 | 东莞市泰斗微电子科技有限公司 | Navigational satellite signal receiving module and information processing method applied to same |
CN202549080U (en) * | 2012-03-16 | 2012-11-21 | 中国民用航空总局第二研究所 | Fusion system of radar data, flight plan data and ADS-B data |
EP2833561A1 (en) * | 2013-08-01 | 2015-02-04 | Thales Alenia Space Deutschland GmbH | A method for relaying air traffic information to an aircraft using a navigational satellite as relay. |
CN203444647U (en) * | 2013-08-07 | 2014-02-19 | 天津西帕蒂亚科技发展有限公司 | Civil aircraft combination-type monitoring device based on ADS-B and ACARS data links |
CN103873133B (en) * | 2014-03-13 | 2016-11-02 | 中国民用航空总局第二研究所 | A Communication Navigation Surveillance System Based on Multi-mode Data Link |
CN104504936B (en) * | 2014-12-09 | 2017-01-18 | 沈阳航空航天大学 | General aviation aircraft navigation monitoring device |
CN204595221U (en) * | 2015-04-21 | 2015-08-26 | 中国民用航空总局第二研究所 | A kind of common aero vehicle airborne communication navigational system |
CN204557199U (en) * | 2015-04-22 | 2015-08-12 | 中国民用航空总局第二研究所 | A kind of surface-monitoring equipment and system |
CN105139606B (en) * | 2015-07-29 | 2019-04-02 | 重庆赛乐威航空科技有限公司 | A kind of low flyer information interaction system |
CN205693655U (en) * | 2016-03-01 | 2016-11-16 | 袁海峰 | AIS receiver peculiar to vessel with ADS B receive capabilities |
CN105913692B (en) * | 2016-06-06 | 2018-06-29 | 北京威胜通达科技有限公司 | A kind of method and system for monitoring service of flying |
CN106409014A (en) * | 2016-10-27 | 2017-02-15 | 中国航空无线电电子研究所 | General aviation ADS-B terminal |
CN107579768B (en) * | 2017-10-12 | 2023-11-21 | 丛聪 | Aviation control system based on wireless laser communication |
-
2018
- 2018-08-27 CN CN201810978436.6A patent/CN109143270B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203786910U (en) * | 2014-04-29 | 2014-08-20 | 北京威胜通达科技有限公司 | Beidou-type low-altitude operation monitoring system |
CN104318809A (en) * | 2014-10-11 | 2015-01-28 | 中国电子科技集团公司第二十八研究所 | Portable ADS-B mobile system with 3g function |
CN104865939A (en) * | 2015-04-22 | 2015-08-26 | 中国民用航空总局第二研究所 | Ground monitoring device, method and system |
CN107403563A (en) * | 2016-05-19 | 2017-11-28 | 中国民用航空总局第二研究所 | Open the navigation or air flight absolutely empty supervision equipment, method, system and all purpose aircraft |
CN208818836U (en) * | 2018-08-27 | 2019-05-03 | 京信通信系统(中国)有限公司 | Positioning device and positioning system |
Also Published As
Publication number | Publication date |
---|---|
CN109143270A (en) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106998270B (en) | Unmanned aerial vehicle communication system and communication system of unmanned aerial vehicle server | |
CN109143270B (en) | Positioning device and positioning system | |
CN208818836U (en) | Positioning device and positioning system | |
US20180026705A1 (en) | Communications system for use with unmanned aerial vehicles | |
KR101430357B1 (en) | Search and rescue transmitter device using automatic identification system channels | |
CN108832988A (en) | A kind of method and communication terminal controlling multi-mode satellite serial communication | |
CN105391492A (en) | Satellite-based information transmission system | |
CN114067548A (en) | A mutual backup dual-link communication method for rotary-wing unmanned aerial vehicles | |
CN104459721A (en) | Beidou short message all-directional receiving and sending user receiver terminal | |
CN104501828B (en) | A kind of General Aviation airborne surveillance system | |
CN215498962U (en) | A Beidou short message and ADS-B integrated transceiver device | |
CN109598982A (en) | A kind of airborne surveillance system based on multilink | |
CN106059653A (en) | Aircraft signal transmission system and signal transmission method thereof | |
CN103176457B (en) | Aircraft position automatic monitored control system, position reporting device and ground monitoring device | |
CN104820209B (en) | A kind of interrogator transmitter and its method for inquiring of civil aviaton's multipoint positioning | |
KR101515203B1 (en) | Visual par control automation system | |
CN204733274U (en) | The real-time image transmission system of a kind of police unmanned plane multiple spot | |
US10890657B2 (en) | ADS-B transponder system and method | |
CN204536557U (en) | A kind of Big Dipper short message omnidirectional transmitting-receiving subscriber computer terminal | |
CN202158845U (en) | Airplane crack real-time monitoring system based on Beidou navigation satellites | |
CN108075822A (en) | Mounted on " low slow small " carry-on portable multi-mode supervision equipment | |
CN104821104A (en) | Multilaser-action surveillance inquiry method and multilaser-action surveillance inquiry system | |
CN204575845U (en) | The interrogator transmitter of a kind of civil aviaton multipoint positioning | |
KR20240146269A (en) | Augmented positioning method and system by relaying positioning signal on communication channels of low-altitude objects | |
CN109787687A (en) | A kind of portable receiver based on Intersatellite Optical Communication System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200110 Address after: 510663 Shenzhou Road, Guangzhou Science City, Guangzhou economic and Technological Development Zone, Guangdong, 10 Applicant after: COMBA TELECOM SYSTEMS (CHINA) Ltd. Address before: 510663 Shenzhou Road 10, Guangzhou Science City, Guangzhou economic and Technological Development Zone, Guangzhou, Guangdong Applicant before: COMBA TELECOM SYSTEMS (CHINA) Ltd. Applicant before: COMBA TELECOM SYSTEMS (GUANGZHOU) Ltd. Applicant before: COMBA TELECOM TECHNOLOGY (GUANGZHOU) Ltd. Applicant before: TIANJIN COMBA TELECOM SYSTEMS Ltd. |
|
TA01 | Transfer of patent application right | ||
CB02 | Change of applicant information |
Address after: 510663 Shenzhou Road, Guangzhou Science City, Guangzhou economic and Technological Development Zone, Guangdong, 10 Applicant after: Jingxin Network System Co.,Ltd. Address before: 510663 Shenzhou Road, Guangzhou Science City, Guangzhou economic and Technological Development Zone, Guangdong, 10 Applicant before: COMBA TELECOM SYSTEMS (CHINA) Ltd. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |