[go: up one dir, main page]

CN109125263A - 亚油酸-环糊精分子的合成及其形成的聚集体作为药物递送系统的应用 - Google Patents

亚油酸-环糊精分子的合成及其形成的聚集体作为药物递送系统的应用 Download PDF

Info

Publication number
CN109125263A
CN109125263A CN201811112243.9A CN201811112243A CN109125263A CN 109125263 A CN109125263 A CN 109125263A CN 201811112243 A CN201811112243 A CN 201811112243A CN 109125263 A CN109125263 A CN 109125263A
Authority
CN
China
Prior art keywords
dox
nanometers
micella
medicine
medicines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811112243.9A
Other languages
English (en)
Inventor
闫苗苗
魏光成
蔡安然
李静
辛美秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Binzhou Medical College
Original Assignee
Binzhou Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binzhou Medical College filed Critical Binzhou Medical College
Priority to CN201811112243.9A priority Critical patent/CN109125263A/zh
Publication of CN109125263A publication Critical patent/CN109125263A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及环糊精‑亚油酸(β‑CD‑LA)的合成及β‑CD‑LA胶束和β‑CD‑LA‑Dox纳米药的制备及体内外的生物评价方法,属于医药领域。制备方法:首先将亚油酸在DCC,NHS作用下将羧酸基团活化为具有活性的羧酸基团,然后与环糊精反应生成环糊精‑亚油酸(β‑CD‑LA)分子。β‑CD‑LA分子在水溶液中自组装可以形成胶束。采用有机溶剂挥发法,将亲脂性的抗癌药物阿霉素负载到β‑CD‑LA胶束中形成β‑CD‑LA‑Dox纳米药。本发明的β‑CD‑LA分子形成的β‑CD‑LA胶束具有良好生物相容性、水溶性和稳定性。β‑CD‑LA‑Dox纳米药具有pH响应性的缓慢释放、能够很好的诱导癌细胞凋亡。同时,β‑CD‑LA‑Dox纳米药可以诱导肿瘤组织中的肿瘤细胞凋亡,具有抗肿瘤的作用,具有很好的应用前景。

Description

亚油酸-环糊精分子的合成及其形成的聚集体作为药物递送 系统的应用
技术领域
本发明属于医药领域,具体涉及一种具有良好生物相容性、水溶性、稳定性好的胶束及良好水溶性、稳定性的载药胶束的制备及体内外的生物评价方法。
背景技术
癌症是各种疾病中危害最大的疾病,未来癌症将会成为导致全球人类死亡的主要原因。化学疗法是治疗各种癌症最有效的方法,然而传统的化学治疗药物水溶性差、体循环过程中不稳定、非特异性分布造成严重不良反应和多药耐药等因素极大的限制了其在临床中的使用。为解决这一问题,一系列的药物运载体相继出现,例如:胶束、脂质体、树枝状大分子、无机纳米粒子以及凝胶等。药物运载体通过改变抗癌药物的药代动力学性和生物分布,增加了抗癌药物的水溶性、稳定性、安全性和治疗效果。相比于单纯抗癌药物,药物运载体增加了抗癌药物进入肿瘤组织中的药量,同时避免了抗癌药物直接接触正常组织而产生的严重不良反应。
多元不饱和脂肪酸(PUFAs),与人体细胞代谢和脂质代谢密切相关。研究发现,胆固醇必须和不饱和脂肪酸结合后,才能在体内正常的转运和代谢。不饱和脂肪酸还具有很多其他重要的生理学功能,例如:多元不饱和脂肪酸对维持生物膜的正常功能至关重要;多元不饱和脂肪酸具有抗炎作用;多元不饱和脂肪酸可以增强脑细胞的活跃性进而提高大脑的发育等。同时多元不饱和脂肪酸能够提高抗癌药物对癌细胞的敏感性的潜在功能。肿瘤细胞的无限分裂增殖需要大量的营养成分,而不饱和脂肪酸作为重要营养成分之一可以为肿瘤细胞分裂增殖提供能量,因此多元不饱和脂肪酸表现出了天然的肿瘤靶向性。多元不饱和脂肪酸的良好的生物相容性以及天然肿瘤靶向性使得其成为制备药物运载体的优良候选材料。亚油酸(Lionleic acid)是十八碳二烯酸的位置和空间立体异构体,属于多元不饱和脂肪酸,具有良好的生物相容性,可以提高抗癌药物对癌细胞的敏感性,具有天然肿瘤靶向性。
β-环糊精是含有7个吡喃葡萄糖的环状低聚糖,具有良好的生物相容性、易于功能化改造和免疫原性低等性质。β-环糊精具有疏水的空腔结构,可以选择性地与药物分子结合成主-客体复合物,提高药物的生物利用度,降低其毒副作用,同时,可以控制药物释放速度。β-环糊精的优良特性使得其在作为药物运载体材料方面得到了广泛的关注。
本论文将亚油酸与环糊精(6A-Amino-3A-deoxy-(2AS,3AS)-beta-cyclodextrinHydrate,NH2-β-CD)结合生成β-CD-LA分子(β-CD-NH-CO-LA,简称β-CD-LA)。此分子在水中自组装形成胶束,在充分发挥了亚油酸的优良性质的基础上还可以将抗癌药物负载在环糊精疏水性空腔中以及包载在胶束中形成纳米药物,进行抗癌药物的运载。提高了抗癌药物对肿瘤细胞的杀伤效果,同时降低了抗癌药物对正常细胞的损伤作用。
发明内容
本发明的目的之一在于制备一种可以包载亲脂性抗癌药物的胶束,使得包载抗癌药物后能够增加亲脂性药物的水溶性,延长抗癌药物癌体内的循环时间,降低抗癌药物固有的毒副作用。本发明的第二个目的是制备的胶束具有较低细胞毒性而载药胶束具有较好的抗癌活性和良好的抗肿瘤效果。
本发明β-CD-LA胶束以及β-CD-LA-Dox纳米药是通过以下技术方案实现的:
β-CD-LA胶束是由β-CD-LA分子在水中自组装形成的,β-CD-LA-Dox纳米药是β-CD-LA分子在自组装的过程中将Dox包载在胶束中形成的。β-CD-LA分子式如下:
本发明β-CD-LA胶束及负载阿霉素的β-CD-LA-Dox纳米药的制备方法是首先合成β-CD-LA分子,然后确定β-CD-LA分子能否在水中进行自组装及自组装后的胶束形貌和粒径分布情况;其次,将亲脂性的抗癌药物阿霉素负载到β-CD-LA胶束中形成β-CD-LA-Dox纳米药,采用有机溶剂挥发法进行阿霉素的包载,并确定包载率;然后,体外模拟肿瘤微环境对β-CD-LA-Dox纳米药进行体外释放研究,确定温度和pH值对β-CD-LA-Dox纳米药体外释放的影响;最后,评价β-CD-LA胶束的细胞毒性及β-CD-LA-Dox纳米药的抗癌活性和抗肿瘤效果。具体制备方法如下:
(1)本发明β-CD-LA分子的合成方法:
精密称量取一定量的亚油酸加入到圆底烧瓶中,然后向烧瓶中加入20mL THF,超声将亚油酸溶解。然后,加入DCC、NHS,室温下反应24h。到达规定反应时间后,精密称取一定量的β-CD-NH2(β-CD-NH2与亚油酸的摩尔比为1:2)加入到圆底烧瓶中,超声溶解后室温下搅拌反应24h。反应结束后,将反应溶液进行冷冻干燥,得到β-CD-LA粗品。接着进行β-CD-LA的纯化,选用中性氧化铝纯化柱,依次经过乙酸乙酯:石油醚(90:10)和甲醇:水(从90:10到80:20)洗脱,最后将含有β-CD-LA的洗脱液收集并进行冷冻干燥,得到β-CD-LA纯品。
(2)本发明采用有机溶剂挥发法对酵素进行阿霉素的包载,得到β-CD-LA-Dox纳米药。
(3)本发明采用透析的方法模拟肿瘤微环境对β-CD-LA-Dox纳米药进行体外释放研究,考察了不同温度和不同pH值对β-CD-LA-Dox纳米药释放的影响。发现在37℃条件下Dox能够很好的从β-CD-LA-Dox纳米药中释放出来,同时,在较低pH值(pH5.0)条件下的累计释放量明显比正常生理条件下的多,表明β-CD-LA-Dox纳米药具有pH响应性的释放性质。
(4)β-CD-LA胶束的细胞毒性及β-CD-LA-Dox纳米药抗癌活性通过MTT方法进行检测,选用HepG2和MCF-7细胞作为实验对象,通过两种细胞的细胞存活率评价β-CD-LA胶束的细胞毒性及β-CD-LA-Dox纳米药体外抗癌活性。实验表明β-CD-LA胶束具有极低的细胞毒性,而β-CD-LA-Dox纳米药抗癌活性具有剂量依赖性,并且具有较好的抗癌效果。
(5)β-CD-LA胶束及β-CD-LA-Dox纳米药体内实验,选用植瘤小鼠作为实验模型,同时对小鼠体重及肿瘤体积进行测量。将小鼠处死,将肿瘤组织解剖并进行脱水、石蜡包埋、切片处理,最后,对肿瘤组织切片进行HE染色,进行肿瘤组织观察。
附图说明
图1:β-CD-LA胶束TEM形貌(a)和粒径大小分布图(b);
图2:β-CD-LA-Dox纳米药在不同温度(25℃、37℃)和不同pH值(pH=5.0、pH=7.4)条件下的释放行为;
图3:β-CD-LA胶束细胞毒性HepG2细胞(a)和MCF-7细胞(b))和β-CD-LA-Dox纳米药体外抗癌活性实验(HepG2细胞(c)和MCF-7细胞(d));
图4:β-CD-LA-Dox纳米药在不同浓度(10μg·mL-1(a-c)、20μg·mL-1(d-f))和不同时间(2h(a、d)、8h(b、e)、24h(c、f))时被HepG2细胞的摄取情况;
图5:β-CD-LA-Dox纳米药在不同浓度(10μg·mL-1(a-c)、20μg·mL-1(d-f))和不同时间(2h(a、d)、8h(b、e)、24h(c、f))在HepG2细胞内分布情况;
图6:β-CD-LA胶束及β-CD-LA-Dox纳米药对小鼠体重及肿瘤的影响。植瘤小鼠注射PBS、β-CD-LA胶束、β-CD-LA-Dox纳米药前(对应a-c图)和注射PBS、β-CD-LA胶束、β-CD-LA-Dox纳米药12天后(对应d-f图)小鼠肿瘤变化图、小鼠肿瘤大小(g图)数据图以及小鼠体重(h图);
图7:植瘤小鼠在注射PBS(a)、β-CD-LA胶束(b)、β-CD-LA-Dox纳米药(c)12天后对肿瘤组织处理后的变化情况。
具体实施方式
以下给出本发明的具体实施方式,用来对本发明的构成作进一步的说明,但并不认为本发明仅局限于下述的实施方式。
本发明β-CD-LA胶束制备方法及作为药物运载体的应用是通过如下技术方案实现的:
(1)本发明β-CD-LA分子的合成方法:
精密称量取一定量的亚油酸加入到圆底烧瓶中,然后向烧瓶中加入20mL THF,超声将亚油酸溶解。然后,加入DCC、NHS,室温下反应24h。到达规定反应时间后,精密称取一定量的β-CD-NH2(β-CD-NH2与亚油酸的摩尔比为1:2)加入到圆底烧瓶中,超声溶解后室温下搅拌反应24h。反应结束后,将反应溶液进行冷冻干燥,得到β-CD-LA粗品。接着进行β-CD-LA的纯化,选用中性氧化铝纯化柱,依次经过乙酸乙酯:石油醚(90:10)和甲醇:水(从90:10到80:20)洗脱,最后将含有β-CD-LA的洗脱液收集并进行冷冻干燥,得到β-CD-LA纯品。β-CD-LA分子水化后得到β-CD-LA胶束,其形貌及粒径分布如图1所示。
(2)β-CD-LA-Dox纳米药的制备
选择阿霉素(Dox)作为亲脂性抗癌药物模型进行脂质体纳米药装载。室温下将1mgDox溶于10mL甲醇中(加入摩尔比为1:2的Dox与三乙胺),超声溶解并暗处搅拌过夜。将1mgβ-CD-LA粉末溶于二氯甲烷:甲醇(体积比1:1)中,然后将Dox的甲醇溶液与溶有β-CD-LA粉末的二氯甲烷:甲醇(体积比1:1)在茄形瓶中混合并在50℃环境下孵育30min,接着将有机溶液减压旋转蒸发除去,然后向茄形瓶中加入磷酸缓冲溶液(pH=7.4)水化,得到负载阿霉素的胶束β-CD-LA-Dox。
(3)β-CD-LA-Dox纳米药的体外释放实验
为了确定药物从胶束中的释放行为,模拟在肿瘤微环境(pH5.0)和正常生理环境下(pH7.4)的释放行为,同时研究了两种温度(25℃和37℃)下的释放情况。取少量β-CD-LA-Dox纳米药加入4mL PBS缓冲溶液使其水化,将水化后溶液放入透析袋内(最大截留分子量为8000D)。将透析袋放入盛有20mL缓冲溶液的烧杯中,25℃和37℃环境下进行搅拌。在规定时间后(1h、4h、8h、12h、24h、36h、48h、60h、72h)从烧杯中取出4mL溶液进行紫外可见光谱测试,然后向烧杯中补加4mL新的缓冲溶液溶液。
(4)体外抗癌实验
通过MTT方法对HepG2和MCF-7细胞进行细胞存活率研究。将HepG2和MCF-7细胞依次接种到96孔板中,每孔细胞密度为5×103个,每孔加入200μL DMEM High Glucose培养液,37℃、5%CO2培养箱中孵育24h细胞贴壁。然后将旧培养液移出,加入一系列浓度梯度的β-CD-LA胶束、β-CD-LA-Dox纳米药及Dox,孵育24h。到达孵育时间后每孔加入20μL MTT(5mg·mL-1),孵育4h,将所有培养液全部移出,每孔加入150μL DMSO,室温下避光放入摇床中10min,最后吸光度通过酶标仪进行检测,检测波长为570nm。未作处理细胞作为对照组。
为了研究β-CD-LA-Dox纳米药在亚细胞中的分布情况采用激光共聚焦检测。在HepG2细胞中加入阿霉素脂质体纳米药(10μg·mL-1和20μg·mL-1)后,在规定的时间(2h、8h及24h)下进行孵育,然后将旧培养液移出,加入2mL新鲜培养液进行激光共聚焦观察,观察阿霉素的荧光信号出现的位置。
进一步定量研究了HepG2细胞对β-CD-LA-Dox胶束的摄取情况进行了流式细胞术检测。HepG2细胞加入β-CD-LA-Dox纳米药10μg·mL-1和20μg·mL-1)后在规定时间(2h、8h及24h)条件下进行孵育,孵育结束后用流式细胞仪进行检测。检测激发波长和发射波长分别为488nm和525nm。
(5)体内抗癌实验
将注射H22瘤细胞小鼠作为实验研究模型用以研究β-CD-LA胶束、β-CD-LA-Dox纳米药的体内毒理性质。将小鼠左侧腋下的鼠毛剪掉,然后注射H22瘤细胞(5×104·mL-1,0.5mL)。当腋下肿瘤长大至100~200mm3时表示荷瘤小鼠模型已经建立成功,将小鼠随机分成3组(每组4只),分别为PBS组、β-CD-LA胶束、β-CD-LA-Dox纳米药组,β-CD-LA胶束(15mg·kg-1)组、β-CD-LA-Dox纳米药(15mg·kg-1)组每次每组注射200μL,PBS组每次注射等体积PBS溶液,每组每隔一天注射一次,并同时测量小鼠体重与肿瘤大小。观察12天后将小鼠处死,把肿瘤进行解剖处理,将解剖处理的肿瘤组织放于多聚甲醛中固定24小时。固定好的肿瘤组织进行脱水处理后,进行石蜡包埋、切片,最后将肿瘤组织切片进行HE染色。
本发明方法制备载药胶束,具有良好的生物医学性能:
(1)本载药胶束具有pH响应性和缓慢释放的性质。
本发明通过透析的方法对β-CD-LA-Dox纳米药进行体外释放研究,在不同温度及不同pH值下的释放行为如图2所示,25℃条件下pH=5.0和pH=7.4时β-CD-LA-Dox纳米药累计释放量分别为36.10%和25.16%,显然,pH 5.0时的累计释放量多于pH 7.4;同样,37℃条件下pH=5.0和pH=7.4时β-CD-LA-Dox纳米药累计释放量分别为50.68%和45.31%,pH=5.0时的累计释放量也多于pH=7.4时的累计释放量。同时,也可以看出25℃条件下的累计释放量明显比37℃时少。结果表明,β-CD-LA-Dox纳米药在酸性条件下释放量多,而肿瘤组织中的偏酸环境有利于β-CD-LA-Dox纳米药的快速释放,从而能够更好的发挥抗肿瘤作用;而pH 7.4时的释放量较少,β-CD-LA-Dox纳米药在体循环中在其它组织中的释放量较少,减小了对其它组织产生的损伤作用。
(2)本胶束细胞毒性较低且纳米药抗癌活性好
我们选取了HepG2细胞和MCF-7细胞作为模拟细胞,研究了β-CD-LA胶束的细胞毒性以及β-CD-LA-Dox纳米药的抗癌活性。作为药物运载体来说,运载体本身无毒是其作为药物运载体的重要前提条件。我们选择单纯β-CD-LA胶束与HepG2和MCF-7细胞共同孵育24h,通过MTT方法检测其细胞毒理性,如图3(a)和图3(b)所示,β-CD-LA胶束浓度达到10μg·mL-1时,HepG2和MCF-7细胞的细胞相对存活率仍在90%以上,说明β-CD-LA胶束本身对HepG2和MCF-7细胞的存活率影响较小,β-CD-LA胶束本身几乎没有毒性。接下来我们研究了β-CD-LA-Dox纳米药的抗癌活性,如图3(c)和图3(d)所示,随着β-CD-LA-Dox纳米药浓度的升高,HepG2和MCF-7细胞的存活率逐渐降低,β-CD-LA-Dox纳米药浓度为10μg·mL-1时,HepG2和MCF-7细胞的相对存活率均低于80%。然而,β-CD-LA-Dox纳米药的细胞存活率比Dox所引起的细胞存活率高,原因可能是因为Dox为游离型药物,与细胞接触后可以很快进入细胞从而发挥作用;而β-CD-LA-Dox纳米药具有一定的缓释作用,β-CD-LA-Dox纳米药进入细胞后需要将Dox释放从而发挥作用,因此,在相同条件下,β-CD-LA-Dox纳米药的细胞存活率比Dox的高。综上可知,β-CD-LA胶束对细胞存活率影响较小,符合作为药物运载体的基本要求,同时,β-CD-LA-Dox纳米药能够很好的抑制细胞的存活率,抑制效果具有剂量依赖性。
采用激光共聚焦方法定性的研究β-CD-LA-Dox纳米药进入细胞内的情况。如图4(a)所示,β-CD-LA-Dox纳米药浓度为10μg·mL-1时与细胞HepG2细胞共同孵育2h后,只有微弱的Dox荧光信号出现在细胞质中;随着孵育时间的延长,如图4(b)和4(c)所示,细胞质内的Dox荧光信号增强,且在细胞核内也能够看到Dox的荧光信号,说明随着β-CD-LA-Dox纳米药与HepG2细胞共同孵育时间的延长,被细胞摄取的β-CD-LA-Dox纳米药逐渐增多,被摄取的β-CD-LA-Dox纳米药能够在细胞内很好的释放出Dox。图4(d)为β-CD-LA-Dox纳米药浓度为20μg·mL-1时与细胞HepG2细胞共同孵育2h后在细胞素质中出现了明显的Dox荧光信号,与β-CD-LA-Dox纳米药浓度为10μg·mL-1时相比,此时的荧光信号更强,同时,细胞核内也出现了Dox荧光信号,说明,β-CD-LA-Dox纳米药浓度的升高细胞摄取量也越多,对HepG2细胞的作用效果也越好;图4(e)和4(f)β-CD-LA-Dox纳米药浓度为20μg·mL-1时,随着孵育时间的增加,细胞质内的Dox荧光信号也逐渐的增强,同时,细胞核内的Dox荧光信号也逐渐的增强,细胞形态也开始发生改变,24h后细胞基本呈圆形,明显发生了细胞凋亡,说明,随着孵育时间的延长,β-CD-LA-Dox纳米药缓慢的将Dox释放,释放的Dox作用于细胞诱导HepG2细胞发生凋亡,达到抗癌作用。综上可知,β-CD-LA-Dox纳米药浓度较小时,HepG2细胞摄取β-CD-LA-Dox纳米药量也较少,此时β-CD-LA-Dox纳米药主要集中在细胞质中;随着β-CD-LA-Dox纳米药浓度增加,β-CD-LA-Dox纳米药被细胞摄取的量增加,同时随着时间的增长,在细胞质和细胞核中均有分布,释放的Dox诱导癌细胞凋亡的作用更加显著。
激光共聚焦技术定性的描述了β-CD-LA-Dox纳米药被HepG2细胞摄取的情况,采用流式细胞术进一步定量研究了HepG2细胞的摄取。如图5(a-c)所示,在β-CD-LA-Dox纳米药浓度为10μg·mL-1时,随着β-CD-LA-Dox纳米药与HepG2共同孵育时间的延长,平均荧光强度增强,增强趋势不大;在β-CD-LA-Dox纳米药浓度为20μg·mL-1时,随着β-CD-LA-Dox纳米药与HepG2共同孵育时间的延长,平均荧光强度也增强,但是荧光强度增强的幅度明显比β-CD-LA-Dox纳米药浓度为10μg·mL-1时大,流式细胞术得到的数据与激光共聚焦所得的数据一致,说明,HepG2细胞摄取β-CD-LA-Dox纳米药具有浓度和时间依赖性,随着摄取量的增多,Dox释放也逐渐的增多,Dox剂量到达一定值及一定时间时诱导癌细胞发生凋亡。
(3)本纳米药体内抗肿瘤效果明显
为了研究β-CD-LA-Dox纳米药体内的抗肿瘤效果,构建了植瘤小鼠,对每组小鼠进行处理后,结果如图6所示。图6a-6c为未注射PBS、β-CD-LA胶束和β-CD-LA-Dox纳米药前,此时的肿瘤较小,位于小鼠左前肢部位,在注射PBS、β-CD-LA胶束和β-CD-LA-Dox纳米药12天后(图6d-6f)小鼠左前肢部位的肿瘤发生了明显的变化,注射PBS、β-CD-LA胶束小鼠肿瘤明显变大,并且肿瘤发生转移,转移至小鼠整个左前肢甚至后背。然而注射β-CD-LA-Dox纳米药小鼠肿瘤并没有增大趋势反而肿瘤比12天前有所减小,说明β-CD-LA-Dox纳米药具有明显的抗肿瘤效果。小鼠肿瘤大小数据图(图6g)中所展示了PBS、β-CD-LA胶束组和β-CD-LA-Dox纳米药组小鼠肿瘤12天的数据变化,PBS和β-CD-LA胶束组小鼠肿瘤体积一直在变大,而β-CD-LA-Dox纳米药组小鼠肿瘤在第6天以后明显减小,与上述结果一致。抗肿瘤药物最明显的副作用是使得患者的体重减轻,然而令人欣喜的是,在12天观察中小鼠体重并没有发生明显的变化(图6h)。综上可知,在不影响小鼠体重的情况下β-CD-LA-Dox纳米药具有明显的抑制肿瘤生长的效果。
为了进一步观察β-CD-LA-Dox纳米药对肿瘤组织的影响,在实验结束后将小鼠处死,小鼠肿瘤进行解剖处理,肿瘤组织经过脱水、石蜡包埋、组织切片后,进行伊红-苏木精染色(HE染色),结果如图7a-7c所示,PBS和β-CD-LA胶束组肿瘤组织中的癌细胞生长旺盛,甚至可以看到分裂期细胞核分裂为两个核的情况,基本没有出现细胞核固缩情况,组织没有出现坏死区域。β-CD-LA-Dox胶束组肿瘤细胞出现明显固缩,大量细胞核碎裂,肿瘤组织出现大面积坏死区,此区域典型特征是细胞核很大程度上处于碎裂状态,表明β-CD-LA-Dox胶束通过诱导肿瘤细胞凋亡,继而肿瘤组织坏死造成肿瘤体积减小,达到治疗肿瘤的效果。
综上所示,β-CD与LA通过酰胺键偶合在一起成功合成了两亲性分子β-CD-LA在水溶液中可自组装形成球形胶束,此胶束粒径大小均一,分散均匀,稳定性好。从β-CD-LA-Dox纳米药中释放,Dox的释放具有温度和pH响应性的缓慢释放性质。癌细胞对β-CD-LA-Dox纳米药的摄取具有时间和剂量依赖性,被摄取的β-CD-LA-Dox纳米药可以将Dox释放,从而诱导癌细胞凋亡。同时,体内抗肿瘤研究表明β-CD-LA-Dox纳米药在不影响小鼠体重的情况下可以诱导肿瘤组织中的肿瘤细胞凋亡,使得肿瘤体积减小从而发挥抗肿瘤的作用。以上所述仅为本发明的优选实例,并不用于限制本发明。凡在本发明的基础之上的任何改动、修改、替换等,均应包含在本发明的保护范围内。

Claims (8)

1.本发明β-CD-LA胶束及负载阿霉素(Dox)的纳米药β-CD-LA-Dox;其中,使用的环糊精为6A-Amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin Hydrate(β-CD-NH2),亚油酸(Linoleic acid,简写为LA),两者经酰胺反应偶合在一起形成β-CD-NH-CO-LA(β-CD-LA)分子式如下:
2.本发明β-CD-LA胶束及负载阿霉素的纳米药β-CD-LA-Dox的制备方法是首先合成β-CD-LA分子,然后确定β-CD-LA分子能否在水中进行自组装及自组装后的胶束形貌;其次,将亲脂性的抗癌药物阿霉素负载到β-CD-LA胶束中形成β-CD-LA-Dox纳米药,采用有机溶剂挥发法进行阿霉素的包载,并确定包载率;然后,体外模拟肿瘤微环境对β-CD-LA-Dox纳米药进行体外释放研究,确定温度和pH值对β-CD-LA-Dox纳米药体外释放的影响;最后,评价β-CD-LA胶束的细胞毒性及β-CD-LA-Dox纳米药的抗癌活性和抗肿瘤效果。
3.本发明β-CD-LA分子的合成方法:
精密称量取一定量的亚油酸加入到圆底烧瓶中,然后向烧瓶中加入20mL THF,超声将亚油酸溶解。然后,加入DCC、NHS,室温下反应24h。到达规定反应时间后,精密称取一定量的β-CD-NH2(β-CD-NH2与亚油酸的摩尔比为1:2)加入到圆底烧瓶中,超声溶解后室温下搅拌反应24h。反应结束后,将反应溶液进行冷冻干燥,得到β-CD-LA粗品。接着进行β-CD-LA的纯化,选用中性氧化铝纯化柱,依次经过乙酸乙酯:石油醚(90:10)和甲醇:水(从90:10到80:20)洗脱,最后将含有β-CD-LA的洗脱液收集并进行冷冻干燥,得到β-CD-LA纯品。
4.本发明采用有机溶剂挥发法对胶束进行阿霉素的包载,得到β-CD-LA-Dox纳米药。
5.本发明采用透析的方法模拟肿瘤微环境对β-CD-LA-Dox纳米药进行体外释放研究,考察了不同温度和不同pH值对β-CD-LA-Dox纳米药释放的影响。发现在37℃条件下Dox能够很好的从β-CD-LA-Dox胶束中释放出来,同时,在较低pH值(pH5.0)条件下的累计释放量明显比正常生理条件下的多,表明β-CD-LA-Dox纳米药具有pH响应性的释放性质。
6.权利要求2所述β-CD-LA胶束的细胞毒性及β-CD-LA-Dox纳米药抗癌活性通过MTT方法进行检测,选用HepG2和MCF-7细胞作为实验对象,通过两种细胞的细胞存活率评价β-CD-LA胶束的细胞毒性及β-CD-LA-Dox纳米药体外抗癌活性。实验表明β-CD-LA胶束具有极低的细胞毒性,而β-CD-LA-Dox纳米药抗癌活性具有剂量依赖性,并且具有较好的抗癌效果。
7.权利要求2所述β-CD-LA胶束及β-CD-LA-Dox纳米药体内实验选用植瘤小鼠作为实验模型,分别尾静脉注射等量的PBS、β-CD-LA胶束、β-CD-LA-Dox纳米药,观察小鼠体重及肿瘤大小变化情况评价β-CD-LA-Dox纳米药抗肿瘤的效果。实验表明:尾静脉注射PBS、β-CD-LA胶束的小鼠的体重没有发生明显的变化,说明β-CD-LA胶束对小鼠体重影响小,而注射β-CD-LA-Dox纳米药的小鼠的体重也没有明显的变化,但是肿瘤体积变小,说明β-CD-LA-Dox纳米药对在小鼠体重影响较小,但是具有良好的抗肿瘤效果。为了进一步研究β-CD-LA-Dox纳米药对肿瘤的影响,小鼠处死后将肿瘤组织进行解剖,解剖后的肿瘤组织进行脱水、石蜡包埋、切片处理,最后对肿瘤组织切片进行HE染色对肿瘤组织中细胞形态进行观察,观察发现注射β-CD-LA胶束的小鼠组织切片中的细胞形态和注射PBS的组织切片中的细胞形态并没有太大的变化,但是注射β-CD-LA-Dox纳米药的小鼠组织切片中的细胞形态发生了明显的变化,细胞核固缩甚至出现了细胞核破裂的情况,组织中有的地方出现了大面积组织坏死情况。说明β-CD-LA-Dox纳米药通过诱导肿瘤组织细胞坏死达到治疗肿瘤的目的。
8.权利要求1所述β-CD-LA胶束及β-CD-LA-Dox胶束可应用于抗癌、抗肿瘤、药物装载材料。
CN201811112243.9A 2018-09-25 2018-09-25 亚油酸-环糊精分子的合成及其形成的聚集体作为药物递送系统的应用 Pending CN109125263A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811112243.9A CN109125263A (zh) 2018-09-25 2018-09-25 亚油酸-环糊精分子的合成及其形成的聚集体作为药物递送系统的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811112243.9A CN109125263A (zh) 2018-09-25 2018-09-25 亚油酸-环糊精分子的合成及其形成的聚集体作为药物递送系统的应用

Publications (1)

Publication Number Publication Date
CN109125263A true CN109125263A (zh) 2019-01-04

Family

ID=64823247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811112243.9A Pending CN109125263A (zh) 2018-09-25 2018-09-25 亚油酸-环糊精分子的合成及其形成的聚集体作为药物递送系统的应用

Country Status (1)

Country Link
CN (1) CN109125263A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112972676A (zh) * 2020-08-17 2021-06-18 滨州医学院 HSA-Biotin-DDA-TCPP分子的合成及其作为光动力治疗剂及纳米药的应用
CN113456824A (zh) * 2020-03-31 2021-10-01 四川大学华西医院 一种抗肿瘤载药纳米复合材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766821A (zh) * 2010-01-05 2010-07-07 浙江大学 一种基于β-环糊精的聚合物的应用
CN105017445A (zh) * 2015-06-30 2015-11-04 华南理工大学 基于β-环糊精的pH响应星形聚合物及胶束和复合材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766821A (zh) * 2010-01-05 2010-07-07 浙江大学 一种基于β-环糊精的聚合物的应用
CN105017445A (zh) * 2015-06-30 2015-11-04 华南理工大学 基于β-环糊精的pH响应星形聚合物及胶束和复合材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI, HUA ET AL.: ""Cyclodextrin-functionalized polymers as drug carriers for cancer therapy"", 《BIOMATERIALS SCIENCE》 *
高盼: "亚油酸修饰的普鲁兰自组装胶束作为药物载体的研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113456824A (zh) * 2020-03-31 2021-10-01 四川大学华西医院 一种抗肿瘤载药纳米复合材料
CN113456824B (zh) * 2020-03-31 2023-03-31 四川大学华西医院 一种抗肿瘤载药纳米复合材料
CN112972676A (zh) * 2020-08-17 2021-06-18 滨州医学院 HSA-Biotin-DDA-TCPP分子的合成及其作为光动力治疗剂及纳米药的应用
CN112972676B (zh) * 2020-08-17 2024-09-24 滨州医学院 HSA-Biotin-DDA-TCPP分子的合成及其作为光动力治疗剂及纳米药的应用

Similar Documents

Publication Publication Date Title
Wang et al. Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer
Li et al. Histology and antitumor activity study of PTX-loaded micelle, a fluorescent drug delivery system prepared by PEG-TPP
Gao et al. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles
Jing et al. A novel polyethylene glycol mediated lipid nanoemulsion as drug delivery carrier for paclitaxel
CN109350748A (zh) 氧化还原双敏感键桥连小分子前药及其自组装纳米粒
Sun et al. Development of low molecular weight heparin based nanoparticles for metastatic breast cancer therapy
Wu et al. Biocompatible AIEgen/p-glycoprotein siRNA@ reduction-sensitive paclitaxel polymeric prodrug nanoparticles for overcoming chemotherapy resistance in ovarian cancer
Wang et al. Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles
Yang et al. A novel self-targeting theranostic nanoplatform for photoacoustic imaging-monitored and enhanced chemo-sonodynamic therapy
Sun et al. Acid-breakable TPGS-functionalized and diallyl disulfide-crosslinked nanogels for enhanced inhibition of MCF-7/ADR solid tumours
Chen et al. ROS-driven supramolecular nanoparticles exhibiting efficient drug delivery for chemo/Chemodynamic combination therapy for Cancer treatment
Xu et al. Anti-cancer activity based on the high docetaxel loaded poly (2-oxazoline) s micelles
Dong et al. Investigation of the intracellular oxidative stress amplification, safety and anti-tumor effect of a kind of novel redox-responsive micelle
Liu et al. An EGCG-mediated self-assembled micellar complex acts as a bioactive drug carrier
Singh et al. Stimuli-responsive non-ionic Gemini amphiphiles for drug delivery applications
Zhang et al. A new chitosan-based thermosensitive nanoplatform for combined photothermal and chemotherapy
Li et al. Microfluidic assembly of small-molecule prodrug cocktail nanoparticles with high reproducibility for synergistic combination of cancer therapy
Guan et al. Smart dual responsive nanocarriers with reactive oxygen species amplification assisted synergistic chemotherapy against prostate cancer
Hong et al. Synergic fabrication of combination therapy of irinotecan and 5-fluorouracil encapsulated polymeric nanoparticles for the treatment of gastric cancer therapy
Tima et al. Development and characterization of FLT3-specific curcumin-loaded polymeric micelles as a drug delivery system for treating FLT3-overexpressing leukemic cells
CN109125263A (zh) 亚油酸-环糊精分子的合成及其形成的聚集体作为药物递送系统的应用
Yang et al. Curcumin-loaded pH-sensitive carboxymethyl chitosan nanoparticles for the treatment of liver cancer
Hu et al. Construction of redox-sensitive liposomes modified by glycyrrhetinic acid and evaluation of anti-hepatocellular carcinoma activity
Huang et al. One-pot preparation of pH-and redox-responsive polymeric microgel as an efficient carrier for improved breast cancer therapy
CN108853056B (zh) 一种叶酸靶向修饰共载盐酸阿霉素和藤黄酸纳米结构脂质载体制剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190104

WD01 Invention patent application deemed withdrawn after publication